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CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED
FINITE ELEMENT METHODS

LONG CHEN, MICHAEL HOLST, AND JINCHAO XU

Abstract. The convergence and optimality of adaptive mixed finite element
methods for the Poisson equation are established in this paper. The main
difficulty for mixed finite element methods is the lack of minimization principle
and thus the failure of orthogonality. A quasi-orthogonality property is proved
using the fact that the error is orthogonal to the divergence free subspace, while
the part of the error that is not divergence free can be bounded by the data
oscillation using a discrete stability result. This discrete stability result is also
used to get a localized discrete upper bound which is crucial for the proof of
the optimality of the adaptive approximation.

1. Introduction

Adaptive methods are now widely used in scientific computation to achieve better
accuracy with minimum degrees of freedom. While these methods have been shown
to be very successful, the theory ensuring the convergence of the algorithm and the
advantages over nonadaptive methods is still under development. Recently, several
results have been obtained for standard finite element methods for elliptic partial
differential equations [8, 36, 48, 50, 12, 59, 51, 27, 29].

In this paper, we shall establish the convergence and optimality of adaptive
mixed finite element methods (AMFEMs) of the model problem

(1.1) −∆u = f in Ω, and u = 0 on ∂Ω,

posed on a polygonal and simply connected domain Ω ⊂ R2. In many applications
([24]) the variable σ = −∇u is of interest and it is therefore convenient to use
mixed finite element methods, such as the Raviart-Thomas mixed method [53] and
Brezzi-Douglas-Marini mixed method [23]. We shall construct adaptive mixed finite
element methods based on the local refinement of triangulations and prove they will
produce a sequence of approximation of σ in an optimal way.

Our main result is the following optimal convergence of our algorithms AMFEM

and its variant. Let σN be the approximation of σ based on the triangulation TN

obtained in AMFEM. If σ ∈ As and f ∈ As
o, then

(1.2) ‖σ − σN‖ ≤ C(‖σ‖As + ‖f‖As
o
)(#TN −#T0)−s,
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where (As, ‖ ·‖As) and (As
o, ‖ ·‖As

o
) are approximation spaces as in [12]. The index

s is used to characterize the best possible approximation rate of σ, which depends
on the regularity of the solution and data, and the order of elements. For example,
when f ∈ L2(Ω) and σ ∈ W 1,1(Ω), we can achieve the optimal convergence rate
s = 1/2 for the lowest order Raviart-Thomas finite element space. We refer to [13]
for the characterization of As in terms of Besov spaces and to [9, 10, 35, 34] for
the regularity results in Besov norms. We comment that to apply our adaptive
algorithm, we do not need to know s explicitly. Our algorithm will produce the
best possible approximation rate for the unknown σ.

For the analysis of the convergence of adaptive procedure, we follow the new
approach by Cascon, Kreuzer, Nochetto and Siebert [27], and for the optimality we
mainly use the simplified case in Stevenson’s work [59]. A distinguish feature of
the new approach for the convergence proof is the relaxation of the interior node
requirement for the refinement. We do not claim any originality on the proof of
convergence and optimality. Instead, the main contribution of this paper is to
establish two important ingredients used in the proof, namely quasi-orthogonality
and discrete upper bound.

One main ingredient in the convergence analysis of standard AFEM is that the
error is orthogonal to the finite element spaces in energy-related inner product
since the standard finite element approximation can be characterized as a mini-
mizer of Dirichlet-type energy. For mixed finite element methods, however, the
approximation is a saddle point of the corresponding energy and thus there is no
orthogonality available. We shall prove a quasi-orthogonality result. A similar re-
sult for the lowest order Raviart-Thomas finite element space has recently been
proved by Carstensen and Hoppe [26], where a special relation between the mixed
finite element method and the nonconforming method is used. In this paper, we
shall propose a new and more straightforward approach which works for any order
elements and both Raviart-Thomas and Brezzi-Douglas-Marini methods. The main
observation is that the error is orthogonal to the divergence free subspace, while
the part of the error containing divergence can be bounded by the data oscillation
using a discrete stability result.

Another ingredient to establish the optimality of the adaptive algorithm is the
localized discrete upper bound for a posteriori error estimator. Using the discrete
stability result, we are able to obtain such discrete upper bound and use it to prove
the optimality of the convergent algorithm. The optimality of mixed adaptive finite
element methods seems to be new.

The rest of this paper is organized as follows. In Section 2, we shall introduce
mixed finite element methods and give a short review of mesh adaptivity through
local refinement. We shall include many preliminary results in this section for later
usage. In Section 3, we shall prove the discrete stability result and use it to prove
the quasi-orthogonality result. In Section 4, we shall present a posteriori error
estimator and prove the discrete upper bound. In Section 5, we shall present our
algorithms and prove their convergence and optimality.

Throughout this paper, we shall use standard notation for Sobolev spaces and
use boldface letters for the spaces of vectors. The letter C, without subscript,
denotes generic constants that may not be the same at different occurrences and
Ci, with subscript, denotes specific important constants.
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2. Preliminaries

In this section we shall introduce mixed finite element methods for the Pois-
son equation and discuss the general procedure of adaptive methods through local
refinement. We shall also include a result on the approximation of the data.

2.1. Mixed finite element methods. The standard finite element method in-
volves writing (1.1) as a primal variational formulation: for a given f ∈ L2(Ω), find
u ∈ H1

0 (Ω) such that

(2.1)
∫

Ω
∇u ·∇v =

∫

Ω
fv, ∀v ∈ H1

0 (Ω),

and then find an approximation by solving (2.1) in finite-dimensional subspaces of
H1

0 (Ω). In many applications ([24]) the variable σ = −∇u is of interest, and it is
therefore convenient to use mixed finite element methods. Let us first write (1.1)
as a first order system:

(2.2) σ +∇u = 0, div σ = f in Ω, and u = 0 on ∂Ω.

Let

Σ = H(div ;Ω) := {τ ∈ L2(Ω) : div τ ∈ L2(Ω)}, and U = L2(Ω).

We shall use ‖ ·‖ to denote L2-norm and ‖ ·‖ H(div) for the H(div) norm:

‖τ‖H(div) = (‖τ‖2 + ‖ div τ‖2)1/2, ∀τ ∈ Σ.

The mixed (or dual) variational formulation of (2.2) is, given an f ∈ L2(Ω), find
(σ, u) ∈ Σ× U such that

(σ, τ )− (div τ , u) = 0, ∀τ ∈ Σ,(2.3)
(div σ, v) = (f, v), ∀v ∈ U,(2.4)

where (·, ·) is the inner product for L2(Ω) or L2(Ω). Note that the Dirichlet bound-
ary condition is imposed as a natural boundary condition in the dual formulation
(2.3) using integration by parts. The existence and uniqueness of the solution
(σ, u) to (2.3)-(2.4) follows from the so-called inf-sup condition which can be easily
established for this model problem [24].

Given a shape regular and conforming (in the sense of [30]) triangulation TH

of Ω, the mixed finite element method is to solve (2.3)-(2.4) in a pair of finite-
dimensional spaces ΣH ⊂ Σ and UH ⊂ U . That is, given an f ∈ L2(Ω), to find
(σH , uH) ∈ ΣH × UH such that

(σH , τH)− (div τH , uH) = 0, ∀ τH ∈ ΣH(2.5)
(div σH , vH) = (fH , vH), ∀ vH ∈ UH .(2.6)

Hereafter fH denotes the L2(Ω) projection of f onto UH . Namely, fH ∈ UH

such that (fH , vH) = (f, vH), ∀vH ∈ UH . The well-posedness of the discrete
problem (2.5)-(2.6), unlike the standard finite element method for the primary
variational formulation, is nontrivial. One sufficient condition to construct stable
finite element spaces is to ensure the inf-sup condition still holds for the discrete
problem. Since 1970s many stable finite element spaces have been introduced for
this case, such as those of Raviart-Thomas spaces [53] and Brezzi-Douglas-Marini
spaces [23]. Recently it has been shown that such stable finite element spaces can
be constructed in an elegant way using differential complex theory [16, 41, 2, 5].



38 LONG CHEN, MICHAEL HOLST, AND JINCHAO XU

The Raviart-Thomas spaces [53] are defined for an integer p ≥ 0 by

RTH = Σp
H × Up

H ,

where

Σp
H(TH) := {τ ∈ H(div ;Ω) : τ |T ∈ P p(T ) + xPp(T ), ∀T ∈ TH},

and

Up
H(TH) := {v ∈ L2(Ω) : v|T ∈ Pp(T ), ∀T ∈ TH},

and where Pp(T ) denotes the space of polynomials on T of degree at most p.
The Brezzi-Douglas-Marini spaces [23] are defined for an integer p ≥ 1 by

BDMH = Σp
H × Up

H ,

where

Σp
H(TH) := {τ ∈ H(div ;Ω) : τ |T ∈ P p(T ), ∀T ∈ TH},

and

Up
H(TH) := {v ∈ L2(Ω) : v|T ∈ Pp−1(T ), ∀T ∈ TH}.

Since most results hold for both Raviart-Thomas and Brezzi-Douglas-Marini
spaces and p is fixed in most places, we shall use the generic notation (ΣH , UH) to
denote the pair in RTH or BDMH . The discrete problem posed on (ΣH , UH) will
satisfy the discrete inf-sup condition [24] from which the existence and uniqueness
of the finite element approximation (σH , uH) follows.

We shall use L and LH to denote the differential operators corresponding to
(2.3)-(2.4) and (2.5)-(2.6), respectively. Those equations can be formally written
as

L(σ, u) = f and LH(σH , uH) = fH .

We shall use the notation (σ, u) = L−1f and (σH , uH) = L−1
H fH to emphasis

the dependence of f . With an abuse of notation, we also use σ = L−1f and
σH = L−1

H fH when σ and σH are of interest.

2.2. Adaptive methods through local refinement. Let σ = L−1f and σH =
L−1

H fH . We are mostly interested in the control of the error ‖σ − σH‖ which is
usually more important than control of the error of scalar variable u in mixed fi-
nite element methods. Although the natural norm for the error is ‖σ−σH‖H(div),
we comment that, by (2.4) and (2.6), ‖ div σ − div σH‖ = ‖f − fH‖ can be ap-
proximated efficiently without solving equations and also may dominate the error
‖σ − σH‖H(div); see Remark 3.4 in [45].

The rate of the error ‖σ − σH‖ for σH ∈ Σp
H(TH) depends on the regularity of

the function being approximated and the regularity of the mesh. If σ ∈ Hp+1(Ω)
and TH is quasi-uniform with mesh size H = maxT∈TH diam(T ), then the following
convergence result of optimal order is well known [24]:

(2.7) ‖σ − σH‖ ≤ CHp+1‖σ‖p+1.

The regularity result σ ∈ Hp+1(Ω), however, may not be true in many applications,
especially for concave domains Ω. Thus we cannot expect the convergence result
(2.7) on quasi-uniform grids in general.
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To improve the convergence rate, element sizes are adapted according to the
behavior of the solution. In this case, the element size in areas of the domain where
the solution is smooth can stay bounded well away from zero, and thus the global
element size is not a good measure of the approximation rate. For this reason, when
the optimality of the convergence rate is concerned, #T , the number of elements,
is used to measure the approximation rate in the setting of adaptive methods that
involve local refinement.

We now briefly review the standard adaptive procedure. Given an initial trian-
gulation T0, we shall generate a sequence of nested conforming triangulations Tk

using the following loop:

(2.8) SOLVE → ESTIMATE→ MARK → REFINE.

More precisely, to get Tk+1 from Tk we first solve (2.5)-(2.6) to get σk on Tk. The
error is estimated using σk and data. And the error estimator is used to mark a
set of of triangles or edges that are to be refined. Triangles are then refined in such
a way that the triangulation is still shape regular and conforming in the sense of
[30].

We shall not discuss the step SOLVE which deserves a separate investigation.
We assume that the solutions of the finite-dimensional problems can be generated to
any accuracy to accomplish this in optimal space and time complexity. Multigrid-
like methods for mixed finite element methods on quasi-uniform grids can be found
in [17, 18, 20, 21, 40, 52, 56].

The a posteriori error estimators are an essential part of the ESTIMATE step.
Given a shape regular triangulation TH , let EH denote the edges of TH . In this
paper, we shall use edgewise error estimator ηE for each edge E ∈ EH . See Section
4 for details.

The local error estimator ηE is employed to mark for refinement the elements
whose error estimator is large. The way we mark these triangles influences the
efficiency of the adaptive algorithm. In the MARK step we shall always use the
marking strategy first proposed by Dörfler [36] in order to prove the convergence
and the optimality of the local refinement strategy.

In the REFINE step we need to carefully choose the rule for dividing the marked
triangles such that the mesh obtained by this dividing rule is still conforming and
shape regular. Such refinement rules include red and green refinement [11], longest
edge refinement [55, 54], and newest vertex bisection [58, 46, 47]. Note that not
only marked triangles get refined but also additional triangles are refined to recovery
the conformity of triangulations. We would like to control the number of elements
added to ensure the overall optimality of the refinement procedure. To this end, we
shall use the newest vertex bisection in this article. We refer to [46, 61, 12, 28] for
details of the newest vertex bisection and only list two important properties below.

Let Tk be a conforming triangulation refined from a shape regular triangulation
T0 using the new vertex bisection and let M be the collection of all marked triangles
going from T0 to Tk. Then

(1) {Tk} is shape regular and the shape regularity only depends on T0;
(2) #Tk ≤ #T0 + C#M.

Recently, Stevenson [60] showed that such results can be extended to bisection
algorithms of n-simplices. The optimality of the adaptive finite element method in
this paper, thus, could be extended to general space dimensions.
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2.3. Approximation of the data. We shall introduce the concept of data oscil-
lation which was first introduced in [48], and use it here for the approximation of
data. Such quantity measures intrinsic information missing in the averaging process
associated with finite elements, which fails to detect fine structures of f .

For a set A, HA denotes the diameter of A. To simplify the notation, we may
drop the subscript if it is clear from the context. For a triangulation TH of Ω and
a function f ∈ L2(Ω), we define a triangulation dependent norm

‖H f‖0,TH :=
( ∑

T∈TH

H2
T ‖f‖20,T

)1/2
.

Definition 2.1. Given a shape regular triangulation TH of Ω and an f ∈ L2(Ω),
we define the data oscillation

osc(f, TH) := ‖H(f − fH)‖0,TH .

Let PN denote the set of triangulations constructed from an initial triangulation
T0 by the newest vertex bisection method with at most N triangles. We define

‖f‖As
o

= sup
N≥N0

(
Ns inf

T ∈PN

osc(f, T )
)
,

where N0 is a fixed integer representing the number of triangles in T0. We will recall
a result of Binev, Dahmen and DeVore [12] which shows that the approximation of
data can be done in an optimal way. The proof can be found at [12]; see also [14].

Theorem 2.2 (Binev, Dahmen and DeVore). Given a tolerance ε, an f ∈ L2(Ω),
and a shape regular triangulation T0, there exists an algorithm

TH = APPROX(f, T0, ε)

such that
osc(f, TH) ≤ ε, and #TH −#T0 ≤ C‖f‖1/s

A1/s
o

ε−1/s.

3. Quasi-orthogonality

Unlike the primal formulation of the Poisson equation, σH is not the L2-orthogo-
nal projection of σ from Σ to ΣH . Indeed, the solution (σ, u) of (2.3)-(2.4) is the
saddle point of the following energy:

E(τ , v) =
1
2
‖τ‖2 + (div τ, v)− (f, v), τ ∈ H(div;Ω), v ∈ L2(Ω).

Namely
E(σ, u) = inf

σ∈H(div;Ω)
sup

v∈L2(Ω)
E(τ , v).

A similar result holds for the discrete solutions (σH , uH). The lack of orthogonality
is the main difficulty which complicates the convergence analysis of mixed finite
element methods.

We shall use the fact the error σ − σH is orthogonal to the divergence free
subspace of ΣH to prove a quasi-orthogonality result. In the sequel we shall consider
two conforming triangulations Th and TH which are nested in the sense that Th is a
refinement of TH . Therefore, the finite element space are nested, i.e., (ΣH , UH) ⊂
(Σh, Uh).
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Lemma 3.1. Given an f ∈ L2(Ω) and two nested triangulations Th and TH , let

(σ, u) = L−1f, (σh, uh) = L−1
h fh, (σ̃h, ũh) = L−1

h fH , and (σH , uH) = L−1
H fH .

Then

(3.1) (σ − σh, σ̃h − σH) = 0.

Proof. Since σ̃h − σH ∈ Σh, by (2.5)-(2.6), we have

(σ − σh, σ̃h − σH) = (u− uh, div (σ̃h − σH)) = (u− uh, fH − fH) = 0. !
To prove quasi-orthogonality, we need the following discrete stability result

(3.2) ‖σh − σ̃h‖ ≤
√

C0 osc(fh, TH),

where the constant C0 depends only on the shape regularity of TH . We shall leave
the proof of (3.2) to the next section and use it to derive the quasi-orthogonality
result.

Theorem 3.2. Given an f ∈ L2(Ω) and two nested triangulations Th and TH , let
σ = L−1f , σh = L−1

h fh, and σH = L−1
H fH . Then

(3.3) (σ − σh, σh − σH) ≤
√

C0 ‖σ − σh‖osc(fh, TH),

Thus, for any δ > 0,

(3.4) (1− δ)‖σ − σh‖2 ≤ ‖σ − σH‖2 − ‖σh − σH‖2 +
C0

δ
osc2(fh, TH),

and in particular when osc(fh, TH) = 0,

(3.5) ‖σ − σh‖2 = ‖σ − σH‖2 − ‖σh − σH‖2.

Proof. Let us introduce an intermediate solution σ̃h = L−1
h fH . By Lemma 3.1,

(σ − σh, σ̃h − σH) = 0. Thus

(σ − σh, σh − σH) = (σ − σh, σh − σ̃h) ≤ ‖σ − σh‖‖σh − σ̃h‖.
(3.3) then follows from the inequality (3.2).

By the trivial identity σ − σH = σ − σh + σh − σH , we have

‖σ − σH‖2 = ‖σ − σh‖2 + ‖σh − σH‖2 + 2(σ − σh, σh − σH).

When osc(fh, TH) = 0, by (3.3), (σ − σh, σh − σH) = 0 and thus (3.5) follows. In
general, we use

‖σ − σH‖2 = ‖σ − σh‖2 + ‖σh − σH‖2 + 2(σ − σh, σh − σH)

≥ ‖σ − σh‖2 + ‖σh − σH‖2 − 2
√

C0‖σ − σh‖osc(f, TH)

≥ ‖σh − σH‖2 + (1− δ)‖σ − σh‖2 −
C0

δ
osc2(fh, TH),

to prove (3.4). In the last step, we have used the inequality

2ab ≤ δa2 +
1
δ
b2, for any δ > 0. !

A similar quasi-orthogonality result was obtained by Carstensen and Hoppe [26]
for the lowest order Raviart-Thomas spaces using a special relation to the noncon-
forming finite element. Such a relation for high order elements and Brezzi-Douglas-
Marini spaces are not easy to establish; see [3] and [31, 32, 33] for a discussion on
this relation. In contrast the approach we used here is more straightforward.
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Remark 3.3. The oscillation term osc(fh, TH) in (3.3) and (3.4) depends on both
Th and TH . It can be changed to the quantity osc(f, TH) which only depends on
TH . Indeed, for each T ∈ TH , we have

‖fh − fH‖0,T = ‖Qh(I −QH)f‖0,T ≤ ‖f − fH‖0,T ,

and thus osc(fh, TH) ≤ osc(f, TH). This change is important for the construction
of convergent AMFEM by showing the reduction of osc(f, TH).

4. Discrete stability for perturbation of data

In this section, we shall prove the discrete stability result. We begin with a
stability result in the continuous case. Let u ∈ H1

0 (Ω) be the solution of the primal
weak formulation (2.1) of Poisson equation. Then (−∇u, u) is the solution to the
dual weak formulation (2.3)-(2.4). The stability result ‖∇u‖ ≤ ‖f‖−1 is well known
in the literature. The norm ‖f‖−1, however, is not easy to compute. Instead, we
shall make use of the oscillation of data to bound it.

Theorem 4.1. Given a shape regular triangulation TH of Ω and f ∈ L2(Ω), let
(σ, u) = L−1f and (σ̃, ũ) = L−1fH , respectively. Then there exists a constant C0

depending only on the shape regularity of TH such that

(4.1) ‖σ − σ̃‖ ≤
√

C0 osc(f, TH).

Proof. By (2.3) and (2.4), we have

‖σ − σ̃‖2 = (σ − σ̃, σ − σ̃) = (div(σ − σ̃), u− ũ) = (f − fH , u− ũ).

Let v be the solution of primal weak formulation of the Poisson equation with data
f − fH . Then v = u − ũ and −∇v = σ − σ̃. Recall that QH : L2(Ω) → UH is the
L2 projection into discontinuous polynomial spaces. So for each triangle T ∈ TH ,
(f − fH , vH)T = 0 for any vH ∈ Pp(T ). Therefore,

‖σ − σ̃‖2 = (f − fH , v)

=
∑

T∈TH

(f − fH , v −QHv)T

≤
√

C0

∑

T∈TH

‖H(f − fH)‖0,T ‖∇v‖0,T

≤
√

C0

( ∑

T∈TH

‖H(f − fH)‖20,T

)1/2
‖σ − σ̃‖.

In the second step, we have used the error estimate

‖v −QHv‖0,T ≤
√

C0HT ‖∇v‖0,T ,

which can be easily proved by the Bramble-Hilbert lemma and the scaling argument.
The constant C0 only depends on the shape regularity of TH . The desired result
then follows by canceling one ‖σ − σ̃‖. !

In the proof of Theorem 4.1, we use the local error estimate

‖u−QHu‖0,T ≤
√

C0HT ‖∇u‖0,T =
√

C0HT ‖σ‖T ,

for u ∈ H1
0 (Ω) and σ = −∇u. The main difficulty in the discrete case is that

uh ∈ Uh ! H1
0 (Ω). However, we still have a similar localized error estimate for

uh −QHuh.
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Lemma 4.2. Let Th and TH be two nested triangulations, and let (σh, uh) =
L−1

h fh. Then for any T ∈ TH , we have

(4.2) ‖uh −QHuh‖0,T ≤
√

C0HT ‖σh‖0,T .

The proof of this lemma is technical and postponed to the end of this section.
We use it to prove the following theorem.

Theorem 4.3. Let Th and TH be two nested conforming triangulations. Let σ̃h =
L−1

h fH and σh = L−1
h fh. Then there exists a constant C0, depending only on the

shape regularity of TH such that

(4.3) ‖σh − σ̃h‖ ≤
√

C0 osc(fh, TH).

Proof. Recall that σh − σ̃h satisfies the equation

(σh − σ̃h, τh) = (uh − ũh, div τh), ∀τh ∈ Σh,(4.4)
(div(σh − σ̃h), vh) = (fh − fH , vh), ∀vh ∈ Uh.(4.5)

We then choose τh = σh − σ̃h in (4.4) and vh = uh − ũh in (4.5) to obtain

‖σh − σ̃h‖2 = (uh − ũh, div(σh − σ̃h)) = (vh, fh − fH) = (vh −QHvh, fh − fH).

In the third step, we use the fact that fH = QHf = QHfh since Th and TH are
nested. Thanks to (4.2), we have

‖σh − σ̃h‖2 =
∑

T∈TH

(vh −QHvh, fh − fH)T

≤
√

C0

∑

T∈TH

HT ‖fh − fH‖0,T ‖σh − σ̃h‖0,T

≤
√

C0

(
∑

T∈TH

H2
T ‖fh − fH‖2T

)1/2

‖σh − σ̃h‖.

Canceling one ‖σh − σ̃h‖, we get the desired result. !
In the rest of this section, we shall prove Lemma 4.2. It is a modification of

arguments in [4] from quasi-uniform grids to adaptive grids. The first ingredient
is the existence of a continuous right inverse of the divergence as an operator from
H1

0(Ω) into the space L2
0(Ω) := {v ∈ L2(Ω) :

∫
Ω v = 0}.

Lemma 4.4. Given a function f ∈ L2
0(Ω), there exists a function τ ∈ H1

0(Ω) such
that

div τ = f and ‖τ‖1 ≤ C‖f‖.

The proof of this lemma for smooth or convex domains Ω is pretty easy. One
can solve the Poisson equation with Neumann boundary condition

∆φ = f in Ω,
∂φ

∂n
= 0 on ∂Ω.

The condition f ∈ L2
0(Ω) ensures the existence of the solution. Then we let τ =

gradφ and modify the tangent component of τ to be zero [22]. See also [7, 37] for
a detailed proof on non-convex and general Lipschitz domains.

The second ingredient is an interpolation operator Πh : H1(Ω) → Σh with the
following nice properties.

Lemma 4.5. There exists an interpolation operator Πh : H1(T )→ Σh such that
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(1) Qh div τ = divΠhτ , ∀τ ∈ H1(Ω);
(2) there exists a constant C depending only on the shape regularity of Th such

that

‖τ −Πhτ‖T ≤ ChT ‖τ‖1,T , ∀T ∈ Th, ∀τ ∈ H1(Ω);

(3) for any T ∈ Th if τ ∈ H1
0 (T ), then Πhτ |∂T = 0.

For the detailed construction of such interpolation operators and proof of these
properties, we refer to [41] and [6].

Proof of Lemma 4.2. We first note that uh −QHuh = (Qh −QH)uh since Qhuh =
uh. For any T ∈ TH , by the definition of L2 projection QH , we have,

∫
T (Qh −

QH)uh = 0 i.e. (Qh − QH)uh ∈ L2
0(T ). Thus we can apply Lemma 4.4 to find a

function τ ∈H1
0(T ) such that

div τ = (Qh −QH)uh, in T and ‖τ‖1,T ≤ C‖(Qh −QH)uh‖0,T .

We extend τ to H1(Ω) by zero. Note that

(4.6) (Πh −ΠH)τ ∈ Σh, and supp(Πh −ΠH)τ ⊆ T.

With such τ , we have

‖(Qh −QH)uh‖20,T = ((Qh −QH)uh, div τ )T = (uh, (Qh −QH) div τ )T .

Then using the commuting property (Lemma 4.5 (1)) and the locality of τ , we have

(uh, (Qh −QH) div τ )T = (uh, (Qh −QH) div τ )Ω = (uh, div(Πh −ΠH)τ )Ω.

Now we shall use the fact (σh, uh) is the solution of (2.3) and (2.4) and, again, the
locality of τ to get

(uh, div(Πh −ΠH)τ )Ω = (σh, (Πh −ΠH)τ )Ω = (σh, (Πh −ΠH)τ )T .

Using the approximation property of Πh (Lemma 4.5 (2)), we get

(σh, (Πh −ΠH)τ )T ≤ ‖σh‖0,T

(
‖τ −Πhτ‖0,T + ‖τ −ΠHτ‖0,T )

≤ CHT ‖σh‖0,T ‖τ‖1,T .

So we have

‖(Qh −QH)uh‖20,T ≤ CHT ‖σh‖0,T ‖τ‖1,T ≤ CHT ‖σh‖T ‖(Qh −QH)uh‖0,T .

Canceling one ‖(Qh −QH)uh‖T , we obtain the desired result. !

5. A posteriori error estimate for mixed finite element methods

In this section we shall follow Alonso [1] to present a posteriori error estimate
for mixed finite element methods. Other a posteriori error estimators for the mixed
finite element methods can be found in [25, 62, 43, 39, 44, 45]. Our analysis could
be adapted to these error estimators also.
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5.1. A posteriori error estimator and existing results. Let us begin with the
definition of the error estimator. For any edge E ∈ EH , we shall fix a unit tangent
vector tE for E. We denote the patch of E consisting of triangles sharing E by ΩE .

Definition 5.1. Given a triangulation TH , for an E ∈ EH and E /∈ ∂Ω, let ΩE =
T ∪ T̃ . For any σH ∈ ΣH , we define the jump of σH across edge E as

(5.1) JE(σH) =
[
σH · tE

]
:= σH |T · tE − σH |T̃ · tE .

If E ∈ EH ∩ ∂Ω, we define JE(σH) = σH · tE . The edge error estimator is defined
as

η2
E(σH) = ‖H rot σH‖20,ΩE

+ ‖H1/2JE(σH)‖20,E .

For a subset FH ⊆ EH , we define

η2(σH ,FH) :=
∑

E∈FH

η2
E(σH).

The error estimator ηE(σH) is continuous with respect to σH in L2-norm.
Namely we have the following inequality.

Lemma 5.2. Given an f ∈ L2(Ω) and a shape regular triangulation TH , let
σH , τH ∈ ΣH . There exists constant β such that

(5.2) β
∣∣η2(σH , EH)− η2(τH , EH)

∣∣ ≤ ‖σH − τH‖2.

Proof. It can be easily proved by the triangle inequality and inverse inequality. !
We shall recall Alonso’s results below and prove a discrete upper bound later.

Since the data f is not included in the definition of our error estimator ηE , the
upper bound contains an additional data oscillation term which is different from
the standard one in [61].

Theorem 5.3 (Upper bound). Given an f ∈ L2(Ω) and a shape regular trian-
gulation TH , let σ = L−1f and σH = L−1

H fH . There exist constants C0 and C1

depending only on the shape regularity of TH such that

(5.3) ‖σ − σH‖2 ≤ C1η
2(σH , EH) + C0osc2(f, TH).

Theorem 5.4 (Lower bound). Given an f ∈ L2(Ω) and a shape regular triangula-
tion TH , let σ = L−1f and σH = L−1

H fH . There exists constant C2 depending only
on the shape regularity of TH such that

(5.4) C2η
2(σH , EH) ≤ ‖σ − σH‖2,

for Raviart-Thomas spaces.
For Brezzi-Douglas-Marini spaces, (5.4) holds when osc(f, TH) = 0.

When osc(f, TH) = 0, (5.3) and (5.4) implies that C2/C1 ≤ 1. This ratio is a
measure of the precision of the indicator.

5.2. Discrete upper bound. We shall give a discrete version of the upper bound
(5.3). The main tool is the discrete Helmholtz decomposition.

Given a shape regular triangulation Th, let

Sp
h = {ψh ∈ C(Ω) : ψh|T ∈ Pp(T ), ∀T ∈ Th}

denote the standard continuous and piecewise polynomial finite element spaces of
H1(Ω). To introduce the discrete Helmholtz decomposition, we define the dual
operator of div : Σh .→ Uh.
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Definition 5.5. We define gradh : Uh .→ (Σh)∗ by

(gradhvh, τh) = −(vh, div τh), ∀τh ∈ Σh.

We emphasis that gradh is not simply the restriction of grad to Uh since Uh is
not a subspace of H1(Ω). The following discrete Helmholtz decomposition is well
known in the literature; see, for example, [38, 19, 5, 15].

Theorem 5.6 (Discrete Helmholtz Decomposition in R2). Given a triangulation
Th, for p-th order Raviart-Thomas finite element spaces (Σp

h, Up
h), we have the

following orthogonal (with respect to L2 inner product) decomposition

Σp
h = curl(Sp+1

h )⊕ gradh (Up
h).

For Brezzi-Douglas-Marini finite element spaces (Σp
h, Up

h), we have the following
orthogonal (with respect to L2 inner product) decomposition

Σp
h = curl(Sp+1

h )⊕ gradh (Up−1
h ).

Now we are in a position to present a discrete version of the upper bound.

Theorem 5.7. Let Th and TH be two nested conforming triangulations. Let σh =
L−1

h fh and σH = L−1
H fH , and let FH = {E ∈ EH : E /∈ Eh}. Then there exist

constants depending only on the shape regularity of TH such that

(5.5) ‖σh − σH‖2 ≤ C1η
2(σH ,FH) + C0osc2(fh, TH)

and

(5.6) #FH ≤ 3(#Th −#TH).

Proof. The inequality (5.6) follows from

#FH ≤ #Eh −#EH ≤ 3(#Th −#TH).

To prove (5.5), again we introduce the intermediate solution σ̃h = L−1
h fH . By the

discrete Helmholtz decomposition, we have

σ̃h − σH = gradh φh + curlψh,

where φh ∈ Up
h ,ψh ∈ Sp+1

h for Raviart-Thomas spaces, and φh ∈ Up−1
h ,ψh ∈ Sp+1

h ,
for Brezzi-Douglas-Marini spaces. The decomposition is L2-orthogonal, i.e.,

(5.7) ‖σ̃h − σH‖2 = ‖ gradh φh‖2 + ‖ curlψh‖2.
In two dimensions, ‖ curlψh‖ = ‖ gradψh‖ and thus (5.7) implies that

(5.8) |ψh|1 ≤ ‖σ̃h − σH‖.
Since

(σ̃h − σH , gradhvh) = (div (σ̃h − σH), vh) = (fH − fH , vh − vH) = 0,

we have

‖σ̃h − σH‖2 = (σ̃h − σH , gradh φh) + (σ̃h − σH , curlψh) = (σ̃h − σH , curlψh).

Since div curlψ = 0, (σ̃h, curlψh) = 0 and (σH , curlψH) = 0 for any ψH ∈ Sp+1
H .

Choosing ψH = IHψh using some local quasi-interpolation, for example, the
Scott-Zhang quasi-interpolation [57], IH : Sp+1

h .→ Sp+1
H such that

‖ψh − IHψh‖0,E ≤ CH1/2
E |ψh|1,ΩE and ‖ψh − IHψh‖0,T ≤ CHT |ψh|1,ΩT ,
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where ΩT = {TH ⊂ TH : TH ∩ T 0= ∅}. Furthermore, the quasi-interpolation IH is
local in the sense that if T ∈ TH ∩ Th or E ∈ EH ∩ Eh (i.e. T or E is not refined),
then (ψh − IHψh)|T = 0 or (ψh − IHψh)|E = 0, respectively. With such a choice
of FH and ψH , we have

‖σ̃h − σH‖2 = (σ̃h − σH , curlψh) = (−σH , curl (ψh − ψH))

=
∑

T∈TH

[ ∑

E∈∂T

(σH · tE ,ψh − ψH)E + (rotσH ,ψh − ψH)T

]

≤
∑

E∈EH

[σH ]‖ψh − ψH‖0,E +
∑

T∈TH

‖rot σH‖‖ψh − ψH‖0,T ,

≤ Cη(σH ,FH)|ψh|1 ≤ C1η(σH ,FH)‖σ̃h − σH‖.
Canceling one ‖σ̃h − σH‖, we get

(5.9) ‖σ̃h − σH‖ ≤ Cη(σH ,FH).

Now we write σh − σH = σh − σ̃h + σ̃h − σH and note that

(σh − σ̃h, σ̃h − σH) = (uh − ũh, div(σ̃h − σH)) = (uh − ũh, fH − fH) = 0.

Combining (5.9) and (3.2), we then have

‖σh − σH‖2 = ‖σ̃h − σH‖2 + ‖σh − σ̃h‖2 ≤ C1η
2(σH ,FH) + C0osc2(fh, TH). !

6. Convergence and optimality of AMFEM

In this section we shall present our algorithms and prove their convergence and
optimality. It is adapted from the literature [48, 59, 36, 49, 50]. For completeness
we include them here and prove some important technical results.

We first present our algorithms. It mainly follows from the algorithm proposed
in [50]. The difference is that we do not impose an interior point property in the
refinement step.

Let T0 be an initial shape regular triangulation, a right-hand side f ∈ L2(Ω),
a tolerance ε, and 0 < θ, θ̃, µ < 1 three parameters. Thereafter we replace the
subscript h by an iteration counter called k. For a marked edge set Mk, we denote
by ΩMk =

⋃
E∈Mk

ΩE .

[TN , σN ]=AMFEM(T0, f, ε, θ, θ̃, µ)
η = ε, k = 0
WHILE η ≥ ε, DO

Solve (2.5)-(2.6) on Tk to get the solution σk.
Compute the error estimator η = η(σk, Ek).
Mark the minimal edge set Mk such that

(6.1) η2(σk,Mk) ≥ θ η2(σk, Ek).

If osc(f, Tk) > osc(f, T0)µk, enlarge Mk such that

(6.2) osc(f,ΩMk) ≥ θ̃ osc(f, Tk).

Refine each triangle τ ∈ ΩMk by the newest vertex bisection to get Tk+1.
k = k + 1.

END WHILE

TN = Tk.
END AMFEM
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6.1. Convergence of AMFEM. We shall prove the algorithm AMFEM will ter-
minate in finite steps by showing the reduction of the sum of the error and the error
estimator.

We first summarize the main ingredients in the following lemma with the follow-
ing short notation:

ek = ‖σ − σk‖2, Ek = ‖σk+1 − σk‖2, ok = osc2(f, Tk), and ηk = η2(σk, Ek).

Lemma 6.1. One has the following inequalities:

(1− δ) ek+1 ≤ ek − Ek +
C0

δ
ok, for any δ > 0,(6.3)

β ηk+1 ≤ β(1− 1
2
θ) ηk + Ek,(6.4)

ek ≤ C1 ηk + C0 ok.(6.5)

Proof. (6.3) is the quasi-orthogonality (3.4) established in Theorem 3.2 and Remark
3.3. (6.5) is the upper bound (5.3) in Theorem 5.7. We only need to prove (6.4).
By the continuity of the error estimator (5.2), we have

(6.6) βη2(σk+1, Ek+1) ≤ βη2(σk, Ek+1) + Ek.

Let Nk+1 = Ek+1\Ek be the new edges in Tk+1 and let Mk ⊆ Ek be the refined
edge in Tk. It is obvious that Ek\Mk = Ek+1\Nk+1. For an edge E ∈ Nk+1, if it is
an interior edge of some triangle T ∈ Tk, then JE(σk) = 0 since σk is a polynomial
in T . For other edges, it is at least half of some edge in Mk and thus

(6.7) η2(σk,Nk+1) ≤
1
2
η2(σk,Mk).

Since some edges are refined for the conformity of triangulation, Mk ⊆ Mk. By
the marking strategy (6.1), we have

(6.8) η2(σk,Mk) ≥ η2(σk,Mk) ≥ θ η2(σk, Ek).

Combining (6.7) and (6.8), we get

η2(σk, Ek+1) = η2(σk,Nk+1) + η2(σk, Ek+1\Nk+1)

≤ 1
2
η2(σk,Mk) + η2(σk, Ek\Mk)

≤ −1
2
η2(σk,Mk) + η2(σk, Ek)

≤ (1− 1
2
θ)η2(σk, Ek).

Substituting to (6.6) we then get (6.4). !

Theorem 6.2. When

(6.9) 0 < δ < min{ β

2C1
θ, 1},

there exists α ∈ (0, 1) and Cδ such that

(6.10) (1− δ)ek+1 + βηk+1 ≤ α
[
(1− δ)ek + βηk

]
+ Cδ ok.
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Proof. First (6.3) + (6.4) gives

(1− δ)ek+1 + βηk+1 ≤ ek + β(1− 1
2
θ)ηk +

C0

δ
ok.

Then we separate ek and use (6.4) to bound

ek = α(1− δ)ek + [1− α(1− δ)]ek

≤ α(1− δ)ek + [1− α(1− δ)](C1ηk + C0 ok).

Therefore, we obtain

(1− δ)ek+1 + βηk+1 ≤ α

{
(1− δ)ek +

[1− α(1− δ)]C1

α
ηk

}
+ Cδ ok.

Now we choose α such that
[1− α(1− δ)]C1

α
= β,

i.e.,

α =
C1 + (1− 1

2θ)β
C1(1− δ) + β

=
C1 + β − 1

2θβ

C1 + β − C1δ
.

By the requirement of δ (6.9), we conclude α ∈ (0, 1). !

Theorem 6.3. Let σk be the solution obtained in the k-th loop in the algorithm
AMFEM, then for any 0 < δ < min{ β

2C1
θ, 1}, there exist positive constants Cδ and

0 < γδ < 1 depending only on given data and the initial grid such that,

(1− δ)‖σ − σk‖2 + βη2(σk, Tk) ≤ Cδγ
k
δ ,

and thus the algorithm AMFEM will terminate in finite steps.

Proof. The proof is identical to that of Theorem 4.7 in [50] using (6.10). !

6.2. Optimality of AMFEM. Let T0 be an initial quasi-uniform triangulation
with #T0 > 2 and let PN be the set of all triangulations T which is refined from T0

and #T ≤ N . For a given triangulation T , the solution of the mixed finite element
approximation of Poisson equation will be denoted by σT . We define

As = {σ ∈ Σ : ‖σ‖As <∞, with ‖σ‖As = sup
N≥#T0

(
Ns inf

T ∈PN

‖σ − σT ‖
)
}.

An adaptive finite element method realizes optimal convergence rates if whenever
σ ∈ As, it produces approximation σN with respect to triangulations TN elements
such that ‖σ − σN‖ ≤ C(#TN )−s.

For simplicity, we consider the following algorithm which separates the reduction
of data oscillation and error:

(1) [TH , fH ] = APPROX (f, T0, ε/2),
(2) [σN , TN ] = AMFEM(TH , fH , ε/2, θ, 0, 1).

The advantage of separating data error and discretization error is that in the
second step, data oscillation is always zero since the input data fH is piecewise
polynomial in the initial grid TH for AMFEM. In this case, we also list all ingre-
dients needed for the optimality of adaptive procedure:

(1) Orthogonality:

‖σ − σk+1‖2 = ‖σ − σk‖2 − ‖σk+1 − σk‖2.
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(2) Discrete upper bound:

‖σk+1 − σk‖2 ≤ C1η
2(σk,Fk) and #Fk ≤ 3(#Tk+1 −#Tk).

(3) Lower bound:
C2η

2(σk, Ek) ≤ ‖σ − σk‖2.
Theorem 6.4. Let [σN , TN ] = AMFEM(TH , fH , ε, θ, 0, µ), and σ̃ = L−1fH . If
σ̃ ∈ As and 0 < θ < C2/C1, then for any ε > 0, AMFEM will be terminated in
finite steps and

(6.11) ‖σ̃ − σN‖ ≤ ε, and #TN −#T0 ≤ C‖σ‖1/s
As ε−1/s.

Proof. It is identical to the proof of Theorem 5.3 in [59] using three ingredients
listed above. !
Theorem 6.5. For any f ∈ L2(Ω), a shape regular triangulation T0 and ε >
0. Let σ = L−1f and [σN , TN ] = AMFEM (TH , fH , ε/2, 0, 1) where [TH , fH ] =
APPROX (f, T0, ε/2). If σ ∈ As and f ∈ As

o, then

‖σ − σN‖ ≤ C
(
‖σ‖As + ‖f‖As

o

)
(#TN −#T0)−s.

Proof. Let σ̃ = L−1fH . By Theorem 4.1 and 2.2, we have

(6.12) ‖σ − σ̃‖ ≤ ε/2, and #TH −#T0 ≤ C‖f‖1/s
As

o
ε−1/s.

It is easy to show, by the definition of As, if σ ∈ As, then σ̃ ∈ As and

‖σ̃‖As ≤ ‖σ‖As + ‖f‖As
o

We then apply Theorem 6.4 to σ̃ to obtain

(6.13) ‖σ̃ − σN‖ ≤ ε/2 and #TN −#TH ≤ C‖σ̃‖1/s
As ε−1/s.

Combining (6.12) and (6.13) we get

‖σ − σN‖ ≤ ‖σ − σ̃‖+ ‖σ̃ − σN‖ ≤ ε

and
ε ≤ C(#TN −#T0)−s

(
‖σ‖As + ‖f‖As

o

)
.

The desired result then follows. !

7. Conclusion and future work

In this paper, we have designed and analyzed convergent adaptive mixed finite
element methods with optimal complexity for arbitrary order Raviart-Thomas and
Brezzi-Douglas-Marini elements. Although the results are presented in two dimen-
sions, most of them are dimensional independent. For example, the discrete stability
result, Theorem 4.1, holds in arbitrary dimensions without any modification of the
proof.

The proof for the upper bound of the error estimator (Theorem 5.3 and 5.7),
however, cannot be generalized to three dimensions in a straightforward way. In
the proof, we use a special fact that in two dimensions, H(curl) is as smooth as H1

since in two dimensions curl operator is just a rotation of gradient operator. To
overcome this difficulty, we need to use a regular decomposition instead of Helmholtz
decomposition. Note that discrete regular decomposition for corresponding finite
element spaces is developed recently by Hiptmair and Xu [42]. We could use these
techniques to prove the convergence and optimality of adaptive mixed finite element
methods in three and higher dimensions.
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