
TENSOR CALCULUS

LONG CHEN

ABSTRACT. We give rules on tensor calculation.

CONTENTS

1. Tensors 1
1.1. Definition 1
1.2. Symmetric tensor 3
1.3. Differential forms 3
2. Change of Coordinates 4
3. Structure of the Matrix Space 4
3.1. Matrix-vector and matrix-matrix products 4
3.2. Trace 5
3.3. An orthogonal decomposition 5
3.4. Skew-symmetric matrices and the cross product 6
3.5. Another orthogonal decomposition 6
4. Formulae Involving Differential Operators 7
4.1. Gradient and Symmetric Gradient 7
4.2. Differentiation of matrix functions 8
4.3. Integration by parts 9
4.4. An example in linear elasticity 9

1. TENSORS

What is a tensor? While a matrix can be considered a 2nd order tensor, a 2nd order
tensor is essentially an equivalent class of matrices. Mathematically speaking, a tensor
is a multi-linear map, whereas a matrix represents a bilinear map in a specific coordinate
system. Different coordinates yield different representations, but the underlying mapping
remains unchanged.

1.1. Definition. Let V be an n-dimensional vector space. The linear functionals from V
to R form another vector space, denoted V ∗, called the dual space of V . When dealing with
finite-dimensional vector spaces, we can identify V with V ∗ and with Rn after choosing a
basis. Therefore for v∗ ∈ V ∗ and v ∈ V , the function v∗(v) can be also denoted by v∗ · v
or (v∗, v) using the inner product of vectors. However, it is important to note that elements
in V and V ∗ are distinct entities. To clarify this distinction, we use column vectors to
represent elements in V and row vectors to represent elements in V ∗.

Date: March 25, 2024.
1

2 LONG CHEN

Let us move to two vector spaces (V,W) and a bilinear function f(·, ·) : (V,W)→ R.
The set of all such bilinear functions forms a vector space. To represent this space, we can
choose bases for V and W , allowing us to identify a bilinear function as a matrix.

More formally, we introduce the tensor product of dual spaces, denoted V ∗ ⊗W ∗. For
any v∗ ∈ V ∗ and w∗ ∈W ∗, we define v∗ ⊗ w∗ as a bilinear map V ×W → R such that:

(v∗ ⊗ w∗)(v, w) := v∗(v) · w∗(w) = (v∗, v) · (w∗, w).

By identifying V as the dual of V ∗, i.e., V = (V ∗)∗, we can also define the tensor product
V ⊗W .

Suppose {ei, 1 ≤ i ≤ m} is a basis of V ∗ and {ej , 1 ≤ j ≤ n} is a basis of W ∗. Then
the set {ei ⊗ ej} forms a basis of V ∗ ⊗W ∗. For example, given a matrix A = (aij)m×n,
it can be expanded as

∑
ij aije

i⊗ ej , where ei = (0, . . . , 1, . . . , 0) represents the classical
orthonormal basis of Rn. It is crucial to note that the same tensor v∗⊗w∗ may have various
matrix representations, depending on the choice of bases.
————————————————————————————————————
Given two linear spaces V1, V2 and assume they are subspaces of a larger linear space V .
We have the following operations of these two spaces

• V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2};
• V1 ⊕ V2 = V1 + V2 when V1 ∩ V2 = {0};
• V1 × V2 = {(v1, v2) : v1 ∈ V1, v2 ∈ V2};
• V1 ⊗ V2 = {v1 ⊗ v2 : v1 ∈ V1, v2 ∈ V2}.

The tensor product v1 ⊗ v2 is a bilinear mapping on the dual space V ∗1 × V ∗2 . A natural
product topology can be defined for V1 × V2 component-wise.

The relation of dimensions are
• dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2) ≤ dim(V1) + dim(V2);
• dim(V1 ⊕ V2) = dim(V1) + dim(V2);
• dim(V1 × V2) = dim(V1) + dim(V2);
• dim(V1 ⊗ V2) = dim(V1)× dim(V2).

We emphasize that the sum V1 + V2 may not enlarge the space. For example, when
V1 ⊂ V2 (a line on a plane), V1 + V2 = V2.
————————————————————————————————————

How about trilinear and in general multilinear functions? Matrix contains only two
directions. We need a new object, tensor, for multilinear functions. The tensor product of
two vector space can be extended to accommodate multilinear functions of various orders.

Consider a (r, s) type tensor space, denoted V r
s , defined as:

V r
s := V ⊗ . . .⊗ V︸ ︷︷ ︸

r

⊗V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
s

.

An element in V r
s takes the form:

(1) x = xi1,...,irk1,...,ks
ei1 ⊗ . . .⊗ eir ⊗ ek1 ⊗ . . .⊗ eks ,

where a basis (ei) is given for V and (ei) for V ∗. Tensors in this space represent multilinear
functions, and their representations may differ under changes in bases.

Now, let us explore how these representations are related when the basis is changed.
Suppose we have another basis (êi) and a transformation matrix (αj

i). This implies:

êi = αj
i ej , êi = βi

je
j , (αj

i)(β
j
i) = I,

TENSOR CALCULUS 3

where Einstein summation convention is used: when an index appears as both a subscript
and a superscript in an expression, it implies summation over all possible values for that
index.

For a (r, s) type tensor

x = x̂i1,...,irk1,...,ks
êi1 ⊗ . . .⊗ êir ⊗ êk1 ⊗ . . .⊗ êks

= x̂i1,...,irk1,...,ks
αj1
i1
. . . αjr

ir
βk1

l1
. . . βks

ls
ej1 ⊗ . . .⊗ ejr ⊗ el1 ⊗ . . .⊗ els

= xj1,...,jrl1,...,ls
ej1 ⊗ . . .⊗ ejr ⊗ el1 ⊗ . . .⊗ els .

Therefore
xj1,...,jrl1,...,ls

= x̂i1,...,irk1,...,ks
αj1
i1
. . . αjr

ir
βk1

l1
. . . βks

ls

or equivalently
x̂j1,...,jrl1,...,ls

= xi1,...,irk1,...,ks
βj1
i1
. . . βjr

ir
αk1

l1
. . . αks

ls

Two types of tensors play an important role: symmetric and skew-symmetric. Riemann-
ian metric is symmetric and positive definite 2-tensor. Stress and strain in linear elasticity
are symmetric tensors. Differential forms are skew-symmetric tensors.

1.2. Symmetric tensor. We consider the strain ε and stress σ tensor used in linear elas-
ticity. Both are 2nd order symmetric tensors.

Two different Cartesian coordinate systems can be related to each other by a rigid mo-
tion. Since the choice of origin for these systems does not influence the definition of σ,
we assume that the new coordinate system is derived by rotating the original one around
its origin, that is, x̂ = Qx, whereQ is a unitary matrix.

We can also view σ as a linear mapping of vectors: σ : n → t = σn. By applying Q
to both sides, we obtain

t̂ = Qt = QσQ−1Qn = QσQᵀn̂,

which implies

(2) σ̂ = QσQᵀ.

Hence, we can view the stress as a linear mapping between linear spaces (of vectors).
The stress matrix is simply one representation of this mapping in a particular coordinate
system. Different coordinates result in different representations related by (2), but the
linear mapping remains consistent.

For a given linear operator T , an eigenvector v and its corresponding eigenvalue λ are
defined as Tv = λv. By the nature of eigenvalues, which depend only on the linear
structure and not on the representation, the eigenvalues of σ, and their combinations, e.g.,
tr(σ) = λ1 + λ2 + λ3, det(σ) = λ1λ2λ3, and tr(ε) = divu, remain invariant with the
change of coordinates.

1.3. Differential forms.

2. CHANGE OF COORDINATES

Recall that Φ : ΩR → Φ(ΩR) denotes the configuration mapping, where ΩR represents
the reference domain. The body force f is a vector function composed of 3-forms. Thus,∫

V

f(x) dx =

∫
VR

fR(xR) dxR,

and, given dx = det(DΦ) dxR, its transformation obeys

f(x) = det(DΦ)−1fR(xR).

4 LONG CHEN

3. STRUCTURE OF THE MATRIX SPACE

Let M be the linear space of d × d matrices. The symmetric subspace is denoted by S
and the anti-symmetric one by K.

3.1. Matrix-vector and matrix-matrix products. For a matrixA, we can express it as a
stack of row vectors ai or column vectors aj , where i, j = 1, . . . , d. As an example, for
d = 3, we have:

A =

− a1 −
− a2 −
− a3 −

 =

 | | |
a1 a2 a3

| | |

 .

We define the Frobenius inner product in M as

(A,B)F = A : B = A ◦B :=
∑
ij

aijbij =
∑
i

ai · bi =
∑
j

aj · bj ,

which leads to the Frobenius norm ‖ · ‖F of a matrix. Here, ◦ denotes the Hadamard
product (the entry-wise product), and in MATLAB, this operation is .*. We extend this to
the sum of the cross product of column vectors as

A(·×)B =

d∑
i=1

ai × bi.

The matrix-vector product Ab can be interpreted as the linear combination of column
vectors

∑
i bia

i or as the inner product of b with the row vectors ai ofA. We define

A · b := Ab =
∑
i

bia
i =

a1 · b
a2 · b
a3 · b

 ,

and

A× b :=

a1 × b
a2 × b
a3 × b

 .

When the vector is to the right of the matrix, the operation is defined row-wise:

row-wise A · b, A× b,
We also define the dot product and the cross product from the left

column-wise b ·A, b×A,
which is applied column-wise to the matrixA. Specifically,

b ·A = bᵀA = (b · a1 b · a2 b · a3)

and

b×A =

 | | |
b× a1 b× a2 b× a3

| | |

 .

For clarity, we use the same notation b for both row and column vectors.
The order in which row and column products are performed does not affect the outcome,

leading to the associative rule for triple products:

b×A× c := (b×A)× c = b× (A× c).
Similar rules apply for b · A · c and b · A × c, allowing us to omit parentheses without
ambiguity.

TENSOR CALCULUS 5

Another advantage is the ability to handle the transpose of products easily. For the
transpose of the product of two entities, we transpose each one, reverse their order, and
add a negative sign if it involves the cross product. For instance, (b×A)ᵀ = −Aᵀ × bᵀ.

For two column vectors u and v, the tensor product u⊗ v := uvᵀ results in a matrix,
also known as the dyadic product uv := uvᵀ, using a more concise notation (omitting one
ᵀ). The interaction of uv with another vector x in row-wise and column-wise products
affects the adjacent vector:

x · (uv) = (x · u)vᵀ, (uv) · x = u(v · x),

x× (uv) = (x× u)v, (uv)× x = u(v × x).

3.2. Trace. For a d× d matrixA, the trace is the sum of its diagonal entries:

tr(A) =

d∑
i=1

aii =

d∑
i=1

λi(A).

The latter equality indicates that the trace equals the sum of the eigenvalues, counted with
their multiplicities. This relationship can be easily proved using the characteristic polyno-
mial ofA.

Thus, if two matrices are similar, meaning A = C−1BC, then tr(A) = tr(B). Since
AB andBA have the same spectrum (aside from potential differences in zero eigenvalues
due to differing sizes), it follows that

tr(AB) = tr(BA).

From this, we deduce that the trace remains invariant under cyclic permutations of the
product of matrices. For symmetric matrices, this invariance extends to any permutation of
the matrices involved.

However, the trace operation does not distribute over the product of matrices in a
straightforward manner, except in the case of the tensor product:

tr(AB) 6= tr(A) tr(B), but tr(A⊗B) = tr(A) tr(B).

The Frobenius inner product in M, using the trace operator, is expressed as

(A,B)F = A : B = tr(BᵀA) = tr(AᵀB).

3.3. An orthogonal decomposition. Consider the exact sequence

(3) 0→ T ↪→M tr−→ R,
where T denotes the subspace of traceless (or trace-free) matrices. The sequence (4) is
exact because ker(tr) = T by definition. We define a right inverse of tr as:

I/d : R→M, p→ pI/d.

Here the scaling d−1 is introduced as a normalization since (I, I)F = d. The map I/d
serves as the right inverse of the trace operator tr : M → R, ensuring that tr ◦(I/d) =
tr(I)/d = id. This leads to the Helmholtz decomposition from (4)

(4) M = T⊕⊥F RI,
where ⊕⊥F indicates that the decomposition is orthogonal under the (·, ·)F inner product.

By reversing the composition of tr and I/d, we obtain the orthogonal projection to
the subspace RI in the F -product. We define PR : M → RI through the operation
PR = I/d ◦ tr. The projection property is confirmed as

(5) (PRσ, pI)F = tr(σ)p = (σ, pI)F , ∀p ∈ R.

6 LONG CHEN

The orthogonal complement (I − PR)σ ∈ T, representing the orthogonal projection
onto T, is referred to as the deviation of σ and denoted by σD.

We can thus summarize this orthogonal decomposition with respect to (·, ·)F as

σ = (I − PR)σ + PRσ = σD + tr(σ)Id/d.

In this decomposition, the volumetric stress tensor PRσ primarily affects the volume of the
stressed body, whereas the stress deviator tensor σD influences its shape.

3.4. Skew-symmetric matrices and the cross product. When d = 3, we can establish
an isomorphism between R3 and the space K of anti-symmetric matrices. This is achieved
by defining the mapping [·]× : R3 → K as

[ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , for any ω =

ω1

ω2

ω3

 ∈ R3.

Its inverse map is denoted as vskw : K → R3, which satisfies [vskw(Z)]× = Z for
Z ∈ K, and vskw([ω]×) = ω for ω ∈ R3. The notation [·]×, sometimes denoted by
mskw, is favored here to highlight its connection to the cross product of vectors. For any
two vectors in R3, the following identity holds

u× v = [u]×v,

where the right side is a standard matrix-vector product. It is also shown that

[u× v]× = [u]×[v]× − [v]×[u]×,

indicating that the commutator of skew-symmetric 3× 3 matrices corresponds to the cross
product of vectors. Therefore, [·]× maintains the Lie algebra structure between R3 and K.

In the case of d = 2, where dimK = 1, we define [·]× : R→ K as

[ω]× =

(
0 −ω
ω 0

)
.

One can embed R into R3 by considering the vector (0, 0, ω)ᵀ, then apply [·]×, and finally,
by removing the zero row and columns, truncate the resulting matrix to a 2× 2 matrix.

3.5. Another orthogonal decomposition. The decomposition

M = S⊕⊥F K

constitutes an orthogonal decomposition under the (·, ·)F inner product. For any matrix
B ∈M, this decomposition can be expressed as

B = sym(B) + skw(B) :=
1

2
(B +Bᵀ) +

1

2
(B −Bᵀ).

The skew-symmetric component can also be represented in terms of the cross product:

(6) skw(B) =
1

2
[I(·×)B]×.

By contrast, the trace of a matrix is derived from the inner product with the identity matrix:

tr(B) = I : B.

This delineation illustrates how every matrix in M can be uniquely decomposed into a
symmetric part, which characterizes the stretching or compression aspects, and an anti-
symmetric part, which characterizes the rotational aspects of the transformation repre-
sented by the matrix.

TENSOR CALCULUS 7

4. FORMULAE INVOLVING DIFFERENTIAL OPERATORS

In the context of function spaces C1(Ω), C1(Ω) ⊗ Rd, and C1(Ω) ⊗M, we explore
the interplay between differential operators and matrix operations. The Hamilton operator
∇ = (∂1, ∂2, ∂3)ᵀ is regarded as a column vector, facilitating our discussion primarily in
three dimensions d = 3. For d = 2, a 2-D vector (u1(x1, x2), u2(x1, x2))ᵀ is embedded
into R3 as (u1(x1, x2), u2(x1, x2), 0)ᵀ to maintain consistency in representation.

4.1. Gradient and Symmetric Gradient. For a scalar function v ∈ C1(Ω), the gradient
∇v is represented as a column vector and Dv as a row vector

∇v =

∂1v
∂2v
∂3v

 , Dv = (∇v)ᵀ = (∂1v, ∂2v, ∂3v).

For a vector function u = (u1, u2, u3)ᵀ, standard operations such as curlu = ∇ × u
and divu = ∇ · u are applied to delineate various aspects of vector fields.

The gradient of a vector u manifests as a matrix

Du = (∂jui) =

Du1

Du2

Du3

 = u∇ = (∇uᵀ)ᵀ,

where the representation leverages the dyadic product uv := uvᵀ for clear exposition.
The symmetric gradient of a vector function u is defined as

∇su =
1

2
(∇u+ (∇u)ᵀ) =

1

2
(u∇+∇u),

utilizing the dyadic product to underscore the symmetry within the operation. Within the
realm of elasticity,∇su is often referred to by ε(u) or def(u).

Using the cross product, we arrive at the identity

(7) skw(Du) =
1

2
[∇× u]×.

This allows us to express the decomposition for the matrix Du as

(8) Du = ∇su+
1

2
[∇× u]×.

In 2D, treating (u1(x1, x2), u2(x1, x2))ᵀ as (u1(x1, x2), u2(x1, x2), 0)ᵀ, the operation
∇× u simplifies to

rotu := ∂1u2 − ∂2u1,

and the decomposition (9) adjusts to

(9) Du = ∇su+
1

2
rotu

(
0 −1
1 0

)
.

Given that ker(grad) = c and ker(D) = c ∈ R3, we establish a relation between
ker(∇s) and the anti-symmetric space K

(10) ker(∇s) = {Zx+ c, Z ∈ K, c ∈ R3} = {ω × x+ c, ω, c ∈ R3}.
A basis for ker(∇s) is readily derived from a basis of R3 and dim ker(∇s) = 6 for d = 3.
In d = 2, K ∼= R, and the cross product ω × x equates to ωe1 × (x; 0) = ω(−y, x)ᵀ,
signifying a 90◦ counter-clockwise rotation. Thus ker(∇s) can be determined by ω ∈
R, c ∈ R2 and dim ker(∇s) = 3 for d = 2.

8 LONG CHEN

The application of differential operators div and curl to a vector function u translates
to operations on the matrix function Du as follows:

divu = ∇ · u = (I · ∇) · u = tr(Du) = tr(∇su),

curlu = ∇× u = (I ×∇)u = [∇]×u = vskw(skw(Du)).

The following identity

(11) 2 div∇su = ∆u+ grad divu

can be proved as follows: for k = 1, 2, . . . , d

(div 2∇su)k =

d∑
i=1

∂i(∂iuk + ∂kui) = ∆uk + ∂k(divu).

The differential operators∇s, grad , and div interrelate as:

tr∇s(u) = divu, div(pI/d) = grad p,

which is demonstrable through straightforward calculation and illsutrated in the following
diagram.

H1(Ω,Rd)

div∇s

L2(Ω,S)
tr

L2(Ω)

L2(Ω,Rd)

graddiv

H(div,Ω,S)
I/d

H1(Ω)

FIGURE 1. Relation of differential operators and trace operator

4.2. Differentiation of matrix functions. When engaging with matrix-vector operations
using the Hamilton operator ∇, we encounter differentiation operations that can be classi-
fied as column-wise or row-wise. Column-wise differentiations include∇ ·A and∇×A,
while row-wise differentiations involve A · ∇ and A × ∇. To align with conventional
notation, where differentiation is applied following the ∇ symbol, a more standardized
representation:

A · ∇ := (∇ ·Aᵀ)ᵀ, A×∇ := −(∇×Aᵀ)ᵀ.

By repositioning the differential operator to the right, the notation is simplified, allowing
formal application of the transpose rule for matrix-vector products.

In scholarly texts, differential operations on matrices, especially in the context of ten-
sors, are typically applied in a row-wise manner. To distinguish this from the ∇ notation,
we define the following operators in letters:

gradu := u∇ᵀ = (∂jui) = (∇u)ᵀ,

curlA := −A×∇ = (∇×Aᵀ)ᵀ,

divA := A · ∇ = (∇ ·Aᵀ)ᵀ.

It is important to recognize that the transpose operator ᵀ plays a role for tensors, and
notably, gradu is distinct from ∇u, curlA differs from both ∇ × A and A × ∇, and
divA is not equivalent to∇·A. For symmetric tensors, however, we observe that divA =
(∇ ·A)ᵀ and curlA = (∇×A)ᵀ.

TENSOR CALCULUS 9

4.3. Integration by parts. Integration by parts is a fundamental theorem in calculus that
allows the transformation of integrals over a domain to integrals over its boundary.

The abstract form of integration by parts for tensors and vectors, assuming L(·) repre-
sents a linear operation, is expressed as:∫

∂V

L(n, ·) dS =

∫
V

L(∇, ·) dx.

Here, the unit outward normal vector n on the boundary ∂V of a volume V is substituted
by the Hamilton operator (or gradient operator)∇. The component form of this equation,∫

∂V

L(ni, ·) dS =

∫
V

L(∂i, ·) dx,

proves more practical when dealing with mixed products of vectors.
To illustrate this concept with a simple example, consider verifying the following:∫

∂V

σn dS =

∫
V

σ∇ dx =

∫
V

divσ dx,

where it is important to remember that the div operator is applied row-wise to the stress
tensor σ. This identity demonstrates how the force exerted by a stress field σ over the
boundary ∂V of a volume V translates to the divergence of σ throughout the volume V .
Such principles underlie the mathematical formulations of physical laws, including those
governing fluid dynamics, elasticity, and electromagnetism.

4.4. An example in linear elasticity. This example shows how the symmetry of the stress
tensor σ comes from the balance equations. Starting with the balance of forces and mo-
ments equations: ∫

V

f dx+

∫
∂V

σndS = 0 for all V ⊂ Ω,(12) ∫
V

f × x dx+

∫
∂V

(σn)× x dS = 0 for all V ⊂ Ω.(13)

Using the integral by parts and let V → {x}, we get from (13) that divσ + f = 0.
Integration by parts implies∫

∂V

(x× σ) · ndS =

∫
V

(x× σ) · ∇ dx.

By the product rule of differentiation,

∂i(x× σi) = x× ∂iσi + ∂ix× σi.

As
∑

i ∂iσ
i = divσ, ∑

i

x× ∂iσi = x× (divσ)

which cancel out with x×f . For the second term, expand x =
∑
xie

i and thus ∂ix = ei.
Consequently [∑

i

ei × σi

]
×

= [I(·×)σ]× = 2 skw(σ).

Therefore
∑

i e
i × σi = 0 implies skw(σ) = 0, i.e., σ is symmetric.

10 LONG CHEN

As an exercise, the reader is encouraged to prove that: for a symmetric matrix function
σ and vector function v

(14) −
∫

Ω

divσ · v dx =

∫
Ω

σ : ∇sv dx−
∫
∂Ω

(σn) · v dS.

	1. Tensors
	1.1. Definition
	1.2. Symmetric tensor
	1.3. Differential forms

	2. Change of Coordinates
	3. Structure of the Matrix Space
	3.1. Matrix-vector and matrix-matrix products
	3.2. Trace
	3.3. An orthogonal decomposition
	3.4. Skew-symmetric matrices and the cross product
	3.5. Another orthogonal decomposition

	4. Formulae Involving Differential Operators
	4.1. Gradient and Symmetric Gradient
	4.2. Differentiation of matrix functions
	4.3. Integration by parts
	4.4. An example in linear elasticity

