Deriving the X-Z Identity from Auxiliary Space Method*

Long Chen

Department of Mathematics, University of California at Irvine, Irvine, CA 92697
chenlong@math.uci.edu

1 Iterative Methods

In this paper we discuss iterative methods to solve the linear operator equation

$$
\begin{equation*}
A u=f \tag{1}
\end{equation*}
$$

posed on a finite dimensional Hilbert space \mathcal{V} equipped with an inner product (\cdot, \cdot). Here $A: \mathcal{V} \mapsto \mathcal{V}$ is a symmetric positive definite (SPD) operator, $f \in \mathcal{V}$ is given, and we are looking for $u \in \mathcal{V}$ such that (1) holds.

The X-Z identity for the multiplicative subspace correction method for solving (1) is introduced and proved in Xu and Zikatanov [2002]. Alternative proves can be found in Cho et al. [2008] and Vassilevski [2008]. In this paper we derive the X-Z identity from the auxiliary space method Nepomnyaschikh [1992], Xu [1996].

A basic linear iterative method for solving (1) can be written in the following form: starting from an initial guess u^{0}, for $k=0,1,2, \cdots$

$$
\begin{equation*}
u^{k+1}=u^{k}+B\left(f-A u^{k}\right) \tag{2}
\end{equation*}
$$

Here the non-singular operator $B \approx A^{-1}$ will be called iterator. Let $e^{k}=u-u^{k}$. The error equation of the basic iterative method (2) is

$$
e^{k+1}=(I-B A) e^{k}=(I-B A)^{k} e^{0}
$$

Thus the iterative method (2) converges if and only if the spectral radius of the error operator $I-B A$ is less than one, i.e., $\rho(I-B A)<1$.

Given an iterator B, we define the mapping $\Phi_{B} v=v+B(f-A v)$ and introduce its symmetrization $\Phi_{\bar{B}}=\Phi_{B^{t}} \circ \Phi_{B}$. By definition, we have the formula for the error operator $I-\bar{B} A=\left(I-B^{t} A\right)(I-B A)$, and thus

[^0]\[

$$
\begin{equation*}
\bar{B}=B^{t}\left(B^{-t}+B^{-1}-A\right) B \tag{3}
\end{equation*}
$$

\]

Since \bar{B} is symmetric, $I-\bar{B} A$ is symmetric with respect to the A-inner product $(u, v)_{A}:=(A u, v)$. Indeed, let $(\cdot)^{*}$ be the adjoint in the A-inner product $(\cdot, \cdot)_{A}$. It is easy to show

$$
\begin{equation*}
I-\bar{B} A=(I-B A)^{*}(I-B A) \tag{4}
\end{equation*}
$$

Consequently, $I-\bar{B} A$ is positive semi-definite and thus $\lambda_{\max }(\bar{B} A) \leq 1$. We get

$$
\begin{equation*}
\|I-\bar{B} A\|_{A}=\max \left\{\left|1-\lambda_{\min }(\bar{B} A)\right|,\left|1-\lambda_{\max }(\bar{B} A)\right|\right\}=1-\lambda_{\min }(\bar{B} A) \tag{5}
\end{equation*}
$$

From (5), we see that $I-\bar{B} A$ is a contraction if and only if \bar{B} is SPD which is also equivalent to $B^{-t}+B^{-1}-A$ being SPD in view of (3).

The convergence of the scheme Φ_{B} and its symmetrization $\Phi_{\bar{B}}$ is connected by the following inequality:

$$
\begin{equation*}
\rho(I-B A)^{2} \leq\|I-B A\|_{A}^{2}=\|I-\bar{B} A\|_{A}=\rho(I-\bar{B} A) \tag{6}
\end{equation*}
$$

and the equality holds if $B=B^{t}$. Hence we shall focus on the analysis of the symmetric scheme in the rest of this paper.

The iterator B, when it is SPD, can be used as a preconditioner in the Preconditioned Conjugate Gradient (PCG) method, which admits the following estimate:

$$
\frac{\left\|u-u^{k}\right\|_{A}}{\left\|u-u^{0}\right\|_{A}} \leq 2\left(\frac{\sqrt{\kappa(B A)}-1}{\sqrt{\kappa(B A)}+1}\right)^{k}(k \geq 1), \quad\left(\kappa(B A)=\frac{\lambda_{\max }(B A)}{\lambda_{\min }(B A)}\right)
$$

A good preconditioner should have the properties that the action of B is easy to compute and that the condition number $\kappa(B A)$ is significantly smaller than $\kappa(A)$. We shall also discuss construction of multilevel preconditioners in this paper.

2 Auxiliary Space Method

In this section, we present a variation of the fictitious space method Nepomnyaschikh [1992] and the auxiliary space method Xu [1996].

Let $\tilde{\mathcal{V}}$ and \mathcal{V} be two Hilbert spaces and let $\Pi: \tilde{\mathcal{V}} \rightarrow \mathcal{V}$ be a surjective map. Denoted by $\Pi^{t}: \mathcal{V} \rightarrow \tilde{\mathcal{V}}$ the adajoint of Π with respect to the default inner products

$$
\left(\Pi^{t} u, \tilde{v}\right):=(u, \Pi \tilde{v}) \quad \text { for all } u \in \mathcal{V}, \tilde{v} \in \tilde{\mathcal{V}}
$$

Here, to save notation, we use (\cdot, \cdot) for inner products in both \mathcal{V} and $\tilde{\mathcal{V}}$. Since Π is surjective, its transpose Π^{t} is injective.
Theorem 1. Let $\tilde{\mathcal{V}}$ and \mathcal{V} be two Hilbert spaces and let $\Pi: \tilde{\mathcal{V}} \rightarrow \mathcal{V}$ be a surjective map. Let $\tilde{B}: \tilde{\mathcal{V}} \rightarrow \tilde{\mathcal{V}}$ be a symmetric and positive definite operator. Then $B:=$ $\Pi \tilde{B} \Pi^{t}: \mathcal{V} \rightarrow \mathcal{V}$ is also symmetric and positive definite. Furthermore

$$
\begin{equation*}
\left(B^{-1} v, v\right)=\inf _{\Pi \tilde{v}=v}\left(\tilde{B}^{-1} \tilde{v}, \tilde{v}\right) \tag{7}
\end{equation*}
$$

Proof. We adapt the proof given by Xu and Zikatanov [2002] (Lemma 2.4).
It is obvious that B is symmetric and positive semi-definite. Since \tilde{B} is SPD and Π^{t} is injective, $(B v, v)=\left(\tilde{B} \Pi^{t} v, \Pi^{t} v\right)=0$ implies $\Pi^{t} v=0$ and consequently $v=0$. Therefore B is positive definite.

Let $\tilde{v}^{*}=\tilde{B} \Pi^{t} B^{-1} v$. Then $\Pi \tilde{v}^{*}=v$ by the definition of B. For any $\tilde{w} \in \tilde{\mathcal{V}}$

$$
\left(\tilde{B}^{-1} \tilde{v}^{*}, \tilde{w}\right)=\left(\Pi^{t} B^{-1} v, \tilde{w}\right)=\left(B^{-1} v, \Pi \tilde{w}\right)
$$

In particular $\left(\tilde{B}^{-1} \tilde{v}^{*}, \tilde{v}^{*}\right)=\left(B^{-1} v, \Pi \tilde{v}^{*}\right)=\left(B^{-1} v, v\right)$. For any $\tilde{v} \in \tilde{\mathcal{V}}$, denoted by $v=\Pi \tilde{v}$, we write $\tilde{v}=\tilde{v}^{*}+\tilde{w}$ with $\Pi \tilde{w}=0$. Then

$$
\begin{aligned}
\inf _{\Pi \tilde{v}=v}\left(\tilde{B}^{-1} \tilde{v}, \tilde{v}\right) & =\inf _{\Pi \tilde{w}=0}\left(\tilde{B}^{-1}\left(\tilde{v}^{*}+\tilde{w}\right), \tilde{v}^{*}+\tilde{w}\right) \\
& =\left(B^{-1} v, v\right)+\inf _{\Pi \tilde{w}=0}\left(2\left(\tilde{B}^{-1} \tilde{v}^{*}, \tilde{w}\right)+\left(\tilde{B}^{-1} \tilde{w}, \tilde{w}\right)\right) \\
& =\left(B^{-1} v, v\right)+\inf _{\Pi \tilde{w}=0}\left(\tilde{B}^{-1} \tilde{w}, \tilde{w}\right) \\
& =\left(B^{-1} v, v\right) .
\end{aligned}
$$

The symmetric positive definite operator B may be used as a preconditioner for solving $A u=f$ using PCG. To estimate the condition number $\kappa(B A)$, we only need to compare B^{-1} and A.

Lemma 1. For two SPD operators A and B, if $c_{0}(A v, v) \leq\left(B^{-1} v, v\right) \leq c_{1}(A v, v)$ for all $v \in \mathcal{V}$, then $\kappa(B A) \leq c_{1} / c_{0}$.

Proof. Note that $B A$ is symmetric with respect to A. Therefore

$$
\lambda_{\min }^{-1}(B A)=\lambda_{\max }\left((B A)^{-1}\right)=\sup _{u \in \mathcal{V} \backslash\{0\}} \frac{\left((B A)^{-1} u, u\right)_{A}}{(u, u)_{A}}=\sup _{u \in \mathcal{V} \backslash\{0\}} \frac{\left(B^{-1} u, u\right)}{(A u, u)} .
$$

Therefore $\left(B^{-1} v, v\right) \leq c_{1}(A v, v)$ implies $\lambda_{\text {min }}(B A) \geq c_{1}^{-1}$. Similarly $\left(B^{-1} v, v\right) \geq$ $c_{0}(A v, v)$ implies $\lambda_{\max }(B A) \leq c_{0}^{-1}$. The estimate of $\kappa(B A)$ then follows.

By Lemma 1 and Theorem 1, we have the following result.
Corollary 1. Let $\tilde{B}: \tilde{\mathcal{V}} \rightarrow \tilde{\mathcal{V}}$ be $S P D$ and $B=\Pi \tilde{B} \Pi^{t}$. If

$$
\begin{equation*}
c_{0}(A v, v) \leq \inf _{\Pi \tilde{v}=v}\left(\tilde{B}^{-1} \tilde{v}, \tilde{v}\right) \leq c_{1}(A v, v) \quad \text { for all } v \in \mathcal{V} \tag{8}
\end{equation*}
$$

then $\kappa(B A) \leq c_{1} / c_{0}$.
Remark 1. In literature, e.g. the fictitious space lemma of Nepomnyaschikh [1992], the condition (8) is usually decomposed as the following two conditions.

1. For any $v \in \mathcal{V}$, there exists a $\tilde{v} \in \tilde{V}$, such that $\Pi \tilde{v}=v$ and $\|\tilde{v}\|_{\tilde{B}^{-1}}^{2} \leq c_{1}\|v\|_{A}^{2}$.
2. For any $\tilde{v} \in \tilde{\mathcal{V}},\|\Pi \tilde{v}\|_{A}^{2} \leq c_{0}^{-1}\|\tilde{v}\|_{\tilde{B}^{-1}}^{2}$.

3 Auxiliary Spaces of Product Type

Let $\mathcal{V}_{i} \subseteq \mathcal{V}, i=0, \ldots, J$, be subspaces of \mathcal{V}. If $\mathcal{V}=\sum_{i=0}^{J} \mathcal{V}_{i}$, then $\left\{\mathcal{V}_{i}\right\}_{i=0}^{J}$ is called a space decomposition of \mathcal{V}. Then for any $u \in \mathcal{V}$, there exists a decomposition $u=\sum_{i=0}^{J} u_{i}$. Since $\sum_{i=0}^{J} \mathcal{V}_{i}$ is not necessarily a direct sum, decompositions of u are in general not unique.

We introduce the inclusion operator $I_{i}: \mathcal{V}_{i} \rightarrow \mathcal{V}$, the projection operator $Q_{i}:$ $\mathcal{V} \rightarrow \mathcal{V}_{i}$ in the (\cdot, \cdot) inner product, the projection operator $P_{i}: \mathcal{V} \rightarrow \mathcal{V}_{i}$ in the $(\cdot, \cdot)_{A}$ inner product, and $A_{i}=\left.A\right|_{\mathcal{V}_{i}}$. It can be easily verified $Q_{i} A=A_{i} P_{i}$ and $Q_{i}=I_{i}^{t}$.

Given a space decomposition $\mathcal{V}=\sum_{i=0}^{J} \mathcal{V}_{i}$, we construct an auxiliary space of product type $\tilde{\mathcal{V}}=\mathcal{V}_{0} \times \mathcal{V}_{1} \times \ldots \times \mathcal{V}_{J}$, with the inner product $(\tilde{u}, \tilde{v}):=\sum_{i=0}^{J}\left(u_{i}, v_{i}\right)$. We define $\Pi: \tilde{\mathcal{V}} \rightarrow \mathcal{V}$ as $\Pi \tilde{u}=\sum_{i=0}^{J} u_{i}$. In operator form $\Pi=\left(I_{0}, I_{1}, \cdots, I_{J}\right)$. Since $\mathcal{V}=\sum_{i=0}^{J} \mathcal{V}_{i}$, the operator Π is surjective.

Let $R_{i}: \mathcal{V}_{i} \rightarrow \mathcal{V}_{i}$ be nonsingular operators, often known as smoothers, approximating A_{i}^{-1}. Define a diagonal matrix of operators $\tilde{R}=\operatorname{diag}\left(R_{0}, R_{1}, \cdots, R_{J}\right)$: $\tilde{\mathcal{V}} \rightarrow \tilde{\mathcal{V}}$ which is non-singular. An additive preconditioner is defined as

$$
\begin{equation*}
B_{a}=\Pi \tilde{R} \Pi^{t}=\sum_{i=0}^{J} I_{i} R_{i} I_{i}^{t}=\sum_{i=0}^{J} I_{i} R_{i} Q_{i} \tag{9}
\end{equation*}
$$

Applying Theorem 1, we obtain the following identity for preconditioner B_{a}.
Theorem 2. If R_{i} is $S P D$ on \mathcal{V}_{i} for $i=0, \ldots, J$, then B_{a} defined by (9) is SPD on \mathcal{V}. Furthermore

$$
\begin{equation*}
\left(B_{a}^{-1} v, v\right)=\inf _{\sum_{i=0}^{J} v_{i}=v} \sum_{i=0}^{J}\left(R_{i}^{-1} v_{i}, v_{i}\right) \tag{10}
\end{equation*}
$$

To define a multiplicative preconditioner, we introduce the operator $\tilde{A}=\Pi^{t} A \Pi$. By direct computation, the entry $\tilde{a}_{i j}=Q_{i} A I_{j}=A_{i} P_{i} I_{j}$. In particular $\tilde{a}_{i i}=$ A_{i}. The symmetric operator \tilde{A} may be singular with nontrivial kernel $\operatorname{ker}(\Pi)$, but the diagonal of \tilde{A} is always non-singular. Write $\tilde{A}=\tilde{D}+\tilde{L}+\tilde{U}$ where $\tilde{D}=\operatorname{diag}\left(A_{0}, A_{1}, \cdots, A_{j}\right), \tilde{L}$ and \tilde{U} are lower and upper triangular matrix of operators, and $\tilde{L}^{t}=\tilde{U}$. Note that the operator $\tilde{R}^{-1}+\tilde{L}$ is invertible. We define $\tilde{B}_{m}=\left(\tilde{R}^{-1}+\tilde{L}\right)^{-1}$ and its symmetrization as

$$
\begin{equation*}
\overline{\tilde{B}}_{m}=\tilde{B}_{m}^{t}+\tilde{B}_{m}-\tilde{B}_{m}^{t} \tilde{A} \tilde{B}_{m}=\tilde{B}_{m}^{t}\left(\tilde{B}_{m}^{-t}+\tilde{B}_{m}^{-1}-\tilde{A}\right) \tilde{B}_{m} \tag{11}
\end{equation*}
$$

The symmetrizied multiplicative preconditioner is defined as

$$
\begin{equation*}
\bar{B}_{m}:=\Pi \overline{\tilde{B}}_{m} \Pi^{t} \tag{12}
\end{equation*}
$$

We define the diagonal matrix of operators $\tilde{\bar{R}}=\operatorname{diag}\left(\bar{R}_{0}, \bar{R}_{1}, \cdots, \bar{R}{ }_{J}\right)$, where, for each $R_{i}, i=0, \cdots, J$, its symmetrization is

$$
\bar{R}_{i}=R_{i}^{t}\left(R_{i}^{-t}+R_{i}^{-1}-A_{i}\right) R_{i} .
$$

Substituting $\tilde{B}_{m}^{-1}=\tilde{R}^{-1}+\tilde{L}$, and $\tilde{A}=\tilde{D}+\tilde{L}+\tilde{U}$ into (11), we have

$$
\begin{align*}
\bar{B}_{m} & =\left(\tilde{R}^{-t}+\tilde{L}^{t}\right)^{-1}\left(\tilde{R}^{-t}+\tilde{R}^{-1}-\tilde{D}\right)\left(\tilde{R}^{-1}+\tilde{L}\right)^{-1} \\
& =\left(\tilde{R}^{-t}+\tilde{L}^{t}\right)^{-1} \tilde{R}^{-t} \overline{\bar{R}} \tilde{R}^{-1}\left(\tilde{R}^{-1}+\tilde{L}\right)^{-1} \tag{13}
\end{align*}
$$

It is obvious that $\overline{\tilde{B}}_{m}$ is symmetric. To be positive definite, from (13), it suffices to assume $\tilde{\bar{R}}$, i.e. each \bar{R}_{i}, is symmetric and positive definite which is equivalent to the operator $I-\bar{R}_{i} A_{i}$ is a contraction and so is $I-R_{i} A_{i}$.
(A) $\left\|I-R_{i} A_{i}\right\|_{A_{i}}<1$ for each $i=0, \cdots, J$.

Theorem 3. Suppose (A) holds. Then \bar{B}_{m} defined by (12) is SPD, and

$$
\begin{equation*}
\left(\bar{B}_{m}^{-1} v, v\right)=\|v\|_{A}^{2}+\inf _{\sum_{i=0}^{J} v_{i}=v} \sum_{i=0}^{J}\left\|R_{i}^{t}\left(A_{i} P_{i} \sum_{j=i}^{J} v_{j}-R_{i}^{-1} v_{i}\right)\right\|_{\bar{R}_{i}^{-1}}^{2} \tag{14}
\end{equation*}
$$

In particular, for $R_{i}=A_{i}^{-1}$, we have

$$
\begin{equation*}
\left(\bar{B}_{m}^{-1} v, v\right)=\|v\|_{A}^{2}+\inf _{\sum_{i=0}^{J} v_{i}=v} \sum_{i=0}^{J}\left\|P_{i} \sum_{j=i+1}^{J} v_{j}\right\|_{A}^{2} \tag{15}
\end{equation*}
$$

Proof. Let

$$
\mathscr{M}=\tilde{R}^{-t}+\tilde{R}^{-1}-\tilde{D}=\tilde{R}^{-t} \tilde{\bar{R}} \tilde{R}^{-1}, \quad \mathscr{U}=\tilde{D}+\tilde{U}-\tilde{R}^{-1}, \quad \mathscr{L}=\mathscr{U}^{t}
$$

then $\tilde{R}^{-1}+\tilde{L}=\mathscr{M}+\mathscr{L}$ and $\tilde{A}=\mathscr{M}+\mathscr{L}+\mathscr{U}$. We then compute

$$
\begin{aligned}
\tilde{B}_{m}^{-1} & =\left(\tilde{R}^{-1}+\tilde{L}\right)\left(\tilde{R}^{-t}+\tilde{R}^{-1}-\tilde{D}\right)^{-1}\left(\tilde{R}^{-t}+\tilde{L}^{t}\right) \\
& =(\mathscr{M}+\mathscr{L}) \mathscr{M}^{-1}(\mathscr{M}+\mathscr{U}) \\
& =\tilde{A}+\mathscr{L} \mathscr{M}^{-1} \mathscr{U} \\
& =\tilde{A}+\left[\tilde{R}^{t}\left(\tilde{D}+\tilde{U}-\tilde{R}^{-1}\right)\right]^{t} \tilde{\bar{R}}^{-1}\left[\tilde{R}^{t}\left(\tilde{D}+\tilde{U}-\tilde{R}^{-1}\right)\right]
\end{aligned}
$$

For any $\tilde{v} \in \overline{\mathcal{V}}$, denoted by $v=\Pi \tilde{v}$, we have

$$
(\tilde{A} \tilde{v}, \tilde{v})=\left(\Pi^{t} A \Pi \tilde{v}, \tilde{v}\right)=(A \Pi \tilde{v}, \Pi \tilde{v})=\|v\|_{A}^{2}
$$

Using component-wise formula of $\tilde{R}^{t}\left(\tilde{D}+\tilde{U}-\tilde{R}^{-1}\right) \tilde{v}$, e.g. $((\tilde{D}+\tilde{U}) \tilde{v})_{i}=$ $\sum_{j=i}^{J} \tilde{a}_{i j} v_{j}=\sum_{j=i}^{J} A_{i} P_{i} v_{j}$, we get

$$
\left(\mathscr{M}^{-1} \mathscr{U} \tilde{v}, \mathscr{U} \tilde{v}\right)=\sum_{i=0}^{J}\left\|R_{i}^{t}\left(A_{i} P_{i} \sum_{j=i}^{J} v_{j}-R_{i}^{-1} v_{i}\right)\right\|_{\bar{R}_{i}^{-1}}^{2}
$$

The identity (14) then follows.

If we further introduce the operator $T_{i}=R_{i} A_{i} P_{i}: \mathcal{V} \rightarrow \mathcal{V}_{i}$, then $T_{i}^{*}=R_{i}^{t} A_{i} P_{i}$, $\bar{T}_{i}:=T_{i}+T_{i}^{*}-T_{i}^{*} T_{i}=\bar{R}_{i} A_{i} P_{i}$, and $\left(\bar{R}_{i}^{-1} w_{i}, w_{i}\right)=\left(A_{i} \bar{T}_{i}^{-1} w_{i}, w_{i}\right)=$ $\left(\bar{T}_{i}^{-1} w_{i}, w_{i}\right)_{A}$. Here $\bar{T}_{i}^{-1}:=\left(\bar{T}_{i} \mid \mathcal{V}_{i}\right)^{-1}: \mathcal{V}_{i} \rightarrow \mathcal{V}_{i}$ is well defined due to the assumption (A). We then recovery the original formulation in Xu and Zikatanov [2002]

$$
\left(\bar{B}_{m}^{-1} v, v\right)=\|v\|_{A}^{2}+\inf _{\sum_{i=0}^{J} v_{i}=v} \sum_{i=0}^{J}\left(\bar{T}_{i}^{-1} T_{i}^{*} w_{i}, T_{i}^{*} w_{i}\right)_{A}
$$

with $w_{i}=\sum_{j=i}^{J} v_{j}-T_{i}^{-1} v_{i}$. With these notation and $w_{i}=\sum_{k>i} v_{k}$, we can also use (13) to recovery the formula in Cho et al. [2008]

$$
\left(\bar{B}_{m}^{-1} v, v\right)=\inf _{\sum_{i=0}^{J} v_{i}=v} \sum_{i=0}^{J}\left(\bar{T}_{i}^{-1}\left(v_{i}+T_{i}^{*} w_{i}\right), v_{i}+T_{i}^{*} w_{i}\right)_{A} .
$$

4 Method of Subspace Correction

In this section, we view the method of subspace correction Xu [1992] as an auxiliary space method and provide identities for the convergence analysis.

Let $\mathcal{V}=\sum_{i=0}^{J} \mathcal{V}_{i}$ be a space decomposition of \mathcal{V}. For a given residual $r \in \mathcal{V}$, we let $r_{i}=Q_{i} r$ be the restriction of the residual to the subspace \mathcal{V}_{i} and solve the residual equation in the subspaces

$$
A_{i} e_{i}=r_{i} \quad \text { approximately by } \quad \hat{e}_{i}=R_{i} r_{i} .
$$

Subspace corrections \hat{e}_{i} are assembled together to give a correction in the space \mathcal{V}. There are two basic ways to assemble subspace corrections.

Parallel Subspace Correction (PSC)

This method is to do the correction on each subspace in parallel. In operator form, it reads

$$
\begin{equation*}
u^{k+1}=u^{k}+B_{a}\left(f-A u^{k}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{a}=\sum_{i=0}^{J} I_{i} R_{i} I_{i}^{t}=\sum_{i=0}^{J} I_{i} R_{i} Q_{i} . \tag{17}
\end{equation*}
$$

Thus PSC is also called additive methods. Note that the formula (17) and (9) are identical and thus identity (10) is useful to estimate $\kappa\left(B_{a} A\right)$.

Successive Subspace Correction (SSC)
This method is to do the correction in a successive way. In operator form, it reads

$$
\begin{equation*}
v^{0}=u^{k}, \quad v^{i+1}=v^{i}+R_{i} Q_{i}\left(f-A v^{i}\right), i=0, \ldots, N, \quad u^{k+1}=v^{J+1} \tag{18}
\end{equation*}
$$

For each subspace problem, we have the operator form $v^{i+1}=v^{i}+R_{i}\left(f-A v^{i}\right)$, but it is not easy to write out the iterator for the space \mathcal{V}. We define B_{m} such that the error operator

$$
I-B_{m} A=\left(I-R_{J} Q_{J} A\right)\left(I-R_{J-1} Q_{J-1} A\right) \ldots\left(I-R_{0} Q_{0} A\right)
$$

Therefore SSC is also called multiplicative method. We now derive a formulation of B_{m} from the auxiliary space method.

In the sequel, we consider the SSC applied to the space decomposition $\mathcal{V}=$ $\sum_{i=0}^{J} \mathcal{V}_{i}$ with smoothers $R_{i}, i=0, \cdots, J$. Recall that $\tilde{\mathcal{V}}=\mathcal{V}_{0} \times \mathcal{V}_{1} \times \ldots \times \mathcal{V}_{J}$ and $\tilde{A}=\Pi^{t} A \Pi$. Let $\tilde{f}=\Pi^{t} f$. Following Griebel and Oswald [1995], we view SSC for solving $A u=f$ as a Gauss-Seidel type method for solving $\tilde{A} \tilde{u}=\tilde{f}$.

Lemma 2. Let $\tilde{A}=\tilde{D}+\tilde{L}+\tilde{U}$ and $\tilde{B}=\left(\tilde{R}^{-1}+\tilde{L}\right)^{-1}$. Then SSC for $\underset{\tilde{A}}{A} u=\underset{\sim}{f}$ with smothers R_{i} is equivalent to the Gauss-Seidel type method for solving $\tilde{A} \tilde{u}=\tilde{f}$:

$$
\begin{equation*}
\tilde{u}^{k+1}=\tilde{u}^{k}+\tilde{B}\left(\tilde{f}-\tilde{A} \tilde{u}^{k}\right) \tag{19}
\end{equation*}
$$

Proof. By multiplying $\tilde{R}^{-1}+\tilde{L}$ to (19) and rearranging the term, we have

$$
\tilde{R}^{-1} \tilde{u}^{k+1}=\tilde{R}^{-1} \tilde{u}^{k}+\tilde{f}-\tilde{L} \tilde{u}^{k+1}-(\tilde{D}+\tilde{U}) \tilde{u}^{k}
$$

Multiplying \tilde{R}, we obtain

$$
\tilde{u}^{k+1}=\tilde{u}^{k}+\tilde{R}\left(\tilde{f}-\tilde{L} \tilde{u}^{k+1}-(\tilde{D}+\tilde{U}) \tilde{u}^{k}\right)
$$

and its component-wise formula, for $i=0, \cdots, J$

$$
\begin{aligned}
u_{i}^{k+1} & =u_{i}^{k}+R_{i}\left(f_{i}-\sum_{j=0}^{i-1} \tilde{a}_{i j} u_{j}^{k+1}-\sum_{j=i}^{J} \tilde{a}_{i j} u_{j}^{k}\right) \\
& =u_{i}^{k}+R_{i} Q_{i}\left(f-A \sum_{j=0}^{i-1} u_{j}^{k+1}-A \sum_{j=i}^{J} u_{j}^{k}\right) .
\end{aligned}
$$

Let

$$
v^{i-1}=\sum_{j=0}^{i-1} u_{j}^{k+1}+\sum_{j=i}^{J} u_{j}^{k}
$$

Noting that $v^{i}-v^{i-1}=u_{i}^{k+1}-u_{i}^{k}$, we then get, for $i=1, \cdots, J+1$

$$
v^{i}=v^{i-1}+R_{i} Q_{i}\left(f-A v^{i-1}\right),
$$

which is exactly the correction on \mathcal{V}_{i}; see (18).
Lemma 3. For SSC, we have

$$
B_{m}=\Pi \tilde{B}_{m} \Pi^{t} \quad \text { and } \quad \bar{B}_{m}=\Pi \overline{\tilde{B}}_{m} \Pi^{t}
$$

Proof. Let $u^{k}=\Pi \tilde{u}^{k}$. Applying Π to (19) and noting that

$$
\tilde{f}=\Pi^{t} f, \quad \text { and } \quad \tilde{A} \tilde{u}^{k}=\Pi^{t} A u^{k}
$$

we then get

$$
u^{k+1}=u^{k}+\Pi \tilde{B} \Pi^{t}\left(f-A u^{k}\right)
$$

Therefore $B_{m}=\Pi \tilde{B}_{m} \Pi^{t}$. The formulae for \bar{B}_{m} is obtained similarly.
Combining Lemma 3, (5), (6), and Theorem 3, we obtain the X-Z identity.
Theorem 4 (X-Z identity). Suppose assumption (A) holds. Then

$$
\begin{equation*}
\left\|\left(I-R_{J} Q_{J} A\right)\left(I-R_{J-1} Q_{J-1} A\right) \ldots\left(I-R_{0} Q_{0} A\right)\right\|_{A}^{2}=1-\frac{1}{1+c_{0}} \tag{20}
\end{equation*}
$$

where

$$
c_{0}=\sup _{\|v\|_{A}=1} \inf _{\sum_{i=0}^{J} v_{i}=v} \sum_{i=0}^{J}\left\|R_{i}^{t}\left(A_{i} P_{i} \sum_{j=i}^{J} v_{j}-R_{i}^{-1} v_{i}\right)\right\|_{\bar{R}_{i}^{-1}}^{2} .
$$

In particular, for $R_{i}=A_{i}^{-1}$,

$$
\begin{equation*}
\left\|\left(I-P_{J}\right)\left(I-P_{J-1}\right) \cdots\left(I-P_{0}\right)\right\|_{A}^{2}=1-\frac{1}{1+c_{0}} \tag{21}
\end{equation*}
$$

where

$$
c_{0}=\sup _{\|v\|_{A}=1 \sum_{i=0}^{J} v_{i}=v} \inf _{i=0}^{J}\left\|P_{i} \sum_{j=i+1}^{J} v_{j}\right\|_{A}^{2}
$$

References

D. Cho, J. Xu, and L. Zikatanov. New estimates for the rate of convergence of the method of subspace corrections. Numer. Math. Theor. Meth. Appl., 1:44-56, 2008.
M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz methods. Numer. Math., 70:163-180, 1995.
S. V. Nepomnyaschikh. Decomposition and fictitious domains methods for elliptic boundary value problems. In Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, VA, 1991), pages 62-72. SIAM, Philadelphia, PA, 1992.
P. S. Vassilevski. Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations. Springer Verlag, 2008.
J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev., 34:581-613, 1992.
$\mathrm{J} . \mathrm{Xu}$. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured meshes. Computing, 56:215-235, 1996.
J. Xu and L . Zikatanov. The method of alternating projections and the method of subspace corrections in Hilbert space. J. Amer. Math. Soc., 15:573-597, 2002.

[^0]: * The author is supported in part by NSF Grant DMS-0811272, and in part by NIH Grant P50GM76516 and R01GM75309. This work is also partially supported by the Beijing International Center for Mathematical Research.

