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Abstract

Finite element approximation to a decoupled formulation for the quad-curl problem is studied
in this paper. The difficulty of constructing elements with certain conformity to the quad—curl
problems has been greatly reduced. For convex domains, where the regularity assumption
holds for Stokes equation, the approximation to the curl of the true solution has quadratic
order of convergence and first order for the energy norm. If the solution shows singularity,
an a posterior error estimator is developed and a separate marking adaptive finite element
procedure is proposed, together with its convergence proved. Both the a priori and a posteriori
error analysis are supported by the numerical examples.
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1 Introduction

Quad-curl problem arises from multiphysics simulation such as modeling a magnetized
plasma in magnetohydrodynamics (MHD). In both limiting regimes, resistive MHD [5,47]
and electron MHD [13,33,44], discretizing the quad-curl operator is one of the keys to sim-
ulate these models. In the meantime, quad-curl operator also plays an important role in
approximating the Maxwell transmission eigenvalue problem [12,36]. Recently, the design-
ing of the approximations for quad-curl problems gain quite a few attentions from the finite
element community. For example, conforming finite element spaces for the quad-curl prob-
lem has been recently constructed in [28,51] in two dimensions and [27,39,52] in three
dimensions. Nonconforming and low order finite element spaces can be found in [30,55].
The mixed methods are studied in [45,49,53]. A formulation based on the Hodge decompo-
sition is in [10]. A discontinuous Galerkin approach is studied in [25]. In [46], a novel weak
Galerkin formulation exploits the conforming space for curl-curl problem as a nonconform-
ing space for the quad-curl problem. The a posteriori error analysis in two dimensions is
studied in [50]. We also refer to [54] for a virtual element method in two dimensions.

The structures of the quad-curl problem are unique as the operator may have a bigger kernel
than the one in the curl-curl problem. In a simply-connected domain, the weak formulation of
the quad-curl problem is equivalent to that with a grad curl operator [3,53]. Consequently, the
stringent continuity condition of the grad curl drives the local polynomial space’s dimension
to be much bigger than that of the curl-curl problem. This poses extra difficulty in constructing
the conforming finite element approximations, and renders them hard to solve especially in
three dimensions. The nonconforming elements [55] greatly simply the local structure of
the space, and is more preferable in approximating the quad-curl problem in terms of the
computational resources.

In [15,30], a novel way of further simplifying the structure of the quad-curl problem
is proposed. The quad-curl problem is decoupled into three sub-problems, two curl-curl
equations, and one Stokes equation, all of which have mature finite element approximation
theories (e.g., [20,31,32,37]). In this paper, we use lower-order Nédélec elements [37,38]
to discretize curl-curl equations, and the nonconforming Pi- Py finite element to discretize
Stokes equation, then analyze this decoupled finite element method (FEM) for the quad-curl
problem. Due to the decoupling mechanism, one of the major advantages is that the curl
of the primal variable can be approximated an order higher than most of the conforming or
nonconforming FEMs.

Meanwhile, due to the nature of quad-curl operator [40], on a polyhedral domain, the
singularities of solution may manifest themselves as either corner singularities of the Stokes
system with Dirichlet boundary conditions, corner/edge singularities of the Maxwell problem,
or both. To cope with such solutions with the presence of singularities, adaptive finite element
method (AFEM) is favored over the finite element method performed on a uniformly refined
mesh. The computational resources are adaptively allocated throughout different locations
of the mesh based on the local estimated approximation error. Thus the AFEM can achieve
the same overall accuracy while using fewer degrees of freedom than the one with uniform
mesh.

Opting for a decoupled system using existing and mature elements for each offers great
facilitation to the AFEM pipeline. Now there are three major pieces to the puzzle: the a
posteriori error estimation for the conforming approximation to the Maxwell problem (e.g.,
[4,11,19,42]), that for a nonconforming discretization to the Stokes problem (e.g., [21,22,48]),
and the design of a convergent AFEM algorithm ([26,57,58]). In this paper, combining the
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ingredients from both conforming and nonconforming methods, we are able to show that
the AFEM algorithm based on the a posteriori error estimation is convergent under common
assumptions. Since the nonconforming P;- Py finite element is element-wisely divergence
free, as a result, the a posteriori error estimator only involves the discrete velocity, not the
discrete pressure. To the best of our knowledge, this paper is the first work to prove the
convergence of an adaptive finite element method of the quad-curl problem. Additionally,
in terms of solving the resulting linear systems, the biggest advantage of the decoupled
formulation is to allow users taking advantage of the existing fast solvers for Stokes and
Maxwell problems.

This paper is organized as follows: Section 2 introduces the decoupled formulation as
well as its well-posedness. Section 3 proves the a priori error estimation in both the energy
norm and the L?-norm. Section 4 gives the a posteriori error analysis, Sect. 5 shows the
quasi-orthogonality of the solution, and a convergence proof is given in Sect. 6. In Sect. 7
a comparison of the rates of convergence of the AFEMs using various marking strategies is
presented.

2 A Quad-Curl Problem and a Decoupled Formulation

Let © C R? be a polyhedron homomorphic to a ball, and f € H(div, Q) with div f = 0.
Consider the quad-curl problem

(curh*u = f in ,
divue =0 in €, 2.1
uxn= (urlu) xn=0 ondQ.

The primal formulation of the quad-curl problem (2.1) is to find u € Hg(curl curl, 2) such
that

(curl curl u, curl curl v) = (f,v) Vv € Ho(curl curl, 2), 2.2)
where by denoting I' := 9Q2
Hy(curlcurl, Q) :={v € Lz(Q, ]R3) scurlv, curlcurlv € LZ(Q, RS),

divv =0, andv x n = (curlv) x n =0on T}

(2.3)

Here we remark that Hy(curl curl, €2) is same as Hy(grad curl, €2). This is because curl v €
H(l)(Q, R3) is equivalent to curl v € Ho(curl, ) N Ho(div, 2); see [24,53].

A natural mixed method is to mimic the biharmonic equation by introducingw = VxV xu
and write as a system for which standard edge elements can be used; see [45]. The main
drawback of this decoupling is the loss of the order of convergence due to the fact that
boundary condition (curl#) x n = 0 is imposed weakly. Indeed a natural space for w is
H'(curlcurl, Q) := {v € L?(2; R3) : curlcurlv € H™'(div, )}. Here H™ ! (div, Q) :=
{ve H'(Q; R3) : divev € H~1(Q)} is the dual space of Ho(curl, Q) [15]. Also inheriting
from decoupling the biharmonic equation, fast solvers for the linear algebraic system arising
from this discretization could be an issue.

Instead we shall consider a decoupling [15, Section 3.4] (see also [53]) so that the opti-
mal order of convergence can be preserved, and meanwhile the solution can be computed
efficiently. More importantly, for solutions with singularities, the a posteriori error analysis
and adaptive finite element methods can be applied to retain optimal order of convergence
which is the focus of this work.
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Introduce the space
K§ :={¢ € Ho(curl, Q) : divg = 0} = Ho(curl, Q)/ grad H(} (2)

equipped with norm || - || g (curl). Due to the following commutative diagram

H\(Q: R} —2~ H (@ RY)
U

H(curl, @) 0> (K& ——0
I? ¢curlcurl

Ho(div, @) << K¢

d
L(Z)(Q) gra

the primal formulation (2.2) of the quad-curl problem can be decoupled into the following
three systems [15, Section 3.4] (see also [53]):
Step 1. Given f € L%(Q), find w € Hy(curl, Q), 0 € HO1 () s.t.

(curl w, curl v) + (v, Vo) = (f,v) Vv e Hy(curl, Q), 2.4)
(w,Vr) =0 Ve H(Q). (2.5)

Step 2. Given w computed in Step 1, find ¢ € Hé(Q; R, pe L%(Q) s.t.

Vo, V¥) + divy, p) = (curlw, ¥) VY e H(l)(Q; R3), (2.6)
(diveg,q) =0 Vg e L3(RQ). Q2.7)

Step 3. Given ¢ computed in Step 2, find u € Ho(curl, Q) and & € HO1 () s.t.

(curlu, curl x) + (x, V&) = (¢, curl x) V x € Ho(curl, Q), 2.8)
,V¢)=0 Y e H)(RQ). (2.9)

In other words, the primal formulation (2.2) of the quad-curl problem (2.1) can be decoupled
into two Maxwell equations and one Stokes equation.

Each system is well-posed and the solution (w, o, ¢, p, u, &) to (2.4)-(2.9) exists and
is unique. Now we show briefly, without resorting to the abstract framework in [15], the
equivalence of the decoupled formulation (2.4)-(2.9) and the primary formulation (2.2).

By taking x = V£ in (2.8), we conclude the Lagrange multiplier £ = 0. Therefore (2.8)
becomes ¢ = curl u. Notice that the boundary condition curl# x n = 0 implies that the
tangential trace ¢ X n is zero, while # x n = 0 on boundary implies the normal trace ¢ - n =
rotr u = 0. Together with curl¢ = curlcurlu € L%(Q) and div ¢ = 0, by the embedding
Ho(curl, @) N Ho(div, Q) < H} () [41], we conclude that ¢ = curlu € H}(Q).

Furthermore by the identity

(Vo, V) = (curl ¢, curl ) + (dive, divy) Y é, ¥ € HY(Q; RY),
and div ¢ = 0, we can rewrite (2.6) as
(curlg, curlyp) + (divyp, p) = (curlw,¢¥y) V¢ e H(l)(Q; R3). (2.10)

Noticing the fact div f = 0, by choosing v = Vo, we get from (2.4) that the Lagrange
multipliers o is also zero. Now choosing ¥ = curlv in (2.10) for a v € Ho(curl curl, 2),
we get

(curl curl u, curl curl v) = (curl ¢, curl ) = (curl w, ¥) = (f, v),
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which verifies that the solution u to (2.8)-(2.9) is also the solution to (2.2) and vice versa.

Remark 2.1 The decoupled formulation (2.4)-(2.9) also works for the case div f # 0. By
taking v = Vrt in (2.4), we get Ac = div f. After deriving o, we can simply replace the
right hand side f by f — Vo, which is divergence-free. This is a Helmholtz decomposition
where the non-compatible right-hand side’s divergence has been taken into account without
being explicitly formulated.

Remark 2.2 As we have shown the auxiliary function ¢ = curlu, but w # curl curl u.
Equation (2.4) can be equivalently written as curlcurlw = f but now w € Hy(curl, )
while curl curl u € H(div, 2) may not satisfy the tangential boundary condition.

3 Discrete Methods and a Priori Error Analysis

We consider a conforming mixed finite element method of the Maxwell equations (2.4)-(2.5),
and (2.8)-(2.9) but a nonconforming method for Stokes equation (2.6)-(2.7). We refer to [53]
for a conforming mixed finite element method.

Let {7;,} be a family of triangulation of 2 with mesh size h = maxge7;, hg, where hg is
the diameter of the tetrahedron K. Denote the p-th order Lagrange element space by

VP = {vy, € Hy(R) : valx € Pp(K) foreach K € T},
and the lowest-order Nédélec edge element space [37] by
i = {vn € Ho(curl, Q) : vylx € Po(K; R3) ®x APy(K; RS) for each K € 7;,}.
We use Vh1 — V7§ to discretize the Maxwell equation (2.4)-(2.5). Find w, € Vj, 05 € Vh1 s.t.

(curl wy, curlvy) + (vy, Vop) = (f, vy) Yo, € Vy, (3.1)
(wy, Vi) =0 Vo, e V). (3.2)

We then use the nonconforming P;-Py element [20] to discretize the Stokes problem
(2.6)-(2.7). To this end, let

VgR ={¥ € L2(9§ R3) D Ylk € Pi(K; R3) for each K € 7,
and ([¢,], DF = O for each F € F},

where [v](x) := lirg+ (v|1<1 (x —eng,) —v|g,(x + enkl)) is defined as the jump on face
€—>

F for x € F and ng, being the outer unit normal to K on face F. Denote the piecewise
constant space as

On = {qn € L3(RQ) : qnlx € Po(K) for each K € T}

Given wy, computed from (3.1)-(3.2), find ¢, € V%R, Ph € Qp s.t.

(Vi Vil + (div ¥y, pr) = (curlwy,, ¥,) V¥, € VSR, (3.3)
(divy @y, qn) =0 Y gy € Q. (3.4)

Hereafter V;, curl;, and div, mean the element-wise defined counterparts of V, curl and div
with respect to 7p,.
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Upon solving the system above, ¢, is a second-order approximation to curl # when the
data is smooth. Finally, when one needs to seek a better approximation to & under L?-norm,
uy € VZ' and &, € th are sought such that they satisfy

(curluy, curl xp,) + (Xp, V&) = (¢y, curl ;) V x, € V5!, (3.5)
(up, Ve) =0 Y € Vi (3.6)

Here V;‘ is the linear second family of Nédélec element:
V;‘ = {v, € Ho(curl, Q) : vy|x € P1(K; ]R3) for each K € 73},

and th is the quadratic Lagrange element.
The finite element pair (VER, Qy) is stable for the Stokes equation [6], i.e., we have for
any ¢, € VER and p;, € Q, that

~ - (Vi Vil + (divi ¥y, Pr) + (divi @y, qn)
@alin + 1Bnllo < sup b TR Tk : B

¥,eVER [¥plin + llgnllo
qne€Qn

3.1 A Priori Error Analysis

Next we focus on the a priori error analysis for the decoupled mixed finite element method
(3.1)-(3.6). First of all, since div f = 0 and VVhl C V¢, we get from (3.1) and (3.5) that
o, =0and &, = 0.

Lemma 3.1 (Galerkin orthogonality) Let (w,0) € Ho(curl, ) x HOl () be the solution
of the Maxwell equation (2.4)—(2.5), and (wy, 0) € VZ X Vh1 be the solution of the mixed
method (3.1)—(3.2). Then

(curl(w — wy), curlvy) =0 Yo, € V§. (3.7)

Proof As the Lagrange multiplier 0 = 0 and its approximation o, = 0, subtracting (3.1)
from (2.4), we get the desired orthogonality. O

The error analysis of the mixed finite element method (3.1)-(3.2) is first studied by F.
Kikuchi in [31,32]. We recall it for completeness.

Lemma3.2 Let (w,0) € Hy(curl, Q) x HOl (2) be the solution of the Maxwell equation
(2.4)-(2.5), and (wp,,0) € Vj x Vh1 the solution of the mixed method (3.1)-(3.2). Assume
curl w € HY(Q; R3), then we have

| curl(w — wy)|lo < k| curl wl;. (3.8)
Proof The orthogonality (3.7) implies the best approximation
[ curl(w — wp)llo < inf | curl(w — vp)llo.
eV
This gives (3.8) by an interpolation error estimate (see e.g., [35]). O

According to the Poincaré-Friedrichs inequality for piecewise H! functions [8], the fol-
lowing inequality holds

1Vallo S [Walin ¥ ¥n € VER + Hy(2: RY).
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Denote I} as the nodal interpolation operator from H (IJ(Q; R3) to V%R, then
(V@ —LBY),0gk =0 V¢ e H (R, 7 e Po(K; M), K € Tp, (3.9)
where Po(K; M) stands for the space of constant 3 x 3 matrix on K, and for j =1, 2,
¥ — ¥ lok +held — Ly hk Shil¥lix Y9 e H(@QRY, K €T,
(3.10)

The error analysis for the nonconforming Pj-Py element approximation (3.3)—(3.4) of
Stokes equation is standard [20]. Using the decoupled system to approximate the quad—curl
problem, the subtlety is the perturbation of data. We shall present a stability result for using
curl wy, to approximate curl w. To this end, we introduce the space

Z = H}\(2; R®) Nker(div).

Subsequently (2.6) and the continuous problem using the perturbed data can be written as
follows:

—A¢=curlw in Z and — A = curlwy, in Z’,
respectively. The second problem above is equivalent to

(Vo, V) + (divy, p) = (curlwy, ¥) V9 € HY( RY), (3.11)
diveg,q) =0 Vg e L3(RQ). (3.12)

The analysis is performed for this problem with the perturbed data.

Lemma3.3 Let (¢, p), ((;5, D) be the solutions to (2.6)—(2.7) and (3.11)—(3.12), respectively,
where w and wy, satisfy the orthogonality (3.7). Then

16 — @l < All curl(w — wp)llo-
Proof The difference between the two pairs satisfies the Stokes equation
~A(p—$) +V(p — p) = curl(w — wy) in (Hy(R)),
div(¢p — @) =0 in L3(R).
Applying the definition of the duality pair testing against ¢ — (i, we get
6 — @17 = (curl(w — wy). ¢ — ).

Moreover, since div(¢ — (b) = 0, by [24, Chapter 1 Theorem 3.4] there exists v € H (1) (2 RY)
such that

¢—¢=curlv, [v]i <o~ dlo
Then it follows from (3.7) that
Ip — @|7 = (curl(w — wy,), curl v) = (curl(w — wy), curl(v — vy)), Y v, € V.
Thus

16— ¢11 < lleurlw —wy)lo inf [l curl(® —v)llo S All curlw — wp)llold — @11,
hSVp

which implies the desired result. O
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In the next step, we treat ¢, as the approximation of ¢ and use the standard error analysis
to obtain the following estimate. Here the H>-regularity of Stokes equation is assumed to
hold.

(H2) Given an f € L*(2; R%), letu € H(QR?) and p € L3(S2) be the solution of the
Stokes equation

—Au+Vp=f, divu =0.
Then u € H*(S; R?) and p € H' () and

lull2 + Il < 1 fllo-

It is well known that the assumption (H2) holds for smooth or convex domain €2 (e.g., see
[34, Section 11.5]). In particular, assuming (H2) holds, we have

gl + lIpl S llcurlwllo, [1@ll2+ 1511 < Il curl wyllo,
thus the standard a priori estimate for the stable nonconforming Pi- Py pair holds.
Theorem 3.4 Let (¢, p) € Hé(Q; R3) x L[Z)(Q) be the solution of the Stokes equation (2.6)-

2.7), and (¢y,, pr) € V%R X Qy, the solution of the mixed method (3.3)-(3.4). Assume the
H?-regularity of Stokes equation, i.e., (H2) holds, then

|6 — @nlin < hll curlwllo. (3.13)

Proof First by a standard estimate [20], and the elliptic regularity estimate of the approxi-
mation ¢, for the Stokes problem with curl wj, as data, we have

16— dulin < higla < hll curl wylo.

Furthermore, as wy, is the projection of w to the discrete space in the energy norm, from the
orthogonality (3.7), we have || curl wy||p < || curl w||o. Consequently, the theorem follows
from combining the estimate with the ones in Lemma 3.3. O

Remark 3.5 (Nonhomogeneous boundary conditions) By a simple density argument we can
see that curlu - n = divr(u x n). Consequently, the presence of nonhomogeneous u x n
and/or curl # x n leads to the necessity of impose compatible Dirichlet boundary conditions
with the divergence free condition for problems (2.6)—(2.7), (3.11)—(3.12). Let ¢; be the
standard nodal interpolation in Crouzeix-Raviart element of a sufficiently smooth ¢, by a
standard decomposition argument we can see that aside from the terms on the right hand side
of (3.13), for the nonhomogeneous boundary condition, the estimate should include:

12

6 —dhppnoe=| > 16— r]| <hidh

FeF),
Next we present the L2-error estimate for the Stokes equation.

Lemma3.6 Let (wy, 0, ¢y, pn) € V;; X Vh1 X V%R X Qp, be the solution of the mixed method
(3.1)—~(3.4) on triangulation Tj,. Assume Hz-regularity of Stokes equation holds, i.e., (H2)
holds, then

I —dnllo < hld — by l1n + Al curl(w — wy)llo + ~* | curl wlo. (3.14)
Furthermore if curlw € H 1 (2 R3), then we have the second order estimate

16— dillo < A2l curl ;. (3.15)
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Proof Consider the following dual problem: seek ((;5, p)EH (IJ(Q; R3) x L%(Q) such that
—AG+ V=9 — ¢y,
dive = 0.
The H 2-regularity to the problem above (e.g., see [34, Section 11.5]) reads
Il + 111 < 16 — by lo- (3.16)
Since divy, (¢ — ¢,,) = 0, it follows
I$ — $ulls = (@ — ¢y, —Ad + V)
= (Vi@ — ). V) + Y (b — &y, pn— hlok.  (3.17)

KeT,
Employing (3.9) and the fact divy, 1 Z& = 0, we obtain
(Vi(d — $1). V) = (Vo, V) — (V. ViIp) = (curl w, ¢) — (curl wy, I5,¢)
= (curl w — curl wy,, ) + (curl wy,, ¢ — IfldA)).

Applying the same argument in Lemma 3.3 by treating (?) as a stream function and inserting
a curl of its interpolation, we achieve

(curlw — curl wy, ) < Al curl(w — wp)lloll1.
Besides from (3.10), we have
(curlwy, ¢ — I3,¢) < h*| curl wo|@lo-
Hence
(Vi(p — 1), V) < hll curl(w — wp)lloldl1 + 42| curl wo|l2. (3.18)

Due to the continuity condition of Crouzeix-Raviart element, by a standard technique of
inserting a constant on each face (e.g., see [9, Chapter 10.3]) we get

> (b —du. pn— ok S hld — blialldllz + 141D (3.19)

KeT,

Combining (3.17)-(3.19) and (3.16) yields
¢ —drllo S hlp — byl + kil curl(w — wy)llo + A2 curl wllo,
which is (3.14). ]

We now consider the approximation (3.5)—(3.6) of the last Maxwell equation. Due to the
inexactness of the data, the orthogonality is lost, but the perturbation is measured in L2-norm
of the difference ¢ — ¢,,, which is controllable.

Lemma3.7 Let (u,0) € Ho(curl, 2) x HO1 (R2) be the solution of the Maxwell equation
(2.8)-(2.9), and (uy, 0) € VZI X th the solution of the mixed method (3.5)-(3.6), then

Il curl(u —up)llo < 19 — daullo + 12{/ | curl (e — vp)llo- (3.20)
Vh h
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Assume that the H>-regularity of Stokes equation (H2) holds and curlw,curlu €
H'(Q; RY), then

[l curl(ee — up)llo < h2| curlw|; + A| curl u|;.
Proof Subtracting (3.5) from (2.8), we get
(curl(uw — up), curl xp) = (@ — @y, curl x,) V x, € V;'. (3.21)
Taking x, = v, — uy with v, € V!, we acquire
|| curl(z — uh)||(2) = (curl(u — uy), curl(u — uy))
= (curl( — up), curl(w — vp)) + (¢ — ¢y, curl(vy, — up))
< [lcurl(u — up)llo|l curl(m — vz)llo
+ ¢ — @y lloll curl(m — vi)llo + Il curl(m — up)llo),

which indicates

[l curl(w —up)llo < 11§ — dullo + inf |l curl@ — vp)llo.
v;,thl

m}

Recall that ¢ = curlu and ||¢p — ¢, [|o is at least first order /. Therefore if still merely the
lowest order edge element is used in (3.5)—(3.6), no approximation to curl u better than ¢,
could be obtained. By the duality argument for Stokes equation, the error ||[¢p — ¢, ||o can be
of second order /2 if the H?-regularity result holds. As a result in the last Maxwell equation,
we opt to use the second family Nédélec element to the improve the L? approximation of u
to the second order.

Theorem 3.8 Let (u,0) € Hy(curl, ) x H& () be the solution of the Maxwell equation
(2.8)-(2.9), and (u, 0) € V;' X th the solution of the mixed method (3.5)-(3.6). Assume <2
is convex, then

e —wallo S inf, {llu = vallo + Al curl — va)1lo}
vhevhl

+ Al curl(@ —up)llo + ¢ — yllo,
and when curlw € H' (Q; R3) and u € H*(Q; R?),

llw —upllo < h*(curl wly + || curl wly + [ul2).

Proof The proof is adapted from a similar argument in [59] without the data perturbation.
Denote e;, :== u — uy, then by (2.9) and (3.6), we have (e;, V¢,) = 0for ¢ € th, thus for
any fixed v, € V!

lenllg = (en, u — v1) + (en. sh + Van) = (en, u — v4) + (e, s).
where a discrete Helmholtz decomposition
vn —up = s, + Vap, and (sp, Vr) =0, Yry, € VP (3.22)
is applied such that s, € V'. As a result,

lenllo < lle — wnllo + lisallo- (3.23)
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An H (curl)-lifting s € Ho(curl, 2) (see [35, Lemma 7.6, Remark 3.52]) of s, is sought
such that

curls = curlsy, divs =0, and |s —spllo < k| curlsy|o.
By the triangle inequality and (3.22),
isnllo < lIsllo + lls — sallo < llsllo + All curl spllo = lIsllo + All curl(m, — va)llo,

hence it suffices to bound ||s]|o. Consequently, the Aubin-Nitsche argument is applied on s,
where we seek an (r, &) € Hy(curl, 2) x H& () s.t.

(curlr,curl x) + (x, V&) = (s, x) VY x € Ho(curl, 2), (3.24)
r,v¢)=0 V¢ e Hol (2). (3.25)
We have £ = 0 since s is divergence free, and letting x = s yields

2
lIsllo

(curlr, curls) = (curlr, curl(s + uy, — vh)) + (curlr, curl(—uy, + vh))

—(curlr, curl(Vgp)) + (curlr, curl(u — uy)) — (curlr, curl(u — vp)).

By an embedding result (see [24, Chapter 1 Section 3.4]), the Nédélec nodal interpolation
1 Z' r is well-defined, inserting which into the first above, letting x = u — v, in (3.24)—(3.25),
and by (3.21), we have

Isll§ = (curley, curl(r — I5'r)) + (curl ey, curl I r) — (s, u — vp)
= (curley, curl(r — I5'r)) + (¢ — ¢y, curl I5'r) — (s, u — vj)
< | curl(r — Iy r)lloll curl exllo + ¢ — @y lloll curl I3 rllo + lIsllollw — vpllo.

By standard approximation and stability estimates for the nodal interpolation, as well as a
regularity estimate for problem (3.24)—(3.25), we have

I curl(r — I'r)llo S Al curlrly S llsllo and [ curl I3 rllo < [l curlr |y < lisllo-
As a result, we have

isllo < Rl curlenllo + i — épllo + llw — vallo.

Lastly, the desired estimate follows from combining the estimates for ||sj||o and ||s||o into
(3.23). O

3.2 Numerical Verification

In this section, we verify the a priori convergence results shown in the previous subsection. The
first example has a smooth solution u(x, y, z) = (0, 0, (sin x sin y)? sin z) on Q = (0, 7)°.
Because the true solution is not divergence free, problem (2.9) needs to be modified to
(u, Vi) = (g, ¢) with g = div u being computed from the true solution, and the discretization
changes accordingly. The domain €2 is partitioned into a uniform tetrahedral mesh, and the
convergence plot is in Fig. 1a. It can be seen that when u and curl u are smooth, the rates of
convergence of |[¢; — ¢, |1, and || — ¢, || are optimal, being O (h) and O h?), respectively.
For the solution uj, obtained from the last Maxwell equation, || curl(z — uy)||o is still O (h)
and the L? error ||u — uy, || is improved to O (h?).

To demonstrate how the regularity of curl # which is present in (3.14)—(3.15) shall affect
we choose a singular solution on an L-shaped domain (Fig. 2). The true solution is u =
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Convergence Convergence
107! i
w0 w0
<5} (] D
< ks
= =]
= =
g \ g N,
& N b N
= |61 — nlin = |61 — Bnlin
o o _pLos = L p04
2 S 102t
3] —o—|[curlu — ¢plo =) —o— [|curlu — ¢plo
Moo 199 [ I . 138
—e—||curl(u — up)lo —e— |[curl(u — up)lfo
100 100
105 H—e—||u — uplo —o— [lu — wuylo
77777 P17 B S
T . . - 1079 T . L
2 6 8 10 2 6 8 10

4 4
Mesh size log(1/h) Mesh size log(1/h)
(@) (b)

Fig. 1 On a uniformly refined mesh: a the convergence of approximating u(x,y,z) =

(0, 0, (sinx sin y)2 sin z). b the convergence of approximating u(x, y, z) = curl (0, 0, 78/3 sin(26/3)>
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Fig. 2 The true solution vector field shown in (a) of the L-shaped domain example viewed from above on
z = 1/4 plane together with the level set of its z-component. A coarse mesh (& = 1/2) can be found in (b)

curl(0, 0, 1) for a potential function . = r33sin(20/3) in the cylindrical coordinate on
Q= (1, D?x (0, 1/2)\([0, 11x[—1, 0] x [0, 1/2]). It can be verified that 4 is bi-harmonic so
that f = 0, and curl u € H>/3>~¢(Q; R?). The convergence of the approximation ¢ = curl u
in|-|1,, and || - ||p are both sub-optimal (Fig. 1b) because ¢ = curlu ¢ H?(2; R?) which is
required to achieve the optimal rate of convergence (see Theorem 3.4 and Remark 3.5). While
the approximation for u is optimal as (3.20)’s dependence only on the L2-error ¢ —dsllo
and the approximation property of the linear Nédélec space for u € H3/37¢(Q; R3).
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4 A Posteriori Error Analysis

In this section we will propose a reliable and efficient error estimator for the decoupled mixed
finite element method (3.1)-(3.4). We aim to get an accurate approximation of u in the energy
norm which can be controlled by|| curlu — @, |lo = [|¢ — @y llo S | — dy 1. Therefore we
do not include problem (3.5)-(3.6) into the adaptive procedure.

To this end, we first recall a quasi-interpolation [16,23,42] and a decomposition of tensor-
valued functions [21].

Lemma 4.1 (Theorem 1 in [42]) There exists an operator Il : Ho(curl, 2) — Vfl such
that for any v € Hy(curl, Q2) there exist T € HO1 () and x € H(l}(Q; R?) satisfying

v—Iv=Vr+y,

Dl lIxlox + g x1I5.0x) S llcurl v, 4.1)
KeTy

Lemma 4.2 (Lemma 3.2 in [21]) Let T be a tensor-valued function in L2(S2; M). There exist
re Hi(R?), g € LA(Q), s € H' (2, M) and v € H}(2; R?) such that

T=Vr—gql +curls, r=curlv, ¢ = tr(curls),
el +lIslis + ligllo + llvli2 S lizllo-

For any subset M;, C 7j,, define error estimators

SO ohklfIGx+ Y. hrellcurtdwy) x ne]lG g,

m(wh, f, My) :

KeMy, FeF}(My)
M (b wn, My) = Y hgllcurlwyllg x + D hellne x (Vag)]IG ¢
KeM, FeF(Mpy)

Let Q(If f be the L2-projection of the dataonto [] Po(K; R?), then the data oscillation
KeTy,
is defined as

os?(f. Mp) ==Y Wil f — OF fII§ k-

KeM,

Let I }SI Z be the tensorial Scott-Zhang interpolation from H'(2; M) to the tensorial linear
Lagrange element space [43]. It holds

3 (h;znv L7l g+ v — 1,§Zu|i,{) <P Yve HY(QM). (42)
KeTy

We first present the a posteriori error analysis of error w — wj, which is well-documented
for the saddle point formulation of Maxwell’s equation (see e.g., [4,56,58]). We include a
proof here for the completeness.

Lemma4.3 Let (w,0) € Ho(curl, Q) x HO1 () be the solution of the Maxwell equation
(2.4)-(2.5), and (wy, 0) € V;; X Vh1 the solution of the mixed method (3.1)—(3.2). We have

Fcurl(w —wp)llo < mwn, f, Tn), (4.3)
niwp, f,Tn) S Nl curl(w — wp)llo + osc(f, Tn). 4.4)
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Proof Applying Lemma 4.1 to v = w — wy, we get from (3.7) and (2.4) that
|| curl(w — wh)||(2) = (curl(w — wy), curl(v — M v)) = (curl(w — wy,), curl x)
= (f, x) — (curlwy, curl x)
=(f.x)— Y (curlwy) x n, X)ax

KeTy,
=(f,0— Y ([(curlwy) x ne], X)r.
Fe]—',"l
Hence we have derived (4.3) by (4.1).

The efficiency (4.4) follows from the standard bubble function techniques (see e.g., [4]).
O

Lemma 4.4 Let (w, 0,6, p) € Ho(curl, Q) x H} () x H}(2; R?) x L3(Q) be the solution
of the variational formulation (2.4)—(2.7), and (wy, 0, @¢;,, pn) € VZ X Vhl X V%R X Oy the
solution of the mixed method (3.1)—(3.4). We have

¢ — plin + Al curl(w — wp)llo < hnt(wp, £, Tn) + n2(dy, wi, Tn), 4.5)
hnt(wp, f,75) +m(dy, we, Tp) S ¢ —dplin + 1p — prllo
+ hil curl(w — wy)llo + hosc(f, Tp). (4.6)

Proof Applying Lemma 4.2 to V(¢ — ¢,,), there exist r € Hé(Q; R, g € Lé(Q), S
H'(Q; M) and v € H(Q; R?) such that

Vi —¢,) =Vr —gql +curls, r=curlv,
7l + lslh+ liglo + llvll2 S 1Va(@ — ép)llo- CX))
Note that div, (¢ — ¢;,) = 0 from (2.7) and (3.4). Since divr = 0, we get from (2.6) that
|6 — bulin = (Vab — bn), Vr — gI + curls) = (V4 (¢ — ), Vr + curls)

= (Vu(d —¢p), Vr)+ (divr, p — pr) + (Vi(é — ¢p,), curls)
= (curlw, r) — (Vuo,, Vr) — (divr, pp) — (Vpe,, curls).

It follows from (3.9) and (3.3) that
(Vioy,, Vr)+ (divr, pp) = (Vie,, VU r) + div(Iyr), pr) = (cutlwy, Ijr).
Noticing that (V,¢,,, curl(1 ;f Zs)) = 0, we obtain from the last two identities that
| — @it = (curlw, r) — (curlwy, I5r) — (Vi curl(s — I3%s))
= (curl(w — wp,), curl v) + (curl wy,, r — I} r)
— (Vi curl(s — I3%5)). (4.8)

Next we estimate the right hand side of (4.8) term by term. Employing (3.7) and (4.3), it
follows

(curl(w — wy), curlv) = inf (curl(w — wy), curl(v — vy))
veV]
< [leurl(w — wp)llo inf | curl(v —vp)llo
v,eVS

h

S hngi(wy, f, Tp)|curlv|y = hgy(wa, f, Zn)lrlr.
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According to (3.10), we have

(curlwy, r — Ir) S na(dy, wy, Tp)lrlr.

And we get from (4.2) that
—(Vagy, curl(s — I;7s)) = Y (n x (Vi) s — I[}78)ok
KeTy,
= Y (Inr x (V)]s — I3%5)r
FeFy

S (b, wi, Tn)lslr
Combining the last three inequalities and (4.8), we get from (4.7) that
¢ —dplin S hni(wp, £, Tn) + n2(dy, wi, Tp),

which together with (4.3) indicates (4.5).
On the other side, by applying the bubble function techniques, we get

> ik llcurlwy|f x < A2l curl(w — wi)[I§ + 16 — @515, + 12 — pall3,
KeTy,

Y hellng x (Vi r <16 — duli s

FeFy

Combining the last two inequalities shows
Mm@y, Wi, Tn) S hil cutl(w — wp)llo + (¢ — éplin + 112 — pallo.

Therefore we conclude (4.6) from (4.4). ]

By the a priori L?-estimate of the Stokes problem, when we assume the H '**-regularity
(s € (1/2, 1]) for the possible non-smooth solution, the following estimate, combining with
Lemmas 4.3 and 4.4, can be used for a global reliability bound for [|¢ — ¢, [lo.

Lemma4.5 Let (w, 0, ¢, p) € Ho(curl, Q) x H} () x H}(2; R?) x L3(Q) be the solution
of the variational formulation (2.4)~(2.7), and (wy,, 0, ¢;,, p) € V§ x V! x VSR x Q) the
solution of the mixed method (3.1)—(3.4). We have

¢ — dnllo S h*1p — @plin + hll curl(w — wy)llo + A || curl wy,[lo.

5 Quasi-orthogonality

In this section we will develop the quasi-orthogonality of the decoupled mixed finite element
method.

5.1 Discrete Complexes in Three Dimensions

First recall a nonconforming discretization of the following Stokes complex in three dimen-
sions [30]

| \% curl | 3 div )
0— Hy (2)—— Ho(grad curl, Q)——> H ((2; R*)—— L{(2)—>0,
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where Ho(gradcurl, Q) := {v € Hog(curl, Q) : curlv € Hé(Q; R?)}. Note that
H(grad curl, Q) = Ho/(curl curl, 2) in (2.3) (cf. [53]).

The space of the shape functions of the H (grad curl) nonconforming element proposed
in [30] is Po(K: R3) @ x A P;(K; R?), and the local degrees of freedom are given by

/v-tgds oneach e € £(K), 6.1
e

/ (curlv) - tp;ds oneach F € F(K) withi =1, 2. 5.2)
F

The global H (grad curl) nonconforming element space is then defined as
Wi, = {vy, € L*(;R?) : vk € Po(K; R?*) @ x AP (K; R?) foreach K € 7j,,
all the degree of freedom (5.1)—(5.2) are single-valued,
and all the degree of freedom (5.1)—(5.2) on 92 vanish}.
Now the nonconforming discrete Stokes complex in [30] is presented as

) \Y% curly, R divy,
0—V, W Vv, Q—>0. 5.3)

We also need the help of a discrete de Rham complex. Recall the lowest-order Raviart-
Thomas element space [37,41]

V¢ = {vy € Ho(div, Q) : vplx € Po(K; RY) 4 xPo(K) for each K € Ty},
and the discrete de Rham complex [1,2]

| \Y ~ curl J div

Let I, be the nodal interpolation operator from Dom(1) to V'§ ,and I Z the nodal interpolation
operator from Dom(/ Z) to V¢, where Dom(I i) and Dom(1 Z) are the domains of the operators
I and I ;{ respectively. It holds for any v, € W, that

Il curly (v, — I§vp)llo,x = Il curly v, — I¢ (curly vi)llo.x < k| curly vali k-

Henceforth, consider two nested conforming triangulations 75 and 7, where 7, is a
refinement of 7y . We have the commutative diagram property [1,2]

curl (IS, vy) = 1%, (curl, vy) Vv, € VS + Wy (5.4)

To derive the quasi-orthogonality, we need the following interpolation error estimation for
I, [26]
H

1, — Iy¥allox ShellVavilloxk Y ¥, € ViR, K € Tu\T. (5.5

According to (3.1), since the triangulations 7;, and 7y are nested, we get the following
Galerkin orthogonality

(curl(wy, — wp), curlvy) =0 Yoy € VY. (5.6)
Lemma 5.1 Ir holds
Yo I =I5l k S Wl Y ¥ e ViR, (5.7)
KGTH
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Proof By the averaging technique [7,29], there exists 1; L € V}l = Vhl ® R3 such that

Tl + 2 (h 20 = Tl + 0K s = Tk ) S Wl 58)

KeT,

Applying the scaling argument, we get

S G, =¥k S D hg @y — ¥ - nl ok

KETH KETH
-1 T2
<> h,(( > ||¢h—v/fh||o,a,<,)
KeTy K'eT,(K)
—1 72
< Y hg I = ¥al5 -
KeT,

Noting that ¥, € H}(€2; R3), it follows
D h I~ I5¥, 5.k S 1Walt
KETH
Combining the last two inequalities and (5.8) yields
e (”ILII-I('ﬁh — UGk + 14— Fallox + 19, — ICIILI'/’hH(Z),K) S alige
KETH

On the other hand, we have

1, — T4 ¥ 4llox < G W —Fllox + 1V, — Frllox + 19, — 15U llox-

Therefore we conclude (5.7) from the last two inequalities. ]

5.2 Quasi-orthogonality

Lemma 5.2 (quasi-orthogonality of ¢) Let (w, 0, ¢, pr) € V7§ x Vh1 X VER X Qp and
(Wi, 0, ¢y, pu) € V4 x VI x VSR x Oy the solutions of the mixed method (3.1)-(3.4)
on triangulations Ty, and Ty respectively. We have

(Vi —0,). Vi(d, — b)) S Hlp — dpl1nl curl(wy — wg)llo
172
+1¢ —¢h|1,h( > hkl curlen%,K) . (59)
KeTy\7;
Proof Let ¢;, = I} (¢ — ¢},), then we get from (3.9) and (3.10) that
divp ¥, =0, [¥,l1n S 19— dplin. (5.10)
It follows from (3.4), (3.9) and (3.3) that
(Vi(d—0,), Vi, — &) = (Vi(d —&,), Vi, + ppl — (Vudy + pul))
= (Vo +prd —(Vudy +pul), Vi)
= (cutlwp, ¥,) — (Vudy + pul, Vi)

= (curlwy, ¥y) — (Vudy +pul, ViIy¥,))
= (curlwy, ¥,) — (curlwy, I'y¥y).
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Thus we have

(Vi@ —¢1), Vi(dy, — @) = (cutl(w, —wp), ¥p)
+ (curlwy, ¥, — I'y¥y). (5.11)
Next we estimate the right hand side of the last equation term by term.
Due to the discrete Stokes complex (5.3) and the fact divy, ¥, = 0, there exists v, € Wy,
such that ¥, = curly vj,. From (5.6) and (5.4), we have
(curl(wy, —wpg), ¥),) = (curl(wy, — wg), curly, vy)

= (curl(wy, — wg), curly (v, — I vp))
= (curl(wy, — wg), curly vy, — I‘[l{ curly vy)
= (curl(wy — wp), ¥, — I59)).

Then it holds from (5.7) that

(curl(wp, —wy), ¥p,) S H curl(w, — wg)llol¥,|1,n-

Thanks to (5.5), we obtain

(culwy, ¥, — I ¥,) = Z (curlwp, ¥, — I'y¥ )k

KeTy\Ty

1/2
swhh,h( > h%<||cur1wﬂ||%,1<) :

KeTy\T,

Finally we conclude from (5.11), the last two inequalities and (5.10). ]

6 Convergence

In this section, we propose an adaptive algorithm (Algorithm 1) based on the estimators in
Sect. 4. Then its convergence is proved using the quasi-orthogonality in Sect. 5. The method-
ology in the convergence mainly follows that of [26]. There are two major modifications: one
first needs to control the perturbation of data for the Stokes problem, then the convergence is
proved only for || curl(m — up)|lo and [¢ — @, |1, without the Lagrange multiplier variable.
Notice that if conforming stable Stokes pairs are used, the convergence of any adaptive finite
element method for Stokes equation is extremely hard as the velocity and the pressure are
coupled together.

For the ease of the readers, the following short notations are adopted throughout the proof
of the contraction in Theorem 6.3 and the lemmas needed. For V, defined on 7;, we denote
them by V¢ and VkCR. Similarly, the approximations on 7; are denoted by wg, ¢, and uy
respectively. Let hy := II(nEa% hg, and denote the quantities involving two consecutive levels

of meshes as follows:

172
Ec:=1¢—dhu=| D IVid—0l5x]| -
KeTy
12
Rivr = I¢p —brilinsr = D 1Veri(bp — i)l |
K €Tyt

@ Springer



Journal of Scientific Computing (2022) 90:29 Page 190f25 29

ex := | curl(w — wr)llo, 7rry1 := |l curl(wg — wiy1) o,
Nik(M) = ni(wg, f, M),
N2,k (M) 1= 2 (¢, wi, M),

1/2
gk (M) :=< > hkl curlwk||(2)’K> :
KeM

where Vj stands for the discrete gradient V}, defined piecewisely on all K € 7%, and M can
be Ti, Tig1, or Tt\Tpy 1.

Algorithm 1 An adaptive nonconforming finite element method
Input: 7y, f, tol, 61,0, € (0, 1).

Output: Ty, oy, uy.

1: py =tol,mp =tol,k=0.

2: while True do

3:  SOLVE: Solve (3.1)—(3.2) and (3.3)—~(3.4) on 7 to get (wg, ¢;);

4:  ESTIMATE: Compute | (wg, f, K) and (¢, wy, K) forall K € Ty
5: n < n(wg, f,7x)

6: m < n2(br, w, Ty)

7:  if g1 < toland ny < tol then

8: Break

9:  endif

10:

MARK: Seek a minimum M C 7} such that

nwg, fu M) = 0w, f, To)

2 P M)
and 5 (wg, ¢y, M) > 6205 (wi, g, T)

11:  REFINE: Bisect K € M and their neighbors to form a conforming 74 1 1;

122 k<k+1

13: end while

14: N <k

15: Solve (3.5)-(3.6) on Ty to get u .

The following two lemmas concern the contraction and the continuity of the estimators on
two nested meshes, the proofs are standard in the AFEM literature thus omitted, the reader
can refer to, e.g., [26,57].

Lemma6.1 (Contraction of the estimators) Let (w, ¢;) € Vi x V%R and (Wi+1, Pry1) €
VZ_H X V%El be the solutions to (3.1)—(3.4) on triangulations Ty and i+ obtained through
Algorithm 1, p = 1 —271/3 and there exists positive constants ; € (1 — p6;, 1) fori = 1,2
such that

ik (Tet) < Binf 1 (To) — [Bi — (1 — p6) [nf 1 (To).

Lemma 6.2 (Continuity of the estimator) Under the same assumption with Lemma 6.1 then,
then given positive constants §; € (0, 1) fori = 1,2,

Ci
Mkt (Tet) < U+ 8074 (Ter) + rin

C
and n3 1 (Tesn) < (14803 1 (Tegr) + g(hiﬂr,ﬁﬂ +RE).

where C; depends on the shape-regularity of the mesh.
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Theorem 6.3 (Contraction) Let (w, ¢) € Hy(curl, ) x H(l)(Q; R3) be the solutions to (2.4)—
(2.7) without the Lagrange multipliers, and (Wi41, §py1) € Vi X V/S—El and (Wi, @) €
Vi x VER be their approximations in problems (3.1)—(3.4) on Ty41 and Ty, respectively. If

Ti+1 is a conforming refinement from T, with hy11 < hg, then there exist y1, y2, 4, B > 0,
and 0 < a < 1 such that the AFEM in Algorithm 1 satisfies

6 — brr11Tpar + iy curl(w — wep )G
+ )/lh%.,.l??%(wk-s—ly [Ty + V2ﬁ%(¢k+lv Wit1, Tht1)
< a(ld) - d)kl + phi| curl(w — wollg + yihgn? (we, £, To) + y27i3 (dg, Wi, 77<))

where

i3 (Wi, @y, Te) == (n%(wk,rbk,m +8 Y hilcurl wkné,K>

KeTy

is the modified estimator.

Proof First by the Galerkin orthogonality (3.7), we have e,% = e,% — r,f 1 Assuming that

the constant in the quasi-orthogonality (5.9) is ,/Co/2, we have by Young’s inequality for
ane € (0,1)

El%+1 =E; — R/%+1 —2(Vir1 (@ — i), Vir1(Pry1 — D0))
<Ef- R;%Jr] + \/@(hkrkﬂ + 81 (T\Tk+1)) Ex11

< B~ Rpyy 4 eBh + 2 (W + T T). (6.1)

Now from Lemmas 6.1 and 6.2, and hjy < hk, we choose §; (i = 1, 2) such that 8; :=
(1 —p06;))(A+6;) € (0,1), we have

Ci
ke Tiert) = Bnd T+ [B181 = (480 (B1 = (= p) | (T + ki,

(6.2)
and
Bt Tis) = Bond o (T0) + [8282 — (1 4+ 62) (B2 — (1 = p62) | 1 (T0)
6.3
+ %(hlzrlgﬂ +Riy)- Y
Next for the element residual term in 7, on each K we have:
lleurl w115 x = Il curl wyllg x — || curl(we — wes )G &
— 2(curl wyy 1, curl(wg — wit1))
By the Young’s inequality for a §3 € (0, 1),
(1= 85)ll curlwy 13 < llourl w3 + 2 curl g — wes) I 4.
and consequently applying similar techniques with Lemma 6.1 yields:
(1= 8381 (Tor) = €T — P} (TN Tir) + = thrkH (6.4)
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To prove the contraction result, we define
Grp1 1= (1 = OER + uhiy ey
+ Vlhiﬂn%,kﬂ(ﬁwl) + V2U%J<+1(77c+1) + 1 - 33)V381§+1(77<+1)
and
By = Ek + ,uhkek
+ V1Bt (T) + v2B2115 1 (Te) + v38¢ (To).
Combining estimates (6.1), (6.2), (6.3) and (6.4) above,

— »Co
Grr1 < G — (1 - —)/82 )R,%Jrl

3
- Z % hkrkJrl
P J
j=l1
+ i [8181 = (4 80)(B1 — (1 = pn) | (T

+ 728282 = (1 82) (B2 — (1 = p8) [ (T0)

(6.5)

Co
<V3P - *) 2 (T\Ti1).

The constants are formulated such that all terms on the right hand side except the first in the
inequality above vanish for a fixed € € (0, 1), which is determined later. To this end, aside

from the choice of §; (i = 1, 2) above, we choose y» and y3 to be
8 C
= ad p=-2, (6.6)
Cr pe

and yj is a free constant. Additionally, u is free as well, and is to be chosen sufficiently large
such that the following holds regardless of what values € and 3 take

3
Co viCj
R D
=

Consequently, (6.5) becomes Gy < ®y. For an « € (0, 1) we rewrite the right hand
side of (6.5) as

6]( =a®; + Ry,
where
Ri (1 —a(l —e))Ek +n( —ot)hkek
+y1(B1 — hin ((T0) + v2(Ba — @) (T + v3 (1 — a(1 — 83)) g (o).
It suffices to show that for the constants chosen and to be determined, there existsana € (0, 1)
such that R; < 0. Now assuming that the constant in the reliability estimate (4.5) is v/Cr/2,
and the fact that g (7x) < n2 x(7x) we have
R < (P (T + 13 () [Cr(1 = a1 = &) + (1 - @)

+(Bi—am + (B~ + (1 —all = 8)].

@ Springer



29 Page22of25 Journal of Scientific Computing (2022) 90:29

It is straightforward to verify the second term on the right hand side above vanishes when
letting

e  CRUFWANbirybotys
O CR(I4+p—e)+yi+y+r(l—8)
To make o < 1, by (6.6), the following inequality is needed:

0. 6.7)

C
eCH&p—f <y =B+l - o). (6.8)
Choosing
7262
8 = €? and 1= ,
1Y Y 1— B
we have (6.8) holds with
|eereo )
O<e<mn{—,1
C2(Cr+Cp)

and thus « defined in (6.7) is in (0, 1). As a result, &z < a®y is shown, and finally the
theorem follows by acknowledging that g (7%) is a part of 72 x (7%). ]

7 Numerical Examples

The numerical experiments in this section, as well as in Sect. 3.2, are carried out using i FEM
[14]. The code used for this paper is publicly available at https://github.com/lyc102/ifem/
tree/master/research/quadCurl. The linear systems for the Stokes problem originated from
(3.3)—(3.4) are solved using MINRES with a diagonal preconditioner, the inverse of the Schur
complement of the lower right block can be efficiently approximated by a few V-cycles. For
the discretized Maxwell saddle problems (3.1)—(3.2) and (3.5)-(3.6), we use the multigrid
method for Hodge Laplacian to solve a block factorization; see [17, Section 4.4].

‘We mainly compare the performance of the adaptive algorithm under the proposed separate
marking strategy (M) in Algorithm 1 versus two single marking strategies: A minimum
M C Ty is sought such that

n*(wp, ¢y, fr M) = 00> (Wi, b, f Th), (M1)
or
P wn, ¢, fr M) = 072 (wi, b, £ T2, (M2)

where 7 is defined as

> Wi, $y o M) =15 Was f, M) + 15 (y, wi, M), (7.1)
and 7j(wy,, ¢, f, M) is defined by the L?-sum of the weighted 11 and 7;:

W wn, by £ M) = D Wl fIGx+ Y. hylllcurlwy) x ne]lG g

KeM FeFi
€Fy (M) (12)
+ ) hxlleudwil§ e+ > hellne x (VadlIG p-
KeM FeFp(M)

On a uniform mesh, 72 can be viewed as approximately h2n% + n%.
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Fig.3 The convergence results for AFEM 1 using different marking strategies: a separate marking for n; and
12. b single marking for 7. (c) single marking for 77

To demonstrate the reason why we opt for the proposed separate marking strategy (M),
and not single markings such as (M1) and (M2), we construct a toy example using u =
curl(0, 0, u) for a potential function pu = #1976 5in(26 /3) in the cylindrical coordinate as in
Sect. 3.2 example 2 on an L-shaped domain. In this case we have a regular ¢ = curlu €
H'3/57¢(Q) while w has a mild singularity near the nonconvex corner.

The results for the convergence of Algorithm 1 using marking strategies (M), (M1), and
(M2) can be found in Figs. 3a—c, respectively.

Using the proposed marking (M), we obtain the desired optimal convergence for |¢;, —
curl |1, being optimal in that the convergence is at the rate of “linear” ~ #(DoF)~!/3.
Additionally, ||¢;, — curlu||op and ||u — uj|lo converge “quadratically”, i.e., in the order of
approximately #(DoF)~2/3 even though the error estimator’s reliability and efficiency are
not directly measured in those norms. In this experiment, 6; = 0.5 and 6, = 0.3.

Using marking (M1) with 8 = 0.3, if n; is unweighted in the n in (7.1), due to w being
singular while ¢ being regular, thanks to n; being locally efficient, the marked elements are
dominantly concentrated on which n; are large. As a result, marking (M1) drives the AFEM
algorithm favoring reducing the error for w, while the errors in approximating ¢ and u barely
change (Fig. 3b). Fortunately, due to the regularity lifting effect from wj being the data for
the problem of ¢, (cf. Lemma 3.3), to achieve the optimal rate of convergence, wy does not
have to be approximated to the same precision with ¢,,.

If marking (M2) with & = 0.3 is used where 7 is locally weighted by the mesh size
hk, the optimal rates of convergence is restored. However, one does benefit from choosing
different marking parameters for approximating w and ¢ due to the regularity difference (see
e.g., [18]). Moreover, one does not have the Galerkin orthogonality for || curl(w — wy)|| to
exploit in the proof of the contraction in Theorem 6.3, because the consecutive difference is
measured under a norm weighted by the mesh size. As a result, it needs new tools that are
not available in any of the current literature to prove a similar contraction result when the
local error indicator is further weighted by the local mesh size h .
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