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1. Introduction

The use of non-associative algebras to formulate Mendel’s laws was started by Ether-
ington in his papers [6,7]. Other genetic algebras (those that model inheritance in
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genetics) called evolution algebras emerged to study non-Mendelian genetics. Its the-
ory in the finite-dimensional case was introduced by Tian in [8]. The systematic study of
evolution algebras of arbitrary dimension and of their algebraic properties was started
in [1], where the authors analyze evolution subalgebras, ideals, non-degeneracy, simple
evolution algebras and irreducible evolution algebras. The aim of this paper is to ob-
tain the classification of three-dimensional evolution algebras having in mind to apply
this classification in a near future in a biological setting and to detect possible tools to
implement in wider classifications.

Two-dimensional evolution algebras over the complex numbers were determined in [3],
although we have found that this classification is incomplete: the algebra A with natural
basis {eq, e} such that e? = ey and €3 = e; is a two-dimensional evolution algebra not
isomorphic to any of the six types in [3]. We realized of this fact when classifying the
three-dimensional evolution algebras A such that dim(A?) = 2 and having annihilator’
of dimension 1.

The three dimensional case is much more complicated, as can be seen in this work,
where we prove that there are 116 types of three-dimensional evolution algebras. The
details can be found in [2, Tables 1-24]. Just after finishing this paper we found the
article [5], where one of the aims of the authors is to classify indecomposable® nilpotent
evolution algebras up to dimension five over algebraically closed fields of characteristic
not two. The three-dimensional ones can be localized in our classification and for these,
it is not necessary to consider algebraically closed fields.

In this paper we deal with evolution algebras over a field K of characteristic different
from 2 and in which every polynomial of the form z™ — k, for n = 2,3,7 and k € K has
a root in the field. We denote by ¢ a seventh root of the unit and by ¢ a third root of
the unit.

In Section 2 we introduce the essential definitions. For every arbitrary finite dimen-
sional algebra, fix a basis B = {e; | i = 1,...,n}. The product of this algebra, relative
to the basis B is determined by the matrices of the multiplication operators, Mp(A,)
(see (1)). The relationship under change of basis is also established. In the particular
case of evolution algebras Theorem 2.2 shows this connection.

We start Section 3 by analyzing the action of the group S3 x (K*)? on Mj3(K). The
orbits of this action will completely determine the non-isomorphic evolution algebras A
when dim(A?) = 3 and in some cases when dim(A42) = 2.

We have divided our study into four cases depending on the dimension of A2, which
can be 0, 1, 2 or 3. The first case is trivial. The study of the third and of the fourth ones
is made by taking into account which are the possible matrices P that appear as change
of basis matrices. It happens that for dimension 3, as we have said, the only matrices
are those in Sz x (K*)3.

! The annihilator of A, ann(A), is defined as the set of those elements z in A such that zA = 0.
2 TIrreducible following [1].
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When the dimension of A? is 2, there exists three groups of cases (four in fact, but
two of them are essentially the same). Let B = {e1, e2,e3} be a natural basis of A such
that {e?,e3} is a basis of A? and e3 = c1e? + coe3 for some c1,co € K. The first case
happens when cico # 0. Then, P € S3 x (K*)2. The second group of cases arises when
c1 = 0 and ¢z # 0. Then, the matrix P is ids, (2,3),® or the matrix @Q given in Case 2
(when dim(A? = 2)). The third one appears when case happens when ¢y, cy = 0. In this
case the matrix P is id3 or the matrices Q" and Q" given in Case 4 (when dim(A? = 2)).

For P € S3 x (KX)3, we classify taking into account: the dimension of the anni-
hilator of A, the number of non-zero entries in the structure matrix (which remains
invariant, as it is proved in Proposition 3.2), and if the algebra A satisfies Prop-
erty (2LI).*

For P € {ids, (2, 3), @}, we obtain a first classification (see the different Figures in [2]).
Then we compare which matrices produce isomorphic algebras and eliminating redun-
dancies we get the matrices given in the set S that appears in Theorem 3.5. Again,
some of these matrices give isomorphic evolution algebras. In order to classify them,
we take into account that the number of non-zero entries of the matrices in S remains
invariant under the action of the matrix P (see Remark 3.7). Note that the resulting
matrices correspond to evolution algebras with zero annihilator and do not satisfy Prop-
erty (2LI).

For P € {id3,Q’,Q"} we classify taking into account that the third column of the
structure matrix has three zero entries (the dimension of the annihilator is one and,
consequently, they do not satisfy Property (2LI)) and the number of zeros in the first
and the second row remains invariant under change of basis matrices (see Remark 3.8).

For dim(A?) = 3 we classify by the number of non-zero entries in the structure matrix.

In the case dim(A2) = 1 it is not efficient to tackle the problem of the classification
by obtaining the possible change of basis matrices, although for completeness we have
determined them in [2, Appendix]. This is because we follow a different pattern. The key
point for this study will be the extension property ° ((EP) for short). We have classified
taking into account the following properties: whether or not A2 has the extension prop-
erty, the dimension of the annihilator of A, and whether or not the evolution algebra
A has a principal® two-dimensional evolution ideal which is degenerate” as an evolution
algebra (PD2EI for short).

The classification of three-dimensional evolution algebras is achieved in Theorem 3.5.
We summarize the cases in the tables that follow.

3 The matrix obtained from the identity matrix, ids, when exchanging the second and the third rows.
4 For any basis {e1, e, e3} the ideal A% has dimension two and it is generated by {e?,e?}, for every
i,5 € {1,2,3} with i # j.
There is a natural basis of A2 that can be enlarged to a natural basis of A.
6 Principal means that it is generated as an ideal by one element.
7 An evolution algebra is non-degenerate if e? # 0 for any element e in any basis (see [1, Definition 2.16
and Corollary 2.19]). Otherwise we say that it is degenerate.
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A? has EP dim(ann(A)) A has a PD2EI Number
No 0 Yes 1
No 1 Yes 1
Yes 2 No 1
Yes 1 No 1
Yes 0 No 1
Yes 2 Yes 1
Yes 1 Yes 1
dim(A?%) =1
dim(ann(A))  Non-zero entries A has Property (2LI)  Number

*Non-zero entries in S
**Non-zero entries
in rows 1 and 2

1 1%* No 2
1 2%* No 4
1 3** No 2
1 4¥* No 3
0 4%* No 3
0 5% No 6
0 6* No 3
0 * No 6
0 8* No 3
0 9* No 3
0 4 Yes 4
0 5 Yes 3
0 6 Yes 7
0 7 Yes 6
0 8 Yes 2
0 9 Yes 1
dim(A?%) =2

Non-zero entries Number

3 3

4 6

5 16

6 15

7 8

8 2

9 1

dim(A?%) =3

2. Product and change of basis

In this section we study the product in an arbitrary algebra by considering the matrices
associated to the product by any element in a fixed basis. We specialize to the case of
evolution algebras and obtain the relationship for two structure matrices of the same
evolution algebra relative to different basis.

2.1. The product of an algebra
Let A be a K-algebra. Assume that B = {e; | i € A} is a basis of A, and let

{wrij}ijken € K be the structure constants, i.e. e;e; = E wrijer and wg;; 1S zero
keA
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for almost all k. Since in this paper we will deal only with finite dimensional evolution
algebras, we will assume that A is finite and has cardinal n.

For any element a € A the following map defines the left multiplication operator by a,
denoted as A\,:

Aa: A — A
T —ax
Then, for every i € A we have
W11t Wiin
MB ()\ei) = . T . : )
Wnil Wnoin

where for any linear map T : A — A we write Mp(T) to denote the matrix in My (K)
associated to T relative to the basis B.

Let A be an algebra and let B = {e; | i € A} be a basis of A. For arbitrary elements
T =) cpaie;and y =)\ Bie; in A the product zy is as follows:

Ty = <Z (Xiei) D Biej | =Y aifjeie; =) (aiﬂjzwkijek>

i€A JEA i,jEA i,jEA keA

= E Oéiﬁjwmjek-

ki, jEA

Denote by {p(z) the coordinates of an element x in A relative to the basis B, written
by columns. Then:

Wil ot Wiln a1

Epley) =E&p | Y, aBjwniger | = | : :
ki, jEA Wnp11 *°° Wnpln a1y

+ ..

Winl crr Winn anﬁl

+ . . .
Wnnl o Wonn anﬁn

That is,
a;if

enlay) =Y Ms0e) | 1| 1)

€A aiﬁn



Y. Cabrera Casado et al. / Linear Algebra and its Applications 524 (2017) 68—108 73

An evolution algebra over a field K is a K-algebra A provided with a basis B =
{e; | i € A} such that e;e; = 0 whenever i # j. Such a basis B is called a natural
basis. Now, the structure constants of A relative to B are the scalars wy; € K such that

= eie; = Y wrier. The matrix Mp := (wy;) is said to be the structure matriz of A
keA
relative to B.

2
€

For any finite dimensional evolution algebra A with a natural basis B we have
Mp =Y Mgp(A,).
€A

In case of A being an evolution algebra and B = {e¢; | i € A} a natural basis of A,
the structure constants satisfy that wy;; = 0 for every ¢, 7,k € A with i # j. If we denote
Wii = Wi we obtain that:

w1 0 -+ 0 a1 5y 0 -+ 0 wip anfy
{p(zy) = S T : SaR e | [T :

wp1 0 - 0 a1Bn 0 -+ 0 wpn B

Wil o Win a1 1

Wnt = Wnn anﬁn

because for every i € A the matrix Mp(A.,) has zero entries except at most in its ith

column.

Summarizing,

a1
{p(zy) =Mp | (2)
Oé'nﬁn
Definition 2.1. Let A be an algebra and B = {e; | i € A} a basis of A. For arbitrary
elements x = Z a;e; and y = Z Bie; in A, we define

ieA i€A
rTepYy = <Z Oé¢€i> *B (Z 51'61') = E aifie;.
i€ i€A i€A

Now, in the case of an evolution algebra we may write (2) as follows.

{p(zy) = Mp (Ea(x) o EB(Y)), (3)

where, by abuse of notation, we write ep to multiply two matrices, by identifying the
matrices with the corresponding vectors and multiplying them as in Definition 2.1.
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2.2. Change of basis

First, we study the matrix of the product of a finite dimensional arbitrary algebra

under change of basis. Then we fix our attention in evolution algebras.
Let B ={e; |t € A} and B’ = {f; | j € A} be two bases of an algebra A. Suppose

that the relation between these bases is given by

e =Y aufr and fi = puer,

keA keA

where {pr;}r,ica and {qui}rica are subsets of K such that Pgp/ := (qx;) and Pp/p =
(pri) are the change of basis matrices. Assume that the structure constants of A relative
to B and to B’ are, respectively, {wgij }i jken and {wrij }i jkea. Then, for every i, j € A:

fif;

(ZPM%) <Zptjet> = Z PriPtj€rCt = Z PkiDPtj WmktCm

keA teA kteA k,t,meA

> orpi@msetimfi =Y | Y (Privt@mream) | fi =Y wiisfi-

k,t,m,leA leA \k,t,meA lEA

Therefore, > ;. ca (PriPtj@mitqim) = wiij.
Our next aim is to express every wy; in terms of certain matrices. To find such

matrices, write:

Wiij = P1iP1;@111q11 + - - - + P1iP1;Wn11qin
+ P1iPnj@11nq11 + - - - + P1iPnjWninin
+ PniP1;@W1n1G11 + - - - + PriP1;Wnn14qin

+ PniPnjWinndil +...+ PniPnjWnnndin-

In terms of matrices,

w111 0 Wiln DP1iP1j

wlij:(Qll i) : :
Wni11 " Wnln DP1iPnj
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Winl
+ (qn Qin)
Wnnl
This is equivalent to:
q11 qdin w111
MB’()‘fz‘) =
dni1 dnn Wn11
q11 qin Winl
+| :
dn1 dnn TWnnl

= Py (Z MB(Aek)pkz‘) Ppip.
k

75
Winn PniP1j
Wnnn DPniPnj
Wiln P1iP11 P1iPin
Wnin P1iPni P1iPnn
Winn PniP11 PniPin

We finish the section by asserting the relationship among two structure matrices
associated to the same evolution algebra relative to different bases. We include the proof
of Theorem 2.2 for completeness. The ideas we have used can be found in [8, Section

3.2.2].

Theorem 2.2. Let A be an evolution algebra and let B = {ey,.

of A with structure matric Mg = (w;j). Then:

(i) If B = {f1,...

matriz P/ g, i.e., f;

J

w11 Win P1i D1j
. . o5 .

Wni Wnn Pni Dnj

Moreover,
-1

P11 Pin w11 Win
Mp = . .

Pni Pnn Wn1 Wnn

where P = (p).

...en} be a natural basis

, fn} s a natural basis of A and P = (p;;) is the change of basis
ijiej, for every 1,

then |P| # 0 and

0
=|: for every i # j. (4)
0
p%l p%n
: . | = P *MpPP,
P Pin
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(i) Assume that P = (p;j) € Mu(K) has non-zero determinant and satisfies the rela-
tions in (4). Define B" = {f1,..., fn}, where f; =3 pjie;, for every i. Then, B’
is a natural basis and (5) is satisfied.

Proof. (i). Clearly, since B and B’ are two bases of A then |P| # 0. Besides, since B
and B’ are natural bases, by (2) we have:

Wil ot Wip D1i D1j 0
&(fifi)=1 + . | eB | : =1:
Wn1 " Wnn DPni DPnj 0
and
2
w11 o Win V4T
2 .
§B( i ) = :
Wn1 "+ Wnn pii

for every i, 7, being i # j.
On the other hand, if Mp/ = (w;;), for every i # j we obtain:

P11 - Pin w11 o Win P1i w1
2\ _ . . . . . . . o
fB’(fi ) - : . . : ‘. : : -
Pn1 -+ Pnn Wni 0 Wnon pgn’ Wni
and consequently
-1 2 2
pbir - Pin wir o Win P11 0 Pin
MB/: . . . . . . :PilMBP(Q).
Pn1  Pnn Wn1 " Wnn p%l T p?zn

(ii). Assume that P = (p;;) has non zero determinant. Then B’, defined as in the
statement, is a basis of A. Moreover, if (4) is satisfied, then B’ is a natural basis as
follows by (2). O

The formula (4) can be rewritten in a more condensed way. Concretely (see [8]),
Mp(P % P) =0, (6)

where P * P = (cp(i ;) € M, ne-1 (K), being ¢y
2
i<jandi,je{l,...,n}

i,j) = PriPrj for every pair (4,7) with
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3. Three-dimensional evolution algebras

The aim of this section is to determine the three-dimensional evolution algebras over
a field K having characteristic different from two and such that for any a € K and
n = 2,3,7, the equation " = « has a solution. For our purposes, we divide our study
in different cases, depending on the dimension of A2.

3.1. Action of Sz x (K*)? on M3(K)

Let K be a field. By K* we denote K\ {0}. For every «, 8,7 € K*, we define the
matrices:

a 0 0 1 00 1 00
I (a) := (O 1 0) , Ia(B) = <0 B 0) , H3(y) = (0 1 0) .
0 0 1 0 0 1 0 0 v

It is easy to prove that they commute each other. This implies that

a 0 0
G = {111 (a)Ty(B)MI3(7) 04,57’7€KX}{<8 g 0> |a,5,’y€KX}
0

a 0 0

is an abelian subgroup of GL3(K). We will denote the diagonal matrix <0 B O) by
0 0 v

(a, B,7). With this notation in mind, it is immediate to see that G =2 K* x K* x K*

with product given by (o, 8,7)(/, 8',7') == (ac/, 86", v7").
Now, consider the symmetric group S3 of all permutations of the set {1,2,3}. The
standard notation for Sj is:

SS = {id, (17 2)7 (1,3)3 (27 3)a (17 2, 3)7 (1737 2)}a

where id is the identity map, (i,7) is the permutation that sends the element 4 into
the element j and (i,7,k) is the permutation sending ¢ to j, j to k and k to 4, for

{i7j7 k} = {17273}
We may identify S3 with the set

01 0y /0 0 1 1 00\ /0 1 0\ /0 0 1
ids, (1 0 o), {o 1 0]),{00 1),{0o o0 1),({1 0 o0 (7)
00 1 100/ \o1o/\100/ \o1o

in the following way: id is identified with the identity matrix ids, (1,2) with the matrix

010
1 00
0 0 1
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because this matrix appears when permuting the first and the second columns of ids,
etc. The matrices in (7) are called 3 x 3 permutation matrices.

From now on, we will consider that S3 consists of the permutation matrices.

This allows to see S5 as a subgroup of GL3(K). Denote by H the subgroup of GL3(K)
generated by S3 and (K*)3.

It is not difficult to verify that for every o € Sz and every (A1, A2, A3) € (K*)? its
product is as follows:

(A1, A2, A3)0 = 0(As(1)) Ao (2)s Ao (3))-

Therefore, we may write

H={o(a,B,7) | o € S5, (, B,7) € (K*)*}.

The multiplication in H is given by

U(ah a9, QB)T(ﬁlv 627 63) = UT(aT(1)7 a‘r(2)7 a‘r(S))(ﬁlv 627 63) (8)
= oT(ar(1)B1, ar(2) B2, A7 (3)53).

A semidirect product of S and (K*)? is defined as S3 x (K*)? with product as in (8).
It is denoted by

53 X (]KX)‘3

Notice that S3 x (K*)? coincides with

{(a 0 0) <O @ 0> <0 0 oc) (a 0 O) <0 e O) (
o 8 0l),(8 0 o], (o8 0),[0 0 8),[0oo0 8],
0 0 «n 0 0 v v 0 O 0 ~ O vy 0 O

Thusa S3 X (KX)S = {(O‘7577)0— ‘ Ot,ﬂ,"}/ € Kxa oc 53}
We define the action of S3 x (K*)3 on the set M3(K) given by:

Wi Wi2 w13 Wo(1)o(1) Wo(l)o(2) Wo(1)o(3)
o | wa wre w3 | = Wo2)e(1) Wo(2)o(2) Wo(2)0(3) | - (10)
W31 W32 Wsg Wo(3)o(1) Wo(3)o(2) Wo(3)o(3)

62 2
awir  Fwip Lwis
o2 ol

= 3 w21 5(«022 8 w23 (11)

52

w11 Wi2 w13>
O(2

L w =w w

W31 W32 W33

(04,577)'<w21 woz  Wa3

W31 W32 W33

for every o € S5 and every («, 8,7) € (K*)3.
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For arbitrary P € S3 x (K*)? and M € M;3(K), the action of P on M can be
formulated as follows:

P-M:=PtMPP, (12)

Remark 3.1. The action given in (12) has been inspired by Condition (5) in Theorem 2.2.
Notice that any matrix P in S5 x (K*)3 is a change of basis matrix from a natural basis
B into another natural basis B’ and the relationship among the structure matrices Mp
and Mp: and the matrix P is as given in Condition (5), that is, P~'MpP®? = M},.
This is the reason because we define the action of P on Mp by:

P-Mp =P 'MpP®.
The result that follows will be very useful in Theorem 3.5.

Proposition 3.2. For any P € S3 x (K*)? and any M € M3(K) we have:

(i) The number of zero entries in M coincides with the number of zero entries in P-M.
(ii) The number of zero entries in the main diagonal of M coincides with the number
of zero entries in the main diagonal of P - M.
(iii) The rank of M and the rank of P - M coincide.
(iv) Assume that M is the structure matriz of an evolution algebra A relative to a natural
basis B. Assume that A% = A. If N is the structure matriz of A relative to a natural
basis B’ then there exists Q € S3 x (K*)? such that N = Q- M.

Proof. Fix an element P in S3 x (K*)3. Then there exist o € S3 and (a, 3,7) € (K*)3
such that P = o(a, f3,7). Therefore P- M = (o(a, 8,7)) - M =0 - ((e, 8,7) - M). Ttem (i)
and (ii) follows by (10) and (11). Item (iii) is easy to show because P - M = P~ M P
and P is an invertible matrix. Finally, (iv) follows from the definition of the action and
[4, Theorem 4.4]. O

3.2. Main theorem

Here we prove the main result of the paper: the classification of three-dimensional
evolution algebras over a field of characteristic different from two in which there are
roots of orders two, three and seven.

Definitions 3.3. (See [1, Definitions 2.4].) An evolution subalgebra of an evolution algebra
A is a subalgebra A’ C A such that A’ is an evolution algebra, i.e. A’ has a natural basis.

We say that A’ has the extension property if there exists a natural basis B’ of A’
which can be extended to a natural basis of A.
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An evolution algebra is non-degenerate if e* # 0 for any element e in any basis (see [1,
Definition 2.16 and Corollary 2.19]). Otherwise we say that it is degenerate. Note that
this definition does not depend on the basis as proved in [1].

Definition 3.4. A three dimensional evolution algebra A is said to have Property (2LI)
if for any basis {e1, ez, ez} of A, the ideal A? has dimension two and it is generated by

{e, ez}, for 4,5 € {1,2,3} with i # j.

Theorem 3.5. Let A be a three-dimensional evolution K-algebra.

(i)
(i)

(iii)

If dim(A?) = 0 then Mg = 0 for any natural basis B of A.

If dim(A2%) = 1 then there exists a natural basis B such that Mg is one of the seven

matrices given in Table 1. All of them produce mutually non-isomorphic evolution

algebras. The algebras in this case are completely classified by the following proper-

ties: having A? the extension property, dim(ann(A)), and whether or not A has a

principal ideal of dimension two which is degenerate.

If dim(A?) = 2, then there exists a natural basis B such that Mp is one of the

matrices given in the Cases 1 to 4. There are 57 possible cases. Let B = {e1,ez,e3}

be such that {e3,e3} is a basis of A% and €3 = c1e? + cae3, for c1,co € K.

(a) If creq # 0, then dim(ann(A)) = 0; the algebra A has Property (2LI) and the
number of non-zero entries in Mp can be 4 to 9.

(b) If ¢ = 0 and c2 # 0 (the case c2 = 0 and ¢1 # 0 is analogous), then the
evolution algebras appearing have dim(ann(A)) = 0; the algebra A has not
Property (2LI) and the number of non-zero entries in the set that follows can

be from 4 to 9:
0 0 1 a 1 1 0 0 O
1>,<1 o>,<o I 1>7<1 I 1>,
a o) 0 0 B B a B B
1 1
1 1
¥ A

1 0 1
S = 0 1 0
0 « 0
1 1 1 1 0 0 0 1 « 1
a 0 0], la 1 1], |« 11, (B 1 .
g 00 B v v B gl gl A
(¢) If c1,c0 = 0, then the evolution algebras appearing have dim(ann(A)) = 1; the

algebra A has not Property (2LI) and the number of non-zero entries in rows

one and two can be from 1 to 4.

(iv) If dim(A2?) = 3 then there exists a natural basis B such that Mg is one of the

matrices given in the Cases 1 to 7. They are completely determined by the number

of non-zero entries in Mp. There are 51 possible cases.

Proof. Fix a three-dimensional evolution algebra A and a natural basis B = {e1, es, e3}.
Let Mg be the structure matrix of A relative to B:
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Wil Wiz W13
Mp = | w21 w22 wag |.
w31 W32 W33
In order to classify all the three dimensional evolution algebras we try to find a basis

of A for which its structure matrix has an expression as easy as possible, where by ‘easy’
we mean with the maximum number of 0, 1 and —1 in the entries.

Case dim(A?) = 0.
Then Mp = 0 and there is a unique evolution algebra.

Case dim(A?) = 1.
Without loss in generality we may assume e3 # 0. Write €3 = wie; + waes + wses, where
w; € K and w; # 0 for some 4. Note that {e?} is a basis of A2.

Since €3, e2 € A?, there exist ¢1, ca € K such that

2 2
e5 = cre] = c1(wrer + waeg + wses),

2 2
e5 = coe] = ca(wier + waea + wses).

Then

w1 Wi G
MB = <WQ C1W2 CQWQ) .
W3 CiwWs CaWws
We start the study of this case by paying attention to the algebraic properties of the
evolution algebras that we consider. To see which are the matrices that appear as change
of basis matrices, we refer the reader to Appendix in [2].
We analyze when A? has the extension property. That is, if there exists a natural
basis B’ = {e], e}, e5} of A with

e) = e3 = wier + waen + wses (13)
eh = aey + Bea + ves

ey = dey + ves + nes,

for some a, 3,7, d,v,m € K that we may choose satisfying v(5 —v) # 0. Being B’ a basis

implies
wi «a 0
|PB’B|: w2 B v #0 (14)
w3 v N

By Theorem 2.2, B’ is a natural basis if and only if the following conditions are satisfied.
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awy + Pwacy + ywsca =0 (15)
0wy + vwacy + nwsca =0 (16)
ad + Brey +ynea =0

In these conditions, the structure matrix of A relative to B’ is:

w? +wicr +wica o+ B2 +v%ea 82 + Vel +nes
Mp = 0 0 0
0 0 0

For the computations, we will take into account (11). On the other hand, to find the
different mutually non-isomorphic evolution algebras it will be very useful to study if they
have a two-dimensional evolution ideal generated by one element which is degenerate as
an evolution algebra.

Now, we start with the analysis of the different cases.

Case 1. Suppose that w; # 0.

By changing the basis, we may consider e? = e; + waes + wses. Using (15) we get
a = —(Bwacy +ywsea) and by (16), 6 = —(vwaey + nwses). If we replace a and 6 in (14)
we obtain that:

| P |=(1 —&—w%cl +w§02)y(,8 -9).

Now we distinguish if | P/ | is zero or not. This happens depending on 1+w3c; +w3co
being zero or not.

Case 1.1 Assume 1 + w3c; +wico = 0.
In this case A? has not the extension property since |Pp:g| = 0. We will analyze what
happens when 1 + w3cy # 0 and when 1+ w3ce = 0.

Case 1.1.1 If 1 + wicy # 0.
-1 - w§02

2
£

Note that w%cl # 0 since otherwise we get a contradiction. Then ¢; = . In

this case, the structure matrix is:

-1 - w%CQ
1 _ c
2 2
w3
—1 —wics
Mp = | wy - 3 CoWws
w2
(=1 — wico)ws
w3 " CoWw3

w3

Case 1.1.1.1 Suppose that ws # 0.
If we take the natural basis B” = {e;, wsea,wzes}, then
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1 —1—-wics wico
MB// = 1 —-1- W§C2 LL)%CQ . (17)
1 —1—wiea Wwico

We are going to distinguish two cases: co = 0 and ¢y # 0.

1 -1 0
Assume first ¢ = 0. Then Mp» = <1 -1 O). By considering another change of
1 -1 0

basis we find a structure matrix with more zeros. Concretely, let B = {eq, e + e3,€3}.

Then
1 -1 0
MB/// = 1 - 1 0 .
0 0 O

In what follows we will assume that ¢y # 0. We recall that we are considering the struc-
ture matrix given in (17). Take I := < (14 w3ca)e; + ez >. Then [ is a two-dimensional
evolution ideal which is degenerate as an evolution algebra.

Now, for B"’ the natural basis given by

14 (wiea)® +2(w3e2)® + (Wie2) =1+ (wie2)® +2(wice)? + (wic2)

2
2(1 4+ w3e2) 2(1 4+ w3e2) (w5e2)
Py — | T (@3c2)® + 2(wiea)® + (wiea) L+ (wica)® + 2(wdea)® + (wica) 0
BB = 2(1 + wico) 2(1 + wicz)
1+ (wic2)® +2(wic2)? + (wic2)  —1+ (wie2)® + 2(wie2)? + (wica) 1
2(1 + w3ca) 2(1 + wicz)
we obtain:
1 -1 1
MB/// = ]_ —]. ]. .
0 0 O
Note that |PB’”B“‘ = 72(0}%62)(1 + W%CQ)Q # 0 because LU%CQ 35 0 and w§CQ 7& —1.
Case 1.1.1.2 Suppose that ws = 0.
Then 1 + w3c; = 0 and necessarily w3c; # 0. In this case,
1 -1
—
w3 ?
= _1
Mp W (18)
w2
0 0 0
Again we will distinguish two cases depending on cs.
1 -1 1
Assume ¢y # 0. Take B = {61,0.)262,\/%63}. Then Mp» = [1 —1 1 |, which has
0 0 O

already appeared.
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1 -1 0
Suppose cg = 0. Then, for B” = {e1,wae2,e3} we have Mp» = (1 -1 0>, matrix
0 0 O
that has already appeared.

Case 1.1.2 Suppose that 1 + w3ce = 0.
This implies that w§02 # 0 and w3c; = 0.

Case 1.1.2.1 Assume ¢ # 0.
This implies that ws = 0. Moreover, as w3 # 0, necessarily co = ;—§ If we take the natural

=1

1 -5 c
“3
basis B"” = {ei1,e3,e2}, then Mpr = | . = g and we are as in Case 1.1.1.2.
00 o0

Case 1.1.2.2 Suppose ¢; = 0 and wy = 0.

1 -1 0
Take B” = {e1,wses, ea}. Then Mpr = (1 -1 O) again.
0O 0 O

Case 1.1.2.3 Assume ¢; = 0 and wy # 0.
Taking B” = {e1, e3,e2}, we are in the same conditions as in Case 1.1.1.1 with ¢y = 0.

Case 1.2 Assume 1 + w3c; +wico # 0.
We will prove that A2 has the extension property. In any subcase we will provide with
a natural basis for A one of which elements constitutes a natural basis of A2.

Case 1.2.1 Suppose that ¢; = co = 0.
Consider the natural basis B’ = {e?, e3 + e3,2e3 + e3}. Then

1 0 0
Mg =0 0 0].
0 0 0

We claim that this evolution algebra does not have a two-dimensional evolution ideal
generated by one element. To prove this, consider f = me; + nes + pes. Then the ideal
I that it generates is the linear span of {f} U {m’e; };en. In order for I to have a natural
basis with two elements, necessarily m = 0, implying that the dimension of I is one, a
contradiction.

Case 1.2.2 Assume that ¢; = 0 and ¢y # 0.
Then 1 + cow? # 0. For B’ = {e1 + waea + waes, €2, —w3cae1 + ez + e3} the structure

matrix is

0 0 0

1+cow? 0 ca(l+ cow?)
MB/ = .
0 0 0

Note that A? has the extension property because the first element in B’ is €%, which

is a natural basis of A2.
Consider B" = {

1 1
THeso? 10 €2 os(iresnd) 63}. Then
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1 01
MB// = 0 0 O .
0 0 0

We claim that this evolution algebra does not have a degenerate two-dimensional
evolution ideal generated by one element. Let f = me; + nes + pes. Then the ideal
generated by f, say I, is the linear span of {f,pei, me1} U {(m? + p®)m’e1 }ienuoy U
{(m? + p*)?m'e1 }ienugoy- After some computations, in order for I to have dimension 2
and to be degenerated we get m = 0 or p = 0, a contradiction.

Case 1.2.3 If ¢; # 0 and ¢3 # 0.
Case 1.2.3.1 Assume 1 + w3c; # 0.

1+clw2
For B’ the natural basis such that Pg'g = —w3wgey we obtain that Mp, =
B'B wa 1 TWQT ) B
w3 0 1
2 (1+wdeq+wdea)
1+w25 +w25 c1(14+c w2 F"’<27
sc1twzes e 103) (1+c1w§)

0 0 0
0 0 0

Now, consider the natural basis B” = {f1, fo, f3} such that

1
- 0 0
14 w3er + wies
1
_ 0 0
PBNB, - \/Cl (1+c1w§) (1+W§C1 +UJ§C2)
0 0 V14 cws

Vea (14 caws + cow?)

and the structure matrix is:

1 1 1
MB// = 0 0 0 .
0 0 0

It is not difficult to show that this evolution algebra does not have a degenerate two-
dimensional evolution ideal generated by one element.

Case 1.2.3.2 Assume 1 + w3c; = 0.

1 ez 2meder
Then wowszcica # 0 and so ¢; = —1/w3. For B’ such that Pprp = | ws 22 ws(1+Lesw?)
w3 % w3
QJ%CQ %27 7w§62
we have Mpr = ( ¢ o .
0 0 0
1
350 0
Now, we consider the natural basis B for which Pgrp = 0 &5 o0 . Then,
V=1
0 0

1 11

the structure matrix is Mp» = (O 0 O) , which has already appeared.
0 00
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Case 1.2.4 Suppose that ¢; # 0 and co = 0.
10 (&)
Considering the natural basis B” = {e1,es3,e2} we obtain Mp» = (wa 0 wacs ), and we
w2 0 waC1

are in the same conditions as in Case 1.2.1.2.

Case 2 Suppose that w; = 0.
The structure matrix of the evolution algebra is

0 0 0
Mp = | w2 wacr waes |.

W3 WwW3C1 W3Co
Necessarily there exists i € {2,3} such that w; # 0. Without loss in generality we assume
w2 7é 0.
Case 2.1 Assume c¢; # 0.

waC1 WaCa 1

Consider the natural basis B” = {eq,e3,e1}. Then Mpr = | wser wsez ws | and we are

0 0 0
in the same conditions as in Case 1.

Case 2.2 If ¢; = 0.
Case 2.2.1 Assume cows # 0.
wsca 0 ws
Taking the natural basis B” = {es,es,e1}, then Mpr = [ wze2 0wz | and we are in the
0 00
same conditions as in Case 1.

Case 2.2.2 Suppose that cows = 0.

Case 2.2.2.1 Assume cy = 0.
Take the natural basis B’ = {wses + wses, %263, e1}. Then

00 1
Mg =[0 0 0].
00 0

Note that A2 has the extension property.

Case 2.2.2.2 Assume ¢y # 0.
Then ws = 0. For B = {wseq, €1, \/%63} we have

0 11
0 00

In this case, A2 has also the extension property.

We have completed the study of all the cases and will list them in Table 1. All of
them produces evolution algebras A such that dim(A) = 3 and dim(A?) = 1. They
are mutually non-isomorphic, as will be clear from the table. We specify the following



Y. Cabrera Casado et al. / Linear Algebra and its Applications 524 (2017) 68—108 87

Table 1
dim(A?) = 1.
Type A? has the dimension A has a principal degenerate
extension property of ann(A) two-dimensional evolution ideal

1 -1 1
1 -1 1 No 0 I =<e3>
0O 0 O
1 -1 0
1 -1 0 No 1 I =<e; t+ex+ez >
0O 0 O
1 1 1
0 0 O Yes 0 No
0 0 O
1 0 1
0 0 O Yes 1 No
0 0 O
1 0 0
0 0 O Yes 2 No
0 0 O
0 1 1
0O 0 0 Yes 1 I =<e3 >
0 0 O
0 0 1
0 0 O Yes 2 I =<e3>
0 0 O

properties that are invariant under isomorphisms of evolution algebras: Whether or not
A? has the extension property, the dimension of the annihilator of A, and whether or
not A has a principal degenerate two-dimensional evolution ideal.

In every of the cases listed in Table 1 we have analyzed when A? has the extension
property. To compute the dimension of the annihilator we have used [1, Proposition
2.18]. We also specify in the table if the evolution algebra has or not a two-dimensional
evolution ideal, which is degenerate as an evolution algebra, and which is generated by
one element.

Recall that for a commutative algebra A the annihilator of A, denoted by ann(A) is
defined to be ann(A4) = {x € A | zA = 0}.

Case dim(A?) = 2.

The first step is to compute the possible matrices Py for natural basis B and B’. With-
out loss in generality, we may assume that there exists a natural basis B = {e1, e, e3}
such that

w11 W12 C1Wil + Cawi2
Mp = | w21 w22 crway + Cawaz (19)
w31 W32 Ci1wsy + CoWwsz

for some ¢y, co € K with wyiwes — wiswoy # 0.

Let B’ be another natural basis and let Pg:p be the change of basis matrix. Write

P11 P12 P13
Ppip=|p2a1 P2 p23|.

P31 P32 P33
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Since B’ is a natural basis, by (6) it verifies:

w11P11P12 + wi2P21P22 + (w111 + wi2c2)p3ip32 = 0
W21P11P12 + W22P21P22 + (W21€1 + waac2)p31p32 = 0 (20)
wW31P11P12 + W32P21P22 + (W31€1 + w32C2)p31p32 = 0

( )
( )
( )
w11P11P13 + wiapP21pas + (w111 + wizce)p3ipss = 0
W21P11P13 + Wo2P21P23 + (wai1c1 + waaca)p3ipss = 0 (21)
wW31P11P13 + Waap21Pas + (w3161 + waace)p3ipss = 0

( )

( )

(w )

w11P12P13 + WiaP22pas + (w111 + wi2c2)p3apss = 0
Wo1P12P13 + WoaPoaPas + (we1C1 + waaca)psapss = 0 (22)

w31P12P13 + W32P22P23 + (W11 + W32¢2)p32p33 = 0

We consider the homogeneous system (20) in the three variables p11p12, p21p2e and
p31ps32. Taking into account that the rank of this system is 2, we may compute its
solutions as follows:

—(wi161 + wi2c2)psips2 wi2

— (w2161 + waac2)p3ip32 wa2

DP11P12 = = —C1P31P32 (23)
W12 — W21W12

w1 —(wi1c1 + wi262)p31P32

w1 —(wa1€1 + waac2)P31P32

P21P22 = = —C2P31P32 (24)
Wi1Wa2 — W21Wi2

In an analogous way, we may consider the systems given in (21) and (22). Their
solutions can be computed as follows:

P11P13 = —C1P31DP33;  P21P23 = —C2P31P33; (25)

and

DP12P13 = —C1P32P33;  P22P23 = —C2P32D33- (26)

Case 1 cico # 0.

In this case the annihilator is zero because there cannot be a column of zeros (apply [1,
Proposition 2.18]). All the evolution algebras appearing in this case will have Property
(2LI), that we define.

Definition 3.6. A three-dimensional evolution algebra A is said to have Property (2LI) if
for any basis {e1, ea,e3} the set {e?, e
with 7 # j.

7,€3} is linearly independent, for every 4, j € {1,2,3}
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In what follows we prove, by way of contradiction, that Pg/p € S5 x (K*)3. Note that
(see (9)) elements in Pp/p € S3 x (K*)? are those invertible matrices in M3(K) having
two zeros in every row and every column.

Then, let Pg/p ¢ S3 x (K*)3. Assume, for example, that p3ipsapss # 0. By (25) and
—Cpsips2 o

(26) we have that pi1piapis # 0 and pa1paspas # 0. If we replace p1; =
P12

—Coal D . ]

P21 = “C2Paps2 (25) we obtain pi3 = PasPr2 4 Pog = Paspaz Finally, if we replace
P22 P32 P32

these two values in (26), we get p3y = —c1p3y and p3, = —cap3,. Therefore,

p12 = £v/—c1 p32
P22 = £/ —cC2 P32

and
p13 = £v/—c1 p33
P23 = £v/—C2 p33
P21 = £/ —c2 P31
P11 = £V —c1 p31
Now,

|PB/B\ = P11P22P33 + P12P23P31 + P13P21P32 — P13P22P31 — P21P12P33 — P11P32p23 = 0.

This is a contradiction. Therefore psipsapss = 0, hence, there exists at least one
i € {1,2,3} such that p3; = 0. We may suppose without loss in generality that p3; = 0.
This means that p11p12 = 0, p21p22 = 0, p11p13 = 0, p21p23 = 0 and, obviously, p3i1p32 = 0
and p31p33 = 0.

We claim that Pp/p has two zero entries in every row and column. In other words,
that Pg/p € S3 x (KX)?’.

Assume p;; = 0. Since |Pp/p| # 0, necessarily pa; # 0. So, pa3 = pas = 0 and
consequently, using (26), psapss = 0 and p1ap1s = 0. We have pag = 0 and po3 = 0.

In p3apss = 0 we distinguish two cases. First, assume pso = 0. Then p1a # 0 (because
|Pp | # 0). Since p1ap13 = 0 we get p13 = 0. Use again |Pp/p| # 0 to obtain ps3 # 0
and we have proved that, in this case, Pg:g € S3 x (K*)3. Second, assume p3s # 0. Then
p33 = 0 and p13 # 0 because |Pp/g| # 0. Use p1ap13 = 0 to get, reasoning as before, that
p12 = 0 and p3z # 0. This proves again Pp/p € S3 x (K*)3.

Now, assume p1; # 0. Then, by (23) and (25), we get p12 = p13 = 0. So, p1ap13 = 0,
p3apss = 0 and paapos = 0. Now we use (23), (25) and (26) to obtain psipss = 0,
p31pss = 0 and psapzz = 0. Taking into account this identities and 0 # |Pp/g| =
P11p — 22p33 — P11P3apa3 we prove Ppip € S3 x (K*)3 as claimed.
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Now that we know the possible matrices for Pg: g, we may look for all the possible M.
By Proposition 3.2 (i) all the structure matrices representing the same evolution algebra
have the same number of zero entries. This is the reason for studying the classification
depending on the number of non-zero entries in Mp (recall that Mp is the matrix given
in (19)).

We claim that the first case to be considered is the one for which Mg has four non-zero
entries. Indeed, fix our attention in the first and second columns in Mg as given in (19).
The maximum number of zero entries in that columns is four. Now, the third column
can have only one zero because ¢; and cp are non-zero and we have two non-zero entries
in the first and second columns, which are neither in the same row nor in the second
column as the rank of Mp is two. Taking into account (11), we may assume that two of
non-zero entries are 1. In some cases, we will be able to place one or two more 1 in a
third and fourth entries. The remaining non-zero entries will be parameters.

A complete description of the procedure can be found in [2]. There we explain the two
types of tables we include, called “Table m” and “Table m’”. For “Table m”, we list in the
first row (starting by the second column) the five permutation matrices different from
the identity. As for the second row we start with an arbitrary structure matrix under
the case we are considering. Then we apply the action of an element in S5 (listed at the
beginning of each column) and write in the corresponding row the obtaining matrix. We
start the third row with a matrix under the case we are considering and not included in
the second row, and continue in this way until we reach all the possibilities for this case.
In order to make easier the understanding of the reader, we distinguish in color (in the
web version) the different possibilities that we have. As for the second type of tables we
include, the reason is the following: For given parameters (those appearing in the listed
matrices), matrices in the same row of a concrete table produce isomorphic evolution
algebras. Matrices appearing in different rows correspond to non-isomorphic evolution
algebras. Now the question is: For matrices in the same row having different parameters,
are the corresponding evolution algebras isomorphic? To answer this question we include
in [2] the second type of tables, “Table m’”.

Case 1.1 Mp has four non-zero entries.

Note that there is, necessarily, a row with all its entries equal zero, because there is no
a column with all its entries equal zero (as cica # 0). For each possible row with three
zeros, there are (g) = 15 possible places where to put two zeros in the remaining rows.
Because A has Property (2LI) a row can not have two zeros. This happens 6 times. We
have to eliminate the cases in which there is a zero column (three cases). Then we have
15 — 6 — 3 = 6 cases for each possible row with three zeros, that is, 18 cases that can be
found in [2, Table 2]. Some of them produce isomorphic evolution algebras. Summarizing,
there are only four parametric families of mutually non-isomorphic evolution algebras,
which are:
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00 0 00 0 00 0 00 0
01 1],(0 1 e|,[10eal,[1 1 0
10 ¢ 110 11 0 10 ¢

We study if there are isomorphic evolution algebras in each family. The answer is yes,
as shown in [2, Table 2’]. The procedure we have used is the following: we start with one
Mp and study if there are matrices Pg:p such that Mpg: is in the same family. For the
computations we have used Mathematica. The program can be found in an appendix

in [2]. This explanation serves for all the cases.
Case 1.2 Mp has five non-zero entries.

The structure matrix must have a zero column. So, for each possible zero row, there exist
(g) = 6 possible places where to write the remaining zero. Therefore, there are 6-3 = 18
cases that appear in [2, Table 3]. The mutually non-isomorphic parametric families of
evolution algebras are three:

0 0 0 0 0 0 0 0 0
0 1 1 {1 0 Cc1 A1 1 e +ce
1l a g+« 1 1 ¢1+co 1 0 c1

For the first family there are cases producing isomorphic evolution algebras. This can
be found in [2, Table 37].

Case 1.3 Mp has six non-zero entries.

There exists () = 84 possibilities to place three zeros. As the structure matrix has
Property (2LI), it can have neither two zeros in a row nor a zero column. So, for each
place, we eliminate the six cases where to write two zeros in a row. Then, we remove
9.6 + 3 = 57 cases. Therefore, we have 27 cases. In some of them, the parameters «, 3
and ¢; must satisfy certain conditions. Concretely, in the fourth row ciaf8 + 1 # 0; in
the fifth row c;a + 8 # 0 and in the seventh row coa + ¢; # 0.

The mutually non-isomorphic parametric families of evolution algebras are seven:

0 O 0 0 1 1 0 a oo 0 o 1
{(1 1 cl+02>,<0 1 1>,<1 0 1),(1 0 cl>,
1 a ¢+ e« a 0 ca 1 0 1 6 1 0

0 1 1 1 0 C1 1 0 C1
(a I} O),(O 1 02>,<1 @ 0)}
1 0 C1 0 1 C2 0 1 Co

For the whole procedure see [2, Table 4]. Some of these parametric families of evolution
algebras produce isomorphic algebras for different parameters, as can be seen in [2,
Table 47].

Case 1.4 Mp has seven non-zero entries.

There are (g

in which there are two zeros in the same row. So, there are 36 — 9 = 27 cases. The

) = 36 possibilities to place two zeros. But we have to eliminate the cases
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parameters ¢, co and 8 must satisfy certain conditions: in the third and in the fifth rows
cof + ¢1 = 0. There are six evolution algebras as obtained in [2, Table 5]:

0 1 1 0 1 1 0 « Cox
{<o Lo ><1 o ><1 5% )
a B caa+p « ca+p 1 1 ¢1+co
0 0 c1 « clo 1 0 1
<o L ><1 0 ><a ! am)}
a B caa+f 1 c1+co B 0 B

We show in [2, Table 5], for each parametric family, which one produces isomorphic

= O

—_ O

evolution algebras when we change the parameters.
Case 1.5 Mp has eight non-zero entries.

There are nine possibilities to place a zero in the structure matrix. Therefore, there are
two mutually non-isomorphic parametric families of evolution algebras (see [2, Table 6]):

0 1 1 1 0 1
{(1 « cl—i-a),(a 1 a+02>}
B v aBf+y B v B+cay

Both parametric families of evolution algebras produce isomorphic algebras under
change of parameters; see [2, Table 6’].

Case 1.6 M p has nine non-zero entries.

The parameters a, § and v have to verify that the three of them cannot be equal in
order for Mp to have rank two. This produces only one parametric family of evolution
algebras as shown in [2, Table 7]:

1 a c+ca
1 B8 c1+ef
1 v c1+4coy

In [2, Table 7’] we show the change of parameters that produces isomorphic evolution
algebras.

Case 2 ¢c; = 0 and ¢y # 0.

Note that if we consider the new natural basis {e], €5, e5} with €] = e, e5 = \/caea — €3
and e} = \/cae2 + e3 we obtain that (e5)? = (e})?. By abusing of notation, we may
assume that the natural basis concerned is {eq, €2, e3} with 3 = 3.

Note that in this case the dimension of the annihilator of the evolution algebra is
zero. We will see that the possible change of basis matrices are precisely two elements in
S3 x (K*)? (we consider only those for which €3 = e3) and one more not in Sz x (K*)3

that we will specify.
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In this case, the equations (23), (24), (25) and (26) are as follows:

p11p12 = 05 po1pa2 = —P31P32;
p11p13 = 0;  p21p23 = —P31P33;

p12p13 = 0;  p22p23 = —P32P33.

We may suppose that p;; = p12 = 0.

Assume that psipsapss # 0. This implies that poipoopes # 0. As po; = %,
P23 = P2P22 Then pay = £/~ 1ps2, pag = £/~ 1Ipsz and pa; = £/~Ips1. But, in these

conditions |Pp/pg| = 0. Therefore there exists at least one i € {1,2,3} such that ps; = 0.

If p31 = 0, then po1pos = 0 and pa1pes = 0. Since pay # 0, necessarily pos = pog = 0,
implying p3aps3 = 0. Consequently, Pg:g € S3 x (K*)3.

If p3s1 # 0 and psz = 0, then po1pao = 0 and pagpes = 0. This implies pa; = pag =
p33 = 0 and again Pg/g € S3 x (K*)3.

If p31p32 # 0 and p33 = 0, then poopas = 0 and paypeg = 0. Necessarily pog = 0. On
the other hand, as p31p3a # 0, pa1p22 # 0. So, pag = —E21P32 and

P21
0 0 P13
Ppip =1 pa “Paibs ) (27)
P21
D31 D32

with pi3paopsips2 # 0 and p3; + p3; # 0 in order to have |Pg/ | # 0.
If we suppose that p1; = p13 = 0, reasoning in the same way as before, we obtain that
the matrices Pg/p are in S3 x (K*)? or they are as follows:

0 pi2 0
Pepg=|pa O P33P31 (28)
P21
p31 0 P33

with piapaipsipss # 0 and p3; + p3, # 0.
Finally, if p1o = p13 = 0, we obtain that the different matrices Pg:p that appear are
in S3 x (K*)? or are of the form:

pn 0 0
Ppp=| 0 pyp 2208 , (29)
P22

0 p3 P33

with pr1p2apsepss # 0 and p3, + p3, # 0.

0 0 P13
If Pgrp = | P21 “Psibs 0 then
D21

P31 D32
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p?),g (wazp21 + w32p31) p%3(w21p21 + w31p31)

waaP21 + W32P31

p%l p%1 + P?n
Mp = P21(w32p21 - w22p31) P32 (w32p21 - w22p31) P%spzl(w:slpm - w21p31)
P32 D21 p32(p3; + p3;)
wi2(p3; +p31) wi2p32 (P31 + P31)
—_— 5 W11P13
P13 P13P31
0 pi2 0
If Pp=|p1 O P33 | en
P21
p31 0 D33

P%z (wa1p21 + w31p31) p§3(w22p21 + w32p31)

wa2P21 + W32P31

P31+ P35 P31
2 2 2 (2 2
wi2(p3; + P w12pP33(P3 + P
Mp = (p3, 31) W11P12 35( 212 31)
P12 P12P31
p21(w32p21 - wzzp:n) P%2p21(w31p21 - w21p31) p33(w32p21 - w22p31)
P33 p33(p3; + p3;) P21
pi1 O 0
If Pgg=1 0 p2 “Pa2p3s | 4y
P22
0  p32 D33
wi2(p3a + P32) wi2p33(P3s + P3a)
wii1pP11 S — 2
P11 P11P39
2 2
P11 (w21p22 + w31p32 P33 (Wwazp22 + wW32ps2
Mp = il 5 5 ) WaoPa2 + W32P32 sl 5 )
D39 + D39 Y25p)
P%1P22 (w31p22 - w21p32) P22 (w32p22 - w22p32) p33(w32p22 - w22p32)
p33(P3y + P35) P33 P22

Taking into account that we were assuming €3 = e3, then the possible change of basis
matrices are the following:

0 0
pi 0 0 pi 00 o —P32P33 x
0 p2 0 ), [ 0 0 pa), [ 0 p2 ——— | |p11,pa2,p32,p33 € K" .
0 0  ps3 0 ps2 O P22
0  p32 b33

(30)

In what follows we will classify in three steps: we start by taking into account the first
two families of change of basis matrices of the set (30) which leave invariant the number
of non-zero entries in the first and second columns. Then, we will analyze if the resulting
families of evolution algebras are or not isomorphic under the action of one matrix of the
third family in (30), i.e., we will see if some families of evolution algebras are included into
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other families when applying the change of basis matrices of the third type. Finally, we
will analyze, for each of the resulting parametric families, if their algebras are mutually
isomorphic.

We list the different matrices into tables taking in account the number of zeros in
the first and second columns. Each of these tables will receive the name of “Figure m”.
According to (11) we will write as many 1 as possible and the others non-zero entries
will be arbitrary parameters «, 3, v and A under the restriction €3 = e3. We start by
the first one and applying the action of the elements:

0 0
1 0 0 p11 B
00 1] and Q= 0 pyp 2223
01 0 P22

0  p32 P33

with pi1, pa2, ps2, pss € KX and p3, + p3, # 0.
Case 2.1 Mp has two non-zero entries in the first and second columns.

There are (i) = 15 possible places where to put four zeros. Since some of the resulting
matrices have rank 1, they must be removed from the 15 cases. This happens whenever
the first or the second columns is zero (2 cases) and the remaining zeros can be settled
in three different places. This produces 6 cases. We also eliminate the cases in which two
different rows are zero (3 options). Therefore we have 15 — 6 — 3 = 6 different matrices
classified in 3 types. Their structure matrices appear in the first column of the table
called Figure 1 in [2].

Case 2.2 Mpg has three non-zero entries in the first and second columns.

There exist (g) = 20 possible places where to write three zeros. We remove the
matrices which have rank 1. This happens 2 times: when the first or the second column
is zero. Therefore we have 20 —2 = 18 cases. There are 10 types listed in the tables called
Figure 2 in [2].

Case 2.3 Mp has four non-zero entries in the first and second columns.

There exists (g) = 15 possible places where to write four zeros. The non-zero parameters
«, (B satisfy that a # § in the matrices appearing as types 14 and 20. This is because
the rank of those matrices has to be two. There are nine different types. They are listed
in the tables called Figure 3 in [2].

Case 2.4 Mp has five non-zero entries in the first and second columns.

There are only 6 possibilities: those for which we place only one zero in one place of the
first column or of the second column. There are four types which are listed in the table
called Figure 4 in [2].

Case 2.5 Mp has six non-zero entries in the first and second columns.



96 Y. Cabrera Casado et al. / Linear Algebra and its Applications 524 (2017) 68-108

The condition that the entries of the matrix must satisfy is one of the following: a # S,
or A # 7 or aX # [Bv. There is only one possibility listed in the table called Figure 5
in [2].

These tables give us a first classification, that can be redundant in some cases. Now
we study if algebras having different types are isomorphic or not. The last step will be
to study if algebras in the same type are isomorphic.

o The evolution algebra given in Type 1 is included in the parametric family of algebras
of Type 4.

o The evolution algebra given in Type 2 is included in the parametric family of algebras
of Type 11.

o The evolution algebra given in Types 3, 12 and 13 are included in the parametric
family of algebras of Type 20.

o The parametric families of evolution algebras given in Types 5, 10, 16 and 17 are
included in the parametric family of algebras of Type 23.

o The parametric families of evolution algebras given in Types 6, 7, 19 and 22 are
included in the parametric family of algebras of Type 25.

o The parametric family of evolution algebras given in Type 8 is included in the para-
metric family of algebras of Type 21.

o The parametric family of evolution algebras given in Type 9 is included in the para-
metric family of algebras of Type 18.

o The parametric families of evolution algebras given in Types 14, 15, 24 and 26 are
included in the parametric family of algebras of Type 27.

Therefore, there are eight subtypes of parametric families of evolution algebras, which

are listed below.
1 a 1 1 0 0 O 1 1 1
of,1o0 1 1]),(1 1 1), 0O 0],
0 0 8 B8 a B B g 00
1
1
A

1 00 0 1

S_{<0 1 1>,<1 0
0 o « a 0
1 0 0 0 1 1 a 1
<a 1 1)( ) 1>,(5 1>}
B v v B v v ol A

Remark 3.7. Note that these matrices are precisely those appearing in the tables called
Figures for which the change of basis matrices of type Q leaves invariant the number
of non-zero entries and its place in the structure matrix. This does not mean that the
number of non-zero entries is preserved (see, for example, in Figure 2, that the first
matrix of Type 5 has four non-zero entries while the third matrix in the same line has
seven).

Now, we will analyze when the resulting parametric families of evolution algebras are
mutually isomorphic. In some cases, we will reduce the number of parameters and some
of these parametric families will be isomorphic to one of the known evolution algebras.
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1 0 0
Every evolution algebra with structure matrix (0 1 1) satisfying a? + 1 # 0 is
0 o «

1 00
isomorphic to the evolution algebra given by the structure matrix (0 1 1). Indeed,

0 1 1
if a # —1, we take the change of basis matrix

1 0 0
1+« 11—«

0 —/= -
1+a2 1+a?
0 —14+a 14«
1+a2 1+a2
In case of @« = —1, we assume the change of basis matrix
1 0 0
01 0. (31)
0 0 -1
0 1 1
The evolution algebra with structure matrix [ 1 0 0 | satisfying a? + 1 # 0 is iso-
a 0 0
0 1 1
morphic to the evolution algebra given by the structure matrix { 1 0 0 |. Indeed, if
1 00
a #1,—1, we take the change of basis matrix
3/ _2
V Ta? 0 0
1l-a 1+«
214022 21+ a?)?
1+« a—1
Y214+ a2)2 ¥/2(1+ a2)?
If @« = —1, we consider again the change of basis matrix given in (31).
a 1 1
Every evolution algebra with structure matrix (O 1 1) satisfying 82 +1 # 0 is
0 5 B
o 11
isomorphic to the evolution algebra given by the structure matrix { 0 1 1 ] for some
0 1 1
o’ € K. Indeed, if 8 # —1, we take the change of basis matrix
2
1+ 2
0 1-8 147
1+p52 1+ 32
0 1+8 p-1
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In case of B = —1, we can also consider the change of basis matrix given in (31).
0 0 0

The evolution algebra with structure matrix (1 1 1) satisfying %2 +1 # 0 is
a B p

0 0 0
isomorphic to the evolution algebra given by the structure matrix < 1 1 1) for some
o 11
o' € K. Indeed, if 8 # —1, we take the change of basis matrix

V2

0
V1ita+p(-1+a)
0 1-58 1+8
1 + 52 1_|_ /82
1+ p-1
0
1+p52 1+ 32
In case of 8 = —1, we take again the change of basis matrix given in (31).
1 1 1
Every evolution algebra with structure matrix (Oz 0 0| satisfying a2 + 82 # 0
8 0 0

1 11
and 32 # 1 is isomorphic to the evolution algebra having structure matrix ( 1 0 0],

8 0 0
for some 3 € K. Indeed, if o # —1, we take the change of basis matrix

1 0 0
a—ps  —(B+as)
215 a2+p2 |,
B+ as a— (s
2182 o4 p2

where s = \/—1+ a2 + 52

1 0 0
For o = —1, consider the change of basis matrix: (O —1 O).
0o 0 1

1 11
On the other hand, every evolution algebra with structure matrix (a 0 0) (8=1)
1 00

1 11
and ( a 0 O) (8 = —1) is isomorphic to the evolution algebra with structure matrix
-1 0 0

1 1 1

(1 0 0 ]. Indeed, take the new natural bases {ej,es,es} and {ej, —es, es}, respec-
30 0

tively.
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1 0 0
The evolution algebra with structure matrix <a 1 1) with 42+1 # 0 is isomorphic
B v
1 00
to the evolution algebra given by the structure matrix [ &’ 1 1 | for certain o/, 8’ € K.
g 11
Indeed, if v # —1, we take the change of basis matrix
1 0 0
0 1+ 1—7
L+92 1492
y—=1 147
0 L—-
1++92 14492
If v = —1, take again the change of basis matrix (31).
0 1 1
The evolution algebra with structure matrix (a 1 1) with 42+1 # 0 is isomorphic
B v
0 1 1
to the evolution algebra given by the structure matrix | o’ 1 1 | for certain o/, 8’ € K.
g 11
Indeed, if v # —1, we take the change of basis matrix
2 0
14+ ~2
1+ 1—7v
0
1+92 1492
y—1 1+%
0 1=
1 + ,72 1 + ,72
If v = —1, also we take the change of basis matrix given in (31).
a 1 1
The evolution algebra with structure matrix { 4 1 1 | with A2 +1 # 0 is iso-
YA A
o 1 1
morphic to the evolution algebra given by the structure matrix [ 3/ 1 1 | for certain
~ o101
o, 8,7 € K. Indeed, if A # —1, we take the change of basis matrix:
2
— 0
14+ A2
0 14X 1-=-2X
1+22 1+ )2
0 A—1 142X
1+A2 1+ X2
If v = —1, we consider again the change of basis matrix determined in (31).

Summarizing, whenever e3 = €3 we obtain the following families of evolution alge-

bras which are classified depending on the non-zero entries of the matrices in S (see
Tables 8-13).
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Table 8
dim(A?) = 2; dim(ann(A)) = 0; A has not Property (2LI); four

non-zero entries of the matrices in S.
0o 1 1 0 11 0 11
1 0 0 1 0 0 1 0 0
1 0 0 vV—=1 0 0 —+v/-1 0 0

Table 9
dim(A?) = 2; a # 0; dim(ann(A)) = 0; A has not Property (2LI);
five non-zero entries of the matrices in S.

1 0 0 1 0 0 1 0 0
0 1 1 0 1 1 0 1 1
(0 1 1) <o VAT Fl) <o ~v=T f\/fl>

1 1 1 1 1 1
1 0 0 ayv/—1 0 0
a 0 0 « 0 0

Table 10
dim(A?) = 2; a # 0; dim(ann(A)) = 0; A has not Property (2LI);
six non-zero entries of the matrices in S.

000 0 0 0 0 0 0
111 11 1 11 1
<a 1 1) (a V=1 \/71> (a —v=1 7\/71>

1 1 1
—ayv/—1 0 0
[eY 0 0

Table 11
dim(A?) = 2; af # 0; dim(ann(A)) = 0; A has not Property (2LI);
seven non-zero entries of the matrices in S.

a 1 1 a 1 1 « 1 1
0 1 1 0 1 1 0 1 1
<0 1 1) (0 V-1 \/71) <O —v/—1 7\/71)

1 0 0 1 0 0 1 0 0
a 1 1 a 1 1 « 1 1
(ﬁ 1 1) (5 V-1 \/*1> (ﬂ —v-1 *\/*1>

Table 12
dim(A?) = 2; af # 0; dim(ann(A)) = 0; A has not Property (2LI);
eight non-zero entries of the matrices in S.

0 1 1 0 1 1 0 1 1
a 1 1 a 1 1 « 1 1
Gl B4 (s )

We have included the study of the isomorphisms under change of parameters in the
Tables 9°-13 in [2].

Case 3 Assume co = 0,¢1 # 0.
Considering the natural basis B’ = {e3, e1, €3} we obtain the following structure matrix:
W22 W21 C1W21

Mp = | w2 w1 cwin |,
W32 W31 Ci1W3l
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Table 13
dim(A?) = 2; aBy # 0; dim(ann(A)) = 0; A has not Property (2LI);
nine non-zero entries of the matrices in S.

a 1 1 o 1 1 « 1 1
B 1 1 B 1 1 B 1 1
(7 1 1) <'y V=1 \/—_1) <w ~v=1 —\/—_1>

and now we are in the same conditions as in Case 2.
Case 4 Suppose ¢; = co = 0.
Recall by (19) that the structure matrix is
wi1 wiz O
Mp=|w2 w2 0].
w31 w32 O

Remark 3.8. In what follows we are going to prove that the number of zero entries in
the first and in the second rows in the structure matrix is preserved by any change of
basis.

With the explained goal in mind, we study all the possible change of basis matrices.
Let B’ be another natural basis and consider the change of basis matrix Pg'g. The
equations (23), (24), (25) and (26) give:

p11p12 = 0;  poip22 = 0;
p1ip13 = 0;  paipes = 0;

p12p13 = 0;  p2zpes = 0.

It is easy to check that Pg/p has two zero entries in the first and the second rows.
Moreover, since |Pp/g| # 0, necessarily pi;p2; # 0 for 4,5 € {1,2,3} with ¢ # j. We
distinguish the six different cases that appear in order to study the structure matrix Mp..

pi1 O 0
If Pgrp=|( 0 p22 0 | with p11p2epss # 0 then

P31 P32 P33
2
wi2p
w11p11 =2 0
N p11
w21p
MB/ = = w22P22 0
D22
p11(ws31P11pae — wWi11P31P22 — W21p11P32)  P22(ws2P11Pee — W12P31P22 — W22P11P32) 0
DP22pP33 P11pP33
(32)

pn 0 0
If Peep=|( 0 0 pa23 | for pi1pesps2 # 0 then
P31 P32 P33



102 Y. Cabrera Casado et al. / Linear Algebra and its Applications 524 (2017) 68-108

2
w
w11P11 0 ;2—])23
11
MB’ _ p11(w31p111723 — W11pP31pP23 — w21p11p33) 0 P23(w327711p23 — W12pP31P23 — w22p11P33)
Pp23P32 P11Pp32
w21P11
T 0 w22P23
23
0 pi2 O
If Peg=|pa1 0 0 | where pjopa1p3z # 0 then
P31 P32 P33
2
wa21p
wa2p21 =z 0
5 P21
wi2p
MB/ = —2 wi11p12 0
P12
p21(w32p12pz1 — W12pP32pP21 — w22p12p31) P12(w317712p21 — W11pP32pP21 — w21p12p31) 0
P12pP33 P21P33
(33)
0 pi2 O
If Peep=|( 0 0 p23 | with piapasps1 # 0 then
P31 P32 P33
0 p12(w31p12p23 — W11P32P23 — W21P12P33)  D23(W32P12p23 — Wi12P32P23 — W22P12P33)
P23pP31 P12pP31
w
MB/ - 0 wiipPi2 LPQB
w 5 P12
0 21P12 w
—p23 2223
0 0 pi3
If Pgrp=1|pa 0 0 | for pizpaip3z # 0 then
P31 P32 P33
2
w
w2221 0 2;7[)13
21
MB/ _ P21 (w32p13P21 — W12P33P21 — W22P13P31) 0 p13(w31P13P21 — W11P33P21 — W21P13P31)
P13pP32 P21pP32
wi2p
TQI 0 w11P13
13
0 0 pis
If Peep=|( 0 p22 0 | where pigpaips2 # 0 then
P31 P32 P33
0 p22(w32p13p22 — Wi12P33P22 — W22p13P32)  P13(W31P13P22 — W11P33P22 — W21P13P32)
P13pP31 Pp22p31
w:
Mg =10 w22P22 w21Pis
w 5 D22
0 12P22 w
7]313 11P13

Note that we only have to take in to account the change of basis matrices which
transform a structure matrix having the third column equals zero into another one of
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the same type. These are those Pg/p appearing in the first and in the third cases. We

denote them by @’ and by Q", respectively. Looking at the different Mp/ that appear,
we obtain the claim.

Then, if we omit the structure matrices which can be obtained from the permutation
(1,2), the only possibilities are:

w11 0 0 0 w2 O w11 0 0 0 wie2 0 w11 wiz 0
0 w2 O0),{wa 0 0], (w2 we 0], |wa we 0] |ws wa 0 U
w31 wsz 0 w31 wsz 0 w31 wsz 0 w31 ws2 0 w31 ws2 0

w11 0 0 w11 w12 0 w11 0 0 0 w12 0
0 0 0 , 0 0 0 , | w21 0 0 0 0 0
w31 ws2 0 w31 ws2 0 w31 wsz 0 w31 ws2 O

with w;; # 0 for 7,5 € {1,2}.

According to (32) and (33), we claim that we can remove the third row of the structure
matrices of the first set and write 0 if and only if wyjwes — wiswa # 0. For the matrix
(32) we consider p1; = paz = 1 and we have

W31P11P22 — W11P31P22 — W21P11P32 = W31 — W11P31 — wa1p32 = 0;

W32P11P22 — W12P31P22 — W22P11P32 = W31 — Wi2P31 — waapsz = 0.

So, this linear system has solution if wyjwes — wiswsay # 0.

If we take (33), we reason in the same way and our claim has been proved.

Now we can place 0 instead of w3 in the first three matrices of the second set. Indeed,
as in these structure matrices wi; # 0 and supposing p;; = pao = 1 we have the equation
w31 — wW11P31 — wo1ps2 = 0 if woy # 0 and w3y — wi1p31 = 0 if wey = 0. In any case, the
equations have always solution.

In the last structure matrix of the second set we can write 0 instead of wss. For this,
it is enough to take pss = p11 = 0 and p3; = i—iﬁ

Finally, we can obtain the maximum number of entries equal 1 by using (11). When
placing 1 is not possible we write the parameters a, f and 7. Summarizing, there are
ten possibilities which are:

1 00 010 1 00 010 1 10 1 00
{(O 0 0),(0 0 0),(0 1 O),(l 0 0),(0 0 0),(1 0 0),
010 1 00 0 00 0 00 1 00 010
a 0 0 0 a O 1 1 0 1 1 0
<1 1 O),(l 1 O>7<a B O),(a o} O)}
0 0 O 0 0 0 0 0 O 1 8 0

We develop the whole procedure in [2, Tables 14-17]. We study in [2, Tables 16’
and 17'] if each resulting family contains isomorphic evolution algebras. We remark that
in “Table m'” the elements p;; have to satisfy the necessary conditions in order for Pp/p
to have rank 3.

Case dim(A?) = 3.
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In order to classify all the possible matrices corresponding to structure matrices of three-
dimensional evolution algebras A such that A? = A (equivalently dim(A4?) = 3), we will
use Proposition 3.2. Notice that in this case the number of zeros in all the structure
matrices of a given evolution algebra is invariant (see Proposition 3.2 (i)). Equivalently,
the number of non-zero entries is invariant. This is the reason because of which we will
classify taking into account this last number. Note that the minimum number of non-zero
entries in Mp is exactly three.

Case 1. Mp has three non-zero elements.

We compute the determinant of Mpg.
\MB| = W11W22W33 T W12Wa3wW31 + Wi3W21W32 — W13W2oW31 — Wa1W12W33 — W11W32W23. (34)

Since |[Mp| # 0, only one of the six summands is non-zero. Assume, for example,

1 4 2 2
wiswazws1 7 0. Take a = nawgwd, B = a*wasws; and v = a*ws;. Then
2331

0 w12 0 0 1 0
(o, B,7)- | O 0 wa]=(0 01
w31 0 0 1 0 0

Reasoning in this way with wis(1)war(2)Wse3) (Where o € S3) instead of with
wiawo3ws1, we obtain a natural basis B’ such that Mp/ = (w;;), with @;,;) = 1 and
w;j = 0 for any j # o(i).

This justifies that these are the only matrices we consider in order to get the classi-
fication. Notice that there are only six. Since we do not know which of them are in the
same orbit (considering the action described in Section 3.1), we start with one of them,
say M, and consider 7 - M for any 7 € Ss.

We display {7 - M | 7 € S3} in a row. Then, we start with another of these matrices,
say M’, not appearing in this row, and display {7 - M’ | 7 € S5} in a second row. We
continue in this way until we get the six different matrices. We color these six matrices
to make easier the reader to find them (see Table 18).%

Therefore, there are only three orbits and, consequently, only three evolution algebras
A in the case we are studying. Their structure matrices are:

1 0 0 01 0 01 0
01 0fJ,({1 0 OfJand O O 1]. (35)
0 0 1 0 0 1 1 0 0

Case 2. Mp has four non-zero elements.

Reasoning as in Case 1, we arrive at a natural basis B’ of the evolution algebra A such
that Mp = (w;;), with @, = 1, @i; # 0 for some j # o(i) and @y, = 0 for every
k # o(i), j for every permutation o € Ss.

8 The color version of Table 18 will appear on the web.
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Table 18
dim(A?) = 3; three non-zero entries.
(1,2) (1,3) (2,3) (1,2,3) (1,3,2)
1 0 0 10 0 10 0 10 0 10 0 10 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1
1 0 O 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0
0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1
100 0 0 1 0 0 1 0 0 1 1.0 0 10 0
0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0

In order to describe the matrices producing non-isomorphic evolution algebras, first,
we notice the following. Given a matrix as explained below, no matter where we put the
four non-zero elements (three 1 and one arbitrary parameter x4 which has to be non-zero)
that the resulting matrices correspond to isomorphic evolution algebras. This is because
we will not be worried about where to place the parameter. Then we explain which are
the possible cases.

We have to put five 0 into nine places (the nine entries of the matrix). This can be
done in (g) = 126 ways. But we must remove the cases in which |Mpg/| = 0. This happens:

(a) When the entries of a row are zero.

(b) When the entries of a column are zero but there is no a row which consists of zeros.

(¢) When the matrix has a 2 x 2 minor with every entry equals zero and it has not a
row or a column of zeros.

These three cases are mutually exclusive.

(a) The cases in which there is a column of zeros are 3(2) = 45 (3 corresponds to
the three columns and (g) corresponds to the different ways in which two zeros can be
distributed in the six remaining places).

(b) For the rows the reasoning in similar: we have 45 cases. Now we have to take into
account that there are cases which have been considered twice (just when there is a row
and a column which are zero). This happens 9 times. Therefore, we have 45 — 9 = 36
options in this case.

(c) Once the matrix has a 2 x 2 minor with every entry equals zero, the fifth zero
must be only in one place if we want to avoid the matrix having a row or column of
zeros. There are 9 options to put a zero in a matrix. Once this happens, we remove the
corresponding row and the corresponding column and there are four places where to put
four zeros. Hence, there are 9 possibilities in this case.

Taking into account (a), (b) and (c), there are 126 — (45 + 36 + 9) = 36 different
matrices we can consider.

As in Case 1, we list all the options in a table. The elements that appear in every row
correspond to the action of every element of S3 on the matrix placed first. There exist
six mutually non-isomorphic parametric families of evolution algebras, which are:
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1 pu 0 p 10 01 p 010 p 01 0 p 1
o1 0),(10oo0),{1t00],([1 00o0),{1 00]),([1 0o0]}.
00 1 00 1 00 1 p 01 01 0 01 0

The study of isomorphisms between elements of the same parametric family of evolu-
tion algebras can be found in [2, Table 197].

Case 3. Mp has five non-zero elements.

We proceed as in the cases above and obtain that in order to classify we need to consider
only matrices with four zero entries and five non-zero entries. By changing the basis, we
may assume that three of the elements are 1 and the other are arbitrary parameters A
and p, with the only restriction of being non-zero and such that Ap # 1 (this condition
is needed because the determinant must be non-zero).

The different matrices to be considered are those for which we place four zeros:
(%) = 126. On the one hand, we must remove those for which there is a row or a column
which are zero (because these matrices have zero determinant). If one row or column
consists of zeros, then the fourth zero can be placed in six different positions. Since there
are 3 rows and 3 columns, this happens 6 times. On the other hand, we must remove
those for which there is a 2 x 2 minor with every entry equals zero. Consequently, we
have 126 — 62 — 9 = 81 cases that we display in the table that follows. The number of
mutually non-isomorphic parametric families of evolution algebras is sixteen:

0
A> ,
1

A 1 0 1 pu O 1 pu O 7 I
A of,1o0 1 x],({0 1 0,1 0 O0],(1
0 1 0 0 1 0 A 1 0 0 1 0
0 01 u 0 1 0 01 0 0 10
o), 0o X}|,(2 O w|,{2 O w|,{1 O O},
1 0 0 1 A0 1 0 a1 woA 1
woA 1 " 1 w01 0 p 1
10 0}),(1 0O),(1 0 O),(1 O A|5p.
0 10 0 0 A1 0 0 1 0

We show the study of isomorphism of parametric families of evolution algebras when

OO =

pu——
N
OO =
SO~ o=z
— O

= o O

N———

VRS

o
_y>0 >XOF owx

we change the parameters in Table 20’ in [2].
Case 4. Mp has six non-zero elements.

Once again we reason in the same way and we can fix our attention in those matrices
with three zeros and six non-zero entries.

The different possibilities are: (g) — 6 = 78. Note that (g) are the different ways of
placing 3 zeros in a 3 X 3 matrix while 6 corresponds to the cases in which there is a row
or a column which is zero.

Making changes on the elements of the basis we may consider three entries equals 1.
The only restrictions on the other three elements, say A, u and p, which must be non-zero,
are the needed ones in order to not have zero determinant. This means pp # 1, Ap # 1,

uA # 1 and pph # —1.
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There are fifteen parametric families of evolution algebras, which are:

1w A 1 pw A 1 w O 1 p O w1 oA w1 oA
{<p i 0),(0 i p>,<o i A>,<A | o>,<1 0 p>,<1 0 0),
0 0 1 0 0 1 p 0 1 p 0 1 0 0 1 p 0 1
[T S 01 pu 0 1 u 01 u 0 1 pu 0 1 0
<1 0 0),(1 A 0),(1 A 0),(1 0 A>,<1 0 0),(1 , o>,
0 p 1 p 0 1 0 p 1 p 0 1 A p 1 A op 1
nwoA 1 nwoA 1 0 w 1
<1 ) 0>7<1 0 o>,<1 0 A>}
0 1 0 p 1 0 p 1 0

We show in [2, Table 21’] which of the parametric families of evolution algebras pro-
duce isomorphic algebras when changing the parameters.

Case 5. Mp has seven non-zero elements.

The different cases that we must consider are (g) = 36. Every matrix has three entries
which are 1 and four non-zero parameters 9, A, i1, p, which must satisfy one of the following
conditions, depending on the case we are considering, in order for the matrix to not have
zero determinant: pp # 1; up+ 0N # 1; du # 1; dp+ Ap # 1; 0N £ 1; dp — d\u # 1

dp # 15 up — dAp # 1.
The number of mutually non-isomorphic parametric families of evolution algebras is

1 A 1 A 1 0 p
e d )L )0 i)
0 1 1 1 0 0 1
¢ ()G e )
1 pl,[1 0 X .
p 1 p 6 1

We show in [2, Table 22’ which of the parametric families give isomorphic evolution

eight, which are:

[N -

>,

SO~ ORrRXT
— O >
N~

S

o =

o =

SO =
— O >
N~
VR
=T
—_ >
~_—
7\
= O
S > =

algebras under change of parameters.
Case 6. There are eight non-zero elements in the matrix.

In this case there are only nine possibilities which appear in the table that follows. The
condition that the entries of the matrix must satisfy is one of the following: n\ 4+ up —
onu #£ 1 or dp+np—onA # 1, just to be sure that the determinant of the corresponding
matrix is different from zero. There are two parametric families of evolution algebra,
which are:
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We can see when the parametric evolution algebras are isomorphic when we change
the parameters in Table 23’ in [2].

Case 7 All the entries in the matrix are non-zero. In this case only one matrix appears:

1 p A
p 1 96
n 1 1

and the condition that the parameters must satisfy is np + oA + u7 — nAt — dup # 1.
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