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ABSTRACT. This lecture notes discusses finite element methods for solving linear elas-
ticity equations, focusing on the locking phenomenon in nearly incompressible materials.
The displacement formulation is introduced, but standard linear finite elements suffer from
locking when the Lamé constant is large. To overcome this, a displacement-pressure for-
mulation using stable Stokes elements and a stress-displacement formulation with H(div)-
conforming spaces for symmetric matrix functions are presented.

We discuss finite element methods for solving the linear elasticity equations. For a
complete background review, we refer to Introduction to Linear Elasticity and Variational
Formulation of Linear Elasticity.

1. DISPLACEMENT FORMULATION

The weak form of the displacement formulation of linear elasticity reads as follows:
Given a force f ∈ L2(Ω), find u ∈H1

0(Ω) such that

(1) 2µ(∇su,∇sv) + λ(divu,div v) = (f ,v) ∀v ∈H1
0(Ω),

where λ and µ are Lamé constants and the symmetric gradient ∇su = ε(u) := (∇u +
(∇u)ᵀ)/2. For nearly incompressible materials, the parameter λ� 1 while µ = O(1).

The following identity

(2) 2 div∇su = ∆u+ grad divu

can be proved as follows: for k = 1, 2, . . . , d,

(div 2∇su)k =

d∑
i=1

∂i(∂iuk + ∂kui) = ∆uk + ∂k(divu).

Multiplying identity (2) by v and integrating by parts, we obtain an equivalent formulation

(3) a(u,v) := µ(∇u,∇v) + (λ+ µ)(divu, divv) = (f ,v).

The well-posedness of (3) is guaranteed by
• Coercivity.

a(u,u) ≥ µ‖∇u‖2.
• Continuity.

a(u,v) ≤ (λ+ 2µ)‖∇u‖‖∇v‖.
Let Vh ⊂ H1

0(Ω) be the linear finite element space, and let uh ∈ Vh be the finite
element approximation satisfying

a(uh,vh) = (f ,vh) ∀vh ∈ Vh.
Then, by the Céa lemma, we obtain the quasi-optimal approximation

‖∇(u− uh)‖ ≤ (2 + λ/µ) inf
vh∈Vh

‖∇(u− vh)‖ . (2 + λ/µ)h‖u‖2.
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For given and fixed Lamé constants (λ, µ), we do observe first-order approximation as
h → 0. However, for a fixed h, the approximation is of the order O(λ), indicating a loss
of convergence as λ → +∞. This loss of convergence order for nearly incompressible
materials is known as locking phenomena.

Recall that the change in volume due to deformation is linked to divu:

δV =

∫
∂V

u · n dS =

∫
V

divu dx =

∫
V

tr(ε) dx.

As indicated in the constitutive equation σ = λ tr(ε)I + 2µε, a very large value of λ
suggests that tr(ε) = divu is very small, signifying minimal volume change under stress.
Mathematically, we have

λ‖ divuh‖2 ≤ a(uh,uh) ≤ 1

2

(
‖f‖2 + ‖uh‖2

)
< +∞,

which implies ‖ divuh‖ = O(1/
√
λ). So if λ = +∞, then divuh = 0. For linear finite

elements, it can be shown that if divuh = 0, then uh = 0. Therefore no approximation
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FIGURE 1. There are two DoFs u(x1) at vertex x1. Due to the zero
boundary condition and two constraints divu = 0 in T0 and T1, we
conclude u(x1) = 0. By repeating this argument, we can conclude
u(x2) = u(x3) = 0 and so on.

can be provided for u. In general, locking is unavoidable if the subspace ker(div) ∩ Vh is
not big enough.

2. DISPLACEMENT AND PRESSURE FORMULATION

We introduce an artificial pressure p = λ divu and rewrite the equation (1) into per-
turbed Stokes equations: Find u ∈H1

0(Ω) and p ∈ L2
0(Ω) such that

(4)
2µ(∇su,∇sv) + (p,div v) = (f ,v), for all v ∈H1

0(Ω),

(divu, q)− 1

λ
(p, q) = 0, for all q ∈ L2

0(Ω).

The well-posedness of the saddle point problem (4) is guaranteed by the inf-sup condition,
which holds for the limiting case 1/λ = 0; see Inf-sup Conditions for Operator Equations.
The large continuity constant now turns to the denominator:

1

λ
(p, q) ≤ 1

λ
‖p‖‖q‖.

An equivalent formulation based on (3) is:

(5)
µ(∇u,∇v) + (p,div v) = (f ,v), for all v ∈H1

0(Ω),

(divu, q)− 1

λ+ µ
(p, q) = 0, for all q ∈ L2(Ω).
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Then we can use stable finite element methods developed for Stokes equations. Choose
spaces Vh × Ph ⊂H1

0(Ω)× L2
0(Ω) satisfying the discrete inf-sup condition

inf
qh∈Ph

sup
vh∈Vh

(div vh, qh)

|vh|1‖qh‖
= β > 0.

Find uh ∈ Vh, ph ∈ Ph s.t.

(6)
µ(∇uh,∇vh) + (ph,div vh) = (f ,vh), for all vh ∈ Vh,

(divuh, qh)− 1

λ+ µ
(ph, qh) = 0, for all qh ∈ Ph.

In general, div Vh 6⊆ Ph. In (divuh, qh), the operator is Qh div, where Qh is the L2

projection to Ph.
Solving ph = (λ + µ)Qh divuh and substituting back to the first equation in (6), we

obtain a modified discretization of the displacement formulation: Find uh ∈ Vh s.t.

µ(∇uh,∇vh) + (λ+ µ)(Qh divuh, Qh div vh) = (f ,vh) ∀vh ∈ Vh.

The modified L2-inner product (Qh divuh, Qh div vh) can be thought of as reduced inte-
gration. A specific example is P2 − P0 Stokes element. If we compute (divuh,div vh)
exactly (e.g., using a three-edge midpoint quadrature rule), essentially it is using the unsta-
ble Stokes pair P2 − P−1

1 . Instead, if we use a one-point quadrature rule (the center of the
element), it computes (Qh divuh, Qh div vh) corresponding to the stable pair P2 −P0. It
is surprising and counterintuitive that inexact numerical quadrature yields better results.

When the domain of interest is smooth or convex, we have the regularity result:

‖u‖2 + λ‖ divu‖1 ≤ C‖f‖.

Based on this regularity result, we can prove the error analysis for the displacement-
pressure formulation which is robust to λ. Indeed as u ∈ H2, p = λ divu ∈ H1, by
the standard error analysis, for P2 − P0 solution of (6), we have

‖u− uh‖1 + ‖p− ph‖ . h(‖u‖2 + ‖p‖1) . h‖f‖,

where the constant is independent of λ.
One might opt for nonconforming finite element methods, as the PCR

1 −P0 pair consti-
tutes a stable Stokes combination, ensuring locking-free behavior when applied to (3). It is
worth noting that since PCR

1 does not belong to H1
0, (1) and (3) are no longer equivalent

at the discrete level.
When dealing with the pure traction boundary condition σn = tN on ∂Ω, using the

bilinear form µ(∇u,∇v) with strong coercivity loses its equivalence as integration by
parts from (2) will have non-vanishing boundary terms. Instead, 2µ(∇suh,∇svh) is em-
ployed, and Korn’s second inequality in the discrete setting may not hold for the linear
nonconforming elements; see [2].

3. STRESS AND DISPLACEMENT FORMULATION

We utilize the mixed formulation involving stress and displacement. Considering this,
the natural finite element spaces would be Pk(T ;S)−P−1

k−1(T ;R3) for k ≥ 1. The primary
challenge lies in constructing H(div)-conforming finite element space for symmetric ma-
trix functions. Arnold and Winther designed the first polynomial symmetric stress element
in 2D [1]. Here, we follow Hu and Zhang [3] to present a simple construction based on the
modification of Lagrange elements.
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3.1. Lagrange Elements. A simplicial lattice, known as the principal lattice [4], of degree
k and dimension d is a multi-index set of d+ 1 components and with a fixed sum k, i.e.,

Tdk =
{
α = (α0, α1, . . . , αd) ∈ N0:d : |α| = α0 + α1 + . . .+ αd = k

}
.

We can embed the simplicial lattice into a geometric simplex by using α/k as the barycen-
tric coordinate of node α. Let T be a simplex with vertices {v0,v1, . . . ,vd} and λi be the
corresponding barycentric coordinate. The geometric embedding is

x : Tdk → T, x(α) =

d∑
i=0

λi(α)vi, λi(α) = αi/k, i = 0, . . . , d.

Define XT = {x(α), α ∈ Tdk} and call it the set of interpolation nodes. See Fig. 2 for an
illustration in 2D and 3D. The Bernstein basis of polynomial of degree k on a simplex T is

(7) Pk(T ) = span{λα := λα0
0 λα1

1 . . . λαd

d , α ∈ Tdk}.

FIGURE 2. Simplicial Lattices in 2D and 3D.

Lemma 3.1 (Lagrange Interpolation Basis Functions [4]). A basis function of the k-th
order Lagrange finite element space on T is given by:

φα(x) =
1

α!

d∏
i=0

αi−1∏
j=0

(kλi(x)− j), α ∈ Tdk,

where the degrees of freedom (DoFs) are defined as the function values at the interpolation
points:

(8) Nα(u) = u(xα), xα ∈ XT .

Proof. The duality of the basis and DoFs can be verified as follows:

Nβ(φα) = φα(xβ) = δα,β =

{
1 if α = β

0 otherwise
.

Since

|Tdk| =
(
d+ k

k

)
= dimPk(T ),
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the set {φα, α ∈ Tdk} forms a basis of Pk(T ), and {Nα, α ∈ Tdk} forms a basis of the dual
space P ∗k (T ). �

Based on a conforming triangulation Th of Ω, the k-th order Lagrange finite element
space V L

k (Th) is defined as

V L
k (Th) = {v ∈ L2(Ω) : v|T ∈ Pk(T ), T ∈ Th, and DoFs (8) are single valued}.

The interpolation points XT is element-wise defined and for xα ∈ XT1
∩ XT2

, the DoF
u(xα) is single valued means it is independent of the element containing xα. This ensures
the continuity of piecewisely defined polynomials.

Exercise 3.2. Prove V L
k (Th) is continuous and thus V L

k (Th) ⊂ H1(Ω).

3.2. Hu-Zhang element. We can simply take the tensor product V Lh ⊗ S of the Lagrange
element. That is, at each interpolation point, the scalar function u(xα) is changed to a
symmetric matrix function (σ11(xα), σ22(xα), σ12(xα)). Here the subscript 1 or 2 refers
to the Cartesian coordinate used to describe a point, i.e., x = (x1, x2)ᵀ. A symmetric
matrix function σ = (σij) is stretched to a vector (σ11, σ22, σ12).

The Lagrange element is too continuous to satisfy the inf-sup condition. As we know
from the Stokes equation, the pair Pk − P−k−1 is not div-stable in general. In 2D, k ≥ 4
and a non-singular vertex condition on the triangulation can guarantee the discrete inf-sup
condition. The condition in 3D remains unclear and non-realistic.

For a symmetric matrix function σ and vector function v, we have the integration by
parts formulae

(9) −
∫
T

divσ · v dx =

∫
T

σ : ∇sv dx−
∫
∂T

(σn) · v dS.

From that, we conclude σ ∈ H(div,Ω;S) if and only if σn is continuous across edges
(2D) and faces (3D) of the triangulation. So we only need to impose normal continuity.

The key idea is to choose different coordinate systems on different sub-simplices. In
2D, at vertices and inside the triangle, we use the default Cartesian coordinate. On each
edge, we use t−n coordinate: the orthonormal coordinate formed by a unit tangential and
a unit normal vector. In 3D, at vertices and inside the element, we use the default Cartesian
coordinate {ei}3i=1. On each face, we choose two orthonormal tangential vectors and
a unit normal vector which forms an orthonormal basis. On each edge, we choose two
normal vectors {nei}2i=1 depending only on e together with an unit tangential vector te.
The coordinate depends on the sub-simplex but not the element containing it. See Fig. 3.

In the sequel, we will focus on two dimensions. But most results and proofs can be
easily generalize to three and higher dimensions with notation change. We use Pk ⊗ S
as the shape function space. A Lagrange element is defined by the degrees of freedom
(DoFs):

σ11(xα), σ22(xα), σ12(xα), α ∈ T2
k.

To ensure continuity of σn, we use t − n coordinates at edge interpolation points and
adjust DoFs on the interior of edges to:

σtt(xα), σnn(xα), σtn(xα), α ∈ T2
k, xα ∈ E̊.

The unisolvence remains unchanged as (σtt, σnn, σtn) forms a basis of S. Locally it is still
a Lagrange element.

We enforce desirable normal continuity by ensuring σnn(xα) and σtn(xα) are single-
valued, while σtt(xα) could be double-valued. In other words, the DoF σtt(xα) might
differ across different triangles. We denote the resulting space as Σk.
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FIGURE 3. Different coordinates at different sub-simplex.

Exercise 3.3. Write out the DoFs in 3D and prove that the resulting element is H(div)-
conforming and symmetric.

3.3. Inf-sup conditions. The displacement space consists of discontinuous Pk−1 polyno-
mials. Next, we verify the inf-sup condition div : Σk → P−1

k−1.
For a continuous function σ, trdiv

T σ = σn |∂T where n is the outwards normal vector.
Define the bubble function

Bk(div, T ;S) = Pk(T ;S) ∩ ker(trdiv
T ).

For an edge e with vertices xi and xj , denote by be = λiλj the edge bubble function. For a
polynomial defined on edge e, we can expand using barycentric coordinates, cf. (7), which
naturally defines an extension to the triangle. Let Eh be the set of edges. We denote by ni
the normal vector of the edge opposite to vertex i.

Lemma 3.4. {sym(ni ⊗ nj), eij ∈ Eh(T )} and {te ⊗ te, e ∈ Eh(T )} are bases of S.

Proof. It is straight forward to verify that, in the Frobenius inner product (·, ·)F , the set
{sym(ni ⊗ nj), eij ∈ Eh(T )} is dual to {te ⊗ te, e ∈ Eh(T )}. So both of them are bases
of S. �

Lemma 3.5.

(10) span {p(e)bete ⊗ te, p ∈ Pk−2(e), e ∈ Eh(T )} ⊆ Bk(div, T ;S) k ≥ 2.

Proof. Let φe = bete ⊗ te. For edge ẽ 6= e, be |ẽ= 0. On the edge e, (te ⊗ te)ne = 0. So
trdiv
T φe = 0. �

Denote by RM = ker(∇s) = {a+ b(x2,−x1)ᵀ}.

Lemma 3.6.

(11) divBk(div, T ;S) = Pk−1(T ;R2)/RM k ≥ 2.

Proof. For σ ∈ Bk(div, T ;S), using integration by parts, we have

(divσ,v)T = −(σ,∇sv)T = 0, ∀v ∈ RM = ker(∇s).

So we have proved divBk(div, T ;S) ⊆ Pk−1(T ;R2)/RM.
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Assume divBk(div, T ;S) 6= Pk−1(T ;R2)/RM. Then there existsu ∈ Pk−1(T ;R2)/RM ,
u 6= 0, and (divσ,u)T = 0 for all σ ∈ Bk(div, T ;S). Expand ∇su in the basis
sym(ni ⊗ nj) as

∇su =
∑

e=eij∈Eh(T )

pesym(ni ⊗ nj), pe ∈ Pk−2.

Set σ =
∑
e pebete ⊗ te/(te · ni te · nj) ∈ Bk(div, T ;S). Then

0 = −(divσ,u)T =
∑
e

∫
T

p2
ebe dx.

As be ≥ 0 and be > 0 for x ∈ T̊ , we conclude pe = 0 and thus u = 0. Contradicts with
u 6= 0. Therefore divBk(div, T ;S) = Pk−1(T ;R2)/RM. �

Theorem 3.7. In two dimensions, we have the inf-sup condition

(12) inf
vh∈P−1

k−1

sup
σh∈Σk

(divσh,vh)

‖σh‖div‖vh‖
= β > 0, k ≥ d+ 1.

Proof. Given vh ∈ P−1
k−1 ∈ L

2(Ω), by the inf-sup condition of Stokes equations, there
exists σ ∈H1(Ω; S) s.t. divσ = vh and ‖σ‖1 . ‖vh‖.

We define a quasi-interpolation from Ih : H1(Ω; S)→ V L3 ⊗ S such that

(13)
∫
e

Ihσq =

∫
e

σq ∀q ∈ P1(e), e ∈ ∂T,

which is possible as V L3 contains 2 DoFs on each edge (on each edge, expand in the basis
P1(e)be and solve a Gram matrix equation in the inner product

∫
e
(·)be ds to satisfy (13)),

and
‖σ − Ihσ‖+ h‖σ − Ihσ‖1 . h‖σ‖1 . h‖vh‖.

Now using integration by parts, we conclude

(div(σ − Ihσ), q)T = 0 ∀q ∈ RM
and thus div(σ−Ihσ) ∈ Pk−1(T ;R2)/RM . By Lemma 3.6, we can findσb ∈ Bk(div, T ;S)
s.t. divσb = div(σ − Ihσ). Set σh = Ihσ + σb. Then

divσh = divσ = vh.

And
‖σh‖ ≤ ‖Ihσ‖+ ‖σb‖ . ‖vh‖.

�

Remark 3.8. When generalize to Rd, the key is to ensure there are d interior interpolation
points on each d− 1 face of the element; see (13). So the condition k ≥ d+ 1 is required.

3.4. Mixed finite element. The mixed formulation of (1) seeks σ ∈ Ĥ(div,Ω,S) and
u ∈ L2(Ω) such that:

(14)
(Aσ, τ ) + (u,div τ ) = 0 ∀τ ∈ Ĥ(div,Ω,S),

(divσ,v) = −(f ,v) ∀v ∈ L2(Ω),

where
Ĥ(div,Ω,S) = {τ ∈H(div,Ω,S) :

∫
Ω

tr(τ ) dx = 0}.

The boundary condition u|∂Ω = 0 is imposed weakly in the first equation of (14).
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Define Σ̂k = Σk ∩ Ĥ(div,Ω,S). The mixed finite element methods is: Find σh ∈ Σ̂k
and uh ∈ P−1

k−1(Ω) such that:

(Aσh, τh) + (uh,div τh) = 0 ∀τh ∈ Σ̂k,

(divσh,vh) = −(f ,vh) ∀vh ∈ P−1
k−1(Ω).

As div cI = 0 for any constant c, we can subtract the average of the trace so that (12)
also holds for Σ̂k. The robust coercivity

(15) a(σh,σh) ≥ α‖σh‖2 for all σh ∈ Σ̂k ∩ ker(div),

with α independent of λ can be proved as in the continuous level; see Section 2.4 in Vari-
ational Formulation of Linear Elasticity.

Based on the inf-sup conditions (15) and (12), we have the quasi-optimal approximation
and optimal order error convergence

‖σ − σh‖div + ‖u− uh‖ . hk(‖σ‖k+1 + ‖u‖k+1).
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