HOMEWORK 3: ITERATIVE METHODS FOR FEM

DUE DEC 5

- (1) The product of two symmetric matrices is not necessarily symmetric but will be in a different inner product.
 - (a) Suppose A and B are SPD, prove that BA is SPD with respect to the inner product $(\cdot, \cdot)_A$ or $(\cdot, \cdot)_{B^{-1}}$.
 - (b) Prove that

$$I - \bar{B}A = (I - BA)^*(I - BA)$$

(2) Prove that the convergence rate of Richardson, weighted Jacobi method, and Gauss-Seidal method for the 5-point stencil finite difference method of the Poisson equation on a uniform mesh with size h, is like

$$\rho \le 1 - Ch^2.$$

Thus when $h \to 0$, we will observe slow convergence of those classical iterative methods.

(3) Let us consider the matrix equation

$$Au = f,$$

where A is an $N \times N$ SPD matrix. Let us take the trivial decomposition of $\mathbb{R}^N =$ $\sum_{i=1}^{N} \operatorname{span}\{e_i\}$, where $\{e_i, i = 1, \dots, N\}$ is the canonical basis of \mathbb{R}^N . Prove that

- for $R_i = \omega I$, PSC is Richardson method;
- for R_i = A_i⁻¹, PSC is Jacobi method;
 for R_i = A_i⁻¹, SSC is the Gauss-Seidal method.
- (4) Prove that PSC using local solvers $R_i = A_i^{-1}$ is equivalent to the Jacobi method for solving the large system $\tilde{A}\tilde{u} = \tilde{f}$.

Date: November 23, 2011.