
INTRODUCTION TO MESH ADAPTATION AND MULTILEVEL METHODS

LONG CHEN

1. INTRODUCTION TO MESH ADAPTATION

We start with a simple motivation in 1D for the use of adaptive procedures. Given
Ω = (0, 1), a grid TN = {xi}Ni=0 of Ω

0 = x0 < x1 < · · ·xi < · · · < xN = 1

and a continuous function u : Ω → R, we consider the problem of approximating u by a
piecewise constant function uN over TN . We measure the error in the maximum norm.

Suppose that u is Lipschitz in [0, 1]. Consider the approximation

uN (x) := u(xi−1), for all xi−1 ≤ x < xi.

If the grid is quasi-uniform in the sense that hi = xi− xi−1 ≤ C/N for i = 1, · · ·N , then
it is easy to show that

(1) ‖u− uN‖∞ ≤ CN−1‖u′‖∞
We can achieve the same convergent rate N−1 with less smoothness of the function.

Suppose ‖u′‖L1 6= 0. Let us define a grid distribution function

F (x) :=
1

‖u′‖L1

∫ x

0

|u′(t)| dt.

Then F : [0, 1] → [0, 1] is a non-decreasing function. Let yi = i/N, i = 0, · · · , N be a
uniform grid. We choose xi such that F (xi) = yi. Then

(2)
∫ xi

xi−1

|u′(t)| dt = F (yi)− F (yi−1) = N−1,

and

|u(x)− u(xi−1)| ≤
∫ xi

xi−1

|u′(t)| dt ≤ N−1‖u′‖L1 ,

which leads to the estimate

(3) ‖u− uN‖∞ ≤ CN−1‖u′‖L1 .

We use the following example to illustrate the advantage of (3) over (1). Let us consider
the function u(x) = xr with r ∈ (0, 1). Then u′ /∈ L∞(Ω) but u′ ∈ L1(Ω). Therefore
we cannot obtain optimal convergent rate on quasi-uniform grids while we could on the
correctly adapted grid. For this simple, one can easily compute

xi = (
i

N
)1/r, for all 0 ≤ i ≤ N.

Estimate (3) will hold on the grid TN = {xi}Ni=0 which has higher density of grid points
near the singularity of the u′.

In (2), we choose a grid such that a upper bound of the error is equidistributed. This is
instrumental for adaptive finite element methods on solving PDEs.

1

2 LONG CHEN

A possible Matlab code is listed below.

1 function x = equidistribution(M,x)

2 h = diff(x);

3 F = [0; cumsum(h.*M)];

4 F = F/F(end);

5 y = (0:1/(length(x)-1):1)’;

6 x = interp1(F,x,y);

Examples of adaptive grids for two functions with singularity are plotted below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u = x1/2

grid: x

(a) Adaptive grid for u(x) = x(1/2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u = atan((x−0.5)/0.01)
grid: x

(b) An adaptive grid for u(x) = arctan((x −
0.5)/0.01)

FIGURE 1. Adaptive grids for two functions with singularity.

Exercise 1.1. We consider piecewise linear approximation in this exercise.
(1) Let uI be the nodal interpolation of u on a grid, i.e., uI is piecewise linear and

uI(xi) = u(xi) for all i. Prove that if |u′′(x)| is monotone decreasing in (xi−1, xi),
then for x ∈ (xi−1, xi)

|(u− uI)(x)| ≤

(∫ xi

xi−1

|u′′(s)|1/2 ds

)2

.

(2) Give the condition on the grid and the function such that the following estimate
holds and prove your result.

‖u− uI‖∞ ≤ C‖u‖1/2N−2.

When applied to numerical solution of PDEs, the function u and its derivatives are
unknown. Only an approximated solution to the function u at grid points is available and
a good approximation of derivatives or a upper bound of the error should be computed by
a post-processing procedure. Another difficulty is the mesh requirement in two and higher
dimensions. The mesh refinement or moving is much complicated in higher dimensions.

INTRODUCTION TO MESH ADAPTATION AND MULTILEVEL METHODS 3

2. INTRODUCTION TO MULTILEVEL METHODS: HIERARCHICAL BASIS

We compute an approximate solution of the Poisson equation

(4) − u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

Let N = 2J . We choose a uniform grid TJ = {0 = x0 < x1 < · · · < xN+1 = 1} with
xi = i/(N + 1) for i = 0, ..., N + 1 and approximate the solution by uT in a continuous
and piecewise linear function space VT satisfying boundary condition uT (0) = uT (1) = 0
such that

a(uT , v) = a(u, v) = (f, v), for all v ∈ VT ,
where

a(u, v) =

∫ 1

0

u′v′ dx, (f, v) =

∫ 1

0

fv dx.

So uT is the projection of u into the finite element space VT in the a(·, ·) inner product.
The nodal basis of VT is {φi}Ni=1 with φi ∈ VT , φi(xj) = δi,j . Then uN =

∑N
i=1 uiφi

with unknown coefficients ui. Let

aij = a(φj , φi), and fi = (f, φi).

Then using integration by part, we can compute the solution by solving the following linear
algebraic equation

a11u1 + a12u2 + · · ·+ a1NuN = f1,

a21u1 + a22u2 + · · ·+ a2NuN = f2,

.

aN1u1 + aN2u2 + · · ·+ aNNuN = fN ,

or in short Au = f with obvious notation.
The matrix A is sparse, i.e., only 3N nonzero entries. But A−1 is a dense matrix. The

computation ofA−1 using Gauss elimination requiresO(N3) operations. We shall present
an O(N) algorithm using multilevel methods.

48 COMPUTING IN SCIENCE & ENGINEERING

That is, we can safely omit the level superscript.
Next, the local nodal basis

is made up of the basis functions on level j corre-
sponding to the subdomain !j. Figure 3b shows
these.

Finally, the hierarchical basis on level j is given by

.

It picks from the coarsest level k " j where node
i is present. Figure 3c illustrates this for j = 3.

Each of the bases we’ve defined here generates a
corresponding finite element space:

, , ,

0 " j " J.

In particular, is the leaf grid finite
element space, generated by both the global-nodal
and hierarchical bases.

We can extend the hierarchical grid construc-
tion to multiple space dimensions. The FEM re-
quires that the maximum interior angle in any
element is bounded away from 180 degrees, a
requirement that has led to numerous grid re-
finement strategies. Most of these strategies sub-

divide an element in n > 2 smaller elements. The
binary tree in Figure 2 is then replaced by an n-
ary tree.

Subspace Correction Methods
In the finite element solution , the
nodal basis functions on the leaf grid are deter-
mined by the variational equation

,

which is equivalent to the linear system

.

The finite element stiffness matrix A with re-
spect to the nodal basis !h is sparse—that is, the
matrix-vector product Au requires O(Nh) opera-
tions, where Nh = dimVh, the number of interior
grid points in the leaf grid. If Nh is large, direct
solving is expensive or even practically impossible.
On the other hand, the iteration count for simple
linear iterative methods, such as Gauss-Seidel, in-
creases by a factor of four with each grid refine-
ment, which also makes these methods impractical.

Multigrid Methods with Global Smoothing
We can apply the standard multigrid method (see
Irad Yavneh’s article1 in this issue) in a straight-
forward way to locally refined grids by consider-

A Au f f= = () = ()
∈ ∈, (,) , ()a j i i

i j h i h

φ φ φ
φ φ φΦ Φ!

a uh i i i h(,) (),φ φ φ= ∈! Φ

uh i I i ih
= ∈Σ u φ

V V Vh j j= =" ˆ

ˆ ˆV j j= spanΦ" "V j j= spanΦV j j= spanΦ

φi
k

ˆ \ ,Φ Φj i
k

k k
k

j
i I I j J= ∪ ∈{ } ≤ ≤−

=
0 1

1
0φ∪

Φ j i
j

ji I j J= ∈{ } ≤ ≤φ , 0

1212

"2
1

12

4 32 1 5 63

3

4

"2
2

4 3

33

"2
3

11

"1
0

"1
1

"1
2

"1
3

1

2 4 1 7 8 5 3 6 7 1 8 7 1 8

1 5 6 1 5 6

Φ0, Φ1, Φ2, Φ3 Φ3
ˆΦ0, Φ1, Φ2, Φ3

˜ ˜ ˜ ˜(a) (b) (c)

Figure 3. Nodal basis functions corresponding to the grid hierarchy from Figure 2. (a) The global nodal bases , , ,
, (b) the local nodal basis #0, #1, #2, #3, and (c) the hierarchical basis for the finest level J = 3.Φ̂3
"Φ3

"Φ2
"Φ1

"Φ0

FIGURE 2. Hierarchical basis

Let Tk = {0 = x0 < x1 < · · · < x2k+1 = 1} be a uniform grid in the kth level. We
re-order the vertices in TJ such that (2k, 2k+1 − 1) ∈ Tk for k = 1, · · · J ; See Figure 2.
We can easily verify that a(φ11, φ

2
2) = a(φ11, φ

2
3) = a(φ22, φ

2
3) = 0 and in general the HB

basis
{φ̄1, · · · , φ̄N} := {φ11, · · ·φk2k , · · ·φ

k
2k+1−1, · · · }

4 LONG CHEN

form anA-orthogonal basis of VT . If we expand uN =
∑J

i=1 ūiφ̄i using the A-orthogonal
basis, the coefficients ūi can be computed as

ūi =
a(uN , φ̄i)

a(φ̄i, φ̄i)
=

a(u, φ̄i)

a(φ̄i, φ̄i)
=

(f, φ̄i)

a(φ̄i, φ̄i)
, i = 1, · · ·N.

The computation of a(φ̄i, φ̄i) is easy. Suppose φ̄i = φkj . Then a(φ̄i, φ̄i) = 1/hk = 2k.
The computation of (f, φ̄i) is subtle. For example, the evaluation of (f, φ̄1) = (f, φ11)
requires O(N) operations! Each fine grid point will be used repeatedly in each level since
we have to go through all grid points to compute an accurate approximation of the integral.
Therefore, the naive calculation of (f, φ̄i) for i = 1, · · · , N , is an O(N logN) algorithm.

If we compute (f, φi) in the nodal basis, every grid point is used only 3 times and
thus can be finished in O(N) operations. We then use the relation between fine level and
coarse level to compute (f, φ̄i). As an example, we look at an example between two levels.
Suppose (f, φ2i), i = 1, 2, 3 are available. Using the relation

φ11 = φ21 + 0.5φ22 + 0.5φ23,

we can compute
(f, φ11) = (f, φ21) + 0.5(f, φ22) + 0.5(f, φ23).

In general, we can compute f̄ from f by the following O(N) algorithm. It can be
thought as a basis transformation from the nodal basis to the hierarchical basis.

Before we present the subroutine, let us discuss in detail the data structure. The node is
now indexed in a multilevel way. We introduce a pointer s to record the ending location of
each level. Therefore s(k-1)+1:s(k) will be nodes in k-th level only. For each node i,
we denote by l(i) and r(i) the left and right neighbor of i. In the natural lexicographical
ordering l(i)=i-1 but not the case in the hierarchical ordering.

1 function fbar = NB2HB(f)

2 for k = J-1:1

3 for i = s(k-1)+1: s(k)

4 f(i) = f(i) + 0.5*f(l(i)) + 0.5*f(r(i));

5 end

6 end

7 fbar = f;

The coefficients vector ū is just a scaling of f̄ .

1 function ubar = scaling(fbar)

2 for k = 1:J

3 for i = s(k-1)+1: s(k)

4 ubar(i) = 2ˆk*fbar(i);

5 end

6 end

After we get ū, we can compute u by the transformation from hierarchical basis to
nodal basis. This time we scan from the coarse to fine. The hierarchical basis in the coarse
grid will contribute to the function value at fine grid points. Using data structure discussed
before, it can be implemented by the following subroutine.

1 function u = HB2NB(ubar)

2 u = ubar;

3 for k = 2:J

4 for i = s(k-1)+1:s(k)

INTRODUCTION TO MESH ADAPTATION AND MULTILEVEL METHODS 5

5 u(l(i)) = u(l(i)) + 0.5*u(i);

6 u(r(i)) = u(r(i)) + 0.5*u(i);

7 end

8 end

Exercise 2.1. Figure out the formulae for s(k), l(i) and r(i) in the algorithms and
write a program using the hierarchical basis to solve the Poisson equation on (0, 1) with
Dirichlet or Neumann boundary condition.

	1. Introduction to mesh adaptation
	2. Introduction to Multilevel Methods: Hierarchical Basis

