DERIVATIONS

Introduction to non-associative algebra

OR

Playing havoc with the product rule?

BERNARD RUSSO UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF MATHEMATICS

UNIVERSITY STUDIES 4 TRANSFER SEMINAR

FALL 2012

Eighth Meeting: November 15, 2012

OUTLINE OF TODAY'S MEETING

1. SOME SET THEORY (EQUIVALENCE CLASSES)

2. GROUPS AND THEIR QUOTIENT GROUPS

3. FIRST COHOMOLOGY GROUP (Review)

4. SECOND COHOMOLOGY GROUP

Note: PARTS 1,2,4 WERE NOT DISCUSSED AT OUR SIXTH MEETING (NOVEMBER 1)

> ONLY PARTS 3 AND 4 WERE DISCUSSED TODAY

PART 1 OF TODAY'S TALK

A **partition** of a set X is a disjoint class $\{X_i\}$ of non-empty subsets of X whose union is X

- $\{1, 2, 3, 4, 5\} = \{1, 3, 5\} \cup \{2, 4\}$
- $\{1, 2, 3, 4, 5\} = \{1\} \cup \{2\} \cup \{3, 5\} \cup \{4\}$

•
$$\mathbf{R} = \mathbf{Q} \cup (\mathbf{R} - \mathbf{Q})$$

• $\mathbf{R} = \cdots \cup [-2, -1) \cup [-1, 0) \cup [0, 1) \cup \cdots$

A binary relation on the set X is a subset R of $X \times X$. For each ordered pair $(x,y) \in X \times X$,

x is said to be related to y if $(x, y) \in R$.

•
$$R = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x < y\}$$

•
$$R = \{(x, y) \in \mathbf{R} \times \mathbf{R} : y = \sin x\}$$

• For a partition $X = \bigcup_i X_i$ of a set X, let $R = \{(x, y) \in X \times X : x, y \in X_i \text{ for some } i\}$

An equivalence relation on a set X is a relation $R \subset X \times X$ satisfying

reflexive $(x, x) \in R$ symmetric $(x, y) \in R \Rightarrow (y, x) \in R$ transitive $(x, y), (y, z) \in R \Rightarrow (x, z) \in R$

There is a one to one correspondence between equivalence relations on a set X and partitions of that set.

NOTATION

- If R is an equivalence relation we denote $(x, y) \in R$ by $x \sim y$.
- The equivalence class containing x is denoted by [x]. Thus

$$[x] = \{ y \in X : x \sim y \}.$$

EXAMPLES

- equality: $R = \{(x, x) : x \in X\}$
- equivalence class of fractions
 = rational number:

$$R = \{ \left(\frac{a}{b}, \frac{c}{d}\right) : a, b, c, d \in \mathbf{Z}, b \neq 0, d \neq 0, ad = bc \}$$

- equipotent sets: X and Y are equivalent if there exists a function f : X → Y which is one to one and onto.
- half open interval of length one: $R = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x - y \text{ is an integer}\}$
- integers modulo *n*:
- $R = \{(x, y) \in \mathbf{N} \times \mathbf{N} : x y \text{ is divisible by } n\}$

PART 2 OF TODAY'S TALK

A **group** is a set G together with an operation (called *multiplication*) which associates with each ordered pair x, y of elements of G a third element in G (called their *product* and written xy) in such a manner that

- multiplication is associative: (xy)z = x(yz)
- there exists an element *e* in *G*, called the *identity* element with the property that

xe = ex = x for all x

• to each element x, there corresponds another element in G, called the *inverse* of xand written x^{-1} , with the property that $xx^{-1} = x^{-1}x = e$

TYPES OF GROUPS

- commutative groups: xy = yx
- finite groups $\{g_1, g_2, \cdots, g_n\}$
- infinite groups $\{g_1, g_2, \cdots, g_n, \cdots\}$
- cyclic groups $\{e, a, a^2, a^3, \ldots\}$

EXAMPLES

- 1. $\mathbf{R}, +, 0, x^{-1} = -x$
- 2. positive real numbers, \times , 1, $x^{-1} = 1/x$
- 3. \mathbf{R}^{n} , vector addition, $(0, \dots, 0)$, $(\mathbf{x}_{1}, \dots, x_{n})^{-1} = (-x_{1}, \dots, -x_{n})$

4.
$$C, +, 0, f^{-1} = -f$$

- 5. $\{0, 1, 2, \cdots, m-1\}$, addition modulo m, 0, $k^{-1} = m k$
- permutations (=one to one onto functions), composition, identity permutation, inverse permutation
- 7. $M_n(\mathbf{R}), +, 0, A^{-1} = [-a_{ij}]$
- non-singular matrices, matrix multiplication, identity matrix, matrix inverse

Which of these are commutative, finite, infinite?

We shall consider only commutative groups and we shall denote the multiplication by +, the identity by 0, and inverse by -. No confusion should result.

ALERT

Counterintuitively, a very important (commutative) group is a group with one element Let *H* be a subgroup of a commutative group *G*. That is, *H* is a subset of *G* and is a group under the same +,0,- as *G*.

Define an equivalence relations on G as follows: $x \sim y$ if $x - y \in H$.

The set of equivalence classes is a group under the definition of addition given by

[x] + [y] = [x + y].

This group is denoted by G/H and is called the **quotient group** of G by H.

Special cases:

 $H = \{e\}; G/H = G$ (isomorphic)

 $H = G; G/H = \{e\}$ (isomorphic)

EXAMPLES

- 1. $G = \mathbf{R}, +, 0, x^{-1} = -x;$ $H = \mathbf{Z} \text{ or } H = \mathbf{Q}$
- 2. \mathbf{R}^n , vector addition, $(0, \dots, 0)$, $(\mathbf{x}_1, \dots, \mathbf{x}_n)^{-1} = (-x_1, \dots, -x_n)$; $H = \mathbf{Z}^n$ or $H = \mathbf{Q}^n$

3.
$$C, +, 0, f^{-1} = -f;$$

 $H = \mathcal{D}$ or H =polynomials

4.
$$M_n(\mathbf{R}), +, 0, A^{-1} = [-a_{ij}];$$

H =symmetric matrices, or H =anti-symmetric matrices

Part 3 of today's talk (Review) COHOMOLOGY OF ASSOCIATIVE ALGEBRAS

(FIRST COHOMOLOGY GROUP)

The basic formula of homological algebra

 $F(x_{1}, \dots, x_{n}, x_{n+1}) = x_{1}f(x_{2}, \dots, x_{n+1})$ $-f(x_{1}x_{2}, x_{3}, \dots, x_{n+1})$ $+f(x_{1}, x_{2}x_{3}, x_{4}, \dots, x_{n+1})$ $-\dots$ $\pm f(x_{1}, x_{2}, \dots, x_{n}x_{n+1})$ $\mp f(x_{1}, \dots, x_{n})x_{n+1}$

OBSERVATIONS

- n is a positive integer, $n = 1, 2, \cdots$
- f is a function of n variables
- F is a function of n + 1 variables
- $x_1, x_2, \cdots, x_{n+1}$ belong an algebra A
- $f(y_1, \ldots, y_n)$ and $F(y_1, \cdots, y_{n+1})$ also belong to A

HIERARCHY

- x_1, x_2, \ldots, x_n are points (or vectors)
- f and F are functions—they take points to points
- T, defined by T(f) = F is a transformation takes functions to functions
- points x_1, \ldots, x_{n+1} and $f(y_1, \ldots, y_n)$ will belong to an algebra A
- functions f will be either <u>constant</u>, <u>linear</u> or <u>multilinear</u> (hence so will F)
- transformation T is linear

SHORT FORM OF THE FORMULA

$$(Tf)(x_1, \dots, x_n, x_{n+1})$$

= $x_1 f(x_2, \dots, x_{n+1})$
+ $\sum_{j=1}^n (-1)^j f(x_1, \dots, x_j x_{j+1}, \dots, x_{n+1})$

$$+(-1)^{n+1}f(x_1,\ldots,x_n)x_{n+1}$$

FIRST CASES

$\underline{n=0}$

If f is any constant function from A to A, say, f(x) = b for all x in A, where b is a fixed element of A, we have, consistent with the basic formula,

$$T_0(f)(x_1) = x_1b - bx_1$$

$$\underline{n=1}$$

If f is a linear map from A to A, then $T_1(f)(x_1, x_2) = x_1 f(x_2) - f(x_1 x_2) + f(x_1) x_2$

$\underline{n=2}$

If f is a bilinear map from $A \times A$ to A, then

$$T_{2}(f)(x_{1}, x_{2}, x_{3}) =$$

$$x_{1}f(x_{2}, x_{3}) - f(x_{1}x_{2}, x_{3})$$

$$+f(x_{1}, x_{2}x_{3}) - f(x_{1}, x_{2})x_{3}$$

Kernel and Image of a linear transformation

• $G: X \to Y$

Since X and Y are vector spaces, they are in particular, commutative groups.

Kernel of G (also called nullspace of G) is
 ker G = {x ∈ X : G(x) = 0}

This is a subgroup of X

• Image of G is im $G = \{G(x) : x \in X\}$

This is a subgroup of Y

What is the kernel of D on \mathcal{D} ?

What is the image of D on \mathcal{D} ?

(Hint: Second Fundamental theorem of calculus)

We now let
$$G = T_0, T_1, T_2$$

$$G = T_0$$

X = A (the algebra)

Y = L(A) (all linear transformations on A)

$$T_0(f)(x_1) = x_1b - bx_1$$

$$\ker T_0 = \{ b \in A : xb - bx = 0 \text{ for all } x \in A \}$$
(center of A)

im T_0 = the set of all linear maps of A of the form $x \mapsto xb - bx$,

in other words, the set of all inner derivations of \boldsymbol{A}

 $\ker T_0 \text{ is a subgroup of } A$

im T_0 is a subgroup of L(A)

$$G = T_1$$

X = L(A) (linear transformations on A) $Y = L^2(A)$ (bilinear transformations on $A \times A$) $T_1(f)(x_1, x_2) = x_1 f(x_2) - f(x_1 x_2) + f(x_1) x_2$ $\ker T_1 = \{ f \in L(A) : T_1 f(x_1, x_2) =$ 0 for all $x_1, x_2 \in A$ = the set of all derivations of Aim T_1 = the set of all bilinear maps of $A \times A$ of the form $(x_1, x_2) \mapsto x_1 f(x_2) - f(x_1 x_2) + f(x_1) x_2,$ for some linear function $f \in L(A)$. ker T_1 is a subgroup of L(A)im T_1 is a subgroup of $L^2(A)$

$L^{0}(A) \xrightarrow{T_{0}} L(A) \xrightarrow{T_{1}} L^{2}(A) \xrightarrow{T_{2}} L^{3}(A) \cdots$

FACTS:

•
$$T_1 \circ T_0 = 0$$

• $T_2 \circ T_1 = 0$
• \cdots
• $T_{n+1} \circ T_n = 0$

Therefore

im
$$T_n \subset \ker T_{n+1} \subset L^n(A)$$

and

im T_n is a subgroup of ker T_{n+1}

• im $T_0 \subset \ker T_1$

says

Every inner derivation is a derivation

• im $T_1 \subset \ker T_2$

says

for every linear map f, the bilinear map F defined by

 $F(x_1, x_2) = x_1 f(x_2) - f(x_1 x_2) + f(x_1) x_2$ satisfies the equation

 $x_1F(x_2, x_3) - F(x_1x_2, x_3) +$

 $F(x_1, x_2x_3) - F(x_1, x_2)x_3 = 0$

for every $x_1, x_2, x_3 \in A$.

The cohomology groups of A are defined as the quotient groups

$$H^{n}(A) = \frac{\ker T_{n}}{\operatorname{im} T_{n-1}}$$
$$(n = 1, 2, \ldots)$$

Thus

 $H^{1}(A) = \frac{\ker T_{1}}{\operatorname{im} T_{0}} = \frac{\operatorname{derivations}}{\operatorname{inner derivations}}$

$$H^2(A) = \frac{\ker T_2}{\operatorname{im} T_1} = \frac{?}{?}$$

The theorem that every derivation of $M_n(\mathbf{R})$ is inner (that is, of the form δ_a for some $a \in M_n(\mathbf{R})$) can now be restated as:

"the cohomology group $H^1(M_n(\mathbf{R}))$ is the trivial one element group"

Some facts which may be discussed later on (M is a module)

- $H^1(\mathcal{C}) = 0, \ H^2(\mathcal{C}) = 0$
- $H^1(\mathcal{C}, M) = 0, \ H^2(\mathcal{C}, M) = 0$
- $H^n(M_k(\mathbf{R}), M) = 0 \ \forall n \ge 1, k \ge 2$
- $H^n(A) = H^1(A, L(A))$ for $n \ge 2$

Cohomology groups were defined in various contexts as follows

- associative algebras (1945)
- Lie algebras (1952)
- Lie triple systems (1961,2002)
- Jordan algebras (1971)
- associative triple systems (1976)
- Jordan triple systems (1982)

Part 4 of today's meeting

(SECOND COHOMOLOGY GROUP)

$$G = T_2$$

 $X = L^2(A)$ (bilinear transformations on $A \times A$) $Y = L^{3}(A)$ (trilinear transformations on $A \times A \times A$ $T_2(f)(x_1, x_2, x_3) = x_1 f(x_2, x_3) - f(x_1 x_2, x_3) +$ $f(x_1, x_2x_3) - f(x_1, x_2)x_3$ ker $T_2 = \{f \in L(A) : T_2 f(x_1, x_2, x_3) =$ 0 for all $x_1, x_2, x_3 \in A$ =? im T_2 = the set of all trilinear maps h of $A \times A \times A$ of the form^{*} $h(x_1, x_2, x_3) = x_1 f(x_2, x_3) - f(x_1 x_2, x_3)$ $+f(x_1, x_2x_3) - f(x_1, x_2)x_3$ for some bilinear function $f \in L^2(A)$. ker T_2 is a subgroup of $L^2(A)$ im T_2 is a subgroup of $L^3(A)$

*we do not use im T_2 in what follows

Homomorphisms of groups

 $f: G_1 \to G_2$ is a <u>homomorphism</u> if f(x+y) = f(x) + f(y)

- $f(G_1)$ is a subgroup of G_2
- ker f is a subgroup of G_1
- $G_1 / \ker f$ is isomorphic to $f(G_1)$

(isomorphism = one to one and onto homomorphism)

Homomorphisms of algebras

 $h: A_1 \to A_2$ is a <u>homomorphism</u> if h(x+y) = h(x) + h(y)and

$$h(xy) = h(x)h(y)$$

- $h(A_1)$ is a subalgebra of A_2
- ker h is a subalgebra of A_1 (actually, an ideal[†] in A_1)
- $A_1 / \ker h$ is isomorphic to $h(A_1)$

(isomorphism = one to one and onto homomorphism)

[†]An **ideal** in an algebra A is a subalgebra I with the property that $AI \cup IA \subset I$, that is, $xa, ax \in I$ whenever $x \in I$ and $a \in A$

EXTENSIONS

Let A be an algebra. Let M be another algebra which contains an ideal I and let $g: M \to A$ be a homomorphism.

In symbols,

$I \xrightarrow{\subset} M \xrightarrow{g} A$

This is called an **extension of** A by I if

• ker
$$g = I$$

• im g = A

It follows that M/I is isomorphic to A

EXAMPLE 1

Let A be an algebra.

Define an algebra $M = A \oplus A$ to be the set $A \times A$ with addition

$$(a, x) + (b, y) = (a + b, x + y)$$

and product

$$(a, x)(b, y) = (ab, xy)$$

- $\{0\} \times A$ is an ideal in M
- $(\{0\} \times A)^2 \neq 0$
- $g: M \to A$ defined by g(a, x) = a is a homomorphism
- *M* is an extension of $\{0\} \times A$ by *A*.

EXAMPLE 2

Let A be an algebra and let

$$h \in \ker T_2 \subset L^2(A).$$

Recall that this means that for all
 $x_1, x_2, x_3 \in A,$
 $x_1f(x_2, x_3) - f(x_1x_2, x_3)$
 $+f(x_1, x_2x_3) - f(x_1, x_2)x_3 = 0$

Define an algebra M_h to be the set $A \times A$ with addition

$$(a, x) + (b, y) = (a + b, x + y)$$

and the product

$$(a, x)(b, y) = (ab, ay + xb + h(a, b))$$

Because $h \in \ker T_2$, this algebra is **ASSOCIATIVE!**

whenever A is associative.

THE PLOT THICKENS

- $\{0\} \times A$ is an ideal in M_h
- $(\{0\} \times A)^2 = 0$
- $g : M_h \to A$ defined by g(a, x) = a is a homomorphism
- M_h is an extension of $\{0\} \times A$ by A.

EQUIVALENCE OF EXTENSIONS

Extensions

 $I \xrightarrow{\subset} M \xrightarrow{g} A$

and $I \xrightarrow{\subset} M' \xrightarrow{g'} A$

are said to be equivalent if there is an isomorphism $\psi: M \to M'$ such that

•
$$\psi(x) = x$$
 for all $x \in I$

•
$$g = g' \circ \psi$$

(Is this an equivalence relation?)

EXAMPLE 2—continued

Let $h_1, h_2 \in \ker T_2$.

We then have two extensions of A by $\{0\} \times A$, namely

$$\{\mathbf{0}\} \times A \xrightarrow{\subset} M_{h_1} \xrightarrow{g_1} A$$

and

$$\{0\} \times A \xrightarrow{\subset} M_{h_2} \xrightarrow{g_2} A$$

Now suppose that h_1 is equivalent[‡] to h_2 , $h_1 - h_2 = T_1 f$ for some $f \in L(A)$

- The above two extensions are equivalent.
- We thus have a mapping from H²(A, A) into the set of equivalence classes of extensions of A by the ideal {0} × A

[‡]This is the same as saying that $[h_1] = [h_2]$ as elements of $H^2(A, A) = \ker T_2 / \operatorname{im} T_1$

GRADUS AD PARNASSUM (COHOMOLOGY)

- Verify that there is a one to one correspondence between partitions of a set X and equivalence relations on that set.
 Precisely, show that
 - If $X = \bigcup X_i$ is a partition of X, then $R := \{(x, y) \times X : x, y \in X_i \text{ for some } i\}$ is an equivalence relation whose equivalence classes are the subsets X_i .
 - If R is an equivalence relation on X with equivalence classes X_i , then $X = \bigcup X_i$ is a partition of X.
- 2. Verify that $T_{n+1} \circ T_n = 0$ for n = 0, 1, 2. Then prove it for all $n \ge 3$.
- 3. Show that if $f : G_1 \to G_2$ is a homomorphism of groups, then $G_1/\ker f$ is isomorphic to $f(G_1)$ **Hint**: Show that the map $[x] \mapsto f(x)$ is an isomorphism of $G_1/\ker f$ onto $f(G_1)$

- 4. Show that if $h : A_1 \to A_2$ is a homomorphism of algebras, then $A_1/\ker h$ is isomorphic to $h(A_1)$ Hint: Show that the map $[x] \mapsto h(x)$ is an isomorphism of $A_1/\ker h$ onto $h(A_1)$
- 5. Show that the algebra M_h in Example 2 is associative. **Hint**: You use the fact that A is associative. tive AND the fact that, since $h \in \ker T_2$,
 - h(a,b)c + h(ab.c) = ah(b,c) + h(a,bc)
- Show that equivalence of extensions is actually an equivalence relation.
 Hint:
 - reflexive: $\psi: M \to M$ is the identity map
 - symmetric: replace $\psi : M \to M'$ by its inverse $\psi^{-1} : M' \to M$
 - transitive: given $\psi : M \to M'$ and $\psi' : M' \to M''$ let $\psi'' = \psi' \circ \psi : M \to M''$
- 7. Show that in example 2, if h_1 and h_2 are equivalent bilinear maps, that is, $h_1 - h_2 =$ $T_1 f$ for some linear map f, then M_{h_1} and M_{h_2} are equivalent extensions of $\{0\} \times A$ by A. **Hint:** $\psi : M_{h_1} \to M_{h_2}$ is defined by $\psi(a, x) = (a, x + f(a))$