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Abstract. We consider a standard Adaptive Edge Finite Element Method
(AEFEM) based on arbitrary order Nédélec edge elements, for three-dimensional

indefinite time-harmonic Maxwell equations. We prove that the AEFEM gives

a contraction for the sum of the energy error and the scaled error estimator, be-
tween two consecutive adaptive loops provided the initial mesh is fine enough.

Using the geometric decay, we show that the AEFEM yields the best-possible

decay rate of the error plus oscillation in terms of the number of degrees of
freedom. The main technical contribution of the paper is in the establishment

of a quasi-orthogonality and a localized a posteriori error estimator.

1. Introduction

Let Ω be a bounded and Lipschitz domain in R3 with a connected boundary ∂Ω
and unit outward normal n∂Ω. We consider the following classical time-harmonic
Maxwell equations:

∇× (∇× u)− ω2u = g in Ω,(1.1)

u× n∂Ω = 0 on ∂Ω,(1.2)

where u is the electric field, the real and positive constant ω is a wave number
of the electromagnetic wave, g ∈ L2(Ω) is a given function related to the imposed
current sources. The boundary condition (1.2) is chosen for simplicity of exposition.
Our results can easily be generalized to other types of boundary conditions. In
order to have a well-posed problem, we assume that ω2 is not an eigenvalue of the
differential operator L := ∇× (∇×). Furthermore, we assume that ∇ · g ∈ L2(Ω);
this represents the charge density in electromagnetics (see [29], Section 1.2).

Finite element methods based on Nédélec edge elements [33, 34] are one of the
most popular choices for the numerical computation of Maxwell equations. In many
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applications, the solution of (1.1) and (1.2) presents strong singularities and an
adaptive edge finite element method (AEFEM) is needed to capture the singularity
in an efficient way.

In this paper, we are interested in the theoretical understanding of the adaptive
edge finite element methods for time-harmonic Maxwell equations. We shall prove
the convergence and optimality of the following standard adaptive procedure using
edge elements:

(1.3) SOLVE → ESTIMATE → MARK → REFINE.

(The precise definition of the algorithm can be found in §2). In recent years,
mathematicians have started to prove the convergence and optimal complexity of
the adaptive procedure in the form of (1.3) [15, 31, 32, 6, 39, 8]. We refer to [44]
for an introduction to the theory of adaptive finite element methods.

For Maxwell equations, the convergence analysis of adaptive procedure is estab-
lished for the two- and three-dimensional eddy currents equations in [7] and [22],
respectively. In these works, the convergence analysis relied on the so-called inte-
rior node property and an extra marking for oscillation which both seem to be not
necessary in practice.

In this paper, we shall follow the state-of-the-art convergence theory [8] to prove
the convergence without interior node property and extra marking for oscillation,
and, more importantly, to establish the quasi-optimal convergent rate of the AE-
FEM. Technically speaking the main contribution of this paper is to establish
two important ingredients used in the framework developed in [8], namely quasi-
orthogonality and a localized upper bound. We stress that the extension of the
general convergence theory to the time-harmonic Maxwell equation is not straight-
forward. Both the quasi-orthogonality and localized upper bound require highly
non-trivial techniques.

More precisely, this paper’s contributions include

(1) an analysis of the indefinite time-harmonic Maxwell equations using the
approach for non-symmetric elliptic equations in [43, 25]. We emphasize
that in our case, the L2 estimate is much more difficult than that of elliptic
equations since the standard duality approach does not work. We adapt
the technique from Gopalakrishnan and Pasciak [16].

(2) a derivation of a quasi-optimal rate of convergence for the AEFEM. This
result seems to be the first result of this type for Maxwell equations. The
crucial technique is to prove a localized upper bound. To this end, we
construct a stable and local projection operator between two consecutive
finite element spaces and use a localized regular decomposition developed
by Schöberl [37].

There still are some interesting questions that need to be further investigated.
For example, the rate of convergence in this paper is optimal restricted to isotropic
refinement (bisection grids). Anisotropic refinement might further improve the
convergence for some special cases [14]. However, it is difficult to realize a posteriori,
i.e., without knowing the asymptotic of the singularity. It should also be remarked
that the scheme is not uniform with respect to the wave number. In fact, we need
to assume that the initial grid be sufficiently fine, which seems to be necessary for
finite element approximations [27, 47, 16].
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To avoid the repeated use of generic but unspecified constants, following [42],
we shall use the following short-hand notation: x . y means x ≤ Cy, x & y
means x ≥ cy, and x h y means cx ≤ y ≤ Cy, where c and C are generic
positive constants independent of the variables that appear in the inequalities and
especially the mesh parameters. The notation Ci, with subscript, denotes specific
and important constants.

The rest of this article is organized as follows. We describe the variational
formulation of the model problem and discuss each procedure of (1.3) in §2 in detail.
We prove the convergence and optimal complexity of the AEFEM in sections 3 and
4, respectively.

2. An Adaptive Edge Finite Element Method

In this section, we shall introduce the variational formulation of the model prob-
lem and present an adaptive edge finite element method.

2.1. Variational formulation. For any open set G ⊂ R3, L2(G) or L2(G) stands
for the Hilbert space of square integrable functions or vector fields, respectively, on
G with inner product (·, ·)G, and H1(G) := {v ∈ L2(G) : ∇v ∈ L2(G)}. We also
define the spaces

H(curl;G) =
{
v ∈ L2(G)

∣∣ ∇× v ∈ L2(G)
}
,

H(div;G) =
{
v ∈ L2(G)

∣∣ ∇ · v ∈ L2(G)
}
,

equipped with norms

‖v‖curl;G =
(
‖v‖20;G + ‖∇ × v‖20;G

)1/2
, for all v ∈H(curl;G),

‖v‖div;G =
(
‖v‖20;G + ‖∇ · v‖20;G

)1/2
, for all v ∈H(div;G),

respectively, where ‖ · ‖0;G := (·, ·)1/2
G denotes the norm of space L2(G) or L2(G).

Especially, we define H1
0 (G) := {u ∈ H1(G), u|∂G = 0} and H0(curl;G) = {u ∈

H(curl;G),n∂G × u = 0 on ∂G in the trace sense}, where n∂G denotes the unit
outward normal of the boundary ∂G of domain G. For simplicity of notation, when
G = Ω, it will be omitted in the subscript.

The variational formulation of equations (1.1) and (1.2) is: find u ∈H0(curl; Ω),
such that

â(u,v) = (g,v), for all v ∈H0(curl; Ω),(2.1)

where the bilinear form

â(u,v) := (∇× u,∇× v)− ω2(u,v).(2.2)

We assume ω2 is not an eigenvalue of the differential operator L := ∇× (∇×).
Then the well-poseness of the variational problem (2.1) follows from the Fredholm
alternative theorem, c.f., Chapter 4 of [29]. In this case, there exists a constant
α0 > 0 depending only on Ω and the wave number ω such that the following inf-
sup conditions hold:

inf
v∈H0(curl;Ω)

sup
w∈H0(curl;Ω)

â(v,w)

‖v‖curl‖w‖curl

= inf
w∈H0(curl;Ω)

sup
v∈H0(curl;Ω)

â(v,w)

‖v‖curl‖w‖curl
= α0 > 0.
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2.2. Edge finite element methods. Nédélec [33, 34] type H(curl)-conforming
finite elements are the natural choice for discretization of the variational problem
(2.1). For each positive integer l, Pl denotes the standard space of polynomials

of total degree less than or equal to l, and P̃l denotes the space of homogeneous
polynomials of order l. For any given conforming triangulation T , the lth-order
element of the first family and second family of Nédélec elements is defined by

Vl,1(T ) :=
{
vl,1h ∈H0(curl; Ω)

∣∣∣ vl,1h |K ∈ Rl for all K ∈ T
}
,

Vl,2(T ) :=
{
vl,2h ∈H0(curl; Ω)

∣∣∣ vl,2h |K ∈ (Pl)3 for all K ∈ T
}
,

where Rl := (Pl−1)3 ⊕ {p ∈ (P̃l)
3 | p(x) · x = 0}.

To save notation, we use V(T ) for both first- and second-type Nédélec element
spaces. The lowest-order element of the first family V1,1(T ) is the simplest one,
and V1,1(T ) ⊆ V(T ) is always true.

The edge finite element methods for solving (2.1) is: find uT ∈ V(T ), such that

â(uT ,vT ) = (g,vT ), for all vT ∈ V(T ).(2.3)

The existence of the finite element solution of (2.3) has been proved provided that
the mesh size hT := maxK∈T diam(K) is sufficiently small; see Monk [27], Hiptmair
[19], and Zhong, Shu, Wittum and Xu [47]. We shall always assume that the initial
mesh size h0 := hT0 is sufficiently small, such that (2.3) is well-posed. Namely,
there exists a constant α1 > 0, such that for all T ∈ C (T0), where C (T0) is a class
of conforming triangulations refined from T0 defined in §2.3.4, the following inf-sup
conditions hold:

inf
vT ∈V(T )

sup
wT ∈V(T )

â(vT ,wT )

‖vT ‖curl‖wT ‖curl
= inf

wT ∈V(T )
sup

vT ∈V(T )

â(vT ,wT )

‖vT ‖curl‖wT ‖curl
≥ α1.

2.3. An adaptive edge finite element method. The solution of (2.1) may con-
tain strong singularities caused by various sources, such as physical domains with
non-trivial geometries, discontinuous material coefficients, and non-smooth source
terms [12, 13]. We present the following algorithm to resolve the singularity.

[uJ , TJ ] = AEFEM (T0, g, tol, θ)

AEFEM compute an approximation uJ by adaptive finite element methods.
Input: T0 initial triangulation; g data; tol stopping criteria;

θ ∈ (0, 1) marking parameter.
Output: uJ finite element approximation; TJ the finest mesh.

η = 1; k = 0;
while η ≥ tol

k = k + 1;
SOLVE equation (2.3) on Tk to get the solution uk;
ESTIMATE the error by η = η(uk, Tk);
MARK a set Mk ⊂ Tk with minimum cardinality such that

η2(uk,Mk) ≥ θ η2(uk, Tk);
REFINE element K ∈Mk and necessary elements to a conforming

triangulation Tk+1;
end
uJ = uk; TJ = Tk;
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The goal of this paper is to prove that the algorithm AEFEM will terminate in
finite steps for a given tolerance and produce a quasi-otimal approximation uJ . Our
algorithm is similar to that for second-order elliptic PDEs in [8]. It is the simplest
adaptive algorithm in the sense that no marking for oscillation and no interior node
property should be enforced in the mark and refine procedure.

In the following sections, we shall discuss each step in detail.

2.3.1. Procedure SOLVE. Given a function g ∈ L2(Ω) and a mesh T , we suppose
that the procedure uT = SOLVE(T , g) outputs the exact discrete solution uT ∈
V(T ) solving (2.3). Here, we assume that the solutions of the finite dimensional
problems can be solved accurately and efficiently. Examples of such optimal solvers
include multigrid methods [18, 2, 17, 10, 20], domain decomposition preconditioners
[1, 16], and two-grid methods [46]. We note that most of the above studies focus
on quasi-uniform grids. Multigrid methods for the H(curl) problem on adaptive
grids can be found in [21, 9].

2.3.2. Procedure ESTIMATE. For the H(curl)-system, efficient and reliable a pos-
teriori error estimators have been extensively developed and analyzed in [4, 5, 10,
28, 37]. Here, we shall use a residual-type a posteriori error estimator similar to
that in [37]. Given a conforming triangulation T , let F(T ) denote the set of the
interior faces of T with a fixed orientation for each face. For a face f ∈ F(T )
shared by two elements K1 and K2, i.e., ∂K1 ∩ ∂K2 = f with the orientation of
f being consistent with that of K1, we define the inter-element jumps of a scalar
function w across f as

[|w|] = w|K1 − w|K2 .

For K ∈ T , f ∈ F(T ) and vT ∈ V(T ), we define the following element-wise
residuals and face-wise jump residuals associated with interior faces as

R1(vT )|K := (g −∇× (∇× vT ) + ω2vT )|K ,
J1(vT )|f := [|(∇× vT )× nf |],
R2(vT )|K := ∇ · (g|K + ω2vT |K),

J2(vT )|f := [|(g + ω2vT ) · nf |].

The error indicator for vT ∈ V(T ) on K ∈ T is given by

η2
T (vT ,K) := h2

K

(
‖R1(vT )‖20;K + ‖R2(vT )‖20;K

)
+

∑
f∈K∩F(T )

hK
(
‖J1(vT )‖20;f + ‖J2(vT )‖20;f

)
,

where |K| is the volume of K and hK = |K|1/3 measures the size of the element K.
For any subset M⊆ T , we define

η2
T (vT ,M) =

∑
K∈M

η2
T (vT ,K).

When M = T , we simplify the notation as η(vT , T ).
We assume that, given a triangulation T and the corresponding discrete solution

uT ∈ V(T ) of (2.3), the procedure ESTIMATE outputs the indicators ηT (vT ,K)
for all K ∈ T .
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2.3.3. Procedure MARK. In the selection of elements, we rely on the Dörfler mark-
ing, also known as bulk criterion [15]. Given a triangulation T , a set of indica-
tors {ηT (uT ,K)}K∈T , and a marking parameter θ ∈ (0, 1), we suppose that the
procedure MARK outputs a subset of marked elements M ⊂ T with minimal
cardinality, such that

(2.4) η2
T (uT ,M) ≥ θη2(uT , T ).

2.3.4. Procedure REFINE. We use bisection methods for the local mesh refinement.
In short, bisection methods will divide one simplex into two simplicies of equal size
in a proper way such that the meshes obtained by bisection are shape regular.

Starting from an initial triangulation T0, we denote by

C (T0) = {T : T is conforming and refined from T0},
and T1 ≤ T2 if T2 is a refinement of T1.

For any Tk ∈ C (T0) and a subsetMk ⊂ Tk of marked elements, we suppose that
procedure REFINE outputs a conforming triangulation Tk+1 ∈ C (T0), i.e.,

Tk+1 = REFINE(Tk,Mk).

To generate Tk+1, we first subdivide the marked elements in Mk to get new trian-
gulation T ′k+1. In general, T ′k+1 might have hanging nodes; therefore, we have to
refine additional elements in Tk \Mk to obtain a conforming triangulation Tk+1.

Throughout this paper, we shall impose two conditions on the local refinement:
(B1) C (T0) is shape regular;
(B2) There exists a constant C0 depending on the shape regularity of T0, such that

#Tk+1 −#T0 ≤ C0

k∑
j=0

#Mj .(2.5)

Result (2.5) for newest vertex bisection in 2-D was first proved by Binev, Dah-
men, and DeVore [6] based on an initial labeling of Mitchell [26]. It was generalized
to high dimensions by Stevenson [40] using a Kossaczkỳ-type initial labeling [24].

3. Convergence of the AEFEM

In this section, we prove that the sum of the energy error and the scaled error
estimator, between two consecutive adaptive loops, is a contraction. The difficulty is
to establish a quasi-orthogonality property for the indefinite time-harmonic Maxwell
equations.

3.1. Quasi-orthogonality. We define two auxiliary bilinear forms

a(v,w) = (∇× v,∇×w) + (v,w),

N(v,w) = −(ω2 + 1)(v,w).

By definition â(v,w) = a(v,w) + N(v,w). The bilinear form a(·, ·) forms the
standard inner product of the H(curl; Ω) space, and N(·, ·) is a lower-order part
in view of the differential operator.

Lemma 3.1. For T , T∗ ∈ C (T0) with T ≤ T∗, let uT ∈ V(T ) and uT∗ ∈ V(T∗) be
the discrete solutions of (2.3). Then for any δ0 > 0, there exists an h(δ0) depending
on the parameter ω, the domain Ω and δ0, such that, if hT ≤ h(δ0), we have

N(u− uT∗ ,uT∗ − uT ) ≤ δ0‖u− uT∗‖curl‖uT∗ − uT ‖curl.(3.1)
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The proof of the above Lemma is rather technical and will be postponed to the
next subsection. We shall use it to derive a quasi-orthogonality result.

Theorem 3.2. For T , T∗ ∈ C (T0) with T ≤ T∗, let uT ∈ V(T ) and uT∗ ∈ V(T∗)
be the discrete solutions of (2.3). Then for any δ0 > 0, there exists a constant h(δ0)
depending on the parameter ω, the domain Ω and δ0, such that, if hT ≤ h(δ0), we
have

‖u− uT ‖2curl ≤ (1 + δ0)
(
‖u− uT∗‖2curl + ‖uT∗ − uT ‖2curl

)
,(3.2)

‖u− uT∗‖2curl ≤
1

1− δ0
‖u− uT ‖2curl − ‖uT∗ − uT ‖2curl.(3.3)

Proof. Using the definitions of â(·, ·), a(·, ·) and N(·, ·), we have

‖u− uT ‖2curl = a(u− uT ,u− uT )

= a(u− uT∗ ,u− uT∗) + a(uT∗ − uT ,uT∗ − uT )

+2a(u− uT∗ ,uT∗ − uT )

= ‖u− uT∗‖2curl + ‖uT∗ − uT ‖2curl
−2N(u− uT∗ ,uT∗ − uT ).(3.4)

In the last step, we apply the Galerkin orthogonality â(u− uT∗ ,uT∗ − uT ) = 0.
Applying (3.1) and the Cauchy-Schwarz inequality in (3.4), we obtain (3.2). The

inequality (3.3) can be proved similarly.
�

3.2. Estimate for the lower-order bilinear form. For any s > 0, we define the
Sobolev space

Hs(curl; Ω) =
{
u ∈ (Hs(Ω))3 | ∇ × u ∈ (Hs(Ω))3

}
,

equipped with the norm

‖v‖Hs(curl;Ω) =
(
‖v‖2Hs(Ω) + ‖∇ × v‖2Hs(Ω)

)1/2

.

Given a triangulation T ∈ C (T0), then for any K ∈ T , the degrees of freedom for
the edge finite space V(T ) are of three types associated with edges e, faces f , and
K itself; see [33] and [34] for details. Using the above degrees of freedom, one can
define the standard interpolation ΠT to the finite element space V(T ) [33, 34, 29].
Especially, these interpolation are also termed canonical edge interpolation Πcurl

T∗
for the lowest-order element of the first family, since the degrees of freedom are only
associated with edges of the mesh. The next lemma states the interpolation error
estimate.

Lemma 3.3 (Thm. 5.41 in [29]). If v ∈Hσ(curl; Ω) with the constant 1/2 < σ ≤
1, then we have

‖v −ΠT v‖curl . hσT ‖v‖Hσ(curl;Ω).(3.5)

We define the finite element space of H1
0 (Ω) corresponding to V(T ) as follows

(3.6) S(T ) := {q ∈ H1
0 (Ω), q|K ∈ Pj , ∀K ∈ T },

where

j :=

{
l, V(T ) = Vl,1(T ),
l + 1, V(T ) = Vl,2(T ).
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It is important to notice that ∇S ⊂ V(T ). We then introduce the orthogonal
complement ∇S in V(T ) with respect to the L2 inner product: V0(T ) := {vT ∈
V(T ) | (vT ,∇qT ) = 0, ∀ qT ∈ S(T )}. We often say that the functions belonging to
V0(T ) are the discrete divergence-free functions. The following lemma shows that
the discrete divergence-free function can be well approximated by a continuous
divergence-free function. The proof can be found in, e.g, [29] (Lemma 7.6).

Lemma 3.4. For any given vT ∈ V0(T ), there exists a v ∈H0(curl; Ω) satisfying

∇× v = ∇× vT , ∇ · v = 0,

and ‖v − vT ‖0 . hσT ‖∇ × vT ‖0.

with a constant σ ∈ (1/2, 1] depending only on Ω. If Ω is smooth or convex, then
σ = 1.

Now we are in a position to prove Lemma 3.1.

Proof of Lemma 3.1. We apply the discrete Helmholtz decompositions [29] to uT∗−
uT : there exist rT∗ ∈ V0(T∗) and pT∗ ∈ S(T∗), such that

uT∗ − uT = rT∗ +∇pT∗ ,(3.7)

which yields

∇× rT∗ = ∇× (uT∗ − uT ).(3.8)

Note that the Galerkin orthogonality â(u − uT∗ ,v∗) = 0 holds for any vT∗ ∈
V(T∗); in particular, by choosing vT∗ = ∇pT∗ , we obtain the L2-orthogonality

(u− uT∗ ,∇pT∗) = 0.(3.9)

Using the definition of bilinear form N(·, ·), (3.7), (3.9), and the Cauchy-Schwarz
inequality, we have

N(u− uT∗ ,uT∗ − uT ) = −(ω2 + 1)(u− uT∗ ,uT∗ − uT )

= −(ω2 + 1)(u− uT∗ , rT∗ +∇pT∗)
. ‖u− uT∗‖curl‖rT∗‖0.(3.10)

For rT∗ in (3.7), using Lemma 3.4, then there exists r ∈ H0(curl; Ω) which
satisfies

∇× r = ∇× rT∗ , ∇ · r = 0,(3.11)

and

‖r − rT∗‖0 . hσT∗‖∇ × rT∗‖0.(3.12)

Using (3.8) in (3.12), we have

‖r − rT∗‖0 . hσT∗‖∇ × (uT∗ − uT )‖0.(3.13)

Next, we use a duality argument to obtain the L2 estimate of r. Let Ψ ∈
H0(curl; Ω) be the solution to the following variational problem

(3.14) â(v,Ψ) = (r,v), for all v ∈H0(curl; Ω).

Noting that ∇ · r = 0, and taking v = ∇q with some q ∈ H1
0 (Ω) in (3.14), we have

ω2(∇q,Ψ) = 0.(3.15)
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Furthermore, we have the following regularity result (see [30]): for some constant
σ ∈ (1/2, 1]

‖Ψ‖Hσ(curl;Ω) . ‖r‖0.(3.16)

Combining (3.8) with (3.11), we have

∇× (r − (uT∗ − uT )) = 0.(3.17)

Noting that r− (uT∗−uT ) ∈H0(curl; Ω) and using (3.17), then from the exact
sequence property, there exists a p ∈ H1

0 (Ω), such that

r − (uT∗ − uT ) = ∇p.(3.18)

Using (3.18) and (3.15), we have

â(r − (uT∗ − uT ),Ψ) = â(∇p,Ψ) = −ω2(∇p,Ψ) = 0.(3.19)

Now, let v = r in (3.14), then using (3.19), Galerkin orthogonality, the Cauchy-
Schwarz inequality, (3.16), and (3.5), we have

‖r‖20 = â(r,Ψ) = â(r − (uT∗ − uT ),Ψ) + â(uT∗ − uT ,Ψ)

= â(uT∗ − uT ,Ψ) = â(uT∗ − uT ,Ψ−ΠTΨ)

. ‖uT∗ − uT ‖curl‖Ψ−ΠTΨ‖curl

. hσT ‖uT∗ − uT ‖curl‖r‖0.

Thus, we have proved that

‖r‖0 . hσT ‖uT∗ − uT ‖curl.(3.20)

Using the triangle inequality, (3.13) and (3.20), and noting that hT∗ ≤ hT , we
have

‖r∗‖0 ≤ ‖r − rT∗‖0 + ‖r‖0 ≤ ChσT ‖uT∗ − uT ‖curl.(3.21)

Substituting (3.21) into (3.10), and choosing h(δ0) sufficiently small such that
Ch(δ0)σ ≤ δ0, then for all hT < h(δ0), we obtain the desired estimate (3.1). �

3.3. Convergence. We first recall three main ingredients to establish the con-
vergence of AEFEM: a quasi-orthogonality, an upper bound of a posteriori error
estimator, and the reduction of the error estimator.

Recalling the quasi-orthogonality: for any given δ0 > 0, when the initial grid is
sufficiently fine, for T ≤ T ∗, we have

(3.22) ‖u− uT∗‖2curl ≤
1

1− δ0
‖u− uT ‖2curl − ‖uT∗ − uT ‖2curl.

The following a posteriori upper bound can be obtained by adapting the results
in Schöberl [37] to indefinite case easily.

Lemma 3.5. Let u ∈ H0(curl; Ω) be the solution of (2.1), T ∈ C (T0), and
uT ∈ V(T ) be the discrete solutions of (2.3). Then there exists a constant C1 > 0
depending only on the shape regularity of T and the wave number ω, such that

‖u− uT ‖2curl ≤ C1η
2(uT , T ).

The reduction of the error estimator between two consecutive triangulations can
be proved using similar arguments for the elliptic case [8] and also skipped here.



10 LIUQIANG ZHONG, LONG CHEN, SHI SHU, GABRIEL WITTUM, AND JINCHAO XU

Lemma 3.6. There exists β ∈ (0, 1) depending only on the shape regularity of Tk
and the parameter θ used in the marking strategy, such that

η2(uk+1, Tk+1) ≤ β η2(uk, Tk) + Cβ‖uk+1 − uk‖2curl,
where the constant Cβ > 1 depends only on β.

Now we consider the contraction of the summation of error and a scaled error
indicate. Similar to elliptic equations, each term of the summation may not strictly
decay. The corresponding discussion for elliptic equations can be found in [32].

Theorem 3.7. Assume the initial mesh size h0 is fine enough, and for a given
θ ∈ (0, 1), let {Tk,uk}k≥0 be a sequence of meshes, and finite element solutions
produced by the AEFEM. Then there exists constants ρ ∈ (0, 1), and δ ∈ (0, 1),
depending only on θ and the shape regularity of T0, such that

‖u− uk+1‖2curl + ρ η2(uk+1, Tk+1) ≤ δ
(
‖u− uk‖2curl + ρ η2(uk, Tk)

)
.

Proof. We fix a β in Lemma 3.6 and let ρ := C−1
β ∈ (0, 1). We then choose δ0

satisfying

(3.23) δ0 < 1−
(
1 + C−1

1 ρ (1− β)
)−1

,

and let

δ =
(1− δ0)−1C1 + ρβ

C1 + ρ
.(3.24)

By the choice of δ0, we have δ0, δ ∈ (0, 1) and δ < (1− δ0)−1.
By adding ρ η2(uk+1, Tk+1) to both sides of (3.22), then splitting ‖u − uk‖2curl

and applying Lemma 3.6 to cancel ‖uk+1 − uk‖2curl, we obtain

‖u− uk+1‖2curl + ρ η2(uk+1, Tk+1)

≤ 1

1− δ0
‖u− uk‖2curl − ‖uk+1 − uk‖2curl + ρ η2(uk+1, Tk+1)

≤ δ‖u− uk‖2curl + (
1

1− δ0
− δ)‖u− uk‖2curl + ρβη2(uk, Tk)

≤ δ
(
‖u− uk‖2curl +

[(1− δ0)−1 − δ]C1 + ρβ

δ
η2(uk, Tk)

)
.(3.25)

In the last step, we apply the upper bound (c.f. Lemma 3.5) to ‖u− uk‖2curl.
Noting that by the definition (3.24)

ρ =
[(1− δ0)−1 − δ]C1 + ρβ

δ
,

we then obtain

‖u− uk+1‖2curl + ρ η2(uk+1, Tk+1) ≤ δ
(
‖u− uk‖2curl + ρ η2(uk, Tk)

)
,

which completes the proof. �

By recursion, we get the geometric decay of the error plus the estimator.

Corollary 3.8. Under the hypotheses of Theorem 3.7, we have

‖u− uk‖2curl + ρ η2(uk, Tk) ≤ Ĉ0δ
k,

where the constant ρ and δ are given in Theorem 3.7, and Ĉ0 := ‖u − u0‖2curl +
ρ η2(u0, T0). Thus the algorithm AEFEM will terminate in finite steps.
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4. A stable and local projection operator

To prepare for the the quasi-optimality analysis of our AEFEM in this section,
we shall construct a stable and local projection operator between two consecutive
finite element spaces, which is the key to establish a localized upper bound. In our
construction we shall use the following operators:

(1) the cut-off operator χR : V(T∗)→ V(R̃);
(2) the canonical edge interpolation Πcurl

T∗ based on path integrals along edges;

(3) the Schöberl quasi-interpolation ScurlT : V(T∗)→ V(T );
(4) the Scott-Zhang quasi-interpolation QT : H1

0 (Ω) 7→ U(T ), where U(T ) ⊂
H1

0 (Ω) is the continuous and linear finite element space for mesh T .

None of the above operators can achieve the locality (local projection) and sta-
bility simultaneously. For example, the canonical interpolation operator and Scott-
Zhang operator can preserve the finite element function (and thus are local pro-
jection operators) but they can only apply to smoother functions and not stable
in H(curl) norm. Schöberl’s quasi-interpolation is local and stable but cannot pre-
serve finite element functions. There exist operators [36, 3, 11] which are stable
and (global) projection but the locality is lost in the construction.

The idea of our construction is as follows. We decompose a function v ∈ V(T∗)
into smooth parts (in H1) and a non-smooth part (but of high frequency). For
smooth parts, we apply Scott-Zhang quasi-interpolation, and for high frequency
part, we apply cut-off operator and Schöberl interpolation. The main result is
summarized below.

Theorem 4.1. For T , T∗ ∈ C (T0) with T ≤ T∗, let R = RT→T∗ = {K ∈
T , but K /∈ T∗} be the set of refined elements from T to T∗, R̃ = R̃T→T∗ = {K ∈
T |K ∩ K ′ 6= ∅ for some K ′ ∈ R}. There exists a quasi-interpolation operator
IT : V(T∗) 7→ V(T ) such that, for v ∈ V(T∗),

(1) IT is a local projection, i.e. IT v|T \R̃ = v|T \R̃.

(2) IT is stable in the H(curl)-norm, i.e.,

‖IT v‖curl . ‖v‖curl.

4.1. Various Interpolation Operators. In the following, we introduce several
existing operators along with their properties.

4.1.1. The cut-off operator. Let {φ∗i } be the basis functions for the space V(T∗).
Then for any given v ∈ V(T∗), we have

v =
∑
i∈R∗

α∗iφ
∗
i +

∑
i/∈R∗

αiφi,

where R∗i is the index set such that φ∗i /∈ V(T ), namely the set for the new bases
added or changed by the refinement. We define

χRv =
∑
i∈R∗

α∗iφ
∗
i .

That is we simply cut off parts of the function values in the unrefined region T \R̃,
i.e., χRv|T \R̃ = 0 and χRv|R = v. Obviously v − χRv ∈ V(T ).
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Since the basis decomposition is L2 stable [19], we get the stability of χR in the
L2-norm

‖χRv‖20 .
∑
i∈R∗

‖v∗i ‖20 ≤ ‖v‖20.

However, χR is not stable in H(curl)-norm due to the existence of the low fre-
quency. As a simple example, we consider two hat basis functions in an interval
with size h. Let v = φ1 + φ2 = 1 and thus v′ = 0. Suppose χRv = φ1. Then
(χRv)′ = 1/h and ‖(χRv)′‖0 cannot be bounded by ‖v‖0.

The cut-off operator χR will be stable restricted to high frequency. Let h be the
size function of the triangulation T∗. A function ṽ ∈ V(T∗) is of high frequency if
‖h−1ṽ‖0 . ‖ṽ‖curl. Then using the inverse inequality, the stability of χR in the
L2-norm, and the definition of high frequency, we have

‖χRṽ‖curl . ‖h−1χRṽ‖0 . ‖h−1ṽ‖0 . ‖ṽ‖curl.

4.1.2. Canonical edge interpolation. For a general conforming triangulation T , let
E(T ) be the set of interior edges of the mesh T . We can define the canonical edge
interpolation Πcurl

T v ∈ V1,1(T ) for a smooth enough function v as

Πcurl
T v =

∑
e∈E(T )

(∫
e

v · ds
)
φe,

where φe is the edge element basis function associated with the edge e.
The canonical edge interpolation Πcurl

T have several nice properties: it is a locally
defined projection and satisfies the commuting diagram property [19, 29]. The main
constraint is that it is not stable in H(curl)-norm. Indeed it is even not well defined
for H(curl) functions.

It can however be shown that Πcurl
T is well defined and stable in H(curl)-norm

restricted to the continuous and piece-wise linear finite element space U3(T ) (see
Section 3.6 of [19] or Theorem 5.41 [29]):

(4.1) ‖Πcurl
T q‖curl . ‖q‖curl, for all q ∈ U3(T ).

4.1.3. Schöberl quasi-interpolation. A sequence of quasi-interpolations SDT (D =
grad, curl,div) are constructed in [35] with the following nice properties:

(1) SDT is well defined for L2 functions and stable in L2-norm.
(2) It commutes with differential operators: curlScurlT = Sdiv

T curl.
(3) It is locally defined. Their degrees of freedom are only associated with the

local enlarged patch of edges or faces of the mesh.

Note that the properties (1)–(2) implies ScurlT is also stable in H(curl)-norm by
using the following argument:

‖curlScurlT v‖0 = ‖Sdiv
T curlv‖0 . ‖curlv‖0.

The main drawback of ScurlT is that it is not a projection, i.e., (ScurlT )2 6= ScurlT ,
although it is locally defined. A remedy to get a stable projection is to compose
it with a right inverse; see [36, 3, 11]. But the right inverse is in general a global
operator and thus cannot preserve the function in the non-refined region.
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4.1.4. Scott-Zhang quasi-interpolation. For H1 functions, we often use the Scott-
Zhang quasi-interpolation [38].

By the definition, QT is a local projection and stable in H1-norm (see [38]):

‖QT p‖1 . ‖p‖1, for all p ∈ H1
0 (Ω).(4.2)

Similar operators QS(T ) can also be defined for high order spaces S(T ), which

given by (3.6), and still be a local projection and stable in H1-norm. More details
of constructions can be found in [38].

For vector fields, we apply the Scott-Zhang quasi-interpolation to their compo-
nents, separately, and still use the same symbol QT .

4.2. Discrete regular decomposition. Let us first assume that the continuous
and linear finite element space U(T∗) is a subspace of the edge element space V(T∗)
(which holds except for the lowest-order element of the first family V1,1(T∗) ). Then,
for any v ∈ V(T∗), we have a discrete regular decomposition [20, 44]

(4.3) v = ṽ + φ+∇p,
where ṽ ∈ V(T∗) is of high frequency and φ ∈ U3(T∗) ⊂ H1

0 (Ω) and p ∈ S(T ) ⊂
H1

0 (Ω); c.f. (3.6) for the definition of S(T ). The decomposition is stable in the
sense that

(4.4) ‖h−1ṽ‖0 + ‖φ‖1 + ‖p‖1 . ‖v‖curl.

4.3. A stable and local projection operator. For any v ∈ V(T∗), by the dis-
crete regular decomposition (4.3), we have

v = χRṽ + (ṽ − χRṽ) + φ+∇p.
We define IT v ∈ V by

IT v = ScurlT χRṽ + (ṽ − χRṽ) +QT φ+∇QS(T )p.

That is we apply Scott-Zhang interpolation to the smooth parts and the cut-off
and Schöberl interpolation to the high frequency part. Here we use the fact that
the linear finite element space U(T ) is in V(T ) and ∇S(T ) ⊂ V(T ).

The difference is

(4.5) v − IT v = (Id− ScurlT )χRṽ + (Id−QT )φ+∇(Id−QS(T ))p.

Noting that the cut-off interpolation satisfies χRṽ|T \R̃ = 0. By choosing appropri-

ate faces for each degree of freedom in the Scott-Zhang quasi-interpolation, we can
enforce (Id − QT )φ|T \R̃ = 0 and (Id − QS(T ))p|T \R̃ = 0. Therefore v − IT v is

vanished in T \R̃.
Now we prove that IT is stable in H(curl)-norm or equivalently

‖v − IT v‖curl . ‖v‖curl.
In view of (4.5), we divide our proof into three parts.

(1) For the first part, using the stability of ScurlT and the stability of χR re-
stricted to high frequency, we get

‖(Id− ScurlT )χRṽ‖curl . ‖χRṽ‖curl . ‖ṽ‖curl . ‖h−1v‖ . ‖v‖curl.
(2) For the second part, using the stability of QT (4.2) and the stability of the

decomposition (4.4), we get

‖QT φ‖curl ≤ ‖QT φ‖1 . ‖φ‖1 . ‖v‖curl.
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(3) For the third part, we only need to consider the L2-norm, since curl∇QT p =
0. Then, using (4.2) and (4.4) again, we get

‖∇QS(T )p‖0 ≤ ‖QS(T )p‖1 . ‖p‖1 . ‖v‖curl.

4.4. Lowest order edge element space. For the lowest-order element of the first
family V1,1(T∗), the discrete regular decomposition is of the form

v = ṽ + Πcurl
T∗ φ+∇p,

where v ∈ V1,1(T∗), ṽ ∈ V1,1(T∗), φ ∈ U3(T∗), p ∈ U(T∗), Πcurl
T∗ : U3(T∗) 7→

V1,1(T∗). The decomposition is stable in the sense that (4.4) holds.
As the previous case, we rewrite v as

v = χRṽ + (ṽ − χRṽ) + Πcurl
T∗ φ+∇p,

and define IT v ∈ V(T )

IT v = ScurlT χRṽ + (ṽ − χRṽ) + Πcurl
T QT φ+∇QT p.

The difference is

v − IT v = (Id− ScurlT )χRṽ +
(
Πcurl
T∗ φ−Πcurl

T QT φ
)

+∇(Id−QT )p.

The first and third components are dealt similarly as before. For the differ-
ence of the middle one, we first verify

(
Πcurl
T∗ φ−Πcurl

T QT φ
)
|T \R̃ = 0. In fact,

note that T \R̃ is a subset of non-refined region and QT is a local projection,

then we have QT φ = φ in T \R̃. Furthermore, for an edge in the non-refined

region T \R̃, the two vertices are also in the non-refined region. So the correspond-
ing line integrals and the edge basis in T∗ and T are the same and consequently(
Πcurl
T∗ φ−Πcurl

T QT φ
)
|T \R̃ = 0.

The stability follows from the triangle inequality, the stability of canonical edge
interpolation (4.1), the stability of QT (4.2), and the stability of the discrete de-
composition (4.4):

‖Πcurl
T∗ φ−Πcurl

T QT φ‖curl . ‖φ‖curl + ‖QT φ‖curl . ‖φ‖1 . ‖v‖curl.

5. Quasi-optimal cardinality of the AEFEM

In this section, we shall present the quasi-optimal cardinality of the AEFEM in
terms of degrees of freedom (DOF) by assuming certain restrictions on the initial
triangulation T0 and the marking parameter θ. The key is to establish a localized
upper bound for the difference between two finite element approximations.

5.1. Lower bound. We only use the upper bound of the error indicator (see
Lemma 3.5) in the proof of convergence; this alone ensures that the error indi-
cator η is reliable, and that any amplification η will also lead to a convergent
algorithm. The efficiency of the estimator η is important to make the optimal
complexity possible.

For any given T ∈ C (T0) and arbitrary K ∈ T , we define the oscillation of
vT ∈ V(T ) to be

osc2
T (vT ,K) = h2

K

(
‖(Id−QhK )R1(vT )‖20;K + ‖(Id−QhK )R2(vT )‖20;K

)
+

∑
f∈K∩F(T )

hf
(
‖(Id−QhK )J1(vT )‖20;f + ‖(Id−QhK )J2(vT )‖20;f

)
,
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where QhK denotes the L2 projections onto the set of piecewise (P1)3 or P1 over
K ∈ T or f ∈ F(T ), depending on the context.

Similar to the error indicator, for any subset M⊆ T , we define

osc2
T (vT ,M) =

∑
K∈M

osc2
T (vT ,K), for all vT ∈ V(T ).

When M = T , we shall simplify the notation as osc(vT , T ).
The following lemma presents a lower bound for the error indicator. This can

be proved by standard bubble function techniques [41] and simplifications of (2.3)
for some special functions; see Izsák and van der Vegt [23].

Lemma 5.1 (Thm. 2 of [23]). Let u ∈ H0(curl; Ω) be the solution of (2.1),
T ∈ C (T0), and uT ∈ V(T ) be the discrete solution of (2.3). Then there exists a
constant C2 > 0 depending only on the shape regularity of T and parameter ω, such
that

C2η
2(uT , T ) ≤ ‖u− uT ‖2curl + osc2(uT , T ).

5.2. Localized upper bound. Unlike the elliptic case, since difference between
the discrete solutions of two nested meshes only has the regularity of H(curl; Ω)
and has a large kernel, we need to treat the kernel of the curl-operator and its or-
thogonal complement separately. Therefore we need the following localized regular
decomposition of the error developed by Schöberl.

Theorem 5.2 (Thm. 1 of [37]). The Schöberl quasi-interpolation ΠS
T : H0(curl; Ω)→

V1,1(T ) satisfies the following properties: For every v ∈ H0(curl; Ω) there exist
ϕ ∈ H1

0 (Ω) and z ∈ (H1
0 (Ω))3 such that

(5.1) v −ΠS
T v = ∇ϕ+ z,

The decompositon satisfies

hK‖ϕ‖0;K + ‖∇ϕ‖0;K . ‖v‖ΩK ,
hK‖z‖0;K + ‖∇z‖0;K . ‖∇ × v‖ΩK ,

where the constants depend only on the shape of the elements in ΩK := {K ′ ∈
T ,K ′ ∩K 6= ∅}, but do not depend on the global shape of the domain Ω or the size
of ΩK .

Direct application of Schöberl’s local decomposition cannot lead to the localized
upper bound since the decomposition (5.1), ϕ and z may not vanish in the non-
refined region. We shall use our stable and local projection constructed in the
previous section first, and then apply Schöberl’s local decomposition.

Theorem 5.3. For T , T∗ ∈ C (T0) with T ≤ T∗, let R = RT→T∗ = {K ∈
T , but K /∈ T∗} be the set of refined elements from T to T∗, R̃ = R̃T→T∗ =
{K ∈ T |K ∩K ′ 6= ∅ for some K ′ ∈ R}. Let uT ∈ V(T ) and uT∗ ∈ V(T∗) be the
discrete solutions of (2.3). Then there exists a constant C3 > 0, depending only on
ω, and the domain Ω, such that

(5.2) ‖uT∗ − uT ‖2curl ≤ C3η
2
T (uT , R̃).
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Proof. Making use of the discrete inf-sup condition and Galerkin orthogonality, we
have

‖uT∗ − uT ‖curl . sup
wT∗∈V(T∗)

â(uT∗ − uT ,wT∗)
‖wT∗‖curl

= sup
wT∗∈V(T∗)

â(uT∗ − uT ,wT∗ − ITwT∗)
‖wT∗‖curl

,(5.3)

where IT is the stable and local projection operator constructed in the previous
section.

Denoted by ṽT∗ := wT∗ − ITwT∗ ∈ H0(curl,Ω). By Theorem 5.2, there exists
a Φ ∈H1

0(Ω) and a p ∈ H1
0 (Ω), such that

ṽT∗ −ΠS
T ṽT∗ = Φ +∇p(5.4)

and

(5.5) hK‖p‖0;K + ‖∇p‖0;K . ‖ṽT∗‖ΩK , hK‖Φ‖0;K + ‖∇Φ‖0;K . ‖∇ × ṽT∗‖ΩK ,

Note that ṽT∗ = 0 in T \R̃ implies p = Φ = 0 in T \R̃ by (5.5). Consequently,

(5.6) ṽT∗ −ΠS
T ṽT∗ = 0 in T \R̃.

Using the definition of ṽT∗ , Galerkin orthogonality (5.6), (5.4), the Green’s for-
mula we have

â(uT∗ − uT ,wT∗ − ITwT∗)
= â(uT∗ − uT , ṽT∗ −ΠS

T ṽT∗)

=
∑
K∈R̃

âK(uT∗ − uT ,Φ +∇p)

=
∑
K∈R̃

((
g,Φ +∇p

)
K
−
(
∇× uT ,∇×Φ

)
K

+ ω2
(
uT ,Φ +∇p

)
K

)
=

∑
K∈R̃

((
R1(uT ),Φ

)
K
−
(
R2(uT ), p

)
K

)
+

∑
f∈F(R̃)

((
J1(uT ),Φ

)
f

+
(
J2(uT ), p

)
f

)
≤

∑
K∈R̃

(
‖R1(uT )‖0;K‖Φ‖0;K + ‖R2(uT )‖0;K‖p‖0;K

)
+

∑
f∈F(R̃)

(
‖J1(uT )‖0;f‖Φ‖0;f + ‖J2(uT )‖0;f‖p‖0;f

)
. ηT (uT , R̃)‖wT∗‖curl(5.7)

In the last step, we used the trace inequality h−1
f ‖φ‖20;f . h−2

f ‖φ‖20;K + ‖∇φ‖20;K ,

hf . hK , (5.5) and (2).
The desired estimate (5.2) is a direct consequence of (5.3), and (5.7). �

5.3. Approximation class. We follow the framework recently developed by Cascón,
Kreuzer, Nochetto, and Siebert [8] for the general symmetric elliptic problem in or-
der to define an approximation class.
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We first introduce the so-called total error

ET =
(
‖u− uT ‖2curl + ρosc2(uT , T )

)1/2
.

Using the quasi-orthogonality, we can obtain a quasi-monotonicity: for T ≤ T∗,
we have

ET∗ ≤ (1− δ0)−1ET .

Now we will define an approximation class As by making use of the total error.
Let C (T0)N ⊂ C (T0) be the set of all possible conforming triangulations generated
from T0 with at most N elements more than T0:

C (T0)N := {T ∈ C (T0) | #T −#T0 ≤ N}.

We define the nonlinear approximation class As to be

As :=

{
(u, g)

∣∣ |(u, g)|As := sup
N≥N0

(NsεN ) <∞,with εN := min
T ∈C (T0)N

ET

}
.

The characterization of As is beyond the scope of this paper. The index s
characterizes the best possible approximation rate, which depends on the regularity
of the solution and data. To apply our adaptive algorithm, we do not need to know
the value of s explicitly.

5.4. Quasi-optimality. The following result is a consequence of the previous es-
timates and the fact that the AEFEM is a contraction with respect to the sum of
the energy error plus the scaled error estimator. The proof is a straight-forward
modification using the following ingredients: quasi-orthogonality, localized upper
bound, lower bound, and thus skipped here. Details can be found in [45].

Theorem 5.4 (Quasi-Optimality). Given a θ ∈ (0, θ∗) with the constant θ∗ =
ρC2

ρ+C3(1+δ0+ρC5) < 1, let u be the solution of (2.1), and let {uk, Tk}k≥0 be the

sequence of discrete solutions and meshes produced by the AEFEM. Then, if (u, g) ∈
As, the initial mesh size h0 is sufficiently small and the bisection method satisfies
the assumption (B1) and (B2), we have(

‖u− uk‖2curl + ρ osc2(uk, , Tk)
)1/2
. |(u, g)|s (#Tk −#T0)

−s
.
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