HOMEWORK 2 OF MATH 226C: CONSERVATION LAWS

The following are selected homework problems from the text book: J.W. Thomas. Nu merical Partial Differential Equations: Finite Difference Methods.

1. Consider Burgers' equation

$$
u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0, u(\cdot, 0)=u_{0}
$$

An entropy function and entropy flux function for the Burgers' equation is

$$
S(v)=|v-c|, \Phi(v)=\frac{v-c}{|v-c|}\left[\frac{1}{2} v^{2}-\frac{1}{2} c^{2}\right]
$$

For the following FTBS numerical scheme

$$
\begin{equation*}
u_{k}^{n+1}=u_{k}^{n}-\frac{R}{2}\left(u_{k}^{n}\right)^{2}+\frac{R}{2}\left(u_{k-1}^{n}\right)^{2} \tag{1}
\end{equation*}
$$

find a numerical entropy flux function Ψ which is consistent with Φ and proof the scheme (1) satisfies the discrete entropy condition.
2. We consider different formulations of a numerical scheme and transformation among these forms.

- Conservative form: $u_{k}^{n+1}=u_{k}^{n}-R\left(h_{k+1 / 2}-h_{k-1 / 2}\right)$;
- Incremental form or I-form: $u_{k}^{n+1}=u_{k}^{n}+C_{k+1 / 2}^{n} \delta_{+} u_{k}^{n}-D_{k-1 / 2}^{n} \delta_{-} u_{k}^{n}$;
- Q-form: $u_{k}^{n+1}=u_{k}^{n}-\frac{R}{2} \delta_{0} F_{k}^{n}+\frac{1}{2} \delta_{+}\left(Q_{k-1 / 2}^{n} \delta_{-} u_{k}^{n}\right)$.
(1) Transform a difference scheme from conservative form to I-form;
(2) Transform a difference scheme from Q-form to conservative form and I-form;
(3) Transform a difference scheme from conservative form and I-form to Q-from.

3. Let $S(u)=|u-c|$ and $\Phi(u)=\operatorname{sign}(u-c)[F(u)-F(c)]$. For a conservative and consistent scheme, let

$$
\Psi_{k+1 / 2}^{n}=h_{k+1 / 2}^{n}\left(\tilde{u}_{k-p}^{n}, \ldots, \tilde{u}_{k+q}^{n}\right)-h_{k+1 / 2}^{n}\left(\tilde{\tilde{u}}_{k-p}^{n}, \ldots, \tilde{\tilde{u}}_{k+q}^{n}\right),
$$

where $\tilde{u}=\max \{u, c\}$ and $\tilde{\tilde{u}}=\min \{u, c\}$. Prove $\Psi_{k+1 / 2}^{n}$ is consistent with Φ.
4. We study Godunov scheme in this exercise.
(1) Write the Godunov scheme in Q-form;
(2) Write the Godunov scheme in conservative form;
(3) Show that the numerical flux functions associated with the Godunov scheme can be written as

$$
h_{k+1 / 2}^{n}= \begin{cases}\min _{u_{k}^{n}<u<u_{k+1}^{n}} F(u) & \text { if } u_{k}^{n}<u_{k+1}^{n} \\ \max _{u_{k+1}^{n}<u<u_{k}^{n}} F(u) & \text { if } u_{k}^{n}>u_{k+1}^{n}\end{cases}
$$

(4) Show that the Godunov scheme is a monotone scheme.
5. We consider slope-limiter schemes for the one way wave equation $u_{t}+a u_{x}=0$ with speed $a>0$. Show that if we choose $\sigma_{k}^{n}=\delta_{+} u_{k}^{n} / \Delta x$, the difference scheme

$$
u_{k}^{n+1}=u_{k}^{n}-a R \delta_{-} u_{k}^{n}-\frac{a R}{2}(1-a R) \Delta x \delta_{-} \sigma_{k}^{n}
$$

reduces to the Lax-Wendroff scheme.

