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Abstract The goal of this paper is to design optimal multi-
level solvers for the finite element approximation of second
order linear elliptic problems with piecewise constant coeffi-
cients on bisection grids. Local multigrid and BPX precondi-
tioners are constructed based on local smoothing only at the
newest vertices and their immediate neighbors. The analysis
of eigenvalue distributions for these local multilevel precon-
ditioned systems shows that there are only a fixed number
of eigenvalues which are deteriorated by the large jump. The
remaining eigenvalues are bounded uniformly with respect
to the coefficients and the meshsize. Therefore, the resulting
preconditioned conjugate gradient algorithm will converge
with an asymptotic rate independent of the coefficients and
logarithmically with respect to the meshsize. As a result, the
overall computational complexity is nearly optimal.
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1 Introduction

In this article, we construct robust multilevel preconditioners
for the finite element discretization of second order linear
elliptic equations with strongly discontinuous coefficients.
We extend corresponding results on uniform grids [58] to
locally refined grids obtained by bisection methods.

Consider the following model problem :

{ −∇ · (a∇u) = f in Ω,

u = gD on ΓD, a ∂u
∂n = gN on ΓN

(1.1)

where Ω ∈ R
d is a polygon (for d = 2) or polyhedron (for

d = 3) with Dirichlet boundary ΓD and Neumann boundary
ΓN such that ΓD ∪ ΓN = ∂Ω . The diffusion coefficient
a = a(x) is piecewise positive constant. More precisely, the
domain Ω is partitioned into M open disjoint polygonal or
polyhedral regions Ωi (i = 1, . . . , M) and

a|Ωi = ai , i = 1, . . . , M

where each ai is a positive constant. The regions Ωi (i =
1, . . . M) may possibly have complicated geometry but we
assume that they are completely resolved by an initial triangu-
lation T0. Our analysis can be carried through to more general
cases when a(x) varies moderately in each subdomain and to
other types of boundary conditions in a straightforward way.

The problem (1.1) belongs to the class of interface prob-
lems or transmission problems, which are relevant to many
applications such as groundwater flow [31], electromagnet-
ics [29], semiconductor modeling [24,33], and fuelcells [50].
The coefficients in these applications may have large jumps
across interfaces between regions with different material
properties, i.e. J (a) := maxi ai/ mini ai � 1. Due to J (a)

and the mesh size, the finite element discretization of (1.1)
is usually very ill-conditioned, which leads to deterioration
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in the rate of convergence of multilevel and domain decom-
position methods [3,27,47].

In some special situations, one is able to show the
(nearly) uniform convergence of the multilevel and (overlap-
ping) domain decomposition methods (see [13,25,38,48,49]
for examples). For general cases, one usually need some
special techniques to obtain robust iterative methods, (cf.
[2,17,28,42]). Recently in [58,61], we analyzed the eigen-
value distributions of the standard multilevel and overlapping
domain decomposition preconditioned systems, and showed
that there are only a small fixed number of eigenvalues that
may deteriorate due to the discontinuous jump or mesh size,
and that all the other eigenvalues are bounded below and
above nearly uniformly with respect to the jump and mesh
size. As a result, we proved that the convergence rate of the
preconditioned conjugate gradient method is uniform with
respect to the large jump, and depends logarithmically on
mesh size. These results ensure that the standard multilevel
and domain decomposition preconditioners are efficient and
robust for finite element discretization of (1.1) on quasi-
uniform grids. In this paper, we extend our results to locally
refined grids.

The discontinuity of diffusion coefficients causes a lack
of regularity of the solution to (1.1), which in turn, leads
to deterioration in the rate of convergence for finite element
approximations over quasi-uniform triangulations. Adaptive
finite element methods through local mesh refinement can be
applied to recover the optimal rate of convergence [16]. In
order to achieve optimal computational complexity in adap-
tive finite element methods, it is imperative to design fast
algorithms for solving the linear system of equations arising
from the finite element discretization. The distinct feature
of applying multigrid methods on locally refined meshes is
that the number of nodes of nested meshes obtained by local
refinements may not grow exponentially, violating one of
the key properties of multilevel methods on uniform meshes
that leads to optimal O(N ) complexity. Indeed, let N be the
number of unknowns in the finest space, the complexity of
multilevel methods with global smoothers can be as bad as
O(N 2) [35]. This prevents direct application of algorithms
and theories developed in [58] for quasi-uniform grids to
locally refined grids.

To achieve optimal O(N ) complexity, the smoothing
step in each level must be restricted to the newly added
unknowns and their neighbors (see [7,12,35]). Such meth-
ods are referred to as local multilevel methods in [7]. As an
extreme case, one can preform the smoothing only on newly
added nodes turning a coarse grid to a fine grid. The result-
ing method is known as the hierarchical basis method [8,60].
In two dimensions, hierarchical basis methods are proven to
be robust for jump coefficient problems on locally refined
meshes (cf. [8]). In three dimensions, however, classic mul-
tilevel and domain decomposition methods, including the

hierarchical basis multigrid methods, deteriorate rapidly due
to the presence of discontinuity of coefficients. To obtain
robust rates of convergence for multigrid methods, one has
to use special coarse spaces [25,41] or assume that the distri-
bution of diffusion coefficients satisfies the so called quasi-
monotone condition [25]. Therefore the three dimensional
case is much more difficult. There are other works [1,30]
on optimal complexity of local multilevel methods in three
dimensions, but the problems with discontinuous coefficients
remain open.

In this article, we shall design and prove the efficiency
and robustness of local multilevel preconditioners for the
finite element discretization of problem (1.1) on bisection
grids—one class of locally refined grids. In these precondi-
tioners, we use a global smoothing in the finest mesh; and for
each newly added node, we perform smoothing only for three
vertices—the new vertex and its two parents vertices (the ver-
tices sharing the same edge with the new vertex). We analyze
the eigenvalue distribution of the multilevel preconditioned
matrix, and prove that there are only a fixed number of small
eigenvalues deteriorated by the coefficient and mesh-size; the
other eigenvalues are bounded nearly uniformly. Thus, the
resulting preconditioned conjugate gradient algorithm con-
verges uniformly with respect to the jump and logarithmi-
cally with respect to the mesh size of the discretization. We
establish our results of this type in both two and three dimen-
sions.

To employ the geometric structure of bisection grids, we
use the decomposition of bisection grids developed in the
recent work [23,52]. This approach enables us to introduce
a natural decomposition of the finite element space into sub-
spaces consisting only the newest vertices and their two par-
ents vertices. In the analysis of these local multilevel precon-
ditioners, one of the key ingredient is the stable decomposi-
tion (see Theorem 4.2). For the standard multilevel precon-
ditioners on uniform mesh, in [58] we used the approxima-
tion and stability properties of the weighted L2 projection
(cf. [13]) to construct a stable decomposition. This weighted
L2 projection is no longer applicable for the local multi-
level preconditioners, since it is a global projection. In order
to preserve the local natural of the highly graded meshes,
we introduce a local interpolation operator, which we man-
age to prove similar approximation and stability properties
(see Theorems 3.1 and 3.2) as the weighted L2-projection.
Our local quasi-interpolation operator and the corresponding
analysis is more delicate than that in [23,52] for the Poisson
equation. We should remark that due to this space decom-
position, we are able to remove the assumption, nested local
refinement, which is used in most existing work on multilevel
methods on local refinement grids [1,30].

The rest of the paper is organized as follows. In Sect. 2,
we give some notation and recall some fundamental results
as in [58]. In Sect. 4, we study bisection grids, and review
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some technical tools from [23,52]. Here we restrict ourself to
a kind of special bisection scheme, namely the newest vertex
bisection. Then in Sect. 4, we study some technical results of
space decomposition, and present the optimal/stable decom-
position and the strengthened Cauchy–Schwarz inequality
on bisection grids. In Sect. 5, we analyze multilevel pre-
conditioners, i.e., the BPX preconditioner and the multigrid
V -cycle preconditioner, and prove convergence results for
the preconditioned conjugate gradient algorithm. In Sect. 6,
we present numerical experiments to support our theoretical
results.

Throughout the article, we will use the following short
notation, x � y means x ≤ Cy, x � y means x ≥ cy and
x � y means cx ≤ y ≤ Cx where c and C are generic
positive constants independent of the variables appearing in
the inequalities and any other parameters related to mesh,
space and coefficients.

2 Preliminaries

In this section, we introduce some notation, set up our prob-
lem, and review briefly some facts about the preconditioned
conjugate gradient algorithm.

2.1 Notation and problem

Given a set of positive constants {ai }Mi=1, we define the fol-
lowing weighted inner products on the space H1(Ω)

(u, v)0,a =
M∑

i=1

ai (u, v)L2(Ωi )
,

and

(u, v)1,a =
M∑

i=1

ai (∇u,∇v)L2(Ωi )

with the induced weighted L2 norm ‖·‖0,a, and the weighted
H1-seminorm | · |1,a, respectively. We denote by

‖u‖1,a =
(
‖u‖2

0,a + |u|21,a

) 1
2
,

and the related inner product and the induced energy norm
by

(u, v)A = A(u, v) := (u, v)1,a, ‖u‖A =
√

A(u, u).

To impose the Dirichlet boundary condition in (1.1), we
define

H1
gD ,ΓD

= {v ∈ H1(Ω) : v|ΓD = gD in the trace sense},
and H1

D := H1
0,ΓD

. Given a shape regular triangulation Th ,
which could be highly graded, we define Vh as the standard
piecewise linear and global continuous finite element space

on Th . Given f ∈ H−1(Ω) and gN ∈ H1/2(ΓN ), the linear
finite element approximation of (1.1) is the function u ∈
Vh ∩ H1

gD ,ΓD
, such that

A(u, v) = 〈 f, v〉 +
∫

ΓN

gN v, for all v ∈ Vh ∩ H1
D. (2.1)

Given any u0 ∈ Vh∩H1
gD ,ΓD

, the problem (2.1) is equivalent

to finding u ∈ Vh ∩ H1
D such that

A(u, v) = 〈 f, v〉 +
∫

ΓN

gN v − A(u0, v), ∀v ∈ Vh ∩ H1
D.

(2.2)

We thus consider the space Vh,D := Vh ∩ H1
D . The bilinear

form A(·, ·) will then introduce a symmetric positive definite
(with respect to standard L2-inner product) operator, still
denoted by A, from Vh,D to Vh,D as

(Au, v) = A(u, v).

Define b ∈ Vh,D as

(b, v) = 〈 f, v〉 +
∫

ΓN

gN v − A(u0, v) ∀v ∈ Vh,D.

We then get the following operator equation on Vh,D

Au = b. (2.3)

For simplicity, in the remainder of the paper, we should omit
the subscript D in Vh,D without ambiguity.

We are interested in solving Eq. (2.3) by the precondi-
tioned conjugate gradient methods with BPX and multigrid
preconditioners. Let us now review briefly some basic results
concerning the preconditioned conjugate gradient method.

2.2 Preconditioned conjugate gradient method

Let B be a symmetric positive definite (SPD) operator.
Applying it to both sides of (2.3), we get an equivalent equa-
tion

B Au = Bb. (2.4)

We apply the conjugate gradient method to solve (2.4) and the
resulting method is known as the preconditioned conjugate
gradient (PCG) method, where B is called a preconditioner.

Let κ(B A) = λmax(B A)/λmin(B A) be the (generalized)
condition number of the preconditioned system B A. Starting
from an arbitrary initial guess u0, we have the following
well known convergence rate estimate for the kth iteration
uk (k ≥ 1) in PCG (see e.g. [40])
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‖u − uk‖A

‖u − u0‖A
≤ 2

(√
κ(B A)− 1√
κ(B A)+ 1

)k

.

So if the condition numberκ(B A) is uniformly bounded, then
PCG algorithm converges uniformly. Here the uniformity
means the independence of the size of the matrix A. Later
on, when A is related to Eq. (1.1), we shall also discuss
the uniformity of convergence with respect to the jump of
diffusion coefficients.

If there are some isolated small or large eigenvalues, we
can sharpen the above convergence rate estimate as stated in
the following theorem.

Theorem 2.1 [5] Suppose that σ(B A) = σ0(B A)∪σ1(B A)

such that there are m elements in σ0(B A) and α ≤ λ ≤ β

for each λ ∈ σ1(B A). Then

‖u − uk‖A

‖u − u0‖A
≤ 2K

(√
β/α − 1√
β/α + 1

)k−m

, (2.5)

where

K = max
λ∈σ1(B A)

∏
μ∈σ0(B A)

∣∣∣∣1− λ

μ

∣∣∣∣ .

If there are only m small eigenvalues in σ0(B A), say

0 < λ1 ≤ λ2 · · · ≤ λm � λm+1 ≤ · · · ≤ λn,

then

K =
m∏

i=1

∣∣∣∣1− λn

λi

∣∣∣∣≤
(

λn

λ1
−1

)m

=(κ(B A)− 1)m . (2.6)

Therefore the convergence rate of PCG algorithm will be
dominated by the factor (

√
β/α − 1)/(

√
β/α + 1), i.e. by

β/α where β = λn(B A) and α = λm+1(B A). We define the
“effective condition number” as follows.

Definition 1 Let V be an n-dimensional Hilbert space and
T : V → V be a symmetric and positive definite operator.
For any integer m ∈ [1, n − 1], the mth effective condition
number of T is defined by

κm(T ) = λmax(T )

λm+1(T )

where λm+1(T ) is the (m + 1)-th minimal eigenvalue of T .

As a corollary of Theorem 2.1, we have

‖u − uk‖A

‖u − u0‖A
≤ 2(κ(B A)− 1)m

(√
κm(B A)− 1√
κm(B A)+ 1

)k−m

.

(2.7)

From (2.7), given a tolerance ε, the number of iterations of the
PCG method to reduce the relative error below the tolerance
ε is (cf. [5,6])

m +
⌈(

log

(
2

ε

)
+ m| log(κ(B A)− 1)|

)
/c0

⌉
,

where c0 = log
(
(
√

κm(B A)+ 1)/(
√

κm(B A)− 1)
)
. There-

fore if there exists an m ≥ 1 such that the mth effective
condition number is bounded uniformly, then the PCG algo-
rithm will still converge almost uniformly, even though the
standard condition number κ(B A) might be large.

To estimate the effective condition number, in particular
λm+1(A), we use a fundamental tool known as the Courant
“minimax” principle (see e.g. [26]).

Theorem 2.2 Let V be an n-dimensional Hilbert space with
inner product (·, ·)V and T : V → V a symmetric posi-
tive operator on V . Suppose λ1 ≤ λ2 ≤ · · · ≤ λn are the
eigenvalues of T, then

λm+1(T ) = max
dim(S)=m

min
0 �=v∈S⊥

(T v, v)V
(v, v)V

for i = 1, 2, . . . , n−1. Especially, for any subspace V0 ⊂ V
with dim(V0) = n − m

λm+1(T ) ≥ min
0 �=v∈V0

(T v, v)V
(v, v)V

. (2.8)

If both A and B are SPD operators, then B A is SPD in
the inner product induced by B−1 and A. Below, we shall
apply Theorem 2.2 to T = B A and (u, v)V := (B−1u, v)L2 .
Therefore if we have an inequality of the type (Av, v) ≥
c(B−1v, v) for all v in a suitable subspace V0 with dim(V0) =
n − m, we can get a lower bound of λm+1(B A).

3 Local quasi-interpolation

The theoretical justification of the robustness of multilevel
preconditioners relies on establishing approximation and sta-
bility properties of certain interpolation operators. There are
two difficulties: one is the locality and stability and another
is the robustness with respect to the coefficient.

The weighted L2-projection Qa
h : L2(Ω) → Vh defined

by (Qa
hu, vh)0,a = (u, vh)0,a ∀vh ∈ Vh was used in [58,61]

for the case of uniform refinement. For the analysis of local
multilevel preconditioners, the interpolation operator should
preserve certain local structure. Therefore, the weighted
L2-projection, which is a global operator, is not appropriate.
On the other hand, the standard nodal interpolation opera-
tor is local but not stable in the energy norm. Local quasi-
interpolation, such as Scott–Zhang operators [43], are devel-
oped to achieve both locality and stability.
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However, the stability constant will in general depend on
the jump of diffusion coefficients if we apply the standard
quasi-interpolation globally on the whole domain. The value
at a vertex is usually defined using a simplex in the patch of
this vertex and thus depends on the diffusion coefficient in
this simplex. For a vertex shared by several subdomains, this
leads to the dependence of the ratio of coefficients. One rem-
edy is to apply the quasi-interpolation on each subdomain and
chose a sub-simplex in the quasi-interpolation. Indeed in the
original paper [43], a (d−1) sub-simplex is used. Such modi-
fication is suitable for the interior vertex relative to interfaces
for which a common (d−1) sub-simplex on the interface can
be used to glue quasi-interpolations in different regions. For
vertices on the boundary of the interface, i.e., edges in 3-D
and vertices in 2-D, in general there is no common (d − 1)

sub-simplex but only (d − 2) sub-simplex. The trace of H1

functions is not even well defined on (d−2) sub-simplex. For
example, the function value of a H1 function at a point can be
changed without changing this function. In the discrete level,
it can be shown that the trace of a finite element function on
a (d − 2) sub-simplex can be almost bounded by its Sobolev
norm inside. Therefore we can simply set the function val-
ues at the vertices of (d − 2) sub-simplex to zero to glue
quasi-interpolation operators defined in different domain.

Below, we construct a quasi-interpolation operator by glu-
ing Scott–Zhang operators in each subdomains and inter-
faces, and show that it is stable uniformly with respect to the
jump of coefficients and nearly uniform to the mesh size of
the triangulation. We stress that this local quasi-interpolation
operator is designed for the analysis only, and is not needed
in the practical implementation.

3.1 Notation on triangulations

Let us introduce some notation related to the domain and its
triangulations. As we mentioned earlier, we assume that the
polygonal or polyhedral subdomains Ωi (i = 1, . . . , M) are
open, disjoint to each other, and satisfy ∪M

i=1Ω i = Ω . We
denote Γi j = ∂Ωi ∩ ∂Ω j , or simply Γ if without ambiguity,
as the interface between two subdomains Ωi and Ω j . The
subdomains Ωi (i = 1, . . . M) may possibly have compli-
cated geometry but we assume that they are resolved by an
initial conforming triangulation T0. Recall that a triangula-
tion T is called conforming if the intersection of any two
elements τ and τ ′ in T either consists of a common vertex,
edge, face (when d = 3), or empty.

Let N , E and F (when d = 3) denote the set of ver-
tices, edges, and faces of T respectively. For each vertex
p ∈ N , we define local patch ωp := ∪τ�pτ and, for τ ∈ T ,
ωτ = ∪p∈τωp. Similarly, on the (d − 1) dimensional inter-
face Γ , op, oe and o f denote the intersection of correspond-
ing local patches and the interface. The linear finite element
space associated to T is denoted by V(T ), or simply V . More

generally, for any subset S ⊂ T , V(S) denote the finite ele-
ment subspace restricted to the subset S. Similarly, we should
denote N (G) ⊂ N , E(G) ⊂ E and F(G) ⊂ F as the set of
vertices, edges, and faces in G ⊂ Ω, respectively.

For each element τ ∈ T , we define hτ = |τ |1/d and ρτ for
the radius of its inscribed ball. In the whole paper, we assume
that the triangulation is shape regular in the sense hτ � ρτ .
Let h denote the piecewise constant mesh size function with
h|τ = hτ , and hmin := minτ∈T hτ . We should also denote
he by the length of an edge e ∈ E and h f by the diameter
of a face f ∈ F . Moreover, we define h p as the diameter of
the local patch ωp. By the shape regularity assumption, for
all e, f, τ ⊂ ωp, we have h p � he � h f � hτ .

3.2 Technical lemmas

For completeness here, we quote some technical lemmas
from [13], which will be used later for proving the approxi-
mation and stability of our local interpolation operator.

In two dimensions, it is well known that H1(Ω) is not
embedded into L∞(Ω). But for finite element functions,
we can control the L∞ norm by its H1-norm with a factor
| log hmin|1/2.

Lemma 3.1 ([13, Lemma 2.3]) For any subdomain Ωi ⊂
R

2, let V(Ωi ) be the finite element space based on a shape-
regular triangulation T of Ωi . Then for all v ∈ V(Ωi ), it
satisfies

‖v‖L∞(Ωi ) �
∣∣∣∣log

Hi

hmin

∣∣∣∣
1/2 (

|v|H1(Ωi )
+ H−1

i ‖v‖L2(Ωi )

)
,

where Hi = diam(Ωi ) and hmin := minτ∈T hτ .

In three dimensions, the trace of an H1-function on an
edge is not well defined. But for a finite element function, its
L2-norm on an edge can be bounded by its H1-norm with a
factor | log hmin|1/2. It is a generalization of Lemma 3.1 to
three dimensions in the sense that controlling the norm on a
co-dimension 2 boundary manifolds.

Lemma 3.2 ([13, Lemma 2.4]) Given a polyhedral subdo-
main Ωi ⊂ R

3, let E be any edge of Ωi and V(Ωi ) be a finite
element space based on a shape-regular triangulation of Ωi .
Then for all v ∈ V(Ωi ), there holds

‖v‖L2(E) �
∣∣∣∣log

Hi

hmin

∣∣∣∣
1/2 (

|v|H1(Ωi )
+ H−1

i ‖v‖L2(Ωi )

)
,

where Hi = diam(Ωi ).

In the analysis of the local quasi-interpolation in Theo-
rem 3.1 below, we should apply Lemmas 3.1 and 3.2 on each
subdomain Ωi , for which the diameter Hi = diam(Ωi ) � 1
is a fixed generic constant.
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3.3 Stable local quasi-interpolation

Given a conforming triangulation Th, the Scott-Zhang inter-
polation operator Π : H1(Ω) → V(Th) can be defined as
follows. For any p ∈ N (Th), we choose a (d − 1)-simplex
σp � p in Th . We remark that the choice of σp is not unique
(see Sect. 4.4 for the particular choice of σp for our purpose).
Let {λσp,i : i = 1, . . . , d} be the barycentric coordinates of
σp. One can define the L2-dual basis {θσp,i : i = 1, . . . , d}
of {λσp,i : i = 1, . . . , d}, namely,

∫
σp

θσp,iλσp, j = δi j . We
define a quasi-interpolation Π as

Πv =
∑

p∈N (Th)

⎛
⎜⎝
∫
σp

θσpv

⎞
⎟⎠φp, (3.1)

where {φp}p∈N (Th) is the set of nodal basis of V(Th), and
θσp = θσp,1. The following properties of the operator Π can
be found in [37,43].

Lemma 3.3 The interpolation operator Π satisfies the fol-
lowing properties:

(i) Stability:

‖Πv‖L2(τ ) � ‖v‖L2(ωτ ),

‖Πv‖H1(τ ) � ‖v‖H1(ωτ ); (3.2)

(ii) Locality:

(Πv)|τ = v|τ if v ∈ V(ωτ ); (3.3)

(iii) Approximability:

‖h−1(v −Πv)‖L2(τ ) � ‖v‖H1(ωτ ). (3.4)

We apply the quasi-interpolation (3.1) on each subdomain,
and denote Πi : L2(Ωi )→ V(Ωi ) by the Scott–Zhang inter-
polation restricted to Ωi . To be able to glue them together,
for any vertex on the interior of the interface, we choose a
common (d − 1) sub-simplex shared by two sub-domains.
By such choice, Πi and Π j will match on the vertex interior
relative to the interface.

We now define a local interpolation operator Ia
h which has

the desirable local approximation and stability properties in
the weighted Sobolev norms. Given a u ∈ H1(Ω), we define
Ia

h u ∈ V(Th) such that for p ∈ N (Ωi )

Ia
h u(p) :=

{
(Πi u)(p), otherwise,
0, if p ∈ N (∂Γi ).

(3.5)

For a vertex p, let σp be the (d − 1)-simplex chosen
to define the nodal value at p. Then the interpolant Ia

h is

uniquely determined by the mapping p → σp. In (3.5), if
p is in the interior of some subdomain Ωi , then σp ⊂ Ωi

is chosen to be any (d − 1)-simplex in T containing p; if p
is in the interior of the interface Γ, then σp ⊂ Γ is chosen
to be a (d − 1)-simplex on the interface containing p. The
choice of σp is not unique. However, in order to preserve
the local structure of the adaptive grids, σp should be chosen
carefully for each vertex p. This will be clear in Sect. 4 when
we discuss the geometry of the bisection grids (see Sect. 4.4
for details). Now we are in the position to present the main
result in this section:

Theorem 3.1 Let Ω ⊂ R
d with d = 2 or 3 and Th be a

triangulation of Ω with mesh size h. Then for all u ∈ H1(Ω),

we have

‖h−1(u − Ia
h u)‖0,a,Ω � | log hmin|1/2 ‖u‖1,a,Ω .

Proof Using the discrete Sobolev inequality Lemmas 3.1
or 3.2 on ∂Γ and the local H1-stability (3.2) of Πi , we
have∑
Γ⊂∂Ωi

‖Πi u‖L2(∂Γ ) � | log hmin|1/2 ‖Πi u‖H1(Ωi )

� | log hmin|1/2 ‖u‖H1(Ωi )
.

By the triangle inequality and the approximation property
(3.4) of Πi , we have

‖h−1(u − Ia
h u)‖L2(Ωi )

≤ ‖h−1(u −Πi u)‖L2(Ωi )
+ ‖h−1(Πi u − Ia

h u)‖L2(Ωi )

� ‖u‖H1(Ωi )
+
∑

Γ⊂∂Ωi

‖Πi u‖L2(∂Γ )

� ‖u‖H1(Ωi )
+ | log hmin| 1

2 ‖u‖H1(Ωi )
.

Multiplying by a suitable weight and summing up over all
subdomains on both sides, we get the desired estimate. ��

In general, we cannot replace ‖u‖1,a by the energy norm
|u|1,a in the above lemma; see [53] for a counter example. To
be able to use |u|1,a in the estimate, we introduce a subspace
H̃1

D(Ω) of H1
D(Ω) as follows:

H̃1
D(Ω) =

⎧⎪⎨
⎪⎩u ∈ H1

D(Ω) :
∫
Ωi

u dx = 0 for all i ∈ I

⎫⎪⎬
⎪⎭ ,

where I is the set of indices of all floating subdomains:

I = {i : meas(∂Ωi ∩ ΓD) = 0}.
Let m0 := #I be the cardinality of I . We emphasize that

m0 ≤ M is a constant, depending only on the distribution of
the coefficients. In this subspace H̃1

D(Ω), the interpolation
Ia

h has the following properties.
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Theorem 3.2 For any v ∈ H̃1
D(Ω), we have the approxima-

tion property of Ia
h

∥∥∥h−1(v − Ia
h v)

∥∥∥
0,a

� |log hmin| 1
2 |v|1,a , (3.6)

and the stability of Ia
h in the energy norm

∣∣Ia
h v
∣∣
1,a � |log hmin| 1

2 |v|1,a . (3.7)

Proof For v ∈ H̃1
D(Ω), it satisfies the Poincaré-Friedrichs

inequality on each subdomain Ωi . Therefore we get ‖v‖0,a �
|v|1,a . The inequality (3.6) then follows from Lemma 3.1.

To prove inequality (3.7), we use the inequality (3.6) and
the local L2 projection Qτ : L2(τ ) → P0(τ ) defined by
Qτ u|τ = |τ |−1

∫
τ

u dx . Then on each element τ ∈ Th, we
have
∣∣Ia

h v
∣∣2

H1(τ )
�
∣∣Ia

h v − Qτ v
∣∣2

H1(τ )
� h−2

τ

∥∥Ia
h v − Qτ v

∥∥2
L2(τ )

� h−2
τ

(∥∥v − Ia
h v
∥∥2

L2(τ )
+ ‖v − Qτ v‖2

L2(τ )

)

� h−2
τ

∥∥v − Ia
h v
∥∥2

L2(τ )
+ |v|2H1(τ )

where in the last inequality, we used the approximation prop-
erties of Qτ . Multiplying by a suitable weight and summing
up over all τ ∈ T on both sides, we get

∣∣Ia
h v
∣∣2
1,a �

∥∥∥h−1(v − Ia
h v)

∥∥∥2

0,a
+ |v|21,a � |log hmin| |v|21,a

where in the last step, we used inequality (3.6). ��

Remark 3.1 When the coefficients satisfy the quasi-monot-
one assumption, the factor | log hmin| can be removed by
arguments on a modified local patch; see [25,39].

4 Bisection grids and space decomposition

In this section, we give a short overview of the framework in
the multilevel space decomposition on bisection grids in the
recent work [23,52]. Most of the material in this section can
be found there.

4.1 Bisection methods

We recall briefly the bisection algorithm for the mesh refine-
ments. Detailed discussions can be found in [11,20,35] and
the references cited therein.

Given a conforming triangulation T of Ω, for each ele-
ment τ ∈ T , we assign an edge of τ to be the refinement edge
of τ , denoted by e(τ ) or simply e without ambiguity. This
procedure is called labeling. Given a set of elements marked
for refinement, the refinement procedure consists two steps:

(1) bisect the marked element into two elements by connect-
ing the middle point of the refinement edge to the vertices
not contained in the refinement edge;

(2) assign refinement edges for two new elements.

Given a labeled initial grid T0 of Ω and a bisection method,
we define

F(T0) = {T : T is refined from T0 by bisection method },
T(T0) = {T ∈ F(T0) : T is conforming}.

Namely F(T0) contains all triangulations obtained from T0

using the chosen bisection method. But a triangulation T ∈
F(T0) could be non-conforming and thus we define T(T0) as
a subset of F(T0) containing only conforming triangulations.

Given any triangulation T0, we define T 0 = T0, and the
kth uniform refinement T k (k ≥ 1) being the triangulation
obtained by bisecting all element in T k−1 only once. Note
that for a conforming initial triangulation T0 with arbitrary
labeling, T k ∈ F(T0) but not necessarily in the set T(T0) in
general. Throughout this paper, we shall consider bisection
methods which satisfy the following two assumptions:
(B1) Shape Regularity: F(T0) is shape regular.
(B2) Conformity of Uniform Refinement: T k(T0) ∈ T(T0)

for all k ≥ 0.
In two dimensions, newest vertex bisection with compat-

ible initial labeling [34] satisfies (B1) and (B2). In three and
higher dimensions, the bisection method by Kossaczký [32]
and Stevenson [45] will satisfy (B1) and (B2). We note that
to satisfy assumption (B2), It might be necessary to modify
the initial triangulation by further refinement of each ele-
ment, which would probably deteriorate the shape regular-
ity. Although (B2) imposes a severe restriction on the initial
labeling, it is crucial to control the number of elements added
in the completion which is indispensable to establish the opti-
mal complexity of adaptive finite element methods [36].

4.2 Compatible bisections

For a vertex p ∈ N (T ) or an edge e ∈ E(T ), we define the
first ring of p or e to be

Rp = {τ ∈ T | p ∈ τ }, Re = {τ ∈ T | e ⊂ τ },
and the local patch of p or e as ωp = ∪τ∈Rpτ, and ωe =
∪τ∈Reτ . Note that ωp and ωe are subsets of Ω , while Rp and
Re are subsets of T which can be thought of as triangulations
of ωp and ωe, respectively. The cardinality of a set S will be
denoted by #S.

Given a labeled triangulation T , an edge e ∈ E(T ) is
called a compatible edge if e is the refinement edge of τ for
all τ ∈ Re. For a compatible edge, the ring Re is called
a compatible ring, and the patch ωe is called a compatible
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Fig. 1 A decomposition of a bisection grid

patch. Let p be the midpoint of e and Rp be the ring of
p in the refined triangulation. A compatible bisection is a
mapping be : Re → Rp. We then define the addition

T + be := T \Re ∪Rp.

For a compatible bisection sequence B := (b1, . . . , bk), the
addition T + B is defined as

T + B = ((T + b1)+ b2)+ · · · + bk,

whenever the addition is well defined. Note that if T is con-
forming, then T +be is conforming for a compatible bisection
be, whence compatible bisections preserve the conformity of
triangulations.

We now present a decomposition of meshes in T(T0) using
compatible bisections, which will be instrumental later. We
only give a pictorial demonstration in Fig. 1 to illustrate the
decomposition. For the proof, we refer to [52].

Theorem 4.1 (Decomposition of Bisection Grids). Let T0 be
a conforming triangulation. Suppose the bisection method
satisfies assumptions (B2), i.e., for all k ≥ 0 all uniform
refinements T k of T0 are conforming. Then for any T ∈
T(T0), there exists a compatible bisection sequence B =
(b1, . . . , bN ) with N = #N (T )− #N (T0) such that

T = T0 + B. (4.1)

We point out that in practice it is not necessary to store
B explicitly during the refinement procedure. Instead we can
apply coarsening algorithms to find the decomposition. We
refer to [22] (see also [18]) for a vertex-oriented coarsening
algorithm and the application to multilevel preconditioners
and multigrid methods.

For a compatible bisection bi ∈ B, we use the same sub-
script i to denote related quantities such as:

– ei : the refinement edge;
– pli , pri : two end points of ei ;
– pi : the midpoint of ei ;
– ωi : the patch of pi i.e. ωpi ;
– ω̃i = ωpi ∪ ωpli

∪ ωpri
;

– hi : the diameter of ωi ;
– Ri : the first ring of pi in Ti .
– Ti = T0 + (b1, . . . , bi );

4.3 Generation of compatible bisections

The generation of each element in the initial grid T0 is defined
to be 0, and the generation of a child is 1 plus that of the
father. The generation of an element τ ∈ T ∈ F(T0) is
denoted by gτ and coincides with the number of bisections
needed to create τ from T0. For any vertex p ∈ N (T0), the
generation of p is defined as the minimal integer k such that
p ∈ N (T k) and is denoted by gp. In [52], we show that if
bi ∈ B is a compatible bisection, then all elements of Ri

have the same generation gi . Therefore we can introduce
the concept of generation of compatible bisections. For a
compatible bisection bi : Rei → Rpi , we define gi = g(τ ),

τ ∈ Rpi .
Throughout this paper we always assume h(τ ) � 1 for

τ ∈ T0. Then since a bisection of a simplex will reduce the
volume by half, we have the following important relation
between generation and mesh size

hi � γ gi , with γ =
(1

2

)1/d ∈ (0, 1).

In particular, we introduce a “level” (or generation) constant
L := maxτ∈T gτ . It is obvious that L � �| log hmin|�.

Different bisections with the same generation have disjoint
local patches. Namely for two compatible bisections bi and
b j with g j = gi , we then have ωi ∩ ω j = ∅. A simple
but important consequence is that, for all u ∈ L2(Ω) and
k ≥ 0,

∑
gi=k

‖u‖2
0,a,ω̃i

� ‖u‖2
0,a,Ω . (4.2)

4.4 A local quasi-interpolation

We define a sequence of quasi-interpolation operators recur-
sively. Let Ia

0 : V(TN ) → V0 be an arbitrary interpolation
operator defined by (3.5). Assume Ia

i−1 : V(TN ) → V(Ti−1)

is defined. Let bi be a compatible bisection, which introduces
a new vertex pi from Ti−1 to Ti = Ti−1 + bi . We construct
Ia

i : V(TN )→ V(Ti ) as follows. If the new vertex pi ∈ ΓD ,
we simply define (Ia

i v)(pi ) = 0 to reflect the vanishing
boundary condition of v. Otherwise, if pi /∈ ΓD we define
the nodal value at pi through (3.1) with the choice of σpi as
follows:

(i) if pi is in the interior of some subdomain Ωi , we choose
a (d − 1)-simplex σpi containing pi ;

(ii) if pi is in the interior of some interface Γ, we choose a
(d − 1)-simplex σpi ⊂ Γ containing pi ;

(iii) otherwise, we simply let σpi = ∅ and define (Ia
i v)(pi )

= 0.
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(a)

(b)

(c)

(d)

Fig. 2 Update of nodal values Ia
i−1 to yield Ia

i u: the element τ chosen
to perform the averaging that gives (Ia

i u)(p) must belong to ωp(Ti ).
This implies (Ia

i − Ia
i−1)u(p) �= 0 possibly for p = pi , pli , pri

and = 0 otherwise. a Simplex to define (Ia
i u)(pi ), b Simplex to

define (Ia
i u)(pli ), c Simplex to define (Ia

i u)(pri ), d Simplex to define
(Ia

i u)(p)

For other vertices p ∈ N (Ti−1), let σp ∈ Ti−1 be the simplex
used to define (Ia

i−1v)(p), we update (Ia
i v)(p) according to

the following two cases:

(i) if σp ⊂ ωp(Ti ) we keep the nodal value, i.e., (Ia
i v)(p) =

(Ia
i−1v)(p);

(ii) otherwise we update σp as σp ← ωp(Ti ) ∩ σp to define
(Ia

i v)(p).

In either case, we ensure that the simplexσp ⊂ ωp(Ti ). In this
way, we obtain a sequence of quasi-interpolation operators

Ia
i : V(TN ) → V(Ti ), i = 0 · · · N .

Note that in general Ia
N v �= v since the simplex used to define

nodal values of Ia
N v may not be in the finest mesh TN but in

TN−1. Figure 2 illustrates the choice of σp in different cases
in 2D.

4.5 Stable space decomposition

Let φi,p ∈ V(Ti ) denote the nodal basis at node p ∈ N (Ti ).
Motivated by the stable three-point wavelet construction by
Stevenson [44], we define the subspaces V0 = V(T0), and

Vi = span{φi,pi , φi,pli
, φi,pri

}.
Let {φp : p ∈ �} be a basis of V(TN ), where � is the index
set of the basis functions, and let Vp be the 1-dimensional
subspace spanned by the nodal bases associated to p in the
finest grid. We choose the following space decomposition:

V :=
∑
p∈�

Vp +
N∑

i=0

Vi . (4.3)

Recall that bi only changes the local patches of two end
points of the refinement edge ei going from Ti−1 to Ti . By
construction (Ia

i − Ia
i−1)v(p) = 0 for p ∈ N (Ti ), p �=

pi , pli or pri , which implies vi := (Ia
i − Ia

i−1)v ∈ Vi .
Although Ia

N v �= v in general, the difference v − Ia
N v is of

high frequency in the finest mesh. Let us write v − Ia
N v =∑

p∈� vp as the basis decomposition. We then obtain a
decomposition

v =
∑
p∈�

vp +
N∑

i=0

vi , vi ∈ Vi , (4.4)

where for convenience we define Ia−1 := 0. Moreover, we
introduce a subspace Ṽ := V ∩ H̃1

D(Ω). Then we have the
following stable decomposition.

Theorem 4.2 (Stable Decomposition). Given a triangula-
tion TN = T0 + B in T(T0), let L = maxτ∈TN g(τ ).

(i) For any v ∈ V, there exist vp ∈ Vp (p ∈ �) and vi ∈
Vi (i = 1, . . . , N ) such that v = ∑p∈� vp +∑N

i=0 vi

and

∑
p∈�

h−2
p ‖vp‖2

0,a+‖v0‖2
1,a+

N∑
i=1

h−2
i ‖vi‖2

0,a � cd(L)|v|21,a,

(4.5)

where cd(L) =
{

L2, d = 2
2L , d = 3

.

(ii) For any v ∈ Ṽ, there exist vp ∈ Vp (p ∈ �) and vi ∈
Vi (i = 1, . . . , N ) such that v = ∑p∈� vp +∑N

i=0 vi

and

∑
p∈�

h−2
p ‖vp‖2

0,a + ‖v0‖2
1,a +

N∑
i=1

h−2
i ‖vi‖2

0,a � L2|v|21,a

(4.6)
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Proof The result of (i) is standard. We may use the standard
nodal interpolation operator to define a decomposition using
the hierarchical basis (cf. [56]).

Now we prove (ii). Given a v ∈ Ṽ, we define v0 := Ia
0 v

and vi := (Ia
i − Ia

i−1)v. For v − Ia
N v = ∑p∈� vp, by the

approximability of the quasi-interpolation, cf. (3.6), we have

∑
p∈�

h−2
p ‖vp‖2

0,a � ‖h−1(v − Ia
N v)‖2

0,a � L|v|21,a . (4.7)

On the other hand, by Theorem 3.2 we obtain

∥∥Ia
0 v
∥∥2

1,a +
N∑

i=1

h−2
i ‖(Ia

i − Ia
i−1)v‖2

0,a,ωi

= ∥∥Ia
0 v
∥∥2

1,a +
L∑

l=1

∑
gi=l

h−2
l ‖(Ia

i − Ia
i−1)v‖2

0,a,ωi

�
(

L∑
i=1

| log hmin|
)
‖v‖2

1,a � L2|v|21,a .

Then (4.6) follows by adding the above inequality to inequal-
ity (4.7). ��
Remark 4.1 The estimate (4.5) is not uniform for d ≥ 2. For
d = 2, L ≈ | log hmin| and the growth of c2(L) is acceptable.
But for d = 3, the constant c3(L) = 2L grows exponentially.
This is the main reason that the hierarchical basis multilevel
method deteriorates rapidly in 3D (cf. [9,59]). For discontin-
uous coefficients problems, it seems unlikely to find a better
decomposition with a better constants; see the counterexam-
ples in [13,38].

If the coefficients satisfy certain monotonicity, e.g. quasi-
monotonicity (cf. [25,39]) in the local patches, one can show
that the interpolation operator defined above is stable in the
energy norm without deterioration.

Remark 4.2 With a close look at the proof of (4.6), we may
regroup the vi = (Ia

i − Ia
i−1)v into groups ∪L ′

l=1G(l) =
{1, 2, . . . , N } such that for any i, j ∈ G(l), ω j ∩ ωi = ∅

and therefore

N∑
i=1

h−2
i ‖vi‖2

0,a,ωi
=

L ′∑
l=1

∑
j∈G(l)

h−2
j ‖v j‖2

0,a,ωi

≤ L ′| log hmin||v|21,a .

The constant L ′ could be much smaller than L; see Sect. 6
for numerical examples.

4.6 Strengthened Cauchy–Schwarz inequality

An important tool in the analysis of the multiplicative pre-
conditioner is the following strengthened Cauchy–Schwarz
inequality. A proof can be found in [23,52].

Lemma 4.1 (Strengthened Cauchy–Schwarz Inequality).
For any ui , vi ∈ Vi , i = 0, 1, . . . , N , we have

∣∣∣∣∣∣
N∑

i=0

N∑
j=i+1

A(ui , v j )

∣∣∣∣∣∣�
(

N∑
i=0

|ui |21,a

) 1
2
(

N∑
i=0

h−2
i ‖vi‖2

0,a

) 1
2

.

(4.8)

As a corollary of (4.8) and the inverse inequality, we have

∥∥∥
N∑

i=0

ui

∥∥∥2

1,a
�

N∑
i=0

h−2
i ‖ui‖2

0,a . (4.9)

5 Multilevel preconditioners

In this section, we shall analyze the eigenvalue distribution of
the BPX preconditioner and the multigrid V -cycle precondi-
tioner on bisection grids, and prove the effective conditioner
number is uniformly bounded.

5.1 BPX (Additive) preconditioner

To simplify the notation, we include VN+1 = V and rewrite
our space decomposition as V = ∑N+1

i=0 Vi . Based on this
space decomposition, we choose SPD smoothers Ri : Vi →
Vi satisfying

(R−1
i ui , ui )0,a � h−2

i (ui , ui )0,a, ∀ui ∈ Vi . (5.1)

According to [58], both of the standard Jacobi and sym-
metric Gauss–Seidel smoother satisfy the above assumption.
On the coarsest level, i.e. when i = 0, we choose the exact
solver R0 = A−1

0 . Let Qa
i : V → Vi be the weighted L2

projection. Then we can define the BPX-type preconditioner

B =
N+1∑
i=0

Ri Qa
i . (5.2)

It is well known [51,55,57] that the operator B defined by
(5.2) is SPD, and

(B−1v, v)0,a = inf∑N+1
i=0 vi=v

N+1∑
i=0

(R−1
i vi , vi )0,a . (5.3)

We have the following main result for the BPX precondi-
tioner.

Theorem 5.1 Given a triangulation TN = T0+B in T(T0),
let L = maxτ∈TN g(τ ). For the BPX preconditioner defined
in (5.2), we have

κ(B A) ≤ C1cd(L), and κm0(B A) ≤ C0L2.

Consequently, we have the following convergence estimation
of the BPX preconditioned conjugate gradient method:
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‖u − uk‖A

‖u − u0‖A
≤ 2 (C1cd(L)− 1)m0

(
C0 L − 1

C0 L + 1

)k−m0

.

Proof First of all, let us estimate λmax(B A). For any decom-
position v = ṽ +∑N

i=0 vi , ṽ ∈ V, vi ∈ Vi , we have

‖v‖2
A � ‖ṽ‖2

A +
∥∥∥

N∑
i=0

vi

∥∥∥2

A

≤ ‖h−1ṽ‖2
0,a +

N∑
i=0

h−2
i ‖vi‖2

0,a

≤
N+1∑
i=0

(R−1
i vi , vi )0,a .

In the second step, we used the inverse inequality and the
inequality (4.9). In the third step, we used the assumption
(5.1) of Ri . Taking infimum, we get

‖v‖2
A � inf∑N+1

i=0 vi=v

N+1∑
i=0

(R−1
i vi , vi )0,a = (B−1v, v)0,a,

which implies that λmax(B A) � 1.
To estimate λmin, in view of (5.3) we choose the decompo-

sition as in the stable decomposition Theorem 4.2 (see (4.5))
to conclude that

(B−1v, v)0,a ≤
N+1∑
i=0

(R−1
i vi , vi )0,a � cd(L)(Av, v)0,a,

which implies that λmin(B A) � cd(L). Therefore we have
κ(B A) � cd(L).

On the other hand, if we apply (4.6) in the subspace
Ṽ ⊂ V, we obtain λm0+1(B A) � L2 by the “min-max” The-
orem 2.2. Hence we get an estimate of the effective condition
number κm0(B A) � L2. The convergence rate estimate then
follows by Theorem 2.1. This completes the proof. ��

From this convergence result, we can see that the conver-
gence rate will deteriorate a little bit by cd (L) as L grows. But
since m0 is a fixed number, when k grows, the convergence
rate will be controlled by the effective condition number,
which is bounded uniformly with respect to the coefficient
and logarithmically with respect to the mesh size. Notice that
L � | log hmin| and thus the asymptotic convergence rate of
the PCG algorithm is 1− 1

C| log hmin| for h < 1.

Remark 5.1 The estimate κ(B A) ≤ C1cd(L) is sharp in the
sense that there exists an example on BPX preconditioner
such that κ(B A) � cd(L) (cf. [38]).

Remark 5.2 Here we should emphasize that the convergence
rate estimate in Theorem 5.1 holds for general substruc-
tures. In some special circumstance, for example “edge type”
or “exceptional” in the terminology in [38], or “quasi-
monotone” coefficient in [25], we can sharpen the conver-
gence estimate in Theorem 5.1 by a modification of Theorem
4.2, see [38].

5.2 Multigrid (Multiplicative) preconditioner

We shall use the following symmetric V-cycle multigrid as a
preconditioner in the PCG method and prove the efficiency
of such a method. Let Ai := A|Vi . Then one step of the stan-
dard V -cycle multigrid B : V → V is recursively defined as
follows:

Let B0 = A−1
0 , for i > 0 and g ∈ Vi , define Bi g = w3.

(i) Presmoothing : w1 = Ri g;
(ii) Correction: w2 = w1 + Bi−1 Qi−1(g − Aiw1);

(iii) Postsmoothing: w3 = w2 + R∗i (g − Aiw2).

Set B = BN+1.

For simplicity, we focus on the case of exact subspace
solver, i.e., Ri = A−1

i for i = 0, . . . , N and for the finest
level, RN+1 is chosen as Gauss–Seidel smoother, which can
be also understood as the multiplicative method with exact
local solvers applied to the nodal decomposition [54]. Let
Pp : V → Vp and Pi : V → Vi be the orthogonal projec-
tion with respect to the inner product (·, ·)a . For our special
choices of smoothers, we then have

I − RN+1 A =
∏
p∈�

(I − Pp),

I − BN A =
(

N∏
i=0

(I − Pi )

)∗ ( N∏
i=0

(I − Pi )

)
,

‖I − B A‖A =
∥∥∥∥∥∥

N∏
i=0

(I − Pi )
∏
p∈�

(I − Pp)

∥∥∥∥∥∥
2

A

.

For exact local solvers, we can apply the crucial X-Z iden-
tity [21,57] to conclude

‖I − B A‖A = 1− 1

1+ c0
, (5.4)

where

c0 = sup
‖v‖A=1

inf
v=∑p∈� vp+∑N

i=0 vi

×
⎛
⎝ N∑

i=0

∥∥∥Pi

N∑
j=i+1

v j+Pi

∑
p∈�

vp

∥∥∥2

A
+
∑
p∈�

∥∥Pp

∑
q>p

vq
∥∥2

A

⎞
⎠ .

Theorem 5.2 Given a triangulation TN = T0+B in T(T0),
let L = maxτ∈TN g(τ ). For the multigrid V -cycle precondi-
tioner B, we have

κ(B A) � cd(L), κm0(B A) � L2.

Consequently, we have the following the convergence rate
estimate of the multigrid V-cycle preconditioned conjugate
gradient method:
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‖u − uk‖A

‖u − u0‖A
≤ 2 (C1cd(L)− 1)m0

(
C0 L − 1

C0 L + 1

)k−m0

.

Proof Since I − B A is a non-expansive operator, we con-
clude λmax(B A) ≤ 1. Since I − B A is SPD in the A-inner
product and λmax(B A) ≤ 1, we have

‖I − B A‖A = max{|1− λmin(B A)|, |1− λmax(B A)|}
= 1− λmin(B A).

To get an estimate on the minimum eigenvalue of B A, we
only need to get a upper bound of the constant c0 in (5.4).

To do so, for any v ∈ V , we chose the decomposition in
Theorem 4.2. That is,

v = ṽ +
N∑

i=1

vi , with v0 = Ia
0 v, vi = (Ia

i − Ia
i−1)v,

where ṽ = v − Ia
N v =∑p∈� vp. Then by shape regularity

of the triangulation, we have

c0 �
N∑

i=0

∥∥∥Pi

N∑
j=i+1

v j

∥∥∥2

A
+

N∑
i=0

‖Pi ṽ‖2
A+
∑
p∈�

∥∥∥∥∥Pp

∑
q>p

vq

∥∥∥∥∥
2

A

.

We estimate these three terms as follows. For the last term,
by the finite overlapping of nodal bases, we have∑
p∈�

∥∥Pp

∑
q>p

vq
∥∥2

A �
∑
p∈�

∥∥∑
q>p

vq
∥∥2

A,ωp

�
∑
p∈�

‖vp‖2
A,ωp

�
∑
p∈�

h−2
p ‖vp‖2

0,a,ωp

� ‖h−1(v − Ia
N v)‖2

0,a � ‖v‖2
A.

For the middle term, we regroup by generations and use
(4.2) to get

N∑
i=0

∥∥∥Pi ṽ

∥∥∥2

A
=

L∑
k=0

∑
l,gl=k

∥∥∥Pl ṽ

∥∥∥2

A
≤

L∑
k=0

∑
l,gl=k

‖ṽ‖2
A,ω̃l

�
L∑

k=0

‖ṽ‖2
A = L‖ṽ‖2

A.

For the first term, we define ui = Pi

(∑N
j=i+1 v j

)
and

u0 := P0(v − v0) and apply the strengthened Cauchy
Schwarz inequality, cf. Lemma 4.1 to get

N∑
i=0

∥∥∥Pi

N∑
j=i+1

v j

∥∥∥2

A
=

N∑
i=0

N∑
j=i+1

A(ui , v j )

� ‖v − v0‖2
A +

N∑
i=1

h−2
i ‖vi‖2

0,a

� cd(L)‖v‖2
A.

Here the constant cd(L) can be improved to L2 if we consider
the decomposition (4.6) of v ∈ Ṽ . Combined with the Mini-
Max Theorem 2.2, yields

λmin(B A) � cd(L), λm0+1(B A) � L−2,

and thus

κ(B A) � cd(L), κm0(B A) � L2.

Finally, the convergence rate of the PCG method follows by
Theorem 2.1. ��

Follow the same proof as Theorem 5.2, we can also obtain
the following convergence result for the local multigrid V -
cycle solver.

Corollary 5.1 For the multigrid V -cycle algorithm defined
above on bisection grids, we have

‖E‖A = ‖I − B A‖A = 1− 1

1+ c0
,

where c0 � cd(L).

This corollary implies that multigrid alone is not robust,
especially in 3D. In this case, the convergence rate of multi-
grid will be proportional to 1 − 2−L � 1 − h−1

min, which
deteriorates rapidly as the mesh size become small. Remark
5.2 is also applicable here, i.e., all the above estimates are
estimates for the worst case. For the special circumstances
mentioned in Remark 5.2, the estimates can be improved in
the same way.

6 Numerical experiments

In this section, we present some numerical experiments to
support the theoretical results in previous sections. In the
implementation of the adaptive loop, we use a modification
of the error indicator presented in [39]. Some other a pos-
teriori error indicators for jump coefficients problem (1.1)
can be found in [10,15,19,46]. The adaptive algorithm using
different error indicators will generate different grids. How-
ever, we emphasize that the robustness of the local adaptive
multilevel preconditioners is independent of how the grids
are generated in the refinement procedure.

The implementation of the BPX preconditioner and the
multigrid methods are standard, and can be found in, for
example, [14,56]. The implementation of the PCG algo-
rithm can be found in [26,40]. All numerical examples
are implemented by using iFEM [18]. We only present
three-dimensional examples here and refer to [22] for two-
dimensional ones. In the PCG algorithm, we use the stopping
criterion

‖uk − uk−1‖A

‖uk‖A
≤ 10−10. (6.1)

In the implementation of the local multilevel precondi-
tioners, we use an algorithm for coarsening bisection grids
introduced by [22] for two dimensional case and [18] for three
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dimensional one. The coarsening algorithm will find all com-
patible bisections and regroup them, with possibly different
generations, into groups∪L ′

l=1G(l) = {1, 2, . . . , N } such that
for any i, j ∈ G(l), ω j ∩ ωi = ∅. Each coarsening step is
corresponding to a level in the multilevel terminology, and
the total number of levels is L ′. There are two major benefits
of using this coarsening algorithm.

(i) We do not need to store the complex bisection tree struc-
ture of the refinement procedure explicitly in the algo-
rithm. Instead, we only need the grid information on the
finest level and the coarsening subroutine will restore
multilevel structure.

(ii) Our numerical evidence shows that the number of nodes
will decrease around one half in one coarsening step.
Therefore the constant L ′ is much smaller than the max-
imal generation L � | log hmin|.

In what follows, we will use some shorthand notation for the
different algorithms implemented.

– TPSMG stands for the V -cycle multigrid iteration with
Three-Point Smoothing (TPS), which only performs
smoothing on new vertices and their two direct neighbors
sharing the same edge.

– TPSMGCG is the PCG algorithm using the TPSMG as
preconditioner.

– TPSBPXCG is the PCG algorithm using the additive ver-
sion of TPSMG as preconditioner.

Among all these algorithms, the main focus of this paper is the
behavior of TPSMGCG and TPSBPXCG. In the numerical
experiments below, we also report some results for TPSMG
for comparison, for which we use the same stopping criterion
(6.1) as the PCG algorithms.

Example 1 Inspired by [38,53,58], we consider solving the
model Eq. (1.1) in the cubic domain Ω = (−1, 1)3. Let the
coefficient a(x) be the constants a1 = a2 = 1 and a3 = ε on
the three regions Ω1, Ω2 and Ω3 respectively (see Fig. 3),
where

Ω1=(−0.5, 0)3,Ω2=(0, 0.5)3 and Ω3=Ω\(Ω1 ∪Ω2).

We choose f = 1 and impose the following boundary
conditions: Dirichlet conditions

u{−1}×[−1,1]×[−1,1] = 0, u{1}×[−1,1]×[−1,1] = 1,

and homogenous Neumann boundary conditions on the
remaining boundary. For this problem, singularities occur
along edges of Ω1 and Ω2. Figure 4 shows an adaptive mesh
and the corresponding finite element approximation after sev-
eral iterations of the adaptive algorithm. To view the mesh
around the singularity, we only show half of the domain Ω .

Fig. 3 The coefficients a1 = a2 = 1 in the gray domains Ω1 and Ω2,

and a3 = ε in the rest of the domain

Fig. 4 An adaptive mesh and finite element solution with ε = 10−4

and 36,466 vertices. a An adaptive mesh for Example 1, b The corre-
sponding finite element solution for Example 1
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Tables 1, 2, 3 and 4 give comparisons of the number of iter-
ations for three different algorithms: TPSMG, TPSMGCG
and TPSBPXCG algorithms, respectively, with the choice
of ε = 10−4, 10−2, 102 and 104. As we observe from
these tables, the number of iterations for TPSMG algorithm
grows rapidly as the mesh is refined when ε is small. On
the other hand, the number of iterations for TPSMGCG
and TPSBPXCG is very robust and only grows a little bit
when the mesh is refined, as we expected from the the-
ory. We also observe that if ε is large, the TPSMG algo-

Table 1 Example 1: Comparison of number of iterations for TPSMG,
TPSMGCG and TPSBPXCG when ε = 10−4

DOF TPSMG TPSMGCG TPSBPXCG

4,913 41 13 18

5,505 62 15 18

6,617 89 18 21

8,666 99 19 19

10,585 98 19 20

12,411 125 23 25

16,353 154 23 23

21,248 182 22 23

27,755 197 26 32

36,466 178 27 29

43,271 238 25 30

51,163 283 28 36

72,349 395 32 34

89,146 424 31 34

104,747 413 34 38

Table 2 Example 1: Comparison of number of iterations for TPSMG,
TPSMGCG and TPSBPXCG when ε = 10−2

DOF TPSMG TPSMGCG TPSBPXCG

4,913 46 13 17

5,550 51 15 17

6,743 61 17 20

8,907 65 16 19

10,729 66 17 20

13,281 86 20 24

17,146 90 20 21

23,139 90 20 24

28,613 160 25 29

37,338 175 24 27

43,610 149 22 26

52,715 154 25 31

72,967 238 28 29

89,320 165 25 33

113,131 294 30 38

Table 3 Example 1: Comparison of number of iterations for TPSMG,
TPSMGCG and TPSBPXCG when ε = 102

DOF TPSMG TPSMGCG TPSBPXCG

4,913 16 10 14

5,279 37 15 15

5,867 43 17 18

6,522 48 16 19

7,562 68 17 18

9,493 61 17 18

11,858 49 15 18

15,257 68 15 18

20,649 61 16 19

27,946 49 17 21

36,735 52 16 20

48,890 58 16 22

68,297 71 18 22

89,872 55 16 21

119,109 61 17 23

Table 4 Example 1: Comparison of number of iterations for TPSMG,
TPSMGCG and TPSBPXCG when ε = 104

DOF TPSMG TPSMGCG TPSBPXCG

4,913 16 10 14

5,269 37 15 15

5,863 42 17 18

6,493 45 16 18

7,531 68 17 18

9,419 59 16 17

11,721 46 15 18

14,941 69 15 18

20,065 59 16 19

27,199 47 17 21

35,601 59 16 20

47,743 55 16 22

66,989 71 18 21

88,079 57 16 21

116,739 56 17 23

rithm will converge uniformly. This is because the coef-
ficient in Ω3, which contains the Dirichlet boundary, is
dominant. In this case, we could use the standard multi-
grid analysis (as in [54]) to show the robustness of the
preconditioners.

We use the three-term recursion relation of the PCG
coefficients to estimate the eigenvalue distribution of the
preconditioned system (see for example [4] or [40, Sec-
tion 6.7.3]). Figure 5 shows the eigenvalue distributions
for the TPSMGCG and TPSBPXCG preconditioned sys-
tems. As we can see from the figure, there is one small
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Fig. 5 Example 1: Estimated eigenvalues of B A when ε = 10−4 with
12,411 vertices. The red dots stand for the exceptionally small eigenval-
ues, due to the large jump in coefficients. a Eigenvalues for TPSBPXCG.
b Eigenvalues for TPSMGCG

eigenvalue for both preconditioned systems. This agrees
with the theoretical results, the number of small eigen-
values is bounded by the number of floating subdomains
m0 ≡ 2.

Figure 6 shows the condition number and effective condi-
tion number of TPSBPXCG and TPSMGCG preconditioned
systems. From Fig. 6, we observed that when ε is small,
the condition number deteriorates (κ(B A) ∈ [3, 1100] for
TPSBPXCG, and κ(B A) ∈ [3, 125] for TPSMGCG as we
can see from the figure). On the other hand, if we get rid
of the first small eigenvalue, the effective condition num-
ber κ1(B A) of TPSBPXCG and TPSMGCG preconditioned
systems (the black and red lines, respectively) are almost
identical for different ε. This indicates that the effective
condition numbers are uniform with respect to the jumps.
Moreover, as we can see from Fig. 6, κ1(B A) are mildly
increasing with respect to the DOFs (κ1(B A) ∈ [1, 80]

(a)

(b)

Fig. 6 Example 1: κ(B A) and κ1(B A) for the cases ε = 10−6, 10−4

w.r.t the DOFs. a TPSBPXCG. b TPSMGCG

for TPSBPXCG, and κ1(B A) ∈ [1, 30] for TPSMGCG).
These results agree with our theoretical expectations from
Sect. 5.

Example 2 To test the case with more floating subdomains,
we consider the following settings in the coefficients. We
divide the computational domain Ω = (−1, 1)3 into 8
small cubes of the same size, and in each of these 8 small
cubes, we set the coefficient same as Example 1 (see Fig. 3).
Therefore, Ω contains 16 small “gray” cubes, which are
pairwise touched at one point. The coefficient a(x) = 1
in these small cubes, and a(x) = ε. To resolve the dis-
continuity, we used a uniform tetrahedra mesh with 729
nodes and 3072 elements as the initial triangulation T0.
The right hand and boundary conditions are the same as
Example 1.
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Fig. 7 Example 2: an adaptive mesh with ε = 10−4 and 11,233 ver-
tices

Table 5 Example 2: Comparison of number of iterations for TPSMG,
TPSMGCG and TPSBPXCG when ε = 10−4

DOF TPSMG TPSMGCG TPSBPXCG

729 3 2 2

1,042 26 9 10

1,977 65 15 17

2,803 136 16 20

4,095 165 19 23

6,195 221 19 25

7,307 349 23 28

11,233 * 27 37

17,023 * 30 42

25,809 * 35 58

28,727 * 33 65

37,473 * 32 62

44,402 * 33 64

49,553 * 35 67

Here “*” means the algorithm doesn’t converge to the required tolerance
within 500 iterations (same meaning below)

Figure 7 shows an adaptive mesh after several iterations
of the adaptive algorithm. In order to view the mesh around
the singularity, we only show the triangulation of the subset
[−0.5, 0.5] × [−1, 1] × [−1, 1] ⊂ Ω . As we can see from
the figure, the refinement indeed goes around the interesting
jump regions.

Table 6 Example 2: Comparison of number of iterations for TPSMG,
TPSMGCG and TPSBPXCG when ε = 10−2

DOF TPSMG TPSMGCG TPSBPXCG

729 3 2 2

913 11 7 8

1,218 24 9 12

1,848 40 15 15

2,481 54 16 18

3,467 89 19 21

5,730 110 21 24

7,654 132 21 28

11,210 198 26 35

18,844 280 29 39

27,601 306 28 46

42,931 404 36 55

67,598 459 38 60

102,216 * 44 73

Table 7 Example 2: Comparison of number of iterations for TPSMG,
TPSMGCG and TPSBPXCG when ε = 102

DOF TPSMG TPSMGCG TPSBPXCG

729 3 3 3

859 7 7 8

1,219 9 8 10

1,793 14 10 12

3,145 19 12 14

4,609 23 13 16

8,550 32 16 20

12,825 36 17 22

20,901 52 20 27

37,697 69 22 30

57,348 72 22 36

90,812 73 24 40

146,560 79 25 45

As in Example 1, we present the comparisons of the num-
ber of iterations for the algorithms: TPSMG, TPSMGCG,
and TPSBPXCG in Tables 5, 6, 7 and 8, respectively, with
the choice of ε = 10−4, 10−2, 102 and 104. When ε = 10−4

or ε = 10−2 (cf. Tables 5, 6), we observe that the num-
ber of iterations for TPSMG algorithm grows rapidly as the
mesh is refined for both cases. In particular, for sufficiently
fine mesh the TPSMG algorithm even does not converge to
the required error tolerance in 500 iterations. However, the
number of iterations for TPSMGCG and TPSBPXCG is very
robust and only grows moderately when the mesh is refined,
as we expected from the theory. On the other hand, from
Tables 7 and 8 we also observe that in case of ε = 102
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Table 8 Example 2: Comparison of number of iterations for TPSMG,
TPSMGCG and TPSBPXCG when ε = 104

DOF TPSMG TPSMGCG TPSBPXCG

729 3 3 3

857 7 7 8

1,225 9 8 10

1,785 14 10 12

3,145 19 12 14

4,591 23 13 16

8,585 32 16 19

12,868 36 17 22

20,687 51 20 27

37,593 69 22 30

57,154 72 22 36

90,293 75 24 41

145,395 80 25 45

or ε = 104, the TPSMG algorithm performs well. But we
can still see the improvements of the TPSMGCG and TPS-
BPXCG algorithms. This is consistent with the results in
Example 1 (cf. Tables 3, 4).

Figure 8 shows the eigenvalue distributions for the
TPSMGCG and TPSBPXCG preconditioned systems, which
again are obtained using the relationship between the PCG
coefficients and the eigenvalues of the preconditioned sys-
tems . As we can see from the figure, there are only 4 small
eigenvalues for both preconditioned systems. This agrees
with the theoretical results, the number of small eigen-
values is bounded by the number of floating subdomains
m0 ≡ 16.

7 Conclusion

In this paper, we designed local multilevel preconditioners
based on the decomposition of the finite element space into
3-point subspaces for the highly graded mesh obtained from
adaptive bisection algorithms. To analyze the behavior of the
local multilevel preconditioners, we introduced a local inter-
polation operator and proved some approximation and sta-
bility properties of it. Based on these properties, we showed
the decomposition of the finite element space is stable, which
is a key ingredient in the multilevel analysis. This enabled
us to analyze the eigenvalue distributions of the precondi-
tioned systems. In particular, we showed that there are only
a small fixed number of eigenvalues that are deteriorated by
the coefficients and mesh size, and the other eigenvalues are
uniformly bounded with respect to the coefficients and loga-
rithmically depends on the mesh size. As a result, we proved
the asymptotic convergence rate of the PCG algorithm is

0 5 10 15 20 25 30 35 40
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Eigenvalues for TPSMG preconditioned system

(a)

(b)

Fig. 8 Example 2: estimated eigenvalues of B A when ε = 10−4 with
11,233 vertices. The red dots stand for the exceptionally small eigenval-
ues, due to the large jump in coefficients. a Eigenvalues for TPSBPXCG.
b Eigenvalues for TPSMGCG

uniform with respect to the coefficient and nearly uniform
with respect to the mesh size. Moreover, the overall computa-
tion complexity of these multilevel preconditioner are nearly
optimal. Numerical experiments justified our theoretical
results.
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