HOMEWORK 3: ITERATIVE METHODS FOR FEM

DUE NOV 16

We consider the finite element method for solving the Poisson equation. Let $\mathbb{V}^{h} \subset \mathbb{V}=$ $H_{0}^{1}(\Omega)$ be the linear finite element space based on a quasi-uniform mesh \mathcal{T}_{h}. We look for a $u_{h} \in \mathbb{V}^{h}$ such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle, \quad \forall v_{h} \in \mathbb{V}^{h} . \tag{1}
\end{equation*}
$$

Here $a(u, v)=(\nabla u, \nabla v)=\int_{\Omega} \nabla u \cdot \nabla v$, and $\langle\cdot, \cdot\rangle$ is the dual pair. In particular when $f \in L^{2}(\Omega),\langle f, v\rangle=(f, v):=\int_{\Omega} f v$.

The bilinear form $a(\cdot, \cdot)$ will introduce a mapping

$$
A: \mathbb{V} \mapsto \mathbb{V}^{\prime} \cong \mathbb{V}, \quad u \mapsto A u:=a(u, \cdot)
$$

The restriction of A to \mathbb{V}^{h} introduce a map $A_{h}: \mathbb{V}^{h} \mapsto\left(\mathbb{V}^{h}\right)^{\prime} \cong \mathbb{V}^{h}$
Let $\left\{\phi_{i}\right\}_{i=1}^{N}$ be the nodal basis of \mathbb{V}^{h}. Every function in \mathbb{V}^{h} has a representation $v_{h}=$ $\sum_{i=1}^{N} v_{i} \phi_{i}$. We define an isomorphism $\mathbb{V}^{h} \longleftrightarrow \mathbb{R}^{N}$ by

$$
v_{h}=\sum_{i=1}^{N} v_{i} \phi_{i} \longleftrightarrow \boldsymbol{v}=\left(v_{1}, \cdots, v_{N}\right)^{t}
$$

Here and after, we shall use boldface letters to denote vectors or matrixes. The stiffness matrix is defined as

$$
\boldsymbol{A}=\left(a_{i j}\right), \text { where } a_{i j}=a\left(\phi_{j}, \phi_{i}\right)
$$

The mass matrix is defined as

$$
\boldsymbol{M}=\left(m_{i j}\right)_{N \times N} \quad \text { with } \quad m_{i j}=\left(\phi_{j}, \phi_{i}\right) .
$$

For any $v \in \mathbb{V}^{h}$, the H^{1} norm and L^{2} norm can be realized by

$$
\begin{array}{r}
\|v\|^{2}=(v, v)=(\boldsymbol{M} \boldsymbol{v}, \boldsymbol{v})=\boldsymbol{v}^{t} \boldsymbol{M} \boldsymbol{v} \\
|v|_{1}^{2}=(A v, v)=(\boldsymbol{A} \boldsymbol{v}, \boldsymbol{v})=\boldsymbol{v}^{t} \boldsymbol{A} \boldsymbol{v}
\end{array}
$$

Let $u=\sum_{j} u_{j} \phi_{j}$. Taking $v_{h}=\phi_{i}, i=1, \cdots N$ in (1), we get an algebraic equation

$$
\begin{equation*}
A \boldsymbol{u}=f \tag{2}
\end{equation*}
$$

Here $\boldsymbol{f}=\left(f_{1}, \ldots, f_{N}\right)^{t} \in \mathbb{R}^{N}$ denotes the vector representation of f with $f_{i}=\left(f, \phi_{i}\right)$. By the definition, both \boldsymbol{A} and \boldsymbol{M} are $N \times N$ symmetric and positive definite matrix.
(1) Prove the mass matrix is well conditioned by showing: for any $v \in \mathbb{V}^{h}$

$$
\begin{equation*}
\|v\|^{2} \simeq h^{d} \sum_{i=1}^{N} v_{i}^{2}=h^{d}\|\boldsymbol{v}\|_{l_{2}}^{2} \tag{3}
\end{equation*}
$$

Note that (3) implies that

$$
h^{d} \lesssim \lambda_{\min }(\boldsymbol{M}) \leq \lambda_{\max }(\boldsymbol{M}) \lesssim h^{d}
$$

And thus $\kappa(\boldsymbol{M}) \simeq 1$ i.e. \boldsymbol{M} is well conditioned.

[^0](2) Prove that
$$
1 \lesssim \lambda_{\min }\left(A_{h}\right) \leq \lambda_{\max }\left(A_{h}\right) \lesssim h^{-2}
$$
(3) Prove that $\lambda_{\max }(\boldsymbol{A}) \approx h^{d} \lambda_{\max }\left(A_{h}\right)$ and $\lambda_{\min }(\boldsymbol{A}) \approx h^{d} \lambda_{\min }\left(A_{h}\right)$. Therefore $\kappa\left(A_{h}\right)=\kappa(\boldsymbol{A}) \simeq h^{-2}$.
(4) Estimate the convergence rate of Richardson's method (with appropriate choice of relaxation parameter), damped Jacobi (choosing $B=\alpha D^{-1}$ with appropriate choice of α), Gauss-Seidal method, and Conjugate Gradient method for solving the linear algebraic equation (2) from the linear finite element discretization.
(5) Hilbert matrix $H=\left(h_{i j}\right)$ of n -th order is defined as $h_{i j}=\frac{1}{i+j-1}(i, j=1,2, \ldots, n)$. Use any numerical algorithm to solve the linear system: $H x=b$, where b is generated by setting $x=(1,1, \ldots, 1)^{T}$ for both $n=3$ and $n=30$. Compare your results with exact solution and try to explain why.

[^0]: Date: November 5, 2009.

