PROJECT 2: WAVE EQUATION

Due date. March 23.

Code the explicit leapforg method for solving wave equation in two dimensions.

Equation.

(1)	$u_{tt} - \Delta u$	=	f(x,t),	$x \in \Omega, t \in (0,T]$
(2)	u(x,0)	=	g(x),	$x \in \Omega,$
(3)	$u_t(x,0)$	=	h(x),	$x \in \Omega$,

(4)
$$u = u_D, \quad x \in \partial\Omega, t \in (0,T].$$

Method.

(5)
$$\frac{U_j^{n+1} - 2U_j^n + U_j^{n-1}}{(\Delta t)^2} - (\Delta_h U^n)_j = f_j^n,$$

where Δ_h is the discretization of Δ operator using finite difference or finite element method. (Choose the one you like.)

Initial condition. It is easy to choose U^0 by the nodal interpolation $U_j^0 = g(x_j)$. To get U^1 , we introduce the ghost point U^{-1} and discretization the initial velocity (3) using central difference:

(6)
$$\frac{U_j^1 - U_j^{-1}}{2\Delta t} = h(x_j).$$

To eliminate the ghost point, we combine the equation (5) at n = 0 to figure out the formula for U^1 .

Test. We choose the domain as $\Omega = (0, 12) \times (0, 12)$ and the source term as

$$f(x,t) = \exp(-7|x - x_S|)2a(2a(t-b)^2 - 1)\exp(-a(t-b)^2)$$

$$a = (\frac{\pi}{1.31})^2, \ b = 1.35$$

$$x_S = (6,6).$$

The boundary and initial conditions

$$g = h = 0, \quad u_D = 0.$$

Show the evolution of the solution and verify the convergent rate.

Hint: how to compute the rate without exact solution? You can estimate the convergence rates by the formula

$$r^N = \frac{\ln e^N - \ln e^{2N}}{\ln 2},$$

where e^N is the error of N unknowns. The rate for the time variable can be computed similarly.