DERIVATIONS

Introduction to non-associative algebra OR

Playing havoc with the product rule?

BERNARD RUSSO UNIVERSITY OF CALIFORNIA, IRVINE DEPARTMENT OF MATHEMATICS

UNIVERSITY STUDIES 4 TRANSFER SEMINAR

FALL 2012

Eighth Meeting: November 15, 2012

OUTLINE OF TODAY'S MEETING

- SOME SET THEORY
 (EQUIVALENCE CLASSES)
- 2. GROUPS AND THEIR QUOTIENT GROUPS
 - 3. FIRST COHOMOLOGY GROUP (Review)
- 4. SECOND COHOMOLOGY GROUP

Note:

PARTS 1,2,4 WERE NOT DISCUSSED AT OUR SIXTH MEETING (NOVEMBER 1)

ONLY PARTS 3 AND 4 WERE DISCUSSED TODAY

PART 1 OF TODAY'S TALK

A **partition** of a set X is a disjoint class $\{X_i\}$ of non-empty subsets of X whose union is X

- $\{1, 2, 3, 4, 5\} = \{1, 3, 5\} \cup \{2, 4\}$
- $\{1, 2, 3, 4, 5\} = \{1\} \cup \{2\} \cup \{3, 5\} \cup \{4\}$
- $R = Q \cup (R Q)$
- $R = \cdots \cup [-2, -1) \cup [-1, 0) \cup [0, 1) \cup \cdots$

A **binary relation** on the set X is a subset R of $X \times X$. For each ordered pair

$$(x,y) \in X \times X$$
,

x is said to be related to y if $(x,y) \in R$.

- $R = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x < y\}$
- $R = \{(x, y) \in \mathbf{R} \times \mathbf{R} : y = \sin x\}$
- For a partition $X = \cup_i X_i$ of a set X, let $R = \{(x,y) \in X \times X : x,y \in X_i \text{ for some } i\}$

An equivalence relation on a set X is a relation $R \subset X \times X$ satisfying

reflexive
$$(x, x) \in R$$

symmetric $(x, y) \in R \Rightarrow (y, x) \in R$
transitive $(x, y), (y, z) \in R \Rightarrow (x, z) \in R$

There is a one to one correspondence between equivalence relations on a set X and partitions of that set.

NOTATION

- If R is an equivalence relation we denote $(x,y) \in R$ by $x \sim y$.
- ullet The equivalence class containing x is denoted by [x]. Thus

$$[x] = \{ y \in X : x \sim y \}.$$

EXAMPLES

- equality: $R = \{(x, x) : x \in X\}$
- equivalence class of fractions
 rational number:

$$R = \{ (\frac{a}{b}, \frac{c}{d}) : a, b, c, d \in \mathbf{Z}, b \neq 0, d \neq 0, ad = bc \}$$

- equipotent sets: X and Y are equivalent if there exists a function $f: X \to Y$ which is one to one and onto.
- half open interval of length one: $R = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x y \text{ is an integer}\}$
- integers modulo *n*:

$$R = \{(x, y) \in \mathbf{N} \times \mathbf{N} : x - y \text{ is divisible by } n\}$$

PART 2 OF TODAY'S TALK

A **group** is a set G together with an operation (called *multiplication*) which associates with each ordered pair x, y of elements of G a third element in G (called their *product* and written xy) in such a manner that

- multiplication is associative: (xy)z = x(yz)
- ullet there exists an element e in G, called the *identity* element with the property that

$$xe = ex = x$$
 for all x

ullet to each element x, there corresponds another element in G, called the *inverse* of x and written x^{-1} , with the property that

$$xx^{-1} = x^{-1}x = e$$

TYPES OF GROUPS

- commutative groups: xy = yx
- finite groups $\{g_1, g_2, \cdots, g_n\}$
- infinite groups $\{g_1, g_2, \cdots, g_n, \cdots\}$
- cyclic groups $\{e, a, a^2, a^3, \ldots\}$

EXAMPLES

- 1. $\mathbf{R}, +, 0, x^{-1} = -x$
- 2. positive real numbers, \times , 1, $x^{-1} = 1/x$
- 3. \mathbf{R}^{n} , vector addition, $(0, \dots, 0)$, $(\mathbf{x}_{1}, \dots, \mathbf{x}_{n})^{-1} = (-x_{1}, \dots, -x_{n})$
- 4. $C, +, 0, f^{-1} = -f$
- 5. $\{0, 1, 2, \dots, m-1\}$, addition modulo m, 0, $k^{-1} = m k$
- permutations (=one to one onto functions), composition, identity permutation, inverse permutation
- 7. $M_n(\mathbf{R}), +, 0, A^{-1} = [-a_{ij}]$
- 8. non-singular matrices, matrix multiplication, identity matrix, matrix inverse

Which of these are commutative, finite, infinite?

We shall consider only commutative groups and we shall denote the multiplication by +, the identity by 0, and inverse by -.

No confusion should result.

ALERT

Counterintuitively, a very important (commutative) group is a group with one element

Let H be a subgroup of a commutative group G. That is, H is a subset of G and is a group under the same +,0,- as G.

Define an equivalence relations on G as follows: $x \sim y$ if $x - y \in H$.

The set of equivalence classes is a group under the definition of addition given by

$$[x] + [y] = [x + y].$$

This group is denoted by G/H and is called the **quotient group** of G by H.

Special cases:

$$H = \{e\}; G/H = G \text{ (isomorphic)}$$

$$H = G$$
; $G/H = \{e\}$ (isomorphic)

EXAMPLES

- 1. $G = \mathbf{R}, +, 0, x^{-1} = -x;$ $H = \mathbf{Z} \text{ or } H = \mathbf{Q}$
- 2. \mathbf{R}^n , vector addition, $(0, \dots, 0)$, $(\mathbf{x}_1, \dots, \mathbf{x}_n)^{-1} = (-x_1, \dots, -x_n)$; $H = \mathbf{Z}^n$ or $H = \mathbf{Q}^n$
- 3. C, +, 0, $f^{-1} = -f$; $H = \mathcal{D}$ or H = polynomials
- 4. $M_n(\mathbf{R}),+,0,A^{-1}=[-a_{ij}];$ H=symmetric matrices, or H=anti-symmetric matrices

Part 3 of today's talk (Review) COHOMOLOGY OF ASSOCIATIVE ALGEBRAS

(FIRST COHOMOLOGY GROUP)

The basic formula of homological algebra

$$F(x_{1},...,x_{n},x_{n+1}) = x_{1}f(x_{2},...,x_{n+1})$$

$$-f(x_{1}x_{2},x_{3},...,x_{n+1})$$

$$+f(x_{1},x_{2}x_{3},x_{4},...,x_{n+1})$$

$$-...$$

$$\pm f(x_{1},x_{2},...,x_{n}x_{n+1})$$

$$\mp f(x_{1},...,x_{n})x_{n+1}$$

OBSERVATIONS

- n is a positive integer, $n = 1, 2, \cdots$
- ullet f is a function of n variables
- F is a function of n+1 variables
- x_1, x_2, \dots, x_{n+1} belong an algebra A
- $f(y_1, \ldots, y_n)$ and $F(y_1, \cdots, y_{n+1})$ also belong to A

HIERARCHY

- x_1, x_2, \ldots, x_n are points (or vectors)
- f and F are functions—they take points to points
- T, defined by T(f) = F is a transformation—takes functions to functions
- points x_1, \ldots, x_{n+1} and $f(y_1, \ldots, y_n)$ will belong to an algebra A
- functions f will be either <u>constant</u>, <u>linear</u> or <u>multilinear</u> (hence so will F)
- transformation T is linear

SHORT FORM OF THE FORMULA

$$(Tf)(x_1, \dots, x_n, x_{n+1})$$

$$= x_1 f(x_2, \dots, x_{n+1})$$

$$+ \sum_{j=1}^n (-1)^j f(x_1, \dots, x_j x_{j+1}, \dots, x_{n+1})$$

$$+ (-1)^{n+1} f(x_1, \dots, x_n) x_{n+1}$$

FIRST CASES

$$n = 0$$

If f is any constant function from A to A, say, f(x) = b for all x in A, where b is a fixed element of A, we have, consistent with the basic formula,

$$T_0(f)(x_1) = x_1b - bx_1$$

$$n = 1$$

If f is a linear map from A to A, then $T_1(f)(x_1,x_2) = x_1f(x_2) - f(x_1x_2) + f(x_1)x_2$

$$\underline{n=2}$$

If f is a bilinear map from $A \times A$ to A, then

$$T_2(f)(x_1, x_2, x_3) =$$

$$x_1 f(x_2, x_3) - f(x_1 x_2, x_3)$$

$$+ f(x_1, x_2 x_3) - f(x_1, x_2) x_3$$

Kernel and Image of a linear transformation

 \bullet $G: X \to Y$

Since X and Y are vector spaces, they are in particular, commutative groups.

Kernel of G (also called nullspace of G)
 is

$$\ker G = \{x \in X : G(x) = 0\}$$

This is a subgroup of X

• **Image** of *G* is

$$\mathsf{im}\,G = \{G(x) : x \in X\}$$

This is a subgroup of Y

What is the kernel of D on \mathcal{D} ?

What is the image of D on \mathcal{D} ?

(Hint: Second Fundamental theorem of calculus)

We now let $G = T_0, T_1, T_2$

$$G = T_0$$

X = A (the algebra)

Y = L(A) (all linear transformations on A)

$$T_0(f)(x_1) = x_1b - bx_1$$

 $\ker T_0 = \{b \in A : xb - bx = 0 \text{ for all } x \in A\}$ (center of A)

im T_0 = the set of all linear maps of A of the form $x \mapsto xb - bx$,

in other words, the set of all inner derivations of \boldsymbol{A}

 $\ker T_0$ is a subgroup of A im T_0 is a subgroup of L(A)

$G = T_1$

X=L(A) (linear transformations on A) $Y=L^2(A) \text{ (bilinear transformations on } A\times A)$ $T_1(f)(x_1,x_2)=x_1f(x_2)-f(x_1x_2)+f(x_1)x_2$ $\ker T_1=\{f\in L(A):T_1f(x_1,x_2)=0\text{ for all } x_1,x_2\in A\}=\text{ the set of all derivations of } A$

 $\operatorname{im} T_1 = \operatorname{the set}$ of all bilinear maps of $A \times A$ of the form

 $(x_1, x_2) \mapsto x_1 f(x_2) - f(x_1 x_2) + f(x_1) x_2,$

for some linear function $f \in L(A)$.

 $\ker T_1$ is a subgroup of L(A)

im T_1 is a subgroup of $L^2(A)$

$$L^0(A) \xrightarrow{T_0} L(A) \xrightarrow{T_1} L^2(A) \xrightarrow{T_2} L^3(A) \cdots$$

FACTS:

- $T_1 \circ T_0 = 0$
- $T_2 \circ T_1 = 0$
- . . .
- $\bullet \ T_{n+1} \circ T_n = 0$
- . . .

Therefore

 $\operatorname{im} T_n \subset \ker T_{n+1} \subset L^n(A)$

and

 $\operatorname{im} T_n$ is a subgroup of $\ker T_{n+1}$

• im $T_0 \subset \ker T_1$

says

Every inner derivation is a derivation

• im $T_1 \subset \ker T_2$

says

for every linear map f, the bilinear map F defined by

$$F(x_1, x_2) = x_1 f(x_2) - f(x_1 x_2) + f(x_1) x_2$$

satisfies the equation

$$x_1F(x_2,x_3) - F(x_1x_2,x_3) +$$

$$F(x_1, x_2x_3) - F(x_1, x_2)x_3 = 0$$

for every $x_1, x_2, x_3 \in A$.

The cohomology groups of A are defined as the quotient groups

$$H^n(A) = rac{\ker T_n}{\operatorname{im} T_{n-1}}$$

$$(n = 1, 2, \ldots)$$
 Thus
$$H^1(A) = rac{\ker T_1}{\operatorname{im} T_0} = rac{\operatorname{derivations}}{\operatorname{inner derivations}}$$

$$H^2(A) = rac{\ker T_2}{\operatorname{im} T_1} = rac{?}{?}$$

The theorem that every derivation of $M_n(\mathbf{R})$ is inner (that is, of the form δ_a for some $a \in M_n(\mathbf{R})$) can now be restated as:

"the cohomology group $H^1(M_n({f R}))$ is the trivial one element group"

Some facts which may be discussed later on (M is a module)

•
$$H^1(\mathcal{C}) = 0$$
, $H^2(\mathcal{C}) = 0$

•
$$H^1(\mathcal{C}, M) = 0, H^2(\mathcal{C}, M) = 0$$

•
$$H^n(M_k(\mathbf{R}), M) = 0 \ \forall n \ge 1, k \ge 2$$

•
$$H^n(A) = H^1(A, L(A))$$
 for $n \ge 2$

Cohomology groups were defined in various contexts as follows

- associative algebras (1945)
- Lie algebras (1952)
- Lie triple systems (1961,2002)
- Jordan algebras (1971)
- associative triple systems (1976)
- Jordan triple systems (1982)

Part 4 of today's meeting (SECOND COHOMOLOGY GROUP)

$$G = T_2$$

 $X=L^2(A)$ (bilinear transformations on $A\times A$) $Y=L^3(A) \mbox{ (trilinear transformations on } A\times A\times A)$

 $T_2(f)(x_1, x_2, x_3) = x_1 f(x_2, x_3) - f(x_1 x_2, x_3) + f(x_1, x_2 x_3) - f(x_1, x_2) x_3$

 $\ker T_2 = \{ f \in L(A) : T_2 f(x_1, x_2, x_3) = 0 \text{ for all } x_1, x_2, x_3 \in A \} = ?$

im T_2 = the set of all trilinear maps h of $A \times A \times A$ of the form*

$$h(x_1, x_2, x_3) = x_1 f(x_2, x_3) - f(x_1 x_2, x_3) + f(x_1, x_2 x_3) - f(x_1, x_2) x_3,$$

for some bilinear function $f \in L^2(A)$.

 $\ker T_2$ is a subgroup of $L^2(A)$

im T_2 is a subgroup of $L^3(A)$

^{*}we do not use im T_2 in what follows

Homomorphisms of groups

$$f: G_1 \to G_2$$
 is a homomorphism if
$$f(x+y) = f(x) + f(y)$$

- $f(G_1)$ is a subgroup of G_2
- $\ker f$ is a subgroup of G_1
- $G_1/\ker f$ is isomorphic to $f(G_1)$

(isomorphism =
one to one and onto homomorphism)

Homomorphisms of algebras

$$h:A_1 o A_2$$
 is a homomorphism if $h(x+y)=h(x)+h(y)$ and $h(xy)=h(x)h(y)$

- $h(A_1)$ is a subalgebra of A_2
- \bullet ker h is a subalgebra of A_1 (actually, an ideal \dagger in A_1)
- $A_1/\ker h$ is isomorphic to $h(A_1)$

(isomorphism =
one to one and onto homomorphism)

[†]An **ideal** in an algebra A is a subalgebra I with the property that $AI \cup IA \subset I$, that is, $xa, ax \in I$ whenever $x \in I$ and $a \in A$

EXTENSIONS

Let A be an algebra. Let M be another algebra which contains an ideal I and let $g:M\to A$ be a homomorphism.

In symbols,

$$I \stackrel{\subseteq}{\to} M \stackrel{g}{\to} A$$

This is called an extension of A by I if

- $\ker g = I$
- $\operatorname{im} g = A$

It follows that M/I is isomorphic to A

EXAMPLE 1

Let A be an algebra.

Define an algebra $M=A\oplus A$ to be the set $A\times A$ with addition

$$(a, x) + (b, y) = (a + b, x + y)$$

and product

$$(a,x)(b,y) = (ab,xy)$$

- $\{0\} \times A$ is an ideal in M
- $\bullet \ (\{0\} \times A)^2 \neq 0$
- ullet g:M o A defined by g(a,x)=a is a homomorphism
- M is an extension of $\{0\} \times A$ by A.

EXAMPLE 2

Let A be an algebra and let $h \in \ker T_2 \subset L^2(A)$.

Recall that this means that for all $x_1, x_2, x_3 \in A$,

$$x_1 f(x_2, x_3) - f(x_1 x_2, x_3)$$
$$+ f(x_1, x_2 x_3) - f(x_1, x_2) x_3 = 0$$

Define an algebra M_h to be the set $A \times A$ with addition

$$(a, x) + (b, y) = (a + b, x + y)$$

and the product

$$(a, x)(b, y) = (ab, ay + xb + h(a, b))$$

Because $h \in \ker T_2$, this algebra is **ASSOCIATIVE!**

whenever A is associative.

THE PLOT THICKENS

- $\{0\} \times A$ is an ideal in M_h
- $\bullet \ (\{0\} \times A)^2 = 0$
- ullet $g:M_h o A$ defined by g(a,x)=a is a homomorphism
- M_h is an extension of $\{0\} \times A$ by A.

EQUIVALENCE OF EXTENSIONS

Extensions

$$I \overset{\subseteq}{\to} M \overset{g}{\overset{\to}{\to}} A$$
 and $I \overset{\subseteq}{\to} M' \overset{g'}{\overset{\to}{\to}} A$

are said to be equivalent if $\mbox{there is an isomorphism } \psi: M \to M'$ such that

- $\psi(x) = x$ for all $x \in I$
- $g = g' \circ \psi$

(Is this an equivalence relation?)

EXAMPLE 2—continued

Let $h_1, h_2 \in \ker T_2$.

We then have two extensions of A by $\{0\} \times A$, namely

$$\{0\}\times A\stackrel{\subseteq}{\to} M_{h_1}\stackrel{g_1}{\to} A$$
 and
$$\{0\}\times A\stackrel{\subseteq}{\to} M_{h_2}\stackrel{g_2}{\to} A$$

Now suppose that h_1 is equivalent[‡] to h_2 , $h_1 - h_2 = T_1 f$ for some $f \in L(A)$

- The above two extensions are equivalent.
- We thus have a mapping from $H^2(A,A)$ into the set of equivalence classes of extensions of A by the ideal $\{0\} \times A$

[‡]This is the same as saying that $[h_1] = [h_2]$ as elements of $H^2(A, A) = \ker T_2 / \operatorname{im} T_1$

GRADUS AD PARNASSUM (COHOMOLOGY)

1. Verify that there is a one to one correspondence between partitions of a set X and equivalence relations on that set.

Precisely, show that

- If $X = \cup X_i$ is a partition of X, then $R := \{(x,y) \times X : x,y \in X_i \text{ for some } i\}$ is an equivalence relation whose equivalence classes are the subsets X_i .
- If R is an equivalence relation on X with equivalence classes X_i , then $X = \cup X_i$ is a partition of X.
- 2. Verify that $T_{n+1} \circ T_n = 0$ for n = 0, 1, 2. Then prove it for all $n \ge 3$.
- 3. Show that if $f: G_1 \to G_2$ is a homomorphism of groups, then $G_1/\ker f$ is isomorphic to $f(G_1)$

Hint: Show that the map $[x] \mapsto f(x)$ is an isomorphism of $G_1/\ker f$ onto $f(G_1)$

4. Show that if $h: A_1 \to A_2$ is a homomorphism of algebras, then $A_1/\ker h$ is isomorphic to $h(A_1)$

Hint: Show that the map $[x] \mapsto h(x)$ is an isomorphism of $A_1/\ker h$ onto $h(A_1)$

5. Show that the algebra M_h in Example 2 is associative.

Hint: You use the fact that A is associative AND the fact that, since $h \in \ker T_2$, h(a,b)c + h(ab.c) = ah(b,c) + h(a,bc)

6. Show that equivalence of extensions is actually an equivalence relation.

Hint:

- ullet reflexive: $\psi:M\to M$ is the identity map
- symmetric: replace $\psi: M \to M'$ by its inverse $\psi^{-1}: M' \to M$
- transitive: given $\psi:M\to M'$ and $\psi':M'\to M''$ let $\psi''=\psi'\circ\psi:M\to M''$
- 7. Show that in example 2, if h_1 and h_2 are equivalent bilinear maps, that is, $h_1 h_2 = T_1 f$ for some linear map f, then M_{h_1} and M_{h_2} are equivalent extensions of $\{0\} \times A$ by A. **Hint:** $\psi: M_{h_1} \to M_{h_2}$ is defined by $\psi(a,x) = (a,x+f(a))$