
VARIATIONAL FORMULATION OF LINEAR ELASTICITY
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ABSTRACT. This notes presents two variational formulations of linear elasticity: the dis-
placement formulation and the stress-displacement (Hellinger-Reissner) formulation. The
displacement formulation focuses on finding the displacement field that minimizes a func-
tional, while the stress-displacement formulation directly computes the stresses. The well-
posedness of these formulations relies on Korn’s inequalities, inf-sup conditions, and the
coercivity of bilinear forms.

We explore variational formulations of linear elasticity. For a comprehensive under-
standing of linear elasticity, we refer to Introduction to Linear Elasticity. Additionally,
we recommend familiarizing oneself with tensor calculus notation and operation rules by
reading Tensor Calculus.

1. DISPLACEMENT FORMULATION

Define the Lagrangian

I(u, ε,σ) =

∫
Ω

(
1

2
ε : σ − f · u

)
dx+

∫
ΓN

tN · u dx.

Here, the relationships are defined as

ε = ∇su,
σ = Cε = λ tr(ε)I + 2µε,

accompanied by the boundary conditions

u|ΓD
= g, σn|ΓN

= tN .

Here, ΓN represents an open subset of the boundary ∂Ω, and its complement is denoted by
ΓD, meaning ΓD ∪ ΓN = ∂Ω and ΓD is closed.

The Lagrangian combines the internal strain energy of the system, represented by the
product ε : σ, and the work done by external forces, f · u, along with the work done by
traction forces tN · u on the Neumann boundary ΓN .

1.1. Displacement Formulation. We focus on the displacement formulation by eliminat-
ing ε and σ, leading to the optimization problem:

(1) inf
u∈H1

g,D

I(u),
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whereH1
g,D = {v ∈H1(Ω) : v |ΓD

= g in the trace sense }, and

I(u) =

∫
Ω

(
1

2
∇su : C∇su− f · u

)
dx+

∫
ΓN

tN · u dx

=

∫
Ω

(
λ

2
(divu)2 + µ∇su : ∇su− f · u

)
dx+

∫
ΓN

tN · u dx.

The strong formulation of the Euler-Lagrange equation is

−2µdiv∇su− λgrad divu = f in Ω,

u = g on ΓD,

σ(u) · n = tN on ΓN .

The weak formulation seeks u ∈H1
g,D(Ω) such that

(2) (C∇su,∇sv) = (f ,v) + 〈tN ,v〉ΓN
for all v ∈H1

0,D(Ω).

This formulation seeks the displacement field u that minimizes the functional I(u), sub-
ject to given boundary conditions and force distributions.

1.2. Korn Inequalities. To ensure the well-posedness of the weak formulation, Korn’s
inequality is crucial:

(3) ‖Du‖ ≤ C‖∇su‖, ∀u ∈H1
0,D(Ω).

Since
‖Du‖2 = ‖sym(Du)‖2 + ‖skw(Du)‖2 = ‖∇su‖2 + 2‖∇ × u‖2,

Korn’s inequality is not straightforward because it suggests that ‖∇×u‖ should be bounded
by ‖∇su‖. Moreover, without certain conditions on u, like u ∈ ker(∇s) but u 6∈ ker(D),
the right side becomes zero while the left does not. In the given inequality, the nonzero
Lebesgue measure |ΓD| 6= 0 ensures thatH1

0,D(Ω) ∩ ker(∇s) = ∅.
For the special case where ΓD = ∂Ω, we have u ∈ H1

0(Ω), allowing integration by
parts without boundary terms. We have the identity

(4) 2 div∇su = ∆u+ grad divu,

which can be proved as follows: for k = 1, 2, . . . , d,

(div 2∇su)k =

d∑
i=1

∂i(∂iuk + ∂kui) = ∆uk + ∂k(divu).

Multiplying (4) by u and integrating by parts to get the identity

2‖∇su‖2 = ‖Du‖2 + ‖ divu‖2,
which leads to the first Korn inequality.

Lemma 1.1 (First Korn Inequality).

(5) ‖Du‖ ≤
√

2‖∇su‖, u ∈H1
0(Ω).

We now present the second Korn’s inequality which necessitates conditions to exclude
ker(∇s). Recall the characterization of the kernel of the symmetric gradient:

ker(∇s) = {ω × x+ c, ω, c ∈ R3}.
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The constant vector c ∈ ker(∇s) can be excluded by imposing the condition
∫

Ω
u = 0.

When u = ω × x = [ω]×x, it follows that Du = [ω]× and

[∇× u]× = skw(Du) = [ω]×.

Hence, ω = ∇×u if u = ω×x ∈ ker(∇s), a condition that can be removed by requiring∫
Ω
ω = 0. Therefore, we define the subspace

(6) Ĥ
1
(Ω) := {v ∈H1(Ω) :

∫
Ω

v dx =

∫
Ω

∇× v dx = 0}.

This helps in excluding the rigid body motions from the consideration by ensuring that
both the constant translation and constant rotation components are nullified by the integral
conditions.

Lemma 1.2 (The Second Korn’s Inequality). There exists a constant dependent only on
the geometry of the domain Ω such that

(7) ‖Du‖ ≤ C‖∇su‖, ∀u ∈ Ĥ1
(Ω).

Proof. Given u ∈ Ĥ1
(Ω), let q = ∇ × u ∈ L2

0(Ω). There exists a symmetric matrix
function Φ ∈H1

0(Ω; S) satisfying

div Φ = q = ∇× u, ‖Φ‖1 ≤ C‖q‖.
This result, established in the context of Stokes’ equation, extends to symmetric tensors.

We claim

(8) (Du, Du) = (Du, Du− curl Φ) = (∇su, Du− curl Φ).

Applying the Cauchy-Schwarz inequality,

‖Du‖2 = (∇su, Du− curl Φ) . ‖∇su‖(‖Du‖+ ‖Φ‖1) . ‖∇su‖‖Du‖.
Eliminating one ‖Du‖ leads to the desired Korn inequality.

Now we justify steps in (8). The orthogonality (Du, curl Φ) = (curlDu,Φ) = 0
is verified via integration by parts, with all differential operators applied row-wise and
without boundary terms since Φ ∈H1

0(Ω;S).
Recognizing 2skw(Du) = Du− (Du)ᵀ and (curl Φ, Du) = 0, the operations yield

(curl Φ, 2skw(Du)) = −(Φ×∇,∇uᵀ) = (Φ,∇uᵀ ×∇)

= −(∇ · Φ,uᵀ ×∇) = (div Φ,∇× u)

= (∇× u,∇× u) = (Du, [∇× u]×).

That is (Du− curl Φ, skw(Du)) = 0 and only symmetric gradient∇su is left.
The relationship among u, Du, curl Φ, and Φ follows the diagram:

u
D−→ Du ⊕⊥ curl Φ

curl←−− Φ
div−−→ ∇× u→ [∇× u]× +∇su = Du.

�

This lemma elucidates the complexities involved in tensor calculations but simplifies
understanding through the introduced notation system in Tensor Calculus. The lemma
adapts the 2D proof strategy in [2, Ch 11] to the three-dimensional setting.
————————————————————————————————————
For the general case on Lipschitz domains, we rely on the norm equivalence:

(9) ‖v‖2 ≈ ‖∇v‖2−1 + ‖v‖2−1 for all v ∈ L2(Ω).

https://www.math.uci.edu/~chenlong/226/tensor.pdf
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Lemma 1.3 (Lion’s Lemma). For Lipschitz domains, the space X(Ω) = L2(Ω), where
X(Ω) = {v | v ∈ H−1(Ω), grad v ∈ (H−1(Ω))n}with norm ‖v‖2X = ‖v‖2−1+‖grad v‖2−1.

Proof. A proof ‖v‖X . ‖v‖, consequently L2(Ω) ⊆ X(Ω), is trivial (using the definition
of the dual norm). The non-trival part is to prove the inequality

(10) ‖v‖2 . ‖v‖2−1 + ‖grad v‖2−1 = ‖v‖2−1 +

d∑
i=1

‖∂iv‖2−1.

The difficulty is associated to the non-computable dual norm ‖ · ‖−1. We only present a
special case Ω = Rn by the characterization of H−1 norm using Fourier transform. Let
û(ξ) = F (u) be the Fourier transform of u. Then

‖u‖2Rn = ‖û‖2Rn =
∥∥∥1/(

√
1 + |ξ|2)û

∥∥∥2

Rn
+

d∑
i=1

∥∥∥ξi/(√1 + |ξ|2)û
∥∥∥2

Rn
= ‖u‖2X .

In general cases, careful extension from H−1(Ω) to H−1(Rd) is needed; see, e.g. [1]. �

The following identity for C2 function can be easily verified by definition of symmetric
graident

(11) ∂2
ijuk = ∂jεki(u) + ∂iεjk(u)− ∂kεij(u).

We now use Lemma 1.3 and identity (11) to prove the following Korn’s inequality.

Theorem 1.4 (Korn’s inequality with L2-norm). There exists a constant depending only
on the geometry of domain Ω s. t.

(12) ‖Du‖ ≤ C (‖∇su‖+ ‖u‖) , ∀u ∈H1(Ω).

Proof. By the norm equivalence and using the identity to switch derivatives (11)

‖∂iu‖ . ‖∂iu‖−1 + ‖∇∂iu‖−1 . ‖u‖+
∑
j

‖∂j∇su‖−1 . ‖u‖+ ‖∇su‖.

�

We are ready to prove the coercivity of the displacement formulation (2).

Lemma 1.5 (Korn’s inequality for non-trivial zero trace). Assume |ΓD| 6= 0. There exists
a constant depending only on the geometry of domain Ω s. t.

(13) ‖Du‖ ≤ C‖∇su‖, ∀u ∈H1
0,D(Ω).

Proof. Assuming the contrary, that no such constant exists, leads to finding a sequence
{uk} ⊂H1(Ω) such that

‖Duk‖ = 1, and ‖∇suk‖ → 0 as k →∞.
Since H1(Ω) compactly embeds into L2(Ω), a convergent subsequence exists, uk → u
in L2(Ω). Korn’s inequality implies {uk} is also a Cauchy sequence in H1(Ω), hence
uk → u inH1(Ω). Consequently, ‖∇su‖ = 0.

So u = ω × x + c. The condition u|ΓD
= 0 implies u = 0. Contradicts with the

condition ‖Du‖ = 1. �

A set of functional L, consisting of components li(·) for i = 1, 2, · · · , 6, is introduced,
requiring ker(L) ∩ ker(∇s) = {0}. This means if u ∈ ker(∇s) and li(u) = 0 for all i,
then u = 0. Modifying the proof of Lemma 1.5 leads to the following version of Korn’s
inequality [3].
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Lemma 1.6 (Korn’s inequality with functionals). Let L = (l1, . . . , l6). Assuming ker(L)∩
ker(∇s) = {0}, there exists a constant dependent only on the domain’s geometry Ω, such
that

(14) ‖Du‖ ≤ C‖∇su‖+

6∑
i=1

|li(u)|, ∀u ∈H1(Ω).

Proof. Following the proof for non-trivial zero trace, we conclude there existsu ∈ ker(∇s)
with li(u) = 0 for i = 1, 2, . . . , 6, and ‖Du‖ = 1. This implies u = 0, contradicting the
fact ‖Du‖ = 1. �

One specific example of the functionals are
∫

Ω
v dx,

∫
Ω
∇ × v dx. In contra to the

constructive proof in Lemma 1.2, here it is using the abstract compactness result.

1.3. Pure Traction Boundary Condition. For cases similar to the pure Neumann bound-
ary condition in the Poisson equation, where ΓD = ∅ and ΓN = ∂Ω, the differential
operator exhibits a non-trivial kernel ker(∇s). By selecting v ∈ ker(∇s) ∩H1 in (2), we
derive the compatibility condition for the force f and the boundary force tN :

(15)
∫

Ω

f · v dx+

∫
∂Ω

tN · v dS = 0 ∀v ∈ ker(∇s).

The kernel ker(∇s) can be identified by considering the dual space of ker(∇s). Specif-
ically, when the compatibility condition (15) is met, a unique solution can be found in the

space Ĥ
1
(Ω) with constraints, as defined in (6).

1.4. Robustness. In scenarios where λ � 1 and µ ∼ 1, the operator −λ grad div will
predominate in the displacement formulation, leading to a singularly perturbed operator

−grad div−εdiv∇s, ε = 2µ/λ� 1,

with the degenerate case of ε = 0, as img(curl ) ⊆ ker(div). This condition poses chal-
lenges for both finite element discretizations and multigrid solvers.

When λ is significantly larger, indicating the material is nearly incompressible, the
quantity divu measures the material’s incompressibility. For nearly incompressible mate-
rials (λ� 1), divu should also be small. In smooth or convex domains, uniform regularity
results hold:

(16) ‖u‖2 + λ‖ divu‖1 ≤ C‖f‖.
Robust numerical methods can be designed for the displacement-pressure formulation by
introducing an artificial pressure p = λ divu. See Finite Element Methods for Linear
Elasticity.

2. STRESS-DISPLACEMENT FORMULATION

Consider the Sobolev space

H(div,Ω;S) := {τ ∈ L2(Ω; S) : div τ ∈ L2(Ω)},
endowed with the norm

‖τ‖div =
(
‖τ‖2 + ‖ div τ‖2

)1/2
.

Here, S denotes the space of symmetric tensors, which is relevant for stress tensors that are
inherently symmetric due to physical laws of equilibrium.

https://www.math.uci.edu/~chenlong/226/femelasticity.pdf
https://www.math.uci.edu/~chenlong/226/femelasticity.pdf
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2.1. Hellinger-Reissner formulation. A variational form of linear elasticity, known as
the Hellinger-Reissner formulation, that focuses on computing the stresses directly. Define
Ht,N (div,Ω,S) as the set of symmetric tensor fields that agree with the prescribed traction
on the Neumann boundary, ΓN :

Ht,N (div,Ω,S) = {τ ∈H(div,Ω,S), τn = tN on ΓN}.
Consider the optimization problem:

inf
σ∈Ht,N (div,Ω,S)

1

2
(Aσ,σ),

subject to the constraint:

−divσ = f in Ω, σn = tN on ΓN .

Here Aσ = 1
2µ

(
σ − λ

2µ+dλ tr(σ)I
)
. The condition −divσ = f ensures equilibrium

with external forces f , and σn = tN represents traction forces on ΓN .
In this formulation, the displacement field, although not directly solved for in the opti-

mization problem, can be interpreted mathematically as a Lagrange multiplier to impose
the equilibrium constraint: adding (divσ − f , u) into the Lagrangian and consider the
saddle point problem:

inf
σ∈Ht,N (div,Ω,S)

sup
u∈L2(Ω)

1

2
(Aσ,σ) + (divσ − f , u),

The strong formulation of linear elasticity problem, integrating both equilibrium and
material constitutive relations, is given as follows:

Aσ = ∇su in Ω, u = 0 on ΓD,

−divσ = f in Ω, σ · n = tN on ΓN .

The weak or variational formulation seeks σ ∈Ht,N (div,Ω,S) and u ∈ L2(Ω) such that:

(Aσ, τ ) + (u,div τ ) = 0 ∀τ ∈H0,N (div,Ω,S),(17)

(divσ,v) = −(f ,v) ∀v ∈ L2(Ω).(18)

In scenarios where ΓN = ∅, meaning the whole boundary is subject to Dirichlet condi-
tions (u = 0 on ∂Ω), we encounter a mixed formulation akin to a pure Neumann problem
where solutions are not uniquely determined. To address this, we consider the quotient
space:

Ĥ(div,Ω,S) = {τ ∈H(div,Ω,S) :

∫
Ω

tr(τ ) dx = 0}.

The constraint comes from by choosing τ = I in (17).

2.2. Inf-sup Conditions. In the context of mixed finite element methods for linear elastic-
ity, the inf-sup condition (also known as the Ladyzhenskaya-Babuška-Brezzi (LBB) condi-
tion) is crucial for establishing the well-posedness of the problem and ensuring the stability
of the solution. Let us explore the framework for the stress space Σ and the displacement
space V , each equipped with their respective norms.

Introducing the linear operator L : Σ× V → (Σ× V )∗ as

〈L(σ,u), (τ ,v)〉 := (Aσ, τ )− (∇su, τ ) + (divσ,v),
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we define the bilinear forms as follows:

a(σ, τ ) := (Aσ, τ ),

b(τ ,v) := −(div τ ,v).

The isomorphism of L from Σ× V onto (Σ× V )∗ hinges on satisfying the following
Brezzi conditions:

Continuity of Bilinear Forms: There exist constants ca, cb > 0 such that for all σ, τ ∈ Σ
and v ∈ V ,

a(σ, τ ) ≤ ca‖σ‖Σ‖τ‖Σ, b(τ ,v) ≤ cb‖τ‖Σ‖v‖V .

Coercivity of a(·, ·) in the Kernel Space: There exists a constant α > 0 such that

a(σ,σ) ≥ α‖σ‖2Σ for all σ ∈ ker(B),

where ker(B) = {τ ∈ Σ : b(τ ,v) = 0 for all v ∈ V }.
inf-sup Condition of b(·, ·): There exists a constant β > 0 such that

inf
v∈V ,v 6=0

sup
τ∈Σ,τ 6=0

b(τ ,v)

‖τ‖Σ‖v‖V
≥ β.

The continuity condition typically follows from the choice of appropriate norms. The
interplay between the coercivity of a(·, ·) and the inf-sup condition for b(·, ·) highlights the
intricate balance necessary for the mixed formulation to be well-posed.

The inf-sup condition for b(·, ·) can be straightforwardly confirmed. Given v ∈ L2(Ω),
we approach this through a simplified displacement scenario: seeking a φ ∈H1

0 such that

(∇sφ,∇sψ) = (v,φ), ∀ψ ∈H1
0.

Thanks to the first Korn inequality, we ascertain that φ is both existent and unique. Set-
ting τ = ∇sφ, we discover −div τ = v and ‖τ‖div . ‖v‖. With this specific τ , we
successfully verify the inf-sup condition for b(·, ·).

2.3. A non-robust coercivity. The coercivity of a(·, ·) in the L2-norm requires careful
consideration. The L2-inner product for two tensor functions integrates two inner product
structures: the Frobenius inner product (·, ·)F among matrices, and the L2-inner product
of functions, specifically

∫
Ω
fg dx.

Let M be the linear space of d × d matrices. The subspace of all traceless matrices is
denoted by T. The Frobenius inner product in M as

(A,B)F = A : B :=
∑
ij

aijbij .

We begin by exploring an orthogonal decomposition in (·, ·)F : M = T⊕⊥F RI and

‖σ‖2F = ‖σD‖2F + ‖PRσ‖2F ,
where PRσ = tr(σ)I/d is the orthogonal projector in (·, ·)F inner product, and σD =
(I − PR)σ. Recall that

Aσ =
1

2µ

(
σ − λ

2µ+ dλ
tr(σ)I

)
.

Considering the orthogonal decomposition M = T ⊕⊥ RI , we observe the compliance
tensor A, represented as diag(1/(2µ), 1/(dλ+ 2µ)), in this coordinate.
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Lemma 2.1. Let PRσ = d−1 tr(σ)I and σD = (I − PR)σ. Then,

Aσ : τ =
1

2µ
σD : τD +

1

dλ+ 2µ
PR(σ) : PR(τ ),

Proof. Using the formulae of A, and let ρ = 2µ/(dλ+ 2µ) ∈ (0, 1), we have

2µAσ = σ + (1− ρ)PRσ = σD + ρPRσ.

Using the property of orthogonal projectors, we expand the product

2µAσ : τ = (σD + ρPRσ) : (τD + PRτ ) = σD : τD + ρPR(σ) : PR(τ ),

and the identity then follows. �

This decomposition directly leads to a coercivity condition:

(19) a(σ,σ) ≥ min

{
1

2µ
,

1

dλ+ 2µ

}
‖σ‖2, ∀σ ∈ Σ.

Here, the constant α is on the order ofO(1/λ) as λ approaches infinity. This characteristic
indicates that the coercivity is not robust with respect to λ, becoming nearly singular as
λ� 1.

It is crucial to note that while the norm for the space Σ is defined as ‖ · ‖div, the
coercivity requirement in the L2-norm specifically pertains to elements within ker(div).
This distinction necessitates additional consideration, especially when ker(B) does not
coincide with ker(div).

2.4. A robust coercivity. Recall that coercivity is required only in the kernel space of
the divergence operator, and the compliance tensor A approaches near singularity in the
subspace RI . To tackle this, we employ a strategy that connects linear elasticity with the
inf-sup stability of Stokes equations, enhancing our approach by controlling the norm of
the trace through the addition of ‖ divσ‖−1.

H1
0(Ω,Rd)

div∇s

Ĥ(div,Ω,S)
tr

L2(Ω)

FIGURE 1. Linear elasticity and the inf-sup stability of Stokes equations.

Lemma 2.2. There is a constant β, dependent only on the domain Ω, such that

(20) ‖PRσ‖2 ≤ β
(
‖σD‖2 + ‖divσ‖2−1

)
, for all σ ∈ Ĥ(div,Ω;S).

Proof. Let p = trσ ∈ L2
0(Ω). Thanks to the inf-sup stability of the Stokes equation, there

exists v ∈H1
0 such that div v = p and ‖v‖1 . ‖p‖ = ‖ trσ‖.

Considering div v = tr∇sv = trσ, we have

‖ tr(σ)‖2 = (tr∇sv, trσ) = d(PR∇sv, PRσ) = d(∇sv, PRσ)

= −d(∇sv,σD) + d(∇sv,σ)

= −d(∇sv,σD)− d(v,divσ).
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Applying the Cauchy-Schwarz inequality and the definition of ‖ · ‖−1, we find

‖ tr(σ)‖2 . ‖σD‖‖∇sv‖+ ‖divσ‖−1‖Dv‖ .
(
‖σD‖2 + ‖ divσ‖2−1

)
‖ trσ‖.

Cancelling one ‖ trσ‖ yields the desired inequality. �

We then obtain a robust coercivity of a(·, ·) restricted to the null space ker(div).

Theorem 2.3. There exists a constant α depending on Ω and µ, but independent of λ such
that

(21) a(σ,σ) ≥ α‖σ‖2 for all σ ∈ Σ ∩ ker(div).

Proof. By Lemma 2.2, we have

2µa(σ,σ) = ‖σD‖2 + ρ‖PRσ‖2 ≥ ‖σD‖2,
where we drop the term with ρ = 2µ/(dλ + 2µ) → 0+ as λ → +∞. On the other hand,
we can control

‖σ‖2 = ‖σD‖2 + ‖PRσ‖2 ≤ (1 + β)‖σD‖2.
The desired coercivity then follows for α = (1 + β)/(2µ). �
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