HOMEWORK 1 OF MATH 226 A, FALL 2009

- (1) Prove the following properties of the matrix A formed in the finite difference methods for Poisson equation with Dirichlet boundary condition:
 - (a) it is symmetric: $a_{ij} = a_{ji}$;

 - (b) it is diagonally dominant: $a_{ii} \ge \sum_{j=1, j \ne i}^{N} a_{ij}$; (c) it is positive definite: $u^t A u \ge 0$ for any $u \in \mathbb{R}^N$ and $u^t A u = 0$ if and only if u = 0.
- (2) Let us consider the finite difference discritization of Poisson equation with Neumann boundary condition.
 - (a) Write out the 9×9 matrix A for h = 1/2.
 - (b) Prove that in general the matrix corresponding to Neumann boundary condition is only semi-positive definite.
 - (c) Show that the kernel of A consists of constant vectors: Au = 0 if and only if u = c.

(3) Implement finite difference methods for solving the Poisson equation u'' = f with pure Dirichlet or pure Neumann boundary in the unit interval (0, 1).

- (a) Discretize the domain into uniform grid.
- (b) Discretize the Δ operator for interior points.
- (c) Modify the equation for boundary points.
- (d) Use director solver in Matlab to compute the solution: $u = A \setminus f$.
- (e) Choose a smooth function and substitue into Poisson equation to get a right hand function. Then compare your computation with the true solution in the maximal norm, i.e., compute $||u_I - u_h||_{\infty}$.