
INTRODUCTION TO MULTIGRID METHODS
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1. ALGEBRAIC EQUATION OF TWO POINT BOUNDARY VALUE PROBLEM

We consider the discretization of Poisson equation in one dimension:

(1) − u′′ = f, x ∈ (0, 1) u(0) = u(1) = 0.

For any integer N , we consider a uniform grid, denoted by Th, of the interval [0, 1] as
follows:

0 = x0 < x1 < . . . xN < xN+1 = 1, xj = jh, j = 0 : N + 1,

where h = 1/(N + 1) is the length of each subinterval. Let φi be the hat basis function at
xi. For a linear finite element function v =

∑N
i=1 viφi, we denote by v = (v1, . . . , vN )t

the vector formed by the coefficients.
The algebraic system obtained from the linear finite element discretization is

(2) Au = b,

where
A = diag(−1, 2,−1), bi = h2f(xi).

Due to the special structure of the matrix A, we can write out eigenvalues and eigen-
vectors ofA explicitly.

Proposition 1.1. IfA = diag(b, a, b) be aN×N tri-diagonal matrix, then the eigenvalue
ofA is

λk = a+ 2b cos θk, k = 1, · · · , N
and its corresponding eigenvector is:

ξk = Ih sin(kπx) = (sin θk, sin 2θk, · · · , sinNθk),
where Ih is the nodal interpolation and

θk = kθ = kπh =
kπ

N + 1

Proof. It can be easily verified by the direct calculation. �

It is interesting to note that eigenvectors are independent of a and b. Applying to the
special case that a = 2 and b = −1, we have

(3) λk = 2(1− cos θk) = 4 sin2
θk
2
.

Notice that λ1 = O(h2) and λN = O(1) and therefore κ(A) = O(h−2), i.e., the matrix
A is ill conditioned. For finite difference method, the corresponding matrix is A/h2 and
for finite element method A/h. The scaling will introduce a scaling of all eigenvalues but
not the condition number.
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3. LAGRANGE INTERPOLATION 21

Figure 1.10. The Chebyshev points x8
i = cos[(2i + 1)π/18].

Now let xn
i = cos[(2i + 1)π/(2n + 2)]. Then it is easy to see that 1 > xn

0 > xn
1 > · · · >

xn
n > −1 and that these are precisely the n + 1 zeros of Tn+1. These are called the n + 1

Chebyshev points on [−1, 1]. The definition is illustrated for n = 8 in Figure 1.10. The next
theorem shows that the Chebyshev points minimize (1.4).

Theorem 1.20. For n ≥ 0, let x0, x1, . . . xn ∈ R and set ω(x) = (x − x0) . . . (x − xn).
Then

sup
a≤x≤b

|ω(x)| ≥ 2−n,

and if xi = cos[(2i + 1)π/(2n + 2)], then

sup
a≤x≤b

|ω(x)| = 2−n.

Proof. First assume that the xi are the n+1 Chebyshev points. Then ω and Tn+1 are two
polynomials of degree n+1 with the same roots. Comparing their leading coefficients we see
that ω(x) = 2−nTn+1(x) = 2−n cos(n arccos x). The second statement follows immediately.
Note also that for this choice of points, |ω(x)| achieves its maximum value of 2−n at n + 2
distinct points in [−1, 1], namely at cos[jπ/(n + 1)], j = 0, . . . , n + 1, and that the sign of
ω(x) alternates at these points.

Now suppose that some other points x̃i are given and set ω̃(x) = (x− x̃0) · · · (x− x̃n). If
|ω̃(x)| < 2−n on [−1, 1], then ω(x)− ω̃(x) alternates sign at the n + 2 points cos[jπ/(n + 1)]
and so has at least n + 1 zeros. But it is a polynomial of degree at most n (since the leading
terms cancel), and so must vanish identically, a contradiction.

Table 1.1 indicates the Lebesgue constant for Chebyshev interpolation grows rather slowly
with the degree (although it does not remain bounded). In fact the rate of growth is only
logarithmic and can be bounded very explicitly. See [6] for a proof.

Theorem 1.21. If Pn : C([a, b]) → Pn([a, b]) denotes interpolation at the Chebyshev
points, then

�Pn� ≤ 2

π
log(n + 1) + 1, n = 0, 1, . . . .

FIGURE 1. cos θk

Exercise 1.2. Apply Proposition 1.1 to the mass matrixM = (mij) withmij =
∫ 1

0
φiφj dx

and conclude it is well conditioned.

Exercise 1.3. Figure out the eigenvalues and eigenvectors of the stiffness matrix for the
Neumann problem.

2. SMOOTHING PROPERTY OF RICHARDSON ITERATION

The integer k in the function sin(kπx) is known as frequency. For a uniform grid of
[0, 1] with length h = 1/(N + 1), the range of k is 1, . . . , N . Note that for k ≥ N + 1,
Ih(sin kπx) = Ih(sin mod (k,N + 1)πx). That is the grid Th cannot see the frequency
higher than 1/h. So the coarser grid T2h can only see the frequency less than 1/(2h). The
frequency, and the corresponding angles, which can be only captured by the fine grid Th
but not T2h is in the range of

1

2
(N + 1) ≤ k ≤ N, π

2
≤ θk ≤

N

N + 1
π < π,

and will be called high frequency (relative to Th). We shall show the classic iteration
methods will smooth out the high frequency part of the error very quickly while left with
low frequency part.

We shall apply the simplest iterative method, Richardson iteration, to solve (2). Recall
that one iteration of Richardson method is

uk+1 = uk + ω(b−Auk).

The error equation
u− uk+1 = (I − ωA)(u− uk)

and therefore
‖u− uk+1‖A ≤ ρ(I − ωA)‖u− uk‖A.

When ω ∈ (0, 2/λmax(A)), the method is convergent and when ω = 2/(λmin(A) +
λmax(A)) it achieves the optimal rate

ρ =
1− κ(A)

1 + κ(A)
≤ 1− Ch2.

It means that the norm of the error, as a summation of squares of all components, will
decay with a slow rate 1− Ch2.
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We shall do a fine analysis for the decay rate of different components of the error. First
we need to change the coordinate. The set of all eigenvectors ofA will form an orthogonal
basis of RN . We expand e0 = u− u0 in this coordinate.

e0 =

N∑
k=1

αkξ
k.

We then get

em = u− um = (I − ωA)me0 =

N∑
k=1

αm,kξ
k,

where

αm,k = (1− ωλk)mαk.

Since eigenvectors are also A-orthogonal, we have

‖em‖A =

(
N∑

k=1

α2
m,k‖ξk‖2

)1/2

, ‖e0‖A =

(
N∑

k=1

α2
k‖ξk‖2

)1/2

.

The kth component coefficient decays with different rates

|αm,k| ≤ (1− ωλk)m|αk|.

We choose ω = 1/4 to simplify the rate as

ρk = |1− ωλk| =
1

2
(1 + cos θk).

From the graph of ρk, it is easy to see that

ρ1 h 1− Ch2,

but

ρN ≤ Ch2, and ρ(N+1)/2 = 1/2.

This means that high frequency components get damped very quickly while the low fre-
quency component very slowly. Gauss-Seidel method, as a better iterative method, has
the same affect. Indeed it is a better smoother than the Richardson method, although it
is little bit more complicated to analyze theoretically. Interesting enough, Jacobi method,
corresponding to ω = 1/2, does not have a smoothing property. We use the same example
to compute

ρ1 = ρN h 1− Ch2,
which, if αN 6= 0, can not practically get very small for large N .

Exercise 2.1. The damped Jacobi ωD−1 with 0 < ω < 1 will have smoothing effect. Try
to find the optimal ω in the sense that

min
ω

max
(N+1)/2≤k≤N

ρk(I − ωD−1A),

where ρk(I − ωD−1A) means the contraction factor of the k-th eigenmode.
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(a) Richardson iteration (b) Gauss-Seidel iteration

FIGURE 2. Smoothing effect of classic iteration methods.

3. MULTIGRID METHODS

The multigrid methods is based on the two observation
• High frequency will be damped by smoother.
• Low frequency can be approximated well by coarse grid.

Note that the low-frequency errors on a fine mesh becomes high-frequency errors on a
coarser mesh. For the coarse grid problem, we can apply the smoothing and the separation
of scales again. Recursively apply the smoothing to each level results in the classical
formulation of multigrid. More on the classical recursive definition of Multi-Grid methods.

4. STABLE DECOMPOSITION

The local Fourier mode analysis can only be applied to uniform grids and constant
coefficients case. For finite element methods of elliptic equations with variable coefficients
based on general triangulations, the eigenvalue and eigenvectors of the stiffness matrix is
not easy to find out. Indeed it is even harder than solving the linear algebraic equation.
We shall look at the smoother and multigrid method from the space decomposition and
subspace correction.

Given a triangular mesh Th, let us consider the trivial decomposition of the linear finite
element space Vh based on Th, i.e., Vh =

∑N
i=1 Vh,i with Vh,i = sp(φi). Recall that the

classic iterative methods can be interpret as PSC or SSC methods based on this decom-
position. The convergent rate depends on the stability and the quasi-orthogonality of the
space decomposition. The quasi-orthogonality can be easily derived from the locality of
the finite element basis. Thus below we study the stability in details.

For any v ∈ Vh, write v =
∑N

i=1 vi. It is stable in L2 norm (see Exercise 4.1) but not
in H1-norm. That is the inequality

(4)
N∑
i=1

|vi|21 ≤ C|v|21

does not hold for a universal constant C. Indeed using inverse inequality and Poincare
inequality, one can prove (4) with constant CN . The constant CN is sharp due to the
existence of low frequency. As an extreme example, one can choose v =

∑N
i=1 φi. Then
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v is flat except in a band near the boundary. The derivative of v is thus zero in most region
while |∇vi| is always of order 1/h.

Exercise 4.1. For a finite element function v, prove the basis decomposition is stable in
L2 norm

‖v‖2 h
N∑
i=1

‖vi‖2.

Hint: Prove it in one triangle first. The L2 norm of a linear function can be evaluated
exactly using mid points rule.

Fortunately (4) holds for high frequency. A function v ∈ Vh is of high frequency if
‖h−1v‖ . |v|1, i.e., the function oscillates with scale h. Note that the inverse inequality
|v|1 . ‖h−1v‖ holds for both high and low frequency. So by inverse inequality, the
stability of decomposition in L2 norm, and the definition of high frequency, we have

N∑
i=1

|vi|21 . h−2
N∑
i=1

‖vi‖2 . h−2‖v‖2 . |v|21.

Therefore Gauss-Seidel, Richardson or weighted Jacobi is still a good smoother for damp-
ing the high frequency. The low frequency will be taken care of by coarse grid correction.

Let TH be a coarse grid with mesh sizeH = 2h and Vh the corresponding finite element
space. Let us present the two-level methods based on the decomposition

(5) Vh =

N∑
i=1

Vh,i + VH ,

and apply SSC with exact solver for each subspace problem. This is equivalent to applying
a Gauss-Seidel iteration on the fine grid and then solving the coarse grid problem exactly.

Theorem 4.2. The two level SSC based on the decomposition (5) is uniformly convergent.

Proof. By the abstract convergent theory, it suffices to find a stable decomposition. For
any v ∈ Vh, we let vH = PHv and vh = v − vH , and decompose vh =

∑N
i=1 vh,i. Recall

that PH is the projection in the (·, ·)A inner product. So

|v|21 = |vH |21 + |vh|21.

Now we prove vh is of high frequency. To this end, we use the L2 error estimate of the
H1-projection (which requires the H2 regularity assumption; see the FEM chapter)

‖vh‖ = ‖v − PHv‖ . h|v − PHv|1 = h|vh|1.

Therefore

|vH |21 +
N∑
i=1

|vh,i|21 . |vH |21 + |vh|21 = |v|21.

�

The result and proof above can be easily generalized to multilevel decomposition. We
refer to the Chapter: Convergence Theory of Multigrid Method for details. In the following
sections, we will focus on the implementation.
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5. TWO LEVEL METHODS AND TRANSFER OPERATORS

We shall use two level methods to illustrate how to realize operators by matrices. The
space decomposition we choose is

V = V1 + V2 with V1 ⊂ V2 = V.

We call V fine space and V1 coarse space since it is usually based on a coarse mesh.
Recall that the PSC for this two level decomposition in operator form is

(1) r = f −Auk;
(2) e = I1R1I

t
1 r + I2R2I

t
2 r;

(3) uk+1 = uk + e.

The matrix form of step 1 and 3 is trivial. We only discuss the realization of step 2. Namely
given a residual r, return a correction e = Br.

Since V2 = V, I2 = It2 = I . The solver R2 can be a simple Richardson ωI with
ω = 1/λmax(A) = h2. However in the matrix form, R2 = 1/λmax(A) = hd−2. There is
a scaling between operator form and matrix form due the identification of RN and (RN )′

by the mass matrix. More accurate smoothers can be choose as weighted Jacobi method
R2 = ωD−1 or Gauss-Seidel methodR2 = (D +L)−1.

The transformation to the coarse V1 is not easy. There are three operators to realize:
I1, R1, and It1.

Prolongation operator. Let us first discuss the operator I1 : V1 → V2. By the definition,
it is the natural inclusion V1 ↪→ V i.e. treat a function u1 ∈ V1 as a function in u1 ∈ V
since V1 ∈ V2. So the operator is the identity and we change the notation to I21 : V1 → V2.
But the matrix representation is different since we have different basis in V1 and V2! We
use a 1-D two level grids in Figure xx to illustrate the different basis functions in fine and
coarse grids. In this example I21 : R3 → R5 will map a vector with small size to one with
bigger size and thus called prolongation operator. We determine this map by the following
two observations:

(1) u1 and u2 = I21u1 represent the same function in V2;
(2) a function in V2 is uniquely determined by the values at the nodal points.

For nodes in both fine grids and coarse grids,

u2(1) = u1(1), u2(3) = u1(2), u2(5) = u1(3).

For the nodes only existing in the fine grids, by (1), values at these nodes can be evaluated
in the coarse grids. Since we are using linear elements, we get

u2(2) = (u1(1) + u1(2))/2, u2(4) = (u1(3) + u1(5))/2.

In matrix form, I21 ∈ R5×3 can be written as
1 0 0

1/2 1/2 0
0 1 0
0 1/2 1/2
0 0 1


To define the prolongation, we need and only need to know the correspondences of the

index of nodes between two grids. Different index mapping will give different prolon-
gation matrix. A better hierarchical index is given in Figure xxx (b). In this index, the
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prolongation matrix can be written as
1 0 0
0 1 0
0 0 1

1/2 1/2 0
0 1/2 1/2

 .
The presentness of the identity matrix can save the computation I21x.

The construction of the interpolation operator can be easily generalized to high dimen-
sions for linear element. The only information is the index map between coarse grid points
and fine grids points. We classify the grid points in the fine grid into two groups:

• C: the points in both fine and coarse grids
• F: the points in fine grid only.

For group F, we can use HB (hierarchical basis) matrix with HB(:,2:3) being two par-
ent nodes of the node HB(:,1). Note that HB(:,1) is the index in the fine level while
HB(:,2:3) are in the coarse level. Then the interpolation at the grids points in F can be
realized

uf(HB(1:end,1)) = (uc(HB(1:end,2)) + uc(HB(1:end,3)))/2;

For group C, although those grid points are in both coarse and fine grids, their indices
could be different. For example, in Fig xxx (a), the 3-rd point in the fine grid is the 2-nd
one in the coarse grid. Therefore we need an index mapping, say coarseNodeFineIdx,
for points in group C. The interpolation is straightforward

uf(coarseNodeFineIdx) = uc;

With appropriate data structure, the prolongation matrix do not need to be formed.

Restriction operator. How to compute It1 = Q1? Recall that to compute a L2 projection,
we need to invert the mass matrix which is not cheap. Fortunately, we are not really
computing the L2 projection of a function. Instead we are dealing with a functional! Let’s
recall the definition

(6) (Q1r, u1) = (r, u1) = (r, I1u1).

Q1r is simply to restrict the action of the dual r ∈ (V2)
′ to the elements in V1 only. It is

better to write as I12 : (V2)
′ → (V1)

′ and call it restriction. Note that V1 ⊂ V2 implies
that (V2)

′ ⊂ (V1)
′. So the operator I12 is also a natural inclusion of functional. Again r

and I12r will have different vector representations. The matrix form of (6) is

(7) (I12r)
tu1 = rtI21u1,

which implies

I12 = (I21)
t.

The restriction matrix for the 1-D example with the index mapping in Fig xxx is1 0 0 1/2 0
0 1 0 1/2 1/2
0 0 1 0 1/2

 .
Exercise 5.1. Use HB and coarseNodeFineIdx to code the restriction without forming
the matrix.
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Smoother in the coarse space. The last component is the smotherR1. If we know a priori
the information on the PDE, we can simply choose an appropriate scaling. For example,
for finite element discretization of Poisson equation on uniform grids, it coincides with
the standard 5-point stencil up to a scaling h2. One step of Gauss-Seidel iteration can be
implemented using for loops:

1 for i = 2:N-1

2 for j = 2:N-1

3 u(i,j) = (b(i,j)+(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)))/4;

4 end

5 end

For general operator A, if we want to choose more accurate local subspace solver, say
Gauss-Seidel method, we need to know the matrix A1. Of course we can assemble one if
we have the coarse grid. But there are several reasons to abandon this approach. First, the
assembling is time consuming. Indeed this is one of the criticism of finite element methods
comparing with finite difference scheme. Second it requires the information of the mesh
and PDE. Then it will be problem dependent. Third, we have a better way to do it.

Recall that the operator A1 : V1 → V1 is just the restriction of A to the space V1.
Namely

(A1u1, v1) := (Au1, v1) = (AI1u1, I1v1) = (It1AI1u1, v1),

which implies A1 = It1AI1 and in the matrix form

A1 = I12A2I
2
1.

So we can apply a triple product to form the stiffness matrix in the coarse grid.

6. SSC AND MULTIGRID METHOD

In this section, we shall discuss implementation of successive subspace correction method
when the the subspaces are nested. Let V =

∑1
i=J Vi be a space decomposition into nested

subspaces, i.e. the subspaces are nested, i.e.

V1 ⊂ V2 ⊂ · · · ⊂ VJ = V.

Recall that the operator formation of SSC method is

1 function e = SSC(r)

2 % Solve the residual equation Ae = r by SSC method

3 rnew = r;

4 for i = J:-1:1

5 ri = Ii’*rnew; % restrict the residual to subspace

6 ei = Ri*ri; % solve the residual equation in subspace

7 e = e + Ii*ei; % prolongate the correction to the big space

8 rnew = r - A*e; % update residual

9 end

Here we change the for loop from J:-1:1 to reflect to the ordering from fine to coarse.
The operators Iti = Qi : V → Vi and Ii : Vi → V are related to the finest space.
When the subspaces are nested, we do not need to return to the finest space every time.
Suppose ri = Iti (r−Aeold) in the subspace Vi is known, and the correction ei is added to
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enew = eold + ei. We can compute ri−1 by the relation:

ri−1 = Qi−1(r −Aenew)
= Qi−1Qi(r −Aeold −Aei)
= Qi−1(ri −QiAQ

t
iei)

= Qi−1(ri −Aiei).

Here in the second step, we make use of the nest property Vi−1 ⊂ Vi to write Qi−1 =
Qi−1Qi. Similarly the correction step can be also done accumulatively. Let us rewrite the
correction as

e = eJ + IJ−1eJ−1 + . . .+ I1e1.

The correction can be computed by the loop

ei = ei + Iii−1ei−1, i = 2 : J

Therefore only the prolongation and restriction operators between consecutive levels are
needed.

By these discussion, SSC on a nested space decomposition will results a V-cycle multi-
grid method. We summarize the algorithm below. We use notation ei, ri to emphasis that
in each level we are solving the residual equation Aiei = ri and assume the transfer oper-
ators and discretization matrices have been computed already using the method discussed
in the previous section.

1 function e = Vcycle(r,J)

2 ri = cell(J,1); ei = cell(J,1);

3 ri{J} = r;

4 for i = J:-1:2

5 ei{i} = R{i}\ri{i}; % pre-smoothing

6 ri{i-1} = Res{i-1}*(ri{i}-Ai{i}*ei{i}); % update and restrict residual

7 end

8 ei{1} = Ai{1}\ri{1}; % exact solver in the coarsest level

9 for i = 2:J

10 ei{i} = ei{i} + Pro{i}*ei{i-1}; % prolongate and correct

11 ei{i} = ei{i} + R{i}’\(ri{i}-Ai{i}*ei{i}); % post-smoothing

12 end

13 e = ei{J};

In the second loop (/) part, we add a post-smoothing step and choose Rt
i as the smoother

which is the transpose of the pre-smoothing operator. For example, if Ri = (Di + Li)
−1

is the forward Gauss-Seidel method, then the post-smoothing is backward Gauss-Seidel
(Di + Ui)

−1. This choice will make the operator B symmetric and thus can be used as
preconditioner.

7. ALGEBRAIC MULTIGRID METHOD

The multigrid methods discussed in the previous sections depends heavily on the geom-
etry of the underlying meshes and therefore called geometric multigrid methods. In most
applications, the grid could be totally unstructured without hierarchical structure. In some
cases, only the matrix is given without any grid information. It would be desirable to still
solve the algebraic equation using multi-grid idea.

Looking the procedure carefully, the hierarchical structure of grids is used to construct
the transfer operators. After that, the matrix equation in the coarse grid can be assem-
bled and the smoother can be algebraically taking as G-S tril(A) or weighted Jacobi
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omega*diag(A). Two essential ingredients are needed to construct the prolongation op-
erator from a coarse grid to a fine grid

(1) Index map from coarse nodes to fine nodes.
(2) Weight used in the interpolation of evaluating the fine variables.

Let us revisit these two ingredients in an algebraic way.

Coarsening. Recall that the node in the fine level can be classified into C and F . Now
if only matrix is given, a node will be understood as an abstract point. No coordinate is
associated to it. Suppose A is an N × N matrix. The fine nodes is the index set N =
{1, 2, · · · , N}. A subset C of N will be identified as the node of a ‘coarse grid’ and the
rest is F , i.e. N = C ∪ F . In addition, for any i ∈ F , the neighboring ‘coarse nodes’
J (i) ⊂ C should be found. In hierarchical meshes case, J (i) is simply HB array which
only contains two coarse nodes. In summary we need to pick up C and construct J (i) for
all i ∈ F .

From the given matrix A, we could construct a weighted graph G = G(A) = (V, E).
The vertices are the node set N and the edge [i, j] exists if aij 6= 0.
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