HOMEWORK 1 OF MATH 226C: TRANSPORT EQUATIONS

The following are selected homework problems from the text book: J.W. Thomas. Nu merical Partial Differential Equations: Finite Difference Methods.

1. Develop a symbolic code to check the consistency and stability of the two-level difference scheme in the form of

$$
u^{n+1}(x)=\sum_{p} a_{p} u^{n}(x-p h)
$$

for the heat equation and the transport equation. Use the code to analze
(1) (HW5.3.3 in p.216) The 1-D forward Beam-Warming scheme

$$
\begin{aligned}
u_{i}^{*} & =u_{i}^{n}-R\left(u_{i}^{n}-u_{i-1}^{n}\right), \\
u_{i}^{n+1} & =\frac{1}{2}\left[u_{i}^{n}+u_{i}^{*}-R\left(u_{i}^{*}-u_{i-1}^{*}\right)-R\left(2 u_{i}^{n}-u_{i-1}^{n}-u_{i+1}^{n}\right)\right],
\end{aligned}
$$

for solving

$$
u_{t}+a u_{x}=0 .
$$

(2) (HW5.8.5 in p.247) The 2-D forward alternative direction scheme

$$
\begin{aligned}
u_{i j}^{n+1 / 2} & =u_{i j}^{n}-\frac{R_{x}}{2}\left(u_{i+1, j}^{n}-u_{i-1, j}^{n}\right)+\frac{R_{x}^{2}}{2}\left(2 u_{i, j}^{n}-u_{i-1, j}^{n}-u_{i+1, j}^{n}\right) \\
u_{i j}^{n+1} & =u_{i j}^{n+1 / 2}-\frac{R_{y}}{2}\left(u_{i, j+1}^{n+1 / 2}-u_{i, j-1}^{n+1 / 2}\right)+\frac{R_{y}^{2}}{2}\left(2 u_{i, j}^{n+1 / 2}-u_{i, j-1}^{n+1 / 2}-u_{i, j+1}^{n+1 / 2}\right),
\end{aligned}
$$

for solving

$$
u_{t}+a u_{x}+b u_{y}=0 .
$$

Here recall that $R=R_{x}=a \Delta t / \Delta x$ and $R_{y}=b \Delta t / \Delta y$.
2. Verify the upwinding scheme for solving $u_{t}+a u_{x}=0$ is equivalent to the centered difference scheme for solving $u_{t}+a u_{x}-\frac{a h}{2} u_{x x}=0$. Namely we add numerical viscosity to stabilize the scheme.
3. (HW5.9.1 in p.257) We consider upwinding scheme for convection-diffusion and convectiondominated problem

$$
u_{t}+a u_{x}-\nu u_{x x}=0
$$

The first order derivative u_{x} is discretized by a unwinding scheme and the second order derivative $u_{x x}$ by centered difference scheme.

Let $R=a \Delta t / \Delta x$ and $r=\nu \Delta t / \Delta x^{2}$. Show that the above difference scheme is stable if and only if

$$
\begin{cases}R \leq 2 r \leq 1+R & \text { for } a<0 \\ R \leq 2 r \leq 1+R & \text { for } a>0\end{cases}
$$

We can also apply Lax-Wendroff scheme for the hyperbolic part and centered difference for the diffusion part. Prove that the resulting scheme is stable if and only if

$$
r+R^{2} / 2 \leq 1 / 2
$$

4. (HW5.6.10 in p.232) Consider the following initial-boundary-value problem

$$
\begin{aligned}
u_{t}-2 u_{x} & =0, \quad x \in(0,1), t>0 \\
u(x, 0) & =1+\sin 2 \pi x, \quad x \in[0,1] \\
u(1, t) & =1 .
\end{aligned}
$$

Code the problem using the explicit Lax-Wendroff scheme with the following numerical boundary conditions at $x=0$.
(1) $u_{0}^{n}=1$;
(2) $u_{0}^{n}=u_{1}^{n}$;
(3) $u_{0}^{n+1}=u_{0}^{n}-R\left(u_{1}^{n}-u_{0}^{n}\right)$;
(4) $u_{0}^{n+1}+u_{1}^{n+1}+R\left(u_{1}^{n+1}-u_{0}^{n+1}\right)=u_{0}^{n}+u_{1}^{n}-R\left(u_{1}^{n}-u_{0}^{n}\right)$.

