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Abstract
Finite element approximation to a decoupled formulation for the quad-curl problem is studied
in this paper. The difficulty of constructing elements with certain conformity to the quad–curl
problems has been greatly reduced. For convex domains, where the regularity assumption
holds for Stokes equation, the approximation to the curl of the true solution has quadratic
order of convergence and first order for the energy norm. If the solution shows singularity,
an a posterior error estimator is developed and a separate marking adaptive finite element
procedure is proposed, together with its convergence proved. Both the a priori and a posteriori
error analysis are supported by the numerical examples.
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1 Introduction

Quad-curl problem arises from multiphysics simulation such as modeling a magnetized
plasma in magnetohydrodynamics (MHD). In both limiting regimes, resistive MHD [5,47]
and electron MHD [13,33,44], discretizing the quad-curl operator is one of the keys to sim-
ulate these models. In the meantime, quad-curl operator also plays an important role in
approximating the Maxwell transmission eigenvalue problem [12,36]. Recently, the design-
ing of the approximations for quad-curl problems gain quite a few attentions from the finite
element community. For example, conforming finite element spaces for the quad-curl prob-
lem has been recently constructed in [28,51] in two dimensions and [27,39,52] in three
dimensions. Nonconforming and low order finite element spaces can be found in [30,55].
The mixed methods are studied in [45,49,53]. A formulation based on the Hodge decompo-
sition is in [10]. A discontinuous Galerkin approach is studied in [25]. In [46], a novel weak
Galerkin formulation exploits the conforming space for curl-curl problem as a nonconform-
ing space for the quad-curl problem. The a posteriori error analysis in two dimensions is
studied in [50]. We also refer to [54] for a virtual element method in two dimensions.

The structures of the quad-curl problemare unique as the operatormay have a bigger kernel
than the one in the curl-curl problem. In a simply-connected domain, the weak formulation of
the quad-curl problem is equivalent to that with a grad curl operator [3,53]. Consequently, the
stringent continuity condition of the grad curl drives the local polynomial space’s dimension
to bemuch bigger than that of the curl-curl problem. This poses extra difficulty in constructing
the conforming finite element approximations, and renders them hard to solve especially in
three dimensions. The nonconforming elements [55] greatly simply the local structure of
the space, and is more preferable in approximating the quad-curl problem in terms of the
computational resources.

In [15,30], a novel way of further simplifying the structure of the quad-curl problem
is proposed. The quad-curl problem is decoupled into three sub-problems, two curl-curl
equations, and one Stokes equation, all of which have mature finite element approximation
theories (e.g., [20,31,32,37]). In this paper, we use lower-order Nédélec elements [37,38]
to discretize curl-curl equations, and the nonconforming P1-P0 finite element to discretize
Stokes equation, then analyze this decoupled finite element method (FEM) for the quad-curl
problem. Due to the decoupling mechanism, one of the major advantages is that the curl
of the primal variable can be approximated an order higher than most of the conforming or
nonconforming FEMs.

Meanwhile, due to the nature of quad-curl operator [40], on a polyhedral domain, the
singularities of solution may manifest themselves as either corner singularities of the Stokes
systemwithDirichlet boundary conditions, corner/edge singularities of theMaxwell problem,
or both. To copewith such solutions with the presence of singularities, adaptive finite element
method (AFEM) is favored over the finite element method performed on a uniformly refined
mesh. The computational resources are adaptively allocated throughout different locations
of the mesh based on the local estimated approximation error. Thus the AFEM can achieve
the same overall accuracy while using fewer degrees of freedom than the one with uniform
mesh.

Opting for a decoupled system using existing and mature elements for each offers great
facilitation to the AFEM pipeline. Now there are three major pieces to the puzzle: the a
posteriori error estimation for the conforming approximation to the Maxwell problem (e.g.,
[4,11,19,42]), that for a nonconformingdiscretization to theStokes problem (e.g., [21,22,48]),
and the design of a convergent AFEM algorithm ([26,57,58]). In this paper, combining the
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ingredients from both conforming and nonconforming methods, we are able to show that
the AFEM algorithm based on the a posteriori error estimation is convergent under common
assumptions. Since the nonconforming P1-P0 finite element is element-wisely divergence
free, as a result, the a posteriori error estimator only involves the discrete velocity, not the
discrete pressure. To the best of our knowledge, this paper is the first work to prove the
convergence of an adaptive finite element method of the quad-curl problem. Additionally,
in terms of solving the resulting linear systems, the biggest advantage of the decoupled
formulation is to allow users taking advantage of the existing fast solvers for Stokes and
Maxwell problems.

This paper is organized as follows: Section 2 introduces the decoupled formulation as
well as its well-posedness. Section 3 proves the a priori error estimation in both the energy
norm and the L2-norm. Section 4 gives the a posteriori error analysis, Sect. 5 shows the
quasi-orthogonality of the solution, and a convergence proof is given in Sect. 6. In Sect. 7
a comparison of the rates of convergence of the AFEMs using various marking strategies is
presented.

2 A Quad-Curl Problem and a Decoupled Formulation

Let � ⊂ R
3 be a polyhedron homomorphic to a ball, and f ∈ H(div,�) with div f = 0.

Consider the quad-curl problem
⎧
⎨

⎩

(curl)4u = f in �,

div u = 0 in �,

u × n = (curl u) × n = 0 on ∂�.

(2.1)

The primal formulation of the quad-curl problem (2.1) is to find u ∈ H0(curl curl,�) such
that

(curl curl u, curl curl v) = ( f , v) ∀ v ∈ H0(curl curl,�), (2.2)

where by denoting � := ∂�

H0(curl curl,�) := {v ∈ L2(�,R3) : curl v, curl curl v ∈ L2(�,R3),

div v = 0, and v × n = (curl v) × n = 0 on �}. (2.3)

Herewe remark that H0(curl curl,�) is same as H0(grad curl,�). This is because curl v ∈
H1

0(�,R3) is equivalent to curl v ∈ H0(curl,�) ∩ H0(div,�); see [24,53].
Anaturalmixedmethod is tomimic the biharmonic equationby introducingw = ∇×∇×u

and write as a system for which standard edge elements can be used; see [45]. The main
drawback of this decoupling is the loss of the order of convergence due to the fact that
boundary condition (curl u) × n = 0 is imposed weakly. Indeed a natural space for w is
H−1(curl curl,�) := {v ∈ L2(�;R3) : curl curl v ∈ H−1(div,�)}. Here H−1(div,�) :=
{v ∈ H−1(�;R3) : div v ∈ H−1(�)} is the dual space of H0(curl,�) [15]. Also inheriting
from decoupling the biharmonic equation, fast solvers for the linear algebraic system arising
from this discretization could be an issue.

Instead we shall consider a decoupling [15, Section 3.4] (see also [53]) so that the opti-
mal order of convergence can be preserved, and meanwhile the solution can be computed
efficiently. More importantly, for solutions with singularities, the a posteriori error analysis
and adaptive finite element methods can be applied to retain optimal order of convergence
which is the focus of this work.
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Introduce the space

K c
0 := {φ ∈ H0(curl,�) : divφ = 0} = H0(curl,�)/ grad H1

0 (�)

equipped with norm ‖ · ‖H(curl). Due to the following commutative diagram

H1
0(�;R3)

� H−1(�;R3)

L2
0(�)

grad
H−1(curl,�)

curl

⋃

(K c
0)

′ 0

H0(div,�)

I

K c
0

curl curl
curl

,

the primal formulation (2.2) of the quad-curl problem can be decoupled into the following
three systems [15, Section 3.4] (see also [53]):
Step 1. Given f ∈ L2(�), find w ∈ H0(curl,�), σ ∈ H1

0 (�) s.t.

(curlw, curl v) + (v,∇σ) = ( f , v) ∀ v ∈ H0(curl,�), (2.4)

(w,∇τ) = 0 ∀ τ ∈ H1
0 (�). (2.5)

Step 2. Given w computed in Step 1, find φ ∈ H1
0(�;R3), p ∈ L2

0(�) s.t.

(∇φ,∇ψ) + (divψ, p) = (curlw,ψ) ∀ ψ ∈ H1
0(�;R3), (2.6)

(divφ, q) = 0 ∀ q ∈ L2
0(�). (2.7)

Step 3. Given φ computed in Step 2, find u ∈ H0(curl,�) and ξ ∈ H1
0 (�) s.t.

(curl u, curlχ) + (χ ,∇ξ) = (φ, curlχ) ∀ χ ∈ H0(curl,�), (2.8)

(u,∇ζ ) = 0 ∀ ζ ∈ H1
0 (�). (2.9)

In other words, the primal formulation (2.2) of the quad-curl problem (2.1) can be decoupled
into two Maxwell equations and one Stokes equation.

Each system is well-posed and the solution (w, σ,φ, p, u, ξ) to (2.4)-(2.9) exists and
is unique. Now we show briefly, without resorting to the abstract framework in [15], the
equivalence of the decoupled formulation (2.4)-(2.9) and the primary formulation (2.2).

By taking χ = ∇ξ in (2.8), we conclude the Lagrange multiplier ξ = 0. Therefore (2.8)
becomes φ = curl u. Notice that the boundary condition curl u × n = 0 implies that the
tangential trace φ × n is zero, while u× n = 0 on boundary implies the normal trace φ · n =
rot� u = 0. Together with curlφ = curl curl u ∈ L2(�) and divφ = 0, by the embedding
H0(curl,�) ∩ H0(div,�) ↪→ H1

0(�) [41], we conclude that φ = curl u ∈ H1
0(�).

Furthermore by the identity

(∇φ,∇ψ) = (curlφ, curlψ) + (divφ, divψ) ∀ φ,ψ ∈ H1
0(�;R3),

and divφ = 0, we can rewrite (2.6) as

(curlφ, curlψ) + (divψ, p) = (curlw,ψ) ∀ ψ ∈ H1
0(�;R3). (2.10)

Noticing the fact div f = 0, by choosing v = ∇σ , we get from (2.4) that the Lagrange
multipliers σ is also zero. Now choosing ψ = curl v in (2.10) for a v ∈ H0(curl curl,�),
we get

(curl curl u, curl curl v) = (curlφ, curlψ) = (curlw,ψ) = ( f , v),
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which verifies that the solution u to (2.8)-(2.9) is also the solution to (2.2) and vice versa.

Remark 2.1 The decoupled formulation (2.4)-(2.9) also works for the case div f 
= 0. By
taking v = ∇τ in (2.4), we get �σ = div f . After deriving σ , we can simply replace the
right hand side f by f − ∇σ , which is divergence-free. This is a Helmholtz decomposition
where the non-compatible right-hand side’s divergence has been taken into account without
being explicitly formulated.

Remark 2.2 As we have shown the auxiliary function φ = curl u, but w 
= curl curl u.
Equation (2.4) can be equivalently written as curl curlw = f but now w ∈ H0(curl,�)

while curl curl u ∈ H0(div,�) may not satisfy the tangential boundary condition.

3 Discrete Methods and a Priori Error Analysis

We consider a conformingmixed finite element method of theMaxwell equations (2.4)-(2.5),
and (2.8)-(2.9) but a nonconforming method for Stokes equation (2.6)-(2.7). We refer to [53]
for a conforming mixed finite element method.

Let {Th} be a family of triangulation of � with mesh size h = maxK∈Th hK , where hK is
the diameter of the tetrahedron K . Denote the p-th order Lagrange element space by

V p
h := {vh ∈ H1

0 (�) : vh |K ∈ Pp(K ) for each K ∈ Th},
and the lowest-order Nédélec edge element space [37] by

V c
h := {vh ∈ H0(curl,�) : vh |K ∈ P0(K ;R3) ⊕ x ∧ P0(K ;R3) for each K ∈ Th}.

We use V 1
h −V c

h to discretize the Maxwell equation (2.4)-(2.5). Find wh ∈ V c
h , σh ∈ V 1

h s.t.

(curlwh, curl vh) + (vh,∇σh) = ( f , vh) ∀ vh ∈ V c
h, (3.1)

(wh,∇τh) = 0 ∀ τh ∈ V 1
h . (3.2)

We then use the nonconforming P1-P0 element [20] to discretize the Stokes problem
(2.6)-(2.7). To this end, let

VCR
h := {ψh ∈ L2(�;R3) : ψh |K ∈ P1(K ;R3) for each K ∈ Th,

and (�ψh�, 1)F = 0 for each F ∈ Fh},
where �v�(x) := lim

ε→0+
(
v|K1(x − εnK1) − v|K2(x + εnK1)

)
is defined as the jump on face

F for x ∈ F and nK1 being the outer unit normal to K1 on face F . Denote the piecewise
constant space as

Qh := {qh ∈ L2
0(�) : qh |K ∈ P0(K ) for each K ∈ Th}.

Given wh computed from (3.1)-(3.2), find φh ∈ VCR
h , ph ∈ Qh s.t.

(∇hφh,∇hψh) + (divh ψh, ph) = (curlwh,ψh) ∀ ψh ∈ VCR
h , (3.3)

(divh φh, qh) = 0 ∀ qh ∈ Qh . (3.4)

Hereafter ∇h , curlh and divh mean the element-wise defined counterparts of ∇, curl and div
with respect to Th .
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Upon solving the system above, φh is a second-order approximation to curl u when the
data is smooth. Finally, when one needs to seek a better approximation to u under L2-norm,
uh ∈ V c1

h and ξh ∈ V 2
h are sought such that they satisfy

(curl uh, curlχh) + (χh,∇ξh) = (φh, curlχh) ∀ χh ∈ V c1
h , (3.5)

(uh,∇ζh) = 0 ∀ ζh ∈ V 2
h . (3.6)

Here V c1
h is the linear second family of Nédélec element:

V c1
h := {vh ∈ H0(curl,�) : vh |K ∈ P1(K ;R3) for each K ∈ Th},

and V 2
h is the quadratic Lagrange element.

The finite element pair (VCR
h ,Qh) is stable for the Stokes equation [6], i.e., we have for

any φ̃h ∈ VCR
h and p̃h ∈ Qh that

|̃φh |1,h + ‖ p̃h‖0 � sup
ψh∈VCR

h
qh∈Qh

(∇h φ̃h,∇hψh) + (divh ψh, p̃h) + (divh φ̃h, qh)

|ψh |1,h + ‖qh‖0 .

3.1 A Priori Error Analysis

Next we focus on the a priori error analysis for the decoupled mixed finite element method
(3.1)-(3.6). First of all, since div f = 0 and ∇V 1

h ⊂ V c
h , we get from (3.1) and (3.5) that

σh = 0 and ξh = 0.

Lemma 3.1 (Galerkin orthogonality) Let (w, 0) ∈ H0(curl,�) × H1
0 (�) be the solution

of the Maxwell equation (2.4)–(2.5), and (wh, 0) ∈ V c
h × V 1

h be the solution of the mixed
method (3.1)–(3.2). Then

(curl(w − wh), curl vh) = 0 ∀ vh ∈ V c
h . (3.7)

Proof As the Lagrange multiplier σ = 0 and its approximation σh = 0, subtracting (3.1)
from (2.4), we get the desired orthogonality. �

The error analysis of the mixed finite element method (3.1)-(3.2) is first studied by F.
Kikuchi in [31,32]. We recall it for completeness.

Lemma 3.2 Let (w, 0) ∈ H0(curl,�) × H1
0 (�) be the solution of the Maxwell equation

(2.4)-(2.5), and (wh, 0) ∈ V c
h × V 1

h the solution of the mixed method (3.1)-(3.2). Assume
curlw ∈ H1(�;R3), then we have

‖ curl(w − wh)‖0 � h| curlw|1. (3.8)

Proof The orthogonality (3.7) implies the best approximation

‖ curl(w − wh)‖0 ≤ inf
vh∈V c

h

‖ curl(w − vh)‖0.

This gives (3.8) by an interpolation error estimate (see e.g., [35]). �
According to the Poincaré-Friedrichs inequality for piecewise H1 functions [8], the fol-

lowing inequality holds

‖ψh‖0 � |ψh |1,h ∀ ψh ∈ VCR
h + H1

0(�;R3).
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Denote I s
h as the nodal interpolation operator from H1

0(�;R3) to VCR
h , then

(∇(ψ − I s
hψ), τ )K = 0 ∀ ψ ∈ H1(�;R3), τ ∈ P0(K ;M), K ∈ Th, (3.9)

where P0(K ;M) stands for the space of constant 3 × 3 matrix on K , and for j = 1, 2,

‖ψ − I s
hψ‖0,K + hK |ψ − I s

hψ |1,K � h j
K |ψ | j,K ∀ ψ ∈ H j (�;R3), K ∈ Th .

(3.10)

The error analysis for the nonconforming P1-P0 element approximation (3.3)–(3.4) of
Stokes equation is standard [20]. Using the decoupled system to approximate the quad–curl
problem, the subtlety is the perturbation of data. We shall present a stability result for using
curlwh to approximate curlw. To this end, we introduce the space

Z := H1
0(�;R3) ∩ ker(div).

Subsequently (2.6) and the continuous problem using the perturbed data can be written as
follows:

−�φ = curlw in Z′ and − �φ̃ = curlwh in Z′,

respectively. The second problem above is equivalent to

(∇φ̃,∇ψ) + (divψ, p̃) = (curlwh,ψ) ∀ ψ ∈ H1
0(�;R3), (3.11)

(div φ̃, q) = 0 ∀ q ∈ L2
0(�). (3.12)

The analysis is performed for this problem with the perturbed data.

Lemma 3.3 Let (φ, p), (φ̃, p̃) be the solutions to (2.6)–(2.7) and (3.11)–(3.12), respectively,
where w and wh satisfy the orthogonality (3.7). Then

‖φ̃ − φ‖1 � h‖ curl(w − wh)‖0.
Proof The difference between the two pairs satisfies the Stokes equation

−�(φ − φ̃) + ∇(p − p̃) = curl(w − wh) in (H1
0(�;R3))′,

div(φ − φ̃) = 0 in L2
0(�).

Applying the definition of the duality pair testing against φ − φ̃, we get

|φ − φ̃|21 = (curl(w − wh),φ − φ̃).

Moreover, since div(φ−φ̃) = 0, by [24, Chapter 1 Theorem 3.4] there exists v ∈ H1
0(�;R3)

such that

φ − φ̃ = curl v, ‖v‖1 � ‖φ − φ̃‖0.
Then it follows from (3.7) that

|φ − φ̃|21 = (curl(w − wh), curl v) = (curl(w − wh), curl(v − vh)), ∀ vh ∈ V c
h .

Thus

|φ − φ̃|21 ≤ ‖ curl(w − wh)‖0 inf
vh∈V c

h

‖ curl(v − vh)‖0 � h‖ curl(w − wh)‖0|φ − φ̃|1,

which implies the desired result. �
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In the next step, we treat φh as the approximation of φ̃ and use the standard error analysis
to obtain the following estimate. Here the H2-regularity of Stokes equation is assumed to
hold.
(H2) Given an f ∈ L2(�;R3), let u ∈ H1

0(�;R3) and p ∈ L2
0(�) be the solution of the

Stokes equation

−�u + ∇ p = f , div u = 0.

Then u ∈ H2(�;R3) and p ∈ H1(�) and

‖u‖2 + ‖p‖1 � ‖ f ‖0.
It is well known that the assumption (H2) holds for smooth or convex domain � (e.g., see

[34, Section 11.5]). In particular, assuming (H2) holds, we have

‖φ‖2 + ‖p‖1 � ‖ curlw‖0, ‖φ̃‖2 + ‖ p̃‖1 � ‖ curlwh‖0,
thus the standard a priori estimate for the stable nonconforming P1-P0 pair holds.

Theorem 3.4 Let (φ, p) ∈ H1
0(�;R3)× L2

0(�) be the solution of the Stokes equation (2.6)-
(2.7), and (φh, ph) ∈ VCR

h × Qh the solution of the mixed method (3.3)-(3.4). Assume the
H2-regularity of Stokes equation, i.e., (H2) holds, then

|φ − φh |1,h � h‖ curlw‖0. (3.13)

Proof First by a standard estimate [20], and the elliptic regularity estimate of the approxi-
mation φh for the Stokes problem with curlwh as data, we have

|̃φ − φh |1,h � h |̃φ|2 � h‖ curlwh‖0.
Furthermore, as wh is the projection of w to the discrete space in the energy norm, from the
orthogonality (3.7), we have ‖ curlwh‖0 ≤ ‖ curlw‖0. Consequently, the theorem follows
from combining the estimate with the ones in Lemma 3.3. �
Remark 3.5 (Nonhomogeneous boundary conditions) By a simple density argument we can
see that curl u · n = div�(u × n). Consequently, the presence of nonhomogeneous u × n
and/or curl u× n leads to the necessity of impose compatible Dirichlet boundary conditions
with the divergence free condition for problems (2.6)–(2.7), (3.11)–(3.12). Let φ I be the
standard nodal interpolation in Crouzeix-Raviart element of a sufficiently smooth φ, by a
standard decomposition argument we can see that aside from the terms on the right hand side
of (3.13), for the nonhomogeneous boundary condition, the estimate should include:

|φ − φ I |1/2,h,∂� :=
⎛

⎝
∑

F∈Fh

|φ − φ I |21/2,F

⎞

⎠

1/2

� h|φ|2.

Next we present the L2-error estimate for the Stokes equation.

Lemma 3.6 Let (wh, 0,φh, ph) ∈ V c
h ×V 1

h ×VCR
h ×Qh be the solution of the mixed method

(3.1)–(3.4) on triangulation Th. Assume H2-regularity of Stokes equation holds, i.e., (H2)
holds, then

‖φ − φh‖0 � h|φ − φh |1,h + h‖ curl(w − wh)‖0 + h2‖ curlw‖0. (3.14)

Furthermore if curlw ∈ H1(�;R3), then we have the second order estimate

‖φ − φh‖0 � h2‖ curlw‖1. (3.15)
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Proof Consider the following dual problem: seek (φ̂, p̂) ∈ H1
0(�;R3) × L2

0(�) such that
{−�φ̂ + ∇ p̂ = φ − φh,

div φ̂ = 0.

The H2-regularity to the problem above (e.g., see [34, Section 11.5]) reads

‖φ̂‖2 + ‖ p̂‖1 � ‖φ − φh‖0. (3.16)

Since divh(φ − φh) = 0, it follows

‖φ − φh‖20 = (φ − φh,−�φ̂ + ∇ p̂)

= (∇h(φ − φh),∇φ̂) +
∑

K∈Th

(φ − φh, p̂n − ∂nφ̂)∂K . (3.17)

Employing (3.9) and the fact divh I s
h φ̂ = 0, we obtain

(∇h(φ − φh),∇φ̂) = (∇φ,∇φ̂) − (∇hφh,∇h I s
h φ̂) = (curlw, φ̂) − (curlwh, I s

h φ̂)

= (curlw − curlwh, φ̂) + (curlwh, φ̂ − I s
h φ̂).

Applying the same argument in Lemma 3.3 by treating φ̂ as a stream function and inserting
a curl of its interpolation, we achieve

(curlw − curlwh, φ̂) � h‖ curl(w − wh)‖0|φ̂|1.
Besides from (3.10), we have

(curlwh, φ̂ − I s
h φ̂) � h2‖ curlw‖0|φ̂|2.

Hence

(∇h(φ − φh),∇φ̂) � h‖ curl(w − wh)‖0|φ̂|1 + h2‖ curlw‖0|φ̂|2. (3.18)

Due to the continuity condition of Crouzeix-Raviart element, by a standard technique of
inserting a constant on each face (e.g., see [9, Chapter 10.3]) we get

∑

K∈Th

(φ − φh, p̂n − ∂nφ̂)∂K � h|φ − φh |1,h(‖φ̂‖2 + ‖ p̂‖1). (3.19)

Combining (3.17)-(3.19) and (3.16) yields

‖φ − φh‖0 � h|φ − φh |1,h + h‖ curl(w − wh)‖0 + h2‖ curlw‖0,
which is (3.14). �

We now consider the approximation (3.5)–(3.6) of the last Maxwell equation. Due to the
inexactness of the data, the orthogonality is lost, but the perturbation is measured in L2-norm
of the difference φ − φh , which is controllable.

Lemma 3.7 Let (u, 0) ∈ H0(curl,�) × H1
0 (�) be the solution of the Maxwell equation

(2.8)-(2.9), and (uh, 0) ∈ V c1
h × V 2

h the solution of the mixed method (3.5)-(3.6), then

‖ curl(u − uh)‖0 � ‖φ − φh‖0 + inf
vh∈V c

h

‖ curl(u − vh)‖0. (3.20)
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Assume that the H2-regularity of Stokes equation (H2) holds and curlw, curl u ∈
H1(�;R3), then

‖ curl(u − uh)‖0 � h2| curlw|1 + h| curl u|1.
Proof Subtracting (3.5) from (2.8), we get

(curl(u − uh), curlχh) = (φ − φh, curlχh) ∀ χh ∈ V c1
h . (3.21)

Taking χh = vh − uh with vh ∈ V c1
h , we acquire

‖ curl(u − uh)‖20 = (curl(u − uh), curl(u − uh))

= (curl(u − uh), curl(u − vh)) + (φ − φh, curl(vh − uh))

≤ ‖ curl(u − uh)‖0‖ curl(u − vh)‖0
+ ‖φ − φh‖0(‖ curl(u − vh)‖0 + ‖ curl(u − uh)‖0),

which indicates

‖ curl(u − uh)‖0 � ‖φ − φh‖0 + inf
vh∈V c1

h

‖ curl(u − vh)‖0.

�
Recall that φ = curl u and ‖φ − φh‖0 is at least first order h. Therefore if still merely the

lowest order edge element is used in (3.5)–(3.6), no approximation to curl u better than φh
could be obtained. By the duality argument for Stokes equation, the error ‖φ − φh‖0 can be
of second order h2 if the H2-regularity result holds. As a result in the last Maxwell equation,
we opt to use the second family Nédélec element to the improve the L2 approximation of u
to the second order.

Theorem 3.8 Let (u, 0) ∈ H0(curl,�) × H1
0 (�) be the solution of the Maxwell equation

(2.8)-(2.9), and (uh, 0) ∈ V c1
h × V 2

h the solution of the mixed method (3.5)-(3.6). Assume �

is convex, then

‖u − uh‖0 � inf
vh∈V c1

h

{
‖u − vh‖0 + h‖ curl(u − vh)‖0

}

+ h‖ curl(u − uh)‖0 + ‖φ − φh‖0,
and when curlw ∈ H1(�;R3) and u ∈ H2(�;R3),

‖u − uh‖0 � h2(| curlw|1 + ‖ curl u‖1 + |u|2).
Proof The proof is adapted from a similar argument in [59] without the data perturbation.
Denote eh := u − uh , then by (2.9) and (3.6), we have (eh,∇ζh) = 0 for ζh ∈ V 2

h , thus for
any fixed vh ∈ V c1

h

‖eh‖20 = (eh, u − vh) + (eh, sh + ∇qh) = (eh, u − vh) + (eh, sh),

where a discrete Helmholtz decomposition

vh − uh = sh + ∇qh, and (sh,∇rh) = 0, ∀ rh ∈ V 2
h (3.22)

is applied such that sh ∈ V c1
h . As a result,

‖eh‖0 � ‖u − vh‖0 + ‖sh‖0. (3.23)
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An H(curl)-lifting s ∈ H0(curl,�) (see [35, Lemma 7.6, Remark 3.52]) of sh is sought
such that

curl s = curl sh, div s = 0, and ‖s − sh‖0 � h‖ curl sh‖0.
By the triangle inequality and (3.22),

‖sh‖0 ≤ ‖s‖0 + ‖s − sh‖0 � ‖s‖0 + h‖ curl sh‖0 = ‖s‖0 + h‖ curl(uh − vh)‖0,
hence it suffices to bound ‖s‖0. Consequently, the Aubin-Nitsche argument is applied on s,
where we seek an (r, ξ) ∈ H0(curl,�) × H1

0 (�) s.t.

(curl r, curlχ) + (χ ,∇ξ) = (s,χ) ∀ χ ∈ H0(curl,�), (3.24)

(r,∇ζ ) = 0 ∀ ζ ∈ H1
0 (�). (3.25)

We have ξ = 0 since s is divergence free, and letting χ = s yields

‖s‖20 = (curl r, curl s) = (
curl r, curl(s + uh − vh)

)+ (
curl r, curl(−uh + vh)

)

= −( curl r, curl(∇qh)
)+ (

curl r, curl(u − uh)
)− (

curl r, curl(u − vh)
)
.

By an embedding result (see [24, Chapter 1 Section 3.4]), the Nédélec nodal interpolation
Ic1

h r is well-defined, inserting which into the first above, letting χ = u−vh in (3.24)–(3.25),
and by (3.21), we have

‖s‖20 = (
curl eh, curl(r − Ic1

h r)
)+ (curl eh, curl Ic1

h r) − (s, u − vh)

= (
curl eh, curl(r − Ic1

h r)
)+ (φ − φh, curl Ic1

h r) − (s, u − vh)

≤ ‖ curl(r − Ic1
h r)‖0‖ curl eh‖0 + ‖φ − φh‖0‖ curl Ic1

h r‖0 + ‖s‖0‖u − vh‖0.
By standard approximation and stability estimates for the nodal interpolation, as well as a
regularity estimate for problem (3.24)–(3.25), we have

‖ curl(r − Ic1
h r)‖0 � h| curl r|1 � h‖s‖0 and ‖ curl Ic1

h r‖0 � ‖ curl r‖1 � ‖s‖0.
As a result, we have

‖s‖0 � h‖ curl eh‖0 + ‖φ − φh‖0 + ‖u − vh‖0.
Lastly, the desired estimate follows from combining the estimates for ‖sh‖0 and ‖s‖0 into
(3.23). �

3.2 Numerical Verification

In this section,weverify the a priori convergence results shown in the previous subsection.The
first example has a smooth solution u(x, y, z) = 〈

0, 0, (sin x sin y)2 sin z
〉
on � = (0, π)3.

Because the true solution is not divergence free, problem (2.9) needs to be modified to
(u,∇ζ ) = (g, ζ )with g = div u being computed from the true solution, and the discretization
changes accordingly. The domain � is partitioned into a uniform tetrahedral mesh, and the
convergence plot is in Fig. 1a. It can be seen that when u and curl u are smooth, the rates of
convergence of |φ I −φh |1,h and ‖φ−φh‖0 are optimal, being O(h) and O(h2), respectively.
For the solution uh obtained from the last Maxwell equation, ‖ curl(u − uh)‖0 is still O(h)

and the L2 error ‖u − uh‖0 is improved to O(h2).
To demonstrate how the regularity of curl u which is present in (3.14)–(3.15) shall affect

we choose a singular solution on an L-shaped domain (Fig. 2). The true solution is u =
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(a) (b)
Fig. 1 On a uniformly refined mesh: a the convergence of approximating u(x, y, z) =〈
0, 0, (sin x sin y)2 sin z

〉
. b the convergence of approximating u(x, y, z) = curl

〈
0, 0, r8/3 sin(2θ/3)

〉
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-0.2

0
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0.6

0.8

1

(a) (b)
Fig. 2 The true solution vector field shown in (a) of the L-shaped domain example viewed from above on
z = 1/4 plane together with the level set of its z-component. A coarse mesh (h = 1/2) can be found in (b)

curl〈0, 0, μ〉 for a potential function μ = r8/3 sin(2θ/3) in the cylindrical coordinate on
� = (1, 1)2×(0, 1/2)\([0, 1]×[−1, 0]×[0, 1/2]). It can be verified thatμ is bi-harmonic so
that f = 0, and curl u ∈ H5/3−ε(�;R3). The convergence of the approximation φ = curl u
in | · |1,h and ‖ · ‖0 are both sub-optimal (Fig. 1b) because φ = curl u /∈ H2(�;R3) which is
required to achieve the optimal rate of convergence (see Theorem 3.4 and Remark 3.5).While
the approximation for u is optimal as (3.20)’s dependence only on the L2-error ‖φ − φh‖0
and the approximation property of the linear Nédélec space for u ∈ H8/3−ε(�;R3).
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4 A Posteriori Error Analysis

In this section wewill propose a reliable and efficient error estimator for the decoupledmixed
finite element method (3.1)-(3.4). We aim to get an accurate approximation of u in the energy
norm which can be controlled by‖ curl u−φh‖0 = ‖φ −φh‖0 � |φ −φh |1,h . Therefore we
do not include problem (3.5)-(3.6) into the adaptive procedure.

To this end, we first recall a quasi-interpolation [16,23,42] and a decomposition of tensor-
valued functions [21].

Lemma 4.1 (Theorem 1 in [42]) There exists an operator �h : H0(curl,�) → V c
h such

that for any v ∈ H0(curl,�) there exist τ ∈ H1
0 (�) and χ ∈ H1

0(�;R3) satisfying

v − �hv = ∇τ + χ ,
∑

K∈Th

(h−2
K ‖χ‖20,K + h−1

K ‖χ‖20,∂K ) � ‖ curl v‖20. (4.1)

Lemma 4.2 (Lemma 3.2 in [21]) Let τ be a tensor-valued function in L2(�;M). There exist
r ∈ H1

0(�;R3), q ∈ L2
0(�), s ∈ H1(�;M) and v ∈ H2

0(�;R3) such that

τ = ∇r − q I + curls, r = curl v, q = tr(curls),

‖r‖1 + ‖s‖1 + ‖q‖0 + ‖v‖2 � ‖τ‖0.
For any subset Mh ⊆ Th , define error estimators

η21(wh, f ,Mh) :=
∑

K∈Mh

h2
K ‖ f ‖20,K +

∑

F∈F i
h(Mh)

hF‖�(curlwh) × nF �‖20,F ,

η22(φh,wh,Mh) :=
∑

K∈Mh

h2
K ‖ curlwh‖20,K +

∑

F∈Fh(Mh )

hF‖�nF × (∇hφh)�‖20,F .

Let QK
0 f be the L2-projection of the data onto

∏

K∈Th

P0(K ;R3), then the data oscillation

is defined as

osc2( f ,Mh) :=
∑

K∈Mh

h2
K ‖ f − QK

0 f ‖20,K .

Let I SZ
h be the tensorial Scott-Zhang interpolation from H1(�;M) to the tensorial linear

Lagrange element space [43]. It holds
∑

K∈Th

(
h−2

K ‖v − I SZ
h v‖20,K + |v − I SZ

h v|21,K
)

� |v|21 ∀ v ∈ H1(�;M). (4.2)

We first present the a posteriori error analysis of error w − wh which is well-documented
for the saddle point formulation of Maxwell’s equation (see e.g., [4,56,58]). We include a
proof here for the completeness.

Lemma 4.3 Let (w, 0) ∈ H0(curl,�) × H1
0 (�) be the solution of the Maxwell equation

(2.4)-(2.5), and (wh, 0) ∈ V c
h × V 1

h the solution of the mixed method (3.1)–(3.2). We have

‖ curl(w − wh)‖0 � η1(wh, f , Th), (4.3)

η1(wh, f , Th) � ‖ curl(w − wh)‖0 + osc( f , Th). (4.4)
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Proof Applying Lemma 4.1 to v = w − wh , we get from (3.7) and (2.4) that

‖ curl(w − wh)‖20 = (curl(w − wh), curl(v − �hv)) = (curl(w − wh), curlχ)

= ( f ,χ) − (curlwh, curlχ)

= ( f ,χ) −
∑

K∈Th

((curlwh) × n,χ)∂K

= ( f ,χ) −
∑

F∈F i
h

(�(curlwh) × nF �,χ)F .

Hence we have derived (4.3) by (4.1).
The efficiency (4.4) follows from the standard bubble function techniques (see e.g., [4]).

�
Lemma 4.4 Let (w, 0,φ, p) ∈ H0(curl,�)× H1

0 (�)× H1
0(�;R3)× L2

0(�) be the solution
of the variational formulation (2.4)–(2.7), and (wh, 0,φh, ph) ∈ V c

h × V 1
h × VCR

h ×Qh the
solution of the mixed method (3.1)–(3.4). We have

|φ − φh |1,h + h‖ curl(w − wh)‖0 � hη1(wh, f , Th) + η2(φh,wh, Th), (4.5)

hη1(wh, f , Th) + η2(φh,wh, Th) � |φ − φh |1,h + ‖p − ph‖0
+ h‖ curl(w − wh)‖0 + hosc( f , Th). (4.6)

Proof Applying Lemma 4.2 to ∇h(φ − φh), there exist r ∈ H1
0(�;R3), q ∈ L2

0(�), s ∈
H1(�;M) and v ∈ H2

0(�;R3) such that

∇h(φ − φh) = ∇r − q I + curls, r = curl v,

‖r‖1 + ‖s‖1 + ‖q‖0 + ‖v‖2 � ‖∇h(φ − φh)‖0. (4.7)

Note that divh(φ − φh) = 0 from (2.7) and (3.4). Since div r = 0, we get from (2.6) that

|φ − φh |21,h = (∇h(φ − φh),∇r − q I + curls) = (∇h(φ − φh),∇r + curls)

= (∇h(φ − φh),∇r) + (div r, p − ph) + (∇h(φ − φh), curls)

= (curlw, r) − (∇hφh,∇r) − (div r, ph) − (∇hφh, curls).

It follows from (3.9) and (3.3) that

(∇hφh,∇r) + (div r, ph) = (∇hφh,∇(I s
h r)) + (div(I s

h r), ph) = (curlwh, I s
h r).

Noticing that (∇hφh, curl(I SZ
h s)) = 0, we obtain from the last two identities that

|φ − φh |21,h = (curlw, r) − (curlwh, I s
h r) − (∇hφh, curl(s − I SZ

h s))

= (curl(w − wh), curl v) + (curlwh, r − I s
h r)

− (∇hφh, curl(s − I SZ
h s)). (4.8)

Next we estimate the right hand side of (4.8) term by term. Employing (3.7) and (4.3), it
follows

(curl(w − wh), curl v) = inf
vh∈V c

h

(curl(w − wh), curl(v − vh))

≤ ‖ curl(w − wh)‖0 inf
vh∈V c

h

‖ curl(v − vh)‖0
� hη1(wh, f , Th)| curl v|1 = hη1(wh, f , Th)|r|1.
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According to (3.10), we have

(curlwh, r − I s
h r) � η2(φh,wh, Th)|r|1.

And we get from (4.2) that

−(∇hφh, curl(s − I SZ
h s)) =

∑

K∈Th

(n × (∇hφh), s − I SZ
h s)∂K

=
∑

F∈Fh

(�nF × (∇hφh)�, s − I SZ
h s)F

� η2(φh,wh, Th)|s|1.
Combining the last three inequalities and (4.8), we get from (4.7) that

|φ − φh |1,h � hη1(wh, f , Th) + η2(φh,wh, Th),

which together with (4.3) indicates (4.5).
On the other side, by applying the bubble function techniques, we get

∑

K∈Th

h2
K ‖ curlwh‖20,K � h2‖ curl(w − wh)‖20 + |φ − φh |21,h + ‖p − ph‖20,

∑

F∈Fh

hF‖�nF × (∇hφh)�‖20,F � |φ − φh |21,h .

Combining the last two inequalities shows

η2(φh,wh, Th) � h‖ curl(w − wh)‖0 + |φ − φh |1,h + ‖p − ph‖0.
Therefore we conclude (4.6) from (4.4). �

By the a priori L2-estimate of the Stokes problem, when we assume the H1+s-regularity
(s ∈ (1/2, 1]) for the possible non-smooth solution, the following estimate, combining with
Lemmas 4.3 and 4.4, can be used for a global reliability bound for ‖φ − φh‖0.
Lemma 4.5 Let (w, 0,φ, p) ∈ H0(curl,�)× H1

0 (�)× H1
0(�;R3)× L2

0(�) be the solution
of the variational formulation (2.4)–(2.7), and (wh, 0,φh, ph) ∈ V c

h × V 1
h × VCR

h ×Qh the
solution of the mixed method (3.1)–(3.4). We have

‖φ − φh‖0 � hs |φ − φh |1,h + h‖ curl(w − wh)‖0 + h1+s‖ curlwh‖0.

5 Quasi-orthogonality

In this section we will develop the quasi-orthogonality of the decoupled mixed finite element
method.

5.1 Discrete Complexes in Three Dimensions

First recall a nonconforming discretization of the following Stokes complex in three dimen-
sions [30]

0GGA H1
0 (�)

∇
GGGGA H0(grad curl,�)

curl
GGGGGGA H1

0(�;R3)
div

GGGGGA L2
0(�)GGA 0,
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where H0(grad curl,�) := {v ∈ H0(curl,�) : curl v ∈ H1
0(�;R3)}. Note that

H0(grad curl,�) = H0(curl curl,�) in (2.3) (cf. [53]).
The space of the shape functions of the H(grad curl) nonconforming element proposed

in [30] is P0(K ;R3) ⊕ x ∧ P1(K ;R3), and the local degrees of freedom are given by
∫

e
v · te ds on each e ∈ E(K ), (5.1)

∫

F
(curl v) · tF,i ds on each F ∈ F(K ) with i = 1, 2. (5.2)

The global H(grad curl) nonconforming element space is then defined as

Wh := {vh ∈ L2(�;R3) : vh |K ∈ P0(K ;R3) ⊕ x ∧ P1(K ;R3) for each K ∈ Th,

all the degree of freedom (5.1)−(5.2) are single-valued,

and all the degree of freedom (5.1)−(5.2) on ∂� vanish}.
Now the nonconforming discrete Stokes complex in [30] is presented as

0GGA V 1
h

∇
GGGGA Wh

curlh
GGGGGGGA VCR

h

divh
GGGGGGGA QhGGA 0. (5.3)

We also need the help of a discrete de Rham complex. Recall the lowest-order Raviart-
Thomas element space [37,41]

V d
h := {vh ∈ H0(div,�) : vh |K ∈ P0(K ;R3) + xP0(K ) for each K ∈ Th},

and the discrete de Rham complex [1,2]

0GGA V 1
h

∇
GGGGA V c

h

curl
GGGGGGA V d

h

div
GGGGGA QhGGA 0.

Let Ic
h be the nodal interpolation operator fromDom(Ic

h) toV c
h , and I

d
h the nodal interpolation

operator fromDom(Id
h) toV d

h ,whereDom(Ic
h) andDom(Id

h) are the domains of the operators
Ic

h and Id
h respectively. It holds for any vh ∈ Wh that

‖ curlh(vh − Ic
hvh)‖0,K = ‖ curlh vh − Id

h(curlh vh)‖0,K � hK | curlh vh |1,K .

Henceforth, consider two nested conforming triangulations Th and TH , where Th is a
refinement of TH . We have the commutative diagram property [1,2]

curl(Ic
H vh) = Id

H (curlh vh) ∀ vh ∈ V c
h + Wh . (5.4)

To derive the quasi-orthogonality, we need the following interpolation error estimation for
I s

H [26]

‖ψh − I s
H ψh‖0,K � hK ‖∇hψh‖0,K ∀ ψh ∈ VCR

h , K ∈ TH \Th . (5.5)

According to (3.1), since the triangulations Th and TH are nested, we get the following
Galerkin orthogonality

(curl(wh − wH ), curl vH ) = 0 ∀ vH ∈ V c
H . (5.6)

Lemma 5.1 It holds
∑

K∈TH

h−2
K ‖ψh − Id

H ψh‖20,K � |ψh |21,h ∀ ψh ∈ VCR
h . (5.7)
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Proof By the averaging technique [7,29], there exists ψ̃h ∈ V 1
h := V 1

h ⊗ R
3 such that

|ψ̃h |21 +
∑

K∈Th

(
h−2

K ‖ψh − ψ̃h‖20,K + h−1
K ‖ψh − ψ̃h‖20,∂K

)
� |ψh |21,h . (5.8)

Applying the scaling argument, we get
∑

K∈TH

h−2
K ‖Id

H (ψh − ψ̃h)‖20,K �
∑

K∈TH

h−1
K ‖(ψh − ψ̃h) · n‖20,∂K

≤
∑

K∈TH

h−1
K

( ∑

K ′∈Th(K )

‖ψh − ψ̃h‖20,∂K ′

)

≤
∑

K∈Th

h−1
K ‖ψh − ψ̃h‖20,∂K .

Noting that ψ̃h ∈ H1
0(�;R3), it follows

∑

K∈TH

h−2
K ‖ψ̃h − Id

H ψ̃h‖20,K � |ψ̃h |21,h .

Combining the last two inequalities and (5.8) yields
∑

K∈TH

h−2
K

(
‖Id

H (ψh − ψ̃h)‖20,K + ‖ψh − ψ̃h‖20,K + ‖ψ̃h − Id
H ψ̃h‖20,K

)
� |ψh |21,h .

On the other hand, we have

‖ψh − Id
H ψh‖0,K ≤ ‖Id

H (ψh − ψ̃h)‖0,K + ‖ψh − ψ̃h‖0,K + ‖ψ̃h − Id
H ψ̃h‖0,K .

Therefore we conclude (5.7) from the last two inequalities. �

5.2 Quasi-orthogonality

Lemma 5.2 (quasi-orthogonality of φ) Let (wh, 0,φh, ph) ∈ V c
h × V 1

h × VCR
h × Qh and

(wH , 0,φH , pH ) ∈ V c
H × V 1

h × VCR
h × QH the solutions of the mixed method (3.1)-(3.4)

on triangulations Th and TH respectively. We have

(∇h(φ − φh),∇h(φh − φH )) � H |φ − φh |1,h‖ curl(wh − wH )‖0

+ |φ − φh |1,h
( ∑

K∈TH \Th

h2
K ‖ curlwH ‖20,K

)1/2

. (5.9)

Proof Let ψh = I s
h(φ − φh), then we get from (3.9) and (3.10) that

divh ψh = 0, |ψh |1,h � |φ − φh |1,h . (5.10)

It follows from (3.4), (3.9) and (3.3) that

(∇h(φ − φh),∇h(φh − φH )) = (∇h(φ − φh),∇hφh + ph I − (∇H φH + pH I))

= (∇hφh + ph I − (∇H φH + pH I),∇hψh)

= (curlwh,ψh) − (∇H φH + pH I,∇hψh)

= (curlwh,ψh) − (∇H φH + pH I,∇h(I s
H ψh))

= (curlwh,ψh) − (curlwH , I s
H ψh).
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Thus we have

(∇h(φ − φh),∇h(φh − φH )) = (curl(wh − wH ),ψh)

+ (curlwH ,ψh − I s
H ψh). (5.11)

Next we estimate the right hand side of the last equation term by term.
Due to the discrete Stokes complex (5.3) and the fact divh ψh = 0, there exists vh ∈ Wh

such that ψh = curlh vh . From (5.6) and (5.4), we have

(curl(wh − wH ),ψh) = (curl(wh − wH ), curlh vh)

= (curl(wh − wH ), curlh(vh − Ic
H vh))

= (curl(wh − wH ), curlh vh − Id
H curlh vh)

= (curl(wh − wH ),ψh − Id
H ψh).

Then it holds from (5.7) that

(curl(wh − wH ),ψh) � H‖ curl(wh − wH )‖0|ψh |1,h .

Thanks to (5.5), we obtain

(curlwH ,ψh − I s
H ψh) =

∑

K∈TH \Th

(curlwH ,ψh − I s
H ψh)K

� |ψh |1,h
( ∑

K∈TH \Th

h2
K ‖ curlwH ‖20,K

)1/2

.

Finally we conclude from (5.11), the last two inequalities and (5.10). �

6 Convergence

In this section, we propose an adaptive algorithm (Algorithm 1) based on the estimators in
Sect. 4. Then its convergence is proved using the quasi-orthogonality in Sect. 5. The method-
ology in the convergence mainly follows that of [26]. There are two major modifications: one
first needs to control the perturbation of data for the Stokes problem, then the convergence is
proved only for ‖ curl(u − uh)‖0 and |φ − φh |1,h without the Lagrange multiplier variable.
Notice that if conforming stable Stokes pairs are used, the convergence of any adaptive finite
element method for Stokes equation is extremely hard as the velocity and the pressure are
coupled together.

For the ease of the readers, the following short notations are adopted throughout the proof
of the contraction in Theorem 6.3 and the lemmas needed. For V h defined on Tk , we denote
them by V c

k and VCR
k . Similarly, the approximations on Tk are denoted by wk , φk , and uk

respectively. Let hk := max
K∈Tk

hK , and denote the quantities involving two consecutive levels

of meshes as follows:

Ek := |φ − φk |1,k :=
⎛

⎝
∑

K∈Tk

‖∇k(φ − φk)‖20,K
⎞

⎠

1/2

,

Rk+1 := |φk − φk+1|1,k+1 :=
⎛

⎝
∑

K∈Tk+1

‖∇k+1(φk − φk+1)‖20,K
⎞

⎠

1/2

,
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ek := ‖ curl(w − wk)‖0, rk+1 := ‖ curl(wk − wk+1)‖0,
η1,k(M) := η1(wk, f ,M),

η2,k(M) := η2(φk,wk,M),

gk(M) :=
( ∑

K∈M
h2

K ‖ curlwk‖20,K
)1/2

,

where ∇k stands for the discrete gradient ∇h defined piecewisely on all K ∈ Tk , andM can
be Tk , Tk+1, or Tk\Tk+1.

Algorithm 1 An adaptive nonconforming finite element method
Input: T0, f , tol, θ1, θ2 ∈ (0, 1).
Output: TN , φN , uN .
1: η1 = tol, η2 = tol, k = 0.
2: while True do
3: SOLVE: Solve (3.1)–(3.2) and (3.3)–(3.4) on Tk to get (wk ,φk );
4: ESTIMATE: Compute η1(wk , f , K ) and η2(φk , wk , K ) for all K ∈ Tk
5: η1 ← η1(wk , f ,Tk )

6: η2 ← η2(φk , wk ,Tk )

7: if η1 < tol and η2 < tol then
8: Break
9: end if
10: MARK: Seek a minimum M ⊆ Tk such that

η21(wk , f ,M) ≥ θ1η
2
1(wk , f ,Tk )

and η22(wk , φk ,M) ≥ θ2η
2
2(wk , φk ,Tk )

(M)

11: REFINE: Bisect K ∈ M and their neighbors to form a conforming Tk+1;
12: k ← k + 1
13: end while
14: N ← k
15: Solve (3.5)–(3.6) on TN to get uN .

The following two lemmas concern the contraction and the continuity of the estimators on
two nested meshes, the proofs are standard in the AFEM literature thus omitted, the reader
can refer to, e.g., [26,57].

Lemma 6.1 (Contraction of the estimators) Let (wk,φk) ∈ V c
k × VCR

k and (wk+1,φk+1) ∈
V c

k+1 ×VCR
k+1 be the solutions to (3.1)–(3.4) on triangulations Tk and Tk+1 obtained through

Algorithm 1, ρ = 1− 2−1/3 and there exists positive constants βi ∈ (1−ρθi , 1) for i = 1, 2
such that

η2i,k(Tk+1) ≤ βiη
2
i,k(Tk) − [

βi − (1 − ρθi )
]
η2i,k(Tk).

Lemma 6.2 (Continuity of the estimator) Under the same assumption with Lemma 6.1 then,
then given positive constants δi ∈ (0, 1) for i = 1, 2,

η21,k+1(Tk+1) ≤ (1 + δ1)η
2
1,k(Tk+1) + C1

δ1
r2k+1,

and η22,k+1(Tk+1) ≤ (1 + δ2)η
2
2,k(Tk+1) + C2

δ2

(
h2

k+1r2k+1 + R2
k+1

)
,

where Ci depends on the shape-regularity of the mesh.
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Theorem 6.3 (Contraction)Let (w,φ) ∈ H0(curl,�)×H1
0(�;R3) be the solutions to (2.4)–

(2.7) without the Lagrange multipliers, and (wk+1,φk+1) ∈ V c
k+1 × VCR

k+1 and (wk,φk) ∈
V c

k × VCR
k be their approximations in problems (3.1)–(3.4) on Tk+1 and Tk , respectively. If

Tk+1 is a conforming refinement from Tk with hk+1 ≤ hk, then there exist γ1, γ2, μ, β > 0,
and 0 < α < 1 such that the AFEM in Algorithm 1 satisfies

|φ − φk+1|21,k+1 + μh2
k+1‖ curl(w − wk+1)‖20

+ γ1h2
k+1η

2
1(wk+1, f , Tk+1) + γ2η̃

2
2(φk+1,wk+1, Tk+1)

≤ α
(
|φ − φk |21,k + μh2

k‖ curl(w − wk)‖20 + γ1h2
kη

2
1(wk, f , Tk) + γ2η̃

2
2(φk,wk, Tk)

)

where

η̃22(wk,φk, Tk) :=
(

η22(wk,φk, Tk) + β
∑

K∈Tk

h2
K ‖ curlwk‖20,K

)

is the modified estimator.

Proof First by the Galerkin orthogonality (3.7), we have e2k+1 = e2k − r2k+1. Assuming that
the constant in the quasi-orthogonality (5.9) is

√
CQ/2, we have by Young’s inequality for

an ε ∈ (0, 1)

E2
k+1 = E2

k − R2
k+1 − 2

(∇k+1(φ − φk+1),∇k+1(φk+1 − φk)
)

≤ E2
k − R2

k+1 +√
2CQ

(
hkrk+1 + gk(Tk\Tk+1)

)
Ek+1

≤ E2
k − R2

k+1 + εE2
k+1 + CQ

ε

(
h2

kr2k+1 + g2
k (Tk\Tk+1)

)
. (6.1)

Now from Lemmas 6.1 and 6.2, and hk+1 ≤ hk , we choose δi (i = 1, 2) such that βi :=
(1 − ρθi )(1 + δi ) ∈ (0, 1), we have

η21,k+1(Tk+1) ≤ β1η
2
1,k(Tk) +

[
δ1β1 − (1 + δ1)

(
β1 − (1 − ρθ1)

)]
η21,k(Tk) + C1

δ1
r2k+1,

(6.2)

and

η22,k+1(Tk+1) ≤ β2η
2
2,k(Tk) +

[
δ2β2 − (1 + δ2)

(
β2 − (1 − ρθ2)

)]
η22,k(Tk)

+ C2

δ2

(
h2

kr2k+1 + R2
k+1

)
.

(6.3)

Next for the element residual term in η2 on each K we have:

‖ curlwk+1‖20,K = ‖ curlwk‖20,K − ‖ curl(wk − wk+1)‖20,K
− 2

(
curlwk+1, curl(wk − wk+1)

)

K .

By the Young’s inequality for a δ3 ∈ (0, 1),

(1 − δ3)‖ curlwk+1‖20,K ≤ ‖ curlwk‖20,K + 1 − δ3

δ3
‖ curl(wk − wk+1)‖20,K ,

and consequently applying similar techniques with Lemma 6.1 yields:

(1 − δ3)g
2
k+1(Tk+1) ≤ g2

k (Tk) − ρg2
k (Tk\Tk+1) + C3

δ3
h2

k+1r2k+1. (6.4)
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To prove the contraction result, we define

Gk+1 := (1 − ε)E2
k+1 + μh2

k+1e2k+1

+ γ1h2
k+1η

2
1,k+1(Tk+1) + γ2η

2
2,k+1(Tk+1) + (1 − δ3)γ3g2

k+1(Tk+1)

and

Gk := E2
k + μh2

ke2k

+ γ1β1h2
kη

2
1,k(Tk) + γ2β2η

2
2,k(Tk) + γ3g2

k (Tk).

Combining estimates (6.1), (6.2), (6.3) and (6.4) above,

Gk+1 ≤ Gk −
(

1 − γ2C2

δ2

)

R2
k+1

−
⎛

⎝μ − CQ

ε
−

3∑

j=1

γ j C j

δ j

⎞

⎠ h2
kr2k+1

+ γ1h2
k

[
δ1β1 − (1 + δ1)

(
β1 − (1 − ρθ1)

)]
η21,k(Tk)

+ γ2

[
δ2β2 − (1 + δ2)

(
β2 − (1 − ρθ2)

)]
η22,k(Tk)

−
(

γ3ρ − CQ

ε

)

g2
k (Tk\Tk+1).

(6.5)

The constants are formulated such that all terms on the right hand side except the first in the
inequality above vanish for a fixed ε ∈ (0, 1), which is determined later. To this end, aside
from the choice of δi (i = 1, 2) above, we choose γ2 and γ3 to be

γ2 = δ2

C2
, and γ3 = CQ

ρε
, (6.6)

and γ1 is a free constant. Additionally, μ is free as well, and is to be chosen sufficiently large
such that the following holds regardless of what values ε and δ3 take

μ − CQ

ε
−

3∑

j=1

γ j C j

δ j
≥ 0.

Consequently, (6.5) becomes Gk+1 ≤ Gk . For an α ∈ (0, 1) we rewrite the right hand
side of (6.5) as

Gk = αGk + Rk,

where

Rk := (
1 − α(1 − ε)

)
E2

k + μ(1 − α)h2
ke2k

+ γ1(β1 − α)h2
kη

2
1,k(Tk) + γ2(β2 − α)η22,k(Tk) + γ3

(
1 − α(1 − δ3)

)
g2

k (Tk).

It suffices to show that for the constants chosen and to be determined, there exists anα ∈ (0, 1)
such thatRk ≤ 0. Now assuming that the constant in the reliability estimate (4.5) is

√
CR/2,

and the fact that gk(Tk) ≤ η2,k(Tk) we have

Rk ≤ (
h2

kη
2
1,k(Tk) + η22,k(Tk)

)[
CR

(
1 − α(1 − ε) + μ(1 − α)

)

+ (β1 − α)γ1 + (β2 − α)γ2 + γ3
(
1 − α(1 − δ3)

)]
.
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It is straightforward to verify the second term on the right hand side above vanishes when
letting

α := CR(1 + μ) + γ1β1 + γ2β2 + γ3

CR(1 + μ − ε) + γ1 + γ2 + γ3(1 − δ3)
> 0. (6.7)

To make α < 1, by (6.6), the following inequality is needed:

εCR + δ3
CQ

ρε
< γ1(1 − β1) + γ2(1 − β2). (6.8)

Choosing

δ3 = ρε2 and γ1 = γ2β2

1 − β1
,

we have (6.8) holds with

0 < ε < min

{
δ2

C2(CR + CQ)
, 1

}

and thus α defined in (6.7) is in (0, 1). As a result, Gk+1 ≤ αGk is shown, and finally the
theorem follows by acknowledging that gk(Tk) is a part of η2,k(Tk). �

7 Numerical Examples

The numerical experiments in this section, as well as in Sect. 3.2, are carried out using iFEM
[14]. The code used for this paper is publicly available at https://github.com/lyc102/ifem/
tree/master/research/quadCurl. The linear systems for the Stokes problem originated from
(3.3)–(3.4) are solved usingMINRESwith a diagonal preconditioner, the inverse of the Schur
complement of the lower right block can be efficiently approximated by a few V-cycles. For
the discretized Maxwell saddle problems (3.1)–(3.2) and (3.5)–(3.6), we use the multigrid
method for Hodge Laplacian to solve a block factorization; see [17, Section 4.4].

Wemainly compare the performance of the adaptive algorithmunder the proposed separate
marking strategy (M) in Algorithm 1 versus two single marking strategies: A minimum
M ⊆ Tk is sought such that

η2(wh,φh, f ,M) ≥ θη2(wh,φh, f , Tk), (M1)

or

η̃2(wh,φh, f ,M) ≥ θη̃2(wh,φh, f , Tk), (M2)

where η is defined as

η2(wh,φh, f ,M) := η21(wh, f ,Mh) + η22(φh,wh,M), (7.1)

and η̃(wh,φh, f ,M) is defined by the L2-sum of the weighted η1 and η2:

η̃2(wh,φh, f ,M) :=
∑

K∈M
h4

K ‖ f ‖20,K +
∑

F∈F i
h(M)

h3
F‖�(curlwh) × nF �‖20,F

+
∑

K∈M
h2

K ‖ curlwh‖20,K +
∑

F∈Fh(M)

hF‖�nF × (∇hφh)�‖20,F .

(7.2)

On a uniform mesh, η̃2 can be viewed as approximately h2η21 + η22.
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(a) (b) (c)

Fig. 3 The convergence results for AFEM 1 using different marking strategies: a separate marking for η1 and
η2. b single marking for η. (c) single marking for η̃

To demonstrate the reason why we opt for the proposed separate marking strategy (M),
and not single markings such as (M1) and (M2), we construct a toy example using u =
curl〈0, 0, μ〉 for a potential function μ = r19/6 sin(2θ/3) in the cylindrical coordinate as in
Sect. 3.2 example 2 on an L-shaped domain. In this case we have a regular φ = curl u ∈
H13/6−ε(�) while w has a mild singularity near the nonconvex corner.

The results for the convergence of Algorithm 1 using marking strategies (M), (M1), and
(M2) can be found in Figs. 3a–c, respectively.

Using the proposed marking (M), we obtain the desired optimal convergence for |φh −
curl u|1,h being optimal in that the convergence is at the rate of “linear” ≈ #(DoF)−1/3.
Additionally, ‖φh − curl u‖0 and ‖u − uh‖0 converge “quadratically”, i.e., in the order of
approximately #(DoF)−2/3 even though the error estimator’s reliability and efficiency are
not directly measured in those norms. In this experiment, θ1 = 0.5 and θ2 = 0.3.

Using marking (M1) with θ = 0.3, if η1 is unweighted in the η in (7.1), due to w being
singular while φ being regular, thanks to η1 being locally efficient, the marked elements are
dominantly concentrated on which η1 are large. As a result, marking (M1) drives the AFEM
algorithm favoring reducing the error forw, while the errors in approximating φ and u barely
change (Fig. 3b). Fortunately, due to the regularity lifting effect from wh being the data for
the problem of φh (cf. Lemma 3.3), to achieve the optimal rate of convergence, wh does not
have to be approximated to the same precision with φh .

If marking (M2) with θ = 0.3 is used where η1 is locally weighted by the mesh size
hK , the optimal rates of convergence is restored. However, one does benefit from choosing
different marking parameters for approximatingw and φ due to the regularity difference (see
e.g., [18]). Moreover, one does not have the Galerkin orthogonality for ‖ curl(w − wh)‖ to
exploit in the proof of the contraction in Theorem 6.3, because the consecutive difference is
measured under a norm weighted by the mesh size. As a result, it needs new tools that are
not available in any of the current literature to prove a similar contraction result when the
local error indicator is further weighted by the local mesh size hK .

Acknowledgements We greatly appreciate the anonymous reviewers’ revising suggestions.
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