
SOBOLEV SPACES AND ELLIPTIC EQUATIONS

LONG CHEN

Sobolev spaces are fundamental in the study of partial differential equations and their
numerical approximations. In this chapter, we shall give brief discussions on the Sobolev
spaces and the regularity theory for elliptic boundary value problems.
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1. ESSENTIAL FACTS FOR SOBOLEV SPACES

We shall state and explain main results (without proofs) on Sobolev spaces. We refer to
[1] for comprehensive treatment of Sobolev spaces.

1.1. Preliminaries. We first set up the environment of our discussion: Lipschitz domains,
multi-index notation for differentiation, and some basic functional spaces.

Lipschitz domains. Our presentations here will almost exclusively be for bounded Lips-
chitz domains. Roughly speaking, a domain (a connected open set) Ω ⊂ Rn is called a
Lipschitz domain if its boundary ∂Ω can be locally represented by Lipschitz continuous
function; namely for any x ∈ ∂Ω, there exists a neighborhood of x, G ⊂ Rn, such that
G ∩ ∂Ω is the graph of a Lipschitz continuous function under a proper local coordinate
system.

Of course, all the smooth domains are Lipschitz. In particular, a domain with C1-
smooth boundary is Lipschitz. A very significant non-smooth example is that every polyg-
onal domain in R2 or polyhedron in R3 is Lipschitz. A more interesting example is that
every convex domain in Rn is Lipschitz. A simple example of non-Lipschitz domain is
two polygons touching at one vertex only.
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Notation of Schwarz. Let α = (α1, · · · , αn) ∈ Zn+, where Z+ is the set of non-negative
integers, be a vector of nonnegative integers, denote

Dα =
∂|α|

∂xα1
1 · · ·x

αn
n

with |α| =
n∑
i=1

αi.

For a smooth function v and x ∈ Rn, denote

Dαv =
∂|α|v

∂xα1
1 · · ·x

αn
n
, and xα = xα1

1 · · ·xαnn .

Some basic functional spaces. Several basic Banach spaces will often be used in this book.
C(Ω̄) is the space of continuous functions on Ω̄ with the usual maximum norm

‖v‖C(Ω̄) = max
x∈Ω̄
|v(x)|.

C∞0 (Ω) denotes the space of infinitely differential functions in Ω that vanish in some neigh-
borhood of ∂Ω; namely any v ∈ C∞0 (Ω) satisfies supp(v) ⊂ Ω, where

supp(v) = closure of {x ∈ Ω : v(x) 6= 0}.

LetE(Ω) represent the equivalent class of Lebesgue integrable functions corresponding
to the equivalence u ∼ v if u = v almost everywhere. Given 1 ≤ p <∞, we shall denote
the usual Lebesgue space of pth power integrable functions by Lp(Ω) = {v ∈ E(Ω) :∫

Ω
|v|p dx < ∞} and the essentially bounded function space by L∞(Ω). The norm is

defined by

‖u‖p,Ω =
(∫

Ω

|u|p dx
)1/p

for 1 ≤ p <∞,

and
‖u‖∞,Ω = ess sup

Ω
|u|.

Exercise 1.1. Prove that Lp(Ω), 1 ≤ p ≤ ∞ defined above are Banach spaces.

1.2. Definition of Sobolev spaces. We are used to understand a function from its point
values. This is not adequate. It is better to understand a function as a functional through its
action on a space of unproblematic test functions (convential and well-behaved functions).
In this way, we can generalize the concept of functions to generalized functions or so-
called distributions. “Integration by parts” is used to extend the differentiation operators
from classic differentiable functions to distributions by shifting them to the test functions.

Sobolev spaces will be first defined here for integer orders using the concept of distri-
butions and their weak derivatives. The fractional order Sobolev spaces will be introduced
by looking at the pth power integrable of quotient of difference. Definitions will also be
given to Sobolev spaces satisfying certain zero boundary conditions.

Distributions and weak derivatives. We begin with the nice function spaceC∞0 (Ω). Recall
that it denotes the space of infinitely differentiable functions with compact support in Ω.
Obviously C∞0 (Ω) is a real vector space and can be turned into a topological vector space
by a proper topology. The space C∞0 (Ω) equipped with the following topology is denoted
by D(Ω): a sequence of functions {φk} ⊂ C∞0 (Ω) is said to be convergent to a function
φ ∈ C∞0 (Ω) in the space D(Ω) if

(1) there exists a compact set K ⊂ Ω such that for all k, supp(φk − φ) ⊂ K, and
(2) for every α ∈ Zn+, we have limk→∞ ‖Dα(φk − φ)‖∞ = 0.
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The space, denoted by D′(Ω), of all continuous linear functionals on D(Ω) is called
the (Schwarz) distribution space. The space D′(Ω) will be equipped with the weak star
topology. Namely, in D′(Ω), a sequence Tn converge to T in the distribution sense if and
only if 〈Tn, φ〉 → 〈T, φ〉 for all φ ∈ D(Ω), where 〈·, ·〉 : D′(Ω) × D(Ω) → R is the
duality pair. A function φ belonging to D(Ω) is called a test function since the action of a
distribution on φ can be thought as a test. The property of a distribution can be extracted
by clever choice of test functions.

Example 1.2. By the definition, an element inD′(Ω) is uniquely determined by its action.
The action could be very general and abstract as long as it is linear and continuous. As an
example, let us introduce the Dirac delta distribution δ ∈ D′(Ω) with 0 ∈ Ω ⊆ Rn defined
as

〈δ, φ〉 = φ(0) for all φ ∈ D(Ω).

One important class of distributions is to use the integration as the action. A function
is called locally integrable if it is Lebesgue integrable over every compact subset of Ω.
We define the space L1

loc(Ω) as the space containing all locally integrable functions. We
can embed L1

loc(Ω) into D′(Ω) using the integration as the duality action. For a function
u ∈ L1

loc(Ω), let Tu ∈ D′(Ω) defined as

〈Tu, φ〉 =

∫
Ω

uφ dx for all φ ∈ D(Ω).

We shall still denoted Tu by u. The correspondence u 7→ Tu is often used to identify an
“ordinary” function as a distribution.

A distribution is often also known as a generalized function as the concept of distribu-
tion is a more general than the concept of the classic function. One of the basic distribu-
tion which is not an “ordinary” function is the Dirac δ-distribution introduced in Example
1.2. Indeed, one motivation of the invention of distribution space is to include Dirac delta
“function”.

Exercise 1.3. Prove that it is not possible to represent delta distribution by a locally inte-
grable function.

If u is a smooth function, it follows from integration by parts that, for any α ∈ Zn+∫
Ω

Dαu(x)φ(x) dx = (−1)|α|
∫

Ω

u(x)Dαφ(x) dx for all φ ∈ D(Ω).

There are no boundary terms, since φ has compact support in Ω and thus φ, together with
its derivatives, vanishes near ∂Ω. The above identity is the basis for defining derivatives
for a distribution. If T ∈ D′(Ω), then for any α ∈ Zn+, we define weak derivative DαT as
the distribution given by

〈DαT, φ〉 = (−1)|α|〈T,Dαφ〉 for all φ ∈ D(Ω).

It is easy to see for a differentiable function, its weak derivative coincides with its classical
derivative. But in general, the weak derivative is much weaker than the classical one such
that the differential operator can be extended from differential functions to a much larger
space – the space of distributions. For example, we can even talk about the derivative of a
discontinuous function.

Example 1.4. The Heaviside step function is defined as S(x) = 1 for x > 0 and S(x) = 0
for x < 0. By the definition∫

R
S′φ dx = −

∫
R
Sφ′ dx = −

∫ ∞
0

φ′ dx = φ(0).
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Therefore S′ = δ in the distribution sense but δ is not a function in L1
loc(Ω) (Exercise

1.3). Roughly speaking, any distribution is locally a (multiple) derivative of a continuous
function. A precise version of this result can be found at Rudin [11].

The formal definition of distributions exhibits them as a subspace of a very large space.
Generally speaking, no proper subset of the space of distributions contains all continuous
functions and is closed under differentiation. This says that the distribution extension of
the function concept is as economical as it possibly can be. A distribution is infinitely
differentiable in the distribution sense.

Integer order Sobolev spaces. The Sobolev space of index (k, p), where k is a nonnegative
integer and p ≥ 1, is defined by

W k,p(Ω)
def
= {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) for all |α| ≤ k},

with a norm ‖ · ‖k,p,Ω given by

(1) ‖v‖pk,p,Ω
def
=
∑
|α|≤k

‖Dαv‖p0,p(Ω),

We will have occasions to use the seminorm | · |k,p,Ω given by

|v|pk,p,Ω
def
=
∑
|α|=k

‖Dαv‖p0,p,Ω.

For p = 2, it is customary to write Hk(Ω)
def
= W k,2(Ω) which is a Hilbert space

together with an inner product as follows

(u, v) =
∑
|α|≤k

(Dαu,Dαv)

and the corresponding norm is denoted by ‖v‖k,Ω = ‖v‖k,2,Ω. The majority of our use of
Sobolev space will be in this case.

We also define W k,p
loc (Ω) = {u ∈ E(Ω) : for any U ⊂⊂ Ω, u ∈ W k,p(U)} and

Hk
loc(Ω) = W k,2

loc (Ω).

Exercise 1.5. Prove that W k,p(Ω) is a Banach space.

For a function in Lp(Ω), treating it as a distribution, its weak derivatives always exists
as distributions. But the weak derivative may not be in the space Lp(Ω). Therefore an
element in W k,p(Ω) possesses certain smoothness.

Example 1.6. We consider the Heaviside function restricted to (−1, 1) and still denote
by S. The weak derivative of S is Delta distribution which is not integrable. Therefore
S /∈ H1(−1, 1).

Example 1.7. Let u(x) = |x| for x ∈ (−1, 1) be an anti-derivative of 2(S − 1/2). Obvi-
ously u ∈ L2(−1, 1) and u′ ∈ L2(−1, 1). Therefore u ∈ H1(−1, 1).

Example 1.6 and 1.7 explain that for a piecewise smooth function u to be in H1(Ω)
requires more global smoothness of u in Ω. See Exercise 1.18.
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Fractional order Sobolev spaces. In the definition of classic derivative, it takes the point-
wise limit of the quotient of difference. For functions in Sobolev space, we shall use the
pth power integrability of the quotient difference to characterize the differentiability.

For 0 < σ < 1 and 1 ≤ p <∞, we define

(2) Wσ,p(Ω) =

{
v ∈ Lp(Ω) :

∫
Ω

∫
Ω

|v(x)− v(y)|p

|x− y|n+σp
dx dy <∞

}
and

Hσ(Ω) = Wσ,2(Ω).

In Wσ,p(Ω), we define the following semi-norm

(3) |v|pσ,p,Ω
def
=

∫
Ω

∫
Ω

|v(x)− v(y)|p

|x− y|n+σp
dxdy,

and norm

(4) ‖v‖pσ,p,Ω
def
= ‖v‖p0,p,Ω + |v|pσ,p,Ω.

In the definition of the fractional Sobolev space, the index of the dominator in the quo-
tient of difference depends on the dimension of the space. This can be seen more clearly if
we use polar coordinate in the integration. The fractional derivative seems weird. We now
give a concrete example.

Example 1.8. For the Heavisde function S restricted to (−1, 1), we look at the integral (3)
in the skewed coordinate x̃ = x− y, ỹ = x+ y. To be in the space Wσ,p(Ω), it is essential
to have the integral ∫ 1

0

1

x̃σp
dx̃ <∞.

That is to require σ < 1/p. In particular, we conclude S ∈ H1/2−ε(−1, 1) for any 0 <
ε ≤ 1/2 but S /∈ H1/2(−1, 1).

Given s = k + σ with a real number σ ∈ (0, 1) and an integer k ≥ 0, define

W s,p(Ω)
def
= {v ∈W k,p(Ω) : Dαv ∈Wσ,p(Ω), |α| ≤ k}.

In W s,p(Ω), we define the following semi-norm and norm

|v|s,p,Ω =

∑
|α|=k

|Dαv|pσ,p,Ω

1/p

, ‖v‖s,p,Ω =

∑
|α|≤k

‖Dαv‖pσ,p,Ω

1/p

.

Negative order Sobolev spaces. W k,p(Ω) is a Banach space, i.e., it is complete in the
topology induced by the norm ‖ · ‖k,p,Ω. Indeed W k,p(Ω) is the closure of C∞(Ω) with
respect to ‖ · ‖k,p,Ω. The closure of C∞0 (Ω) with respect to the same topology is denoted
by W k,p

0 (Ω). For p = 2, we usually write Hk
0 (Ω) = W k,2

0 (Ω). Roughly speaking for
u ∈ H1

0 (Ω), u|∂Ω = 0 in an appropriate sense. Except k = 0 or Ω = Rn, W k,p
0 (Ω) is a

proper subspace of W k,p(Ω).
For k ∈ N, W−k,p(Ω) is defined as the dual space of W k,p′

0 (Ω), where p′ is the conju-
gate of p, i.e., 1/p+ 1/p′ = 1. In particular H−k(Ω) = (Hk

0 (Ω))′, and for f ∈ H−1(Ω)

‖f‖−1,Ω = sup
v∈H1

0 (Ω)

〈f, v〉
‖v‖1,Ω

.
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Since C∞0 (Ω) is dense in W k,p
0 (Ω), W−k,p(Ω) can be thought as a subspace of D′(Ω).

Furthermore, we have the following characterization ofW−k,p(Ω) [11] which says, roughly
speaking, D−kv ∈ Lp suppose we can define D−k in an appropriate way.

Theorem 1.9. Let v ∈ D′(Ω). Then v ∈W−k,p(Ω) if and only if

v =
∑
|α|≤k

Dαvα, for some vα ∈ Lp(Ω).

Note that C∞0 (Ω) is not dense in W k,p(Ω) for k ∈ N. Therefore the dual space of
W k,p(Ω) cannot be embedded as a subspace of the distribution space.

Example 1.10. Since the Heavside function S ∈ L2(−1, 1), by Theorem 1.9, we have
δ = S′ ∈ H−1(−1, 1). But this is only true in one dimension; see Example 1.11.

Chacterization of Sobolev spaces using Fourier transform. When Ω = Rn, we can char-
acterize the Sobolev space Hk(Rn) using the Fourier transform. Given a v ∈ Hk(Rn), by
the obvious identity D̂αv = (iξ)αv̂ and the Plancherel’s theorem, we deduce that

‖Dαv‖0,Rn = ‖ξαv̂‖0,Rn .
Thus, by definition

‖v‖2k,Rn =

∫
Rn

( ∑
|α|≤k

ξ2α
)
|v̂(ξ)|2 dξ.

Using the elementary inequalities

(5) (1 + |ξ|2)k .
∑
|α|≤k

(|ξ|2)α . (1 + |ξ|2)k,

we conclude that
‖v‖k,Rn h ‖(1 + | · |2)k/2v̂‖0,Rn .

This relation shows that the Sobolev space Hk(Rn) may be equivalently defined by

Hk(Rn) = {v ∈ L2(Rn), (1 + |ξ|2)k/2v̂ ∈ L2(Rn)}.
This alternative definition can be used to characterize Sobolev spaces with real index.
Namely, for any given s ∈ [0,∞), the Sobolev space Hs(Rn) can be defined as follows:

(6) Hs(Rn)
def
= {v ∈ L2(Rn), (1 + |ξ|2)s/2v̂ ∈ L2(Rn)} for all s ∈ [0,∞)

with a norm defined by

(7) ‖v‖s,Rn
def
= ‖(1 + | · |2)s/2v̂‖0,Rn .

Example 1.11. In Rn, the Fourier transform of δ-distribution is one. By looking at the
integration in the polar coordinate, we see δ ∈ H−s(Rn) for s > n/2 only. Therefore for
n ≥ 2, the delta distribution is not in H−1(Ω).

1.3. Extension theorems. The extension theorem presented below is a fundamental result
for Sobolev spaces. Fourier transform is a powerful tool. But unfortunately it only works
for functions defined in the entire space Rn. To extend results proved on the whole Rn to
a bounded domain Ω, we can try to extend the function defined in W k,p(Ω) to W k,p(Rn).
The extension of a function u ∈ Lp(Ω) is trivial. For example, we can simply set u(x) = 0
when x /∈ Ω which is called zero extension. But such extension will create a bad discon-
tinuity along the boundary and thus cannot control the norm of derivatives especially the
boundary is non-smooth. The extension of Sobolev space W k,p(Ω) is subtle. We only
present the result here.
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Theorem 1.12. For any bounded Lipschitz domain Ω, for any s ≥ 0 and 1 ≤ p ≤ ∞,
there exits a linear operator E : W s,p(Ω)→W s,p(Rn) such that

(1) Eu|Ω = u, and
(2) E is continuous. More precisely there exists a constant C(s,Ω) which is increas-

ing with respect to s ≥ 0 such that, for all 1 ≤ p ≤ ∞,

‖Ev‖s,p,Rn ≤ C(s,Ω)‖v‖s,p,Ω for all v ∈W s,p(Ω).

Theorem 1.12 is well-known for integer order Sobolev spaces defined on smooth do-
mains and the corresonding proof can be found in most text books on Sobolev spaces. But
for Lipschitz domains and especially for fractional order spaces Theorem 1.12 is less well-
known and the the proof of the theorem for these cases is quite complicated. For integer
order Sobolev spaces on Lipschitz domains, we refer to Calderón [4] or Stein [12]. For
factional order Sobolev spaces on Lipschitz domains, we refer to the book by McLean [9].

1.4. Embedding theorems. Embedding theorems of Sobolev spaces are what make the
Sobolev spaces interesting and important. The Sobolev spaces W k,p(Ω) are defined using
weak derivatives. The smoothness using weak derivatives is weaker than that using classic
derivatives.

Example 1.13. In two dimensions, consider the function u(x) = ln | ln |x|| when |x| <
1/e and u(x) = 0 when |x| ≥ 1/e. It is easy to verify that u ∈ H1(R2). But u is
unbounded, i.e., u /∈ C(R2).

Sobolev embedding theorem connects ideas of smoothness using “weak” and “classic”
derivatives. Roughly speaking, it says that if a function is weakly smooth enough, then it
implies certain classic smoothness.

Exercise 1.14. Prove that if u ∈W 1,1(0, 1), then u ∈ L∞(0, 1).

We now present the general embedding theorem. For two Banach spaces B1, B0, we
say B1 is continuously embedded into B0, denoted by B1 ↪→ B0, if for any u ∈ B1, it is
also in B0 and the embedding map is continuous, i.e., for all u ∈ B1

‖u‖B0
. ‖u‖B1

.

Theorem 1.15 (General Sobolev embedding). Let 1 ≤ p ≤ ∞, k ∈ Z+ and Ω be a
bounded Lipschitz domain in Rn.

Case 1. kp > n

W k,p(Ω) ↪→ C(Ω̄).

Case 2. kp = n

W k,p(Ω) ↪→ Lq(Ω), for all q ∈ [1,∞).

Furthermore
Wn,1(Ω) ↪→ C(Ω̄).

Case 3. kp < n

W k,p(Ω) ↪→ Lq(Ω), with
1

q
=

1

p
− k

p
.

Exercise 1.16. Use the Fourier transform to prove that if u ∈ Hs(Rn) for s > n/2,
then u ∈ L∞(Rn). Then use the extension theorem to prove similar results for Lipschitz
domains Ω.
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We take the following visualization of Sobolev spaces from DeVore [6] (page 93). This
will give us a simple way to keep track of various results and also add to our understanding.
We shall do this by using points in the upper right quadrant of the plane. The x-axis will
correspond to the Lp spaces except that Lp is identified with x = 1/p not with x = p.
The y-axis will correspond to the order of smoothness. For example, the point (1/p, k)
represents the Sobolve space W k,p(Ω). The line with slope n (the dimension of Euclidean
spaces) passing through (1/p, 0) is the demarcation line for embeddings of Sobolev spaces
into Lp(Ω) (see Figure 1). Any Sobolev space with indices corresponding to a point above
that line is embedded into Lp(Ω).

(1/p,0) (Lp)

Sobolev embedding line

FIGURE 1. Sobolev embedding

To be quickly determine if a point lies above the demarcation line or not, we introduce
the Sobolev number

sobn(k, p) = k − n

p
.

If sobn(k, p) > 0, functions from W k,p(Ω) are continuous (or more precisely can find a
continuous representative in its equivalent class). In general

W k,p(Ω) ↪→W l,q(Ω) if k > l and sobn(k, p) > sobn(l, q).

Sobolev spaces corresponding to points on the demarcation line may or may not be
embedded in Lp(Ω). For example, for n ≥ 1

Wn,1(Ω) ↪→ L∞(Ω) but W 1,n(Ω) 6↪→ L∞(Ω)

Note that W 1,n(Ω) ↪→ Lp(Ω), for all 1 ≤ p < ∞. Furthermore there exists a constant
C(n,Ω) depending on the dimension of Euclidean space and the Lipschitz domain such
that

(8) ‖v‖0,p,Ω ≤ C(n,Ω) p1−1/n‖v‖1,n,Ω for all 1 ≤ p <∞.

Example 1.17. By the emebedding theorem, we have
(1) H1(Ω) ↪→ C(Ω̄) in one dimension (Exercise 1.14)
(2) H1(Ω) 6↪→ C(Ω̄) for n ≥ 2 (Example 1.13). Namely there is no continuous

representation of functions in H1(Ω) for n ≥ 2 and thus the point value is not
well defined.

(3) In 2-D, H1(Ω) ↪→ Lp(Ω) for any 1 ≤ p < ∞; in 3-D, H1(Ω) ↪→ Lp(Ω) for
1 ≤ p ≤ 6.

For a piecewise smooth function which is also in H1(Ω), then it is globally continuous.
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Exercise 1.18. Let Ω,Ω1 and Ω2 are three open and bounded domains in Rn. Suppose
Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. Let u be a function defined in Ω such that u|Ω1 ∈
C1(Ω1) ∩H1(Ω1) and u|Ω2 ∈ C1(Ω2) ∩H1(Ω2). Prove that u ∈ H1(Ω) if and only if
u ∈ C(Ω).

1.5. Interpolation theory. Let H0 and H1 be two Hilbert spaces with H1 continuously
embedded and dense in H0. An intermediate space H is a space satisfying

H1 ⊂ H ⊂ H0.

Hilbert scale is a technique to define a family of intermediate spaces between H1 and H0.
Assume that (·, ·) is the inner product on H0. By a classical result, the space H1 may

be defined as the domain of an (unbounded) positive selfadjoint operator Λ : H1 → H0

connecting the norms as follows:

‖u‖H1
= ‖Λu‖H0

.

The existence of the operator Λ is clear in our applications given later but the existence in
general will not be discussed here (for details, see Riesz-Nagy [10]).

Given s ∈ (0, 1), we define the intermediate spaces Hs to be the domain of Λs with a
norm given by

‖u‖Hs = ‖Λsu‖H0
.

Example 1.19. Given −∞ < s0 < s1 < ∞, let H0 = Hs0(Rn) and H1 = Hs1(Rn).
The operator that connects H0 and H1 is as follows

Λ = F−1(1 + |ξ|2)(s1−s0)/2F .

In fact, by definition
‖v‖s1,Rn = ‖Λv‖s0,Rn .

By Hilbert scale, we have

[Hs1(Rn), Hs0(Rn)]θ = D(Λθ) = Hsθ (Rn) with sθ = (1− θ)s0 + θs1.

To help those readers who are not that familar with the spectral theory for unbounded
operators, we now discuss a special case that the spectrum of Λ is discrete (λi) and the
eigenvectors (φi) form a complete orthonormal basis for H0. Then we may expand any
element of H0 as

u =

∞∑
i=1

(u, ϕi)ϕi.

If u ∈ H1, then

Λu =

∞∑
i=1

λi(u, ϕi)ϕi and ‖u‖2H1
=

∞∑
i=1

λ2
i (u, ϕi)

2.

In this case, the intermediate spaces Hs consists of those elements of H0 for which the
norm

(9) ‖u‖Hs =

( ∞∑
i=1

λ2s
i (u, ϕi)

2

)1/2

is finite.
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Example 1.20. Assume Ω is a bounded Lipschitz domain. Let H1 = H1
0 (Ω) and H0 =

L2(Ω). Then H1 can be viewed as the domain of Λ = (−∆)1/2 with a norm given by

‖∇v‖ = ‖Λv‖ for all for v ∈ H1
0 (Ω).

The interpolated spaces [H1
0 (Ω), L2(Ω)]s, the domain of (−∆)s/2 will be characterized

later.

A simple application of Hölder inequality gives that

Theorem 1.21. For u ∈ H1

‖u‖Hs ≤ ‖u‖1−sH0
‖u‖sH1

This definition use an embedding operator Λ. It can be shown that the definition of Hθ

does not depend on the choice of Λ using the K-method or J-method; See the book by
Bergh and Lofstrom [3].

Exercise 1.22. Integrate by parts to prove the interpolation inequality∫
Ω

|Du|2 dx ≤ C
(∫

Ω

u2 dx

)1/2(∫
Ω

|D2u|2 dx

)1/2

for u ∈ H2(Ω) ∩H1
0 (Ω).

Now we consider the interpolation of operators between interpolation spaces. Let
H̃1 ↪→ H̃0 and H1 ↪→ H0. Further let L be a linear operator such that

L : H0 7→ H̃0, with ‖Lu‖H̃0
≤ C0‖u‖H0 for all u ∈ H0,

and
L : H1 7→ H̃1, with ‖Lu‖H̃1

≤ C1‖u‖H1
for all u ∈ H1.

It is reasonable to expect L : Hθ 7→ H̃θ is also bounded.

Theorem 1.23. Suppose that Hi, H̃i, i = 0, 1 and L are given above. Then L : Hθ 7→ H̃θ

is also bounded and

‖Lu‖H̃θ ≤ C
1−θ
0 Cθ1‖u‖Hθ for all u ∈ H1.

1.6. Trace Theorem. The trace theorem is to define function values on the boundary. If
u ∈ C(Ω), then u(x) is well defined for x ∈ ∂Ω. But for u ∈ W k,p(Ω), the function
is indeed defined as an equivalent class of Lebesgue integrable functions, i.e., u ∼ v if
and only if u = v almost everywhere. The boundary ∂Ω is a measure zero set (in nth
dimensional Lebesgue measure) and thus the point wise value of u|∂Ω is not well defined
for functions in Sobolev spaces.

Theorem 1.24. Let Ω ⊂ Rn be a bounded domain with smooth or Lipschitz boundary
Γ = ∂Ω. Then the trace operator γ : C1(Ω) 7→ C(Γ) can be continuously extended to
γ : H1(Ω) 7→ H1/2(Γ), i.e., the trace inequality holds:

(10) ‖γ(u)‖1/2,Γ . ‖u‖1,Ω, for all u ∈ H1(Ω).

Furthermore the trace operator is surjective and has a continuous right inverse.

More general, if Ω is a Lipschitz domain, then the trace operator γ : Hs(Ω) →
Hs−1/2(Γ) is bounded for 1/2 < s < 3/2. See McLean [9] (pages 100–106).
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1.7. Norm Equivalence Theorem. The definition of norm ‖ · ‖k+1,p involves all the ith
derivatives for i ≤ k + 1. But the highest one is the critical one. That is we can prove

‖u‖k+1,p h ‖u‖0,p + |u|k+1,p for all u ∈W k+1,p(Ω).

Considering this fact for the decomposition

W k+1,p(Ω) = Pk(Ω)⊕ (W k+1,p(Ω)/Pk(Ω)),

on the quotient space W k+1,p(Ω)/Pk(Ω), the seminorm |u|k+1,p is indeed a norm.

Lemma 1.25. For any u ∈W k+1,p(Ω), one has

inf
p∈Pk(Ω)

‖u+ p‖k+1,p,Ω h |u|k+1,p,Ω.

On the polynomial space Pk(Ω), since it is finite dimensional, the norm ‖ · ‖0,p can be
replaced by any other norms defined on Pk(Ω). In general, we can consider a semi-norm
F (·) on W k+1,p(Ω), i.e., F : W k+1,p(Ω)→ R+ and

F (u+ v) ≤ F (u) + F (v), and F (αu) ≤ |α|F (u).

The difference of a norm and a semi-norm is the null space ker(F ). If it is trivial, i.e.,
containing only zero, then F is a norm. For a semi-norm F of W k+1,p(Ω), with the
condition: for p ∈ Pk(Ω), F (p) = 0 if and only if p = 0, it will define a norm of the
subspace Pk(Ω).

The functional F do not needs to be continuous but lower-semi-conitnuous is enough,
i.e., if uk → u in W k+1,p topology, then

F (u) ≤ lim inf
k→∞

F (uk).

Theorem 1.26 (Sobolev norm equivalence). If F is a lower-semi-continuous seminorm on
W k+1,p(Ω) such that for p ∈ Pk(Ω), F (p) = 0 if and only if p = 0, then

(11) ‖v‖k+1,p h F (v) + |v|k+1,p for all v ∈W k+1,p(Ω).

As a special case of the Sobolev norm equivalence theorem, we present the following
variants of Poincaré or Friedriches inequalities. Assume that Γ is a measurable subset of
∂Ω with positive measure (in n − 1 dimensional Lebesgue measure). Choosing F (v) =
|
∫
γ
v ds| in (11), we obtain the Friedrichs inequality

‖v‖1,p,Ω . |v|1,p,Ω +
∣∣∣ ∫

Γ

v ds
∣∣∣ for all v ∈W 1,p(Ω).

Consequently, we have the Poincaré inequality

‖v‖0,p . |v|1,p,Ω for all v ∈W 1,p
0 (Ω).

Choosing F (v) =
∫

Ω
v dx, we obtain the Poincaré-Friedrichs inequality

‖v‖1,p,Ω . |v|1,p,Ω +
∣∣∣ ∫

Ω

v dx
∣∣∣ for all v ∈W 1,p(Ω).

Consequently, let v̄ =
∫

Ω
vdx/|Ω| denote the average of v over Ω, we get average Poincaré

inequality
‖v − v̄‖0,p,Ω . |v|1,p,Ω for all v ∈W 1,p(Ω).

All constants hidden in the notation . depends on the size and shape of the domain
Ω. This is important when apply them to one simplex with diameter h as in finite element
methods.
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2. ELLIPTIC BOUNDARY VALUE PROBLEMS AND REGULARITY

2.1. Weak formulation. Let us take the Poisson equation with homogenous Dirichlet
boundary condition

(12) −∆u = f in Ω, and u|∂Ω = 0,

as an example to illustrate the main idea. If there exists a function u ∈ C2(Ω) ∩ C0(Ω)
satisfying the Poisson equation, we call u a classic solution. The smoothness of u excludes
many interesting solutions for physical problems. We need to seek a weak solution in more
broader spaces – Sobolev spaces. Here “weak” means the smoothness is imposed by weak
derivative which is weaker than the classic one.

Recall the basic idea of Sobolev space is to treat function as functional. Let us try to
understand the equation (12) in the distribution sense. We seek a solution u ∈ D′(Ω) such
that for any φ ∈ C∞0 (Ω),

〈−∇ · ∇u, φ〉 := 〈∇u,∇φ〉 = 〈f, φ〉,

which suggests a weak formulation: find u ∈ H1
0 (Ω) such that

(13)
∫

Ω

∇u · ∇φ =

∫
Ω

fφ, ∀φ ∈ C∞0 (Ω).

But we shall not discretize (13) directly since it is impossible to construct a finite dimen-
sional subspace of C∞0 (Ω).

We first extend the action of ∇u on C∞0 (Ω) to a broader space. Let us define a bilinear
form on H1(Ω)× C∞0 (Ω):

a(u, φ) =

∫
Ω

∇u · ∇φdx.

By Cauchy-Schwarz inequality,

a(u, φ) ≤ a(u, u)a(φ, φ) . ‖∇u‖‖∇φ‖.

Thus a(u, ·) is continuous in the H1 topology. Thanks to the fact C∞0 (Ω) is dense in
H1

0 (Ω), the bilinear form a(·, ·) can be continuously extend to U×V := H1(Ω)×H1
0 (Ω).

Here the space U is the one we seek a solution and thus called trial space and V is still
called test space. In (13) the right-hand side f ∈ L2(Ω) ∼= L2(Ω)′. AfterC∞0 (Ω) is extend
to H1

0 (Ω), we can take f ∈ H−1(Ω) := (H1
0 (Ω))′ = V ′. The boundary condition can be

imposed by choosing different trial and test spaces. For example:

• homogenous Dirichlet boundary condition:

(14) U = H1
0 (Ω), V = H1

0 (Ω)

• homogenous Neumann boundary condition:

(15) U = H1(Ω)/R, V = H1(Ω).

We are in the position to present an abstract version of the variational (or so-called
weak) formulation of the Poisson equation: given an f ∈ V ′, find a solution u ∈ U such
that

(16) a(u, v) = 〈f, v〉 ∀ v ∈ V.
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2.2. Regularity theory. The weak solution u can be proved to be a solution of (12) in a
more classic sense if u is smooth enough such that we can integration by parts back. The
theory for proving the smoothness of the weak solution is called regularity theory, which
is the bridge to connect classical and weak solutions.

The regularity theory on elliptic equations is very important for the theory of finite
element approximation and convergence of multigrid methods. However it is often not
very straightforward. We only give a brief account of this theory.

We first give a formal derivation for the model problem −∆u = f in Rn and assume u
is smooth and vanishes sufficiently rapidly as |x| → ∞ to justify the following integration
by parts: ∫

Rn
f2dx =

∫
Rn

(∆u)2dx =

n∑
i,j=1

∫
Rn
∂iiu∂jjudx

= −
n∑

i,j=1

∫
Rn
∂iiju∂judx =

n∑
i,j=1

∫
Rn
∂iju∂ijudx =

∫
Rn
|D2u|2dx.

We can also see it from Fourier transform for the Laplacian operator on the whole space.
Given a distribution v defined on Rn such that ∆v ∈ L2, by the properties of Fourier
transform, we have

D̂αv(ξ) = (iξ)αv̂(ξ) = −(iξ)α|ξ|−2∆̂v(ξ).

The function (iξ)α|ξ|−2 is bounded by 1 if |α| = 2, hence

‖D̂αv‖0,Rn ≤ ‖∆̂v‖0,Rn .
By Parseval identity, we have

‖Dαv‖0,Rn ≤ ‖∆v‖0,Rn for all |α| = 2.

The above inequality illustrates an important fact that if v is a function such that ∆v ∈ L2,
then all its second order derivatives are also inL2. If we think about it a little, this is a rather
significant fact since ∆v is a very special combination of the second order derivatives of v.

Exercise 2.1. Prove the existence and uniqueness of the weak solution for the Poisson
equation with homogenous Dirichlet or Neumann boundary conditions.

Smooth or bounded domains. The properties of elliptic operators, described above can be
extended to bounded domains with smooth boundary, but such an extension is not trivial.
The following theorem is well-known and it can be found in most of the text books on
elliptic boundary value problems.

Theorem 2.2. Let Ω be a smooth and bounded domain of Rn. Then for each f ∈ L2(Ω,
there exists a unique u ∈ H2(Ω), the solution of (16), that satisfies

‖u‖2,Ω ≤ C‖f‖0,Ω
where C is a positive constant depending on Ω and the coefficients of L.

For general domains, when f ∈ L2(Ω), the solution u ∈ H2
loc(Ω). Namely for each

domain U ⊂⊂ Ω, u ∈ H2(U). The local result can be proved by using the difference
quotient to define a discrete approximation of D2u. The condition U ⊂⊂ Ω enables us to
choose a smooth cut-off function away from the boundary. By means of a suitable change
of coordinates, the global regularity result can also be achieved, provided that the boundary
of Ω is smooth enough.
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Lipschitz domains. Theorem 2.2, however, does not hold on general Lipschitz domains.
The requirements of Ω is necessary. When ∂Ω is only Lipschitz continuous, we may not
be able to glue boundary pieces on the corner points. This is not only a technical difficulty.
We shall give an example in which the regularity of u depends on the shape of Ω.

Example 2.3. Let us give a simple counter example. Given β ∈ (0, 1), consider the
following nonconvex domain

Ω = {(r, θ) : 0 < r < 1, 0 < θ < π/β}.
Let v = rβ sin(βθ). Being the imaginary part of the complex analytic functin zβ , v is
harmonic in Ω. Define u = (1− r2)v. A direct calculation shows that

−∆u = 4(1 + β)v in Ω, and u|∂Ω = 0.

Note that 4(1 + β)v ∈ L∞(Ω) ⊂ L2(Ω), but u 6∈ H2(Ω).

Nevertheless, a slightly weaker result does hold for general Lipschitz domains.

Theorem 2.4. Assume that Ω is a bounded Lipschitz domain. Then there exists a constant
α ∈ (0, 1] such that

(17) ‖u‖1+α ≤ C‖f‖α−1,

for the solution u of (16), where C is a constant depending on the domain Ω and the
coefficients defining L.

Again the proof for the above theorem is quite complicated, we refer to [8, 5, 2].

Convex domains. A remarkable fact is that we can take α = 1 in the above theorem for
convex domains. This means that Theorem 2.2 can be extended to convex domains.

Theorem 2.5. Let Ω be a convex, bounded domain of Rn. Then for each f ∈ L2(Ω), there
exists a unique u ∈ H2(Ω) to the solution of (16) that satisfies

‖u‖2,Ω ≤ C‖f‖0,Ω
where C is a positive constant depending only on the diameter of Ω and the coefficients of
L.

Concave polygons. When Ω is concave polygon, we do not have full regularity. There are
at least two ways to obtain analogous (but weaker) results for concave domain. The first
one (see [8, 5, 2]) is to use fractional Sobolev spaces: namely−∆ : H1

0 (Ω)∩H1+s(Ω) 7→
H−1+s(Ω) which holds for any s ∈ [0, s0) for some s0 ∈ (0, 1] depending on Ω.

Another approach is to use Lp space, instead of L2. It can be proved that (c.f. [7])

(18) −∆ : H1
0 (Ω) ∩W 2,p(Ω) 7→ Lp(Ω) is an isomorphism

which holds for any p ∈ (1, p0) for some p0 > 1 that depends on the domain Ω. We shall
discuss more in the discussion of adaptive finite element methods.
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