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Abstract

The Delaunay triangulation, in both classic and more generalized sense, is studied in
this paper for minimizing the linear interpolation error (measure in L”-norm) for a given
function. The classic Delaunay triangulation can then be characterized as an optimal
triangulation that minimizes the interpolation error for the isotropic function ||x||> among
all the triangulations with a given set of vertices. For a more general function, a function-
dependent Delaunay triangulation is then defined to be an optimal triangulation that
minimizes the interpolation error for this function and its construction can be obtained by
a simple lifting and projection procedure.

The optimal Delaunay triangulation is the one that minimizes the interpolation error
among all triangulations with the same number of vertices, i.e. the distribution of vertices
are optimized in order to minimize the interpolation error. Such a function-dependent
optimal Delaunay triangulation is proved to exist for any given convex continuous function.
On an optimal Delaunay triangulation associated with f, it is proved that Vf at the
interior vertices can be exactly recovered by the function values on its neighboring vertices.
Since the optimal Delaunay triangulation is difficult to obtain in practice, the concept of
nearly optimal triangulation is introduced and two sufficient conditions are presented for
a triangulation to be nearly optimal.

Mathematics subject classification: 41A10, 41A25, 41A50, 41A60, 65M50, 65N50
Key words: Delaunay triangulation, Anisotropic mesh generation, N term approximation,
Interpolation error, Mesh quality, Finite element.

1. Introduction

In this paper, we shall consider optimal triangulations from a function approximation point
of view. Here ”triangulation” is extended from the planar usage to arbitrary dimension: a tri-
angulation 7 decomposes a bounded domain 2 C R” into n-simplices such that the intersection
of any two simplices in T either consists of a common lower dimensional simplex or is empty.

The Delaunay triangulation (DT) of a finite point set V', the most commonly used unstruc-
tured triangulation, can be defined by the empty sphere property: no vertices in V' are inside
the circumsphere of any simplex in the triangulation. There are many optimality characteriza-
tions for Delaunay triangulation [7], in which the most well known is that in two dimensions
it maximizes the minimum angle of triangles in the triangulation [15, 20]. We, however, would
like to characterize the Delaunay triangulation from a function approximation point of view.

Let us denote Q(T, f,p) = ||f — fr,7llLr(q), Where fr 7(x) is the linear interpolation of f
based the triangulation 7 of a domain @ C R™. We shall prove that

QDT IXIP,p) = min QT [Ix|P,p), 1< p < oo, (1)
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where Py is the set of all triangulations that have a given set V' of vertices and (? is chosen as
the convex hull of V. This type of result was first proved in R?> by D’Azevedo and Simpson [4]
for p = oo and then Rippa [19] for 1 < p < oo in two dimensions. Our result is a generalization
of their work to higher dimensions.

A Delaunay triangulation is therefore characterized as the optimal triangulation for piecewise
linear interpolation to isotropic function ||x||? for a given point set in the sense of minimizing the
interpolation error in LP(1 < p < oco) norm. Based on this characterization, we will introduce
the concept of function-dependent Delaunay triangulation (DT)y for a given convex function
with f in place of ||x|| in (1.1).

We further let the set V' vary all sets of triangulations at most IV points and consider the
optimization problem corresponding to the error-based mesh quality Q (7T, f,p). That is to find
a triangulation 7™* such that

Q(T*,f,p):TienlpgNQ(T,f,p)’ lgpgm7 (1'2)

where Py stands for the set of all triangulations with at most N vertices. Any minimizer of
(1.2) is called an optimal Delaunay triangulation associated with f.

We shall prove the existence of the optimal Delaunay triangulation for a convex function.
With the formulation of Q(T, f, 1), we obtain a necessary condition. More precisely, if trian-
gulation is optimal in the sense of minimizing Q(7, f, 1) for a convex function f in C*(2), then
for an interior vertex x;, we have

Vf<xi>=—ﬁ S Wl Y fe) (1.3)

T €Q; Xk €T, Xp #X;

Here 2; is the patch of x; which consists of all simplices using x; as a vertex and |A| is the
Lebesgue measure of set A in R". We free the vertex x; to be a variable x € 2; and treat
|7j|(x) as a linear function of x whose gradient is a combination of other vertices in 7;; See Fig.
2.

The identity (1.3) states that the gradient of f can be recovered exactly at a grid point on
an optimal Delaunay triangulation by taking a special linear combination of function values
on its neighboring nodes. If the triangulation is not optimal, (1.3) will guide us to move the
vertex x; in its local patch to optimize the interpolation error and thus can be used as a mesh
smoothing scheme.

While an optimal Delaunay triangulation is desired, but it is difficult to obtain in practice.
We therefore introduce the concept of nearly optimal triangulation. We call a triangulation is
nearly optimal if Q(T, f,p) < CQ(T*, f,p) with a constant C' independent of the number of
vertices N. For the practical propose, we present two sufficient conditions for a triangulation
to be nearly optimal. One such a condition is that the triangulation should be quasi-uniform
under a new metric obtained by a modification of the Hessian matrix of object function f.

By choosing f of interest, we develop an unified approach to generalize the main concepts
and techniques used in isotropic mesh generation, for example the Delaunay triangulation and
edge swapping algorithm, to anisotropic and high dimensional cases which become a challenging
and active research in the last decade [19, 21, 10, 1, 9, 5, 13, 16]

The rest of this paper is organized as follows. In Section 2, we discuss the Delaunay tri-
angulation and present the characterization in terms of linear interpolation error. In Section
3, we introduce optimal Delaunay triangulations, prove the existence and present a necessary
condition for gradient recovery. In Section 4, sufficient conditions for a nearly optimal Delaunay
are presented. The last section is the concluding remark.

2. Function-Dependent Delaunay Triangulation

The Delaunay triangulation (DT) is the most commonly used triangulation for the gen-
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eration of unstructured meshes used in finite element method for solving partial differential
equation. It is often defined as the dual of Voronoi diagram (see for example [6]). In this paper,
we use an equivalent definition [17, 8] which only involves the triangulation itself.

For a given point set V', the convex hull of V' is the smallest convex set which contains these
points and we denote it by CH (V).

Definition 2.1. Let V' be a finite set of points in R, the Delaunay triangulation of V' is the
triangulation of CH (V') so that it satisfies empty sphere condition for any simplez: there are
no points in V inside the circumsphere of any simplez.

We will soon discuss the existence of DT, which will follow easily after we characterize it as an
optimal triangulation. Here we just point out that, in general DT is not unique since n + 2 (or
more) points may lie on a common sphere and any triangulation of those points will be a DT.
Fortunately this is the only possibility [6]. If we assume that points are affinely independent and
no n + 2 points lie on a common sphere, a Delaunay triangulation is then uniquely determined
by these points.

There are many optimality characterizations for the Delaunay triangulation in two dimen-
sions. Lawson [15] and Sibson [20] observed that a DT maximizes the minimum angle of any
triangle. Lambert [14] showed that a DT maximizes the arithmetic mean of the radius of in-
scribed circles of the triangles. Rippa [18] showed that a DT minimizes the integral of the
squared gradients.

Another interesting characterization of Delaunay triangulation is related to a convex hull
in one dimensional higher space. To make it clear, let us introduce some notation first. We
will identify R**! as R® x R. A point in R**! can be written as (x,z,+1), where x € R® and
Tpy1 € R For a point x in R*, we can lift it to the paraboloid (x, ||x||?) living in R**! and
denote this lifting operator as ’, namely x' = (x,||x||?). For a given point set V in R", we
then have a set of points V' in R**! by lifting point in V to the paraboloid. The convex hull
CH(V') can be divided into lower and upper parts; a facet belongs to the lower convex hull if
it is supported by a hyperplane that separates V' from (0, —o00). We may assume the facets
of the lower convex hull are simplices since if n 4+ 2 more vertices forms a facet, we can choose
any triangulation of this facet; See Fig. 1. Brown [2] discovered that the projection of a lower
convex hull of V' in R"™! is a DT of V in R"; See also Edelsbrunner and Seidel [11].

Figure 1. Projection of a lower convex hull

We, however, would like to characterize the Delaunay triangulation from a function approx-
imation point of view. Let & C R" be a convex bounded domain, 7 a triangulation of 2, and
fr,7 the piecewise linear finite element interpolation of a given continuous function f defined
on ).



302 L. CHEN AND J.C. XU

Definition 2.2. We define an error-based mesh quality Q(T, f,p) as

1/p
QT £.9) = If = frrllims = ( INEE ff,ﬂx)v’dx) |

By choosing a special function f(x) = ||x||?, we will characterize the Delaunay triangulation
as an optimal triangulation in the sense of minimizing this error-based mesh quality.

Theorem 2.3.
Q(DT, |Ix|I*,p) = min Q(T,|Ix[]*,p), V1< p< oo,
TEPy

where we choose Q@ = CH(V') and denote Py all possible triangulations of Q by using the points
m V.

Proof. Let C'S; be the circumsphere of 7 and x,, R, be the C'S;’s center and radius
respectively. For a simplex 7, we consider the hyperplane in R**!

F, o pi1 —2x-%X, + ||%0||> = R2 = 0.

It is easy to check that:(1) the lifting of vertices of 7 lie on F, and they make up an n-
simplex on F;, denoted by 7/, and (2) a point x in R™ is out of C'S; if and only if its lifting
point (x, [|x||?) in R**! lies above F;.

For any x € Q, let 7,7 be the simplices containing x in DT and 7 respectively. By our
definition of DT and (2), vertices of 75 can not be enclosed by the circumsphere of ;. It means
74 lie above 7{. Note that

(11, fr,or(11)) =71, (12, fr,r(12)) = 73

and f(x) is convex, we get f(x) < frpr(x) < fr,7(x). The desired result then follows.

This type of result was first proved in R?> by D’Azevedo and Simpson [4] for p = oo and
Rippa [19] for 1 < p < oo. But their geometry approach is not easy to extend to higher
dimensions. Theorem 2.3 is a generalization of their work to high dimensions.

For a general quadratic function f(x) = x! Hx with a symmetric positive definite matrix H,
we may define a Delaunay triangulation denoted by (DT')y under metric H by changing the
circumsphere used in Definition 2.1 to the circum ellipse (x — x,)!H(x — X,) = R, g. Similar
to Theorem 2.3, we have

Theorem 2.4.
Q((DT)m,x"Hx,p) = min Q(T, x'Hx,p), V1<p<oo.
€Pv

If the eigenvalues of H are in different scales, say Apmae = 1, Amin = €, € < 1, the optimal
triangulation for a given point set V' is the Delaunay triangulation under metric H which means
the edges should be stretched according to the metric and thus,it results long thin elements.
Therefore, from an approximation point of view, long thin elements may be good for the finite
element method.

For a general convex (or concave) function f, we can generalize the definition of DT by this
optimality characterization.

Definition 2.5. For a given convex (or concave) function f € C(Q)) and a given point set V,
(DT)y is a Delaunay triangulation of CH (V') respect to f if it satisfies

QUDT)y, f,p) = Ain Q(T, f,p)-

We will now use the lifting and projection to construct our optimal triangulation (DT')y.
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Theorem 2.6. Let T' be the triangulation obtained by the projection of the lower convex hull
of the lifting points. For any convex function f, T' = (DT)y, i.e.

QT", f,p) = min Q(T, f,p).
This theorem follows from the following simple lemma.
Lemma 2.7. For any T € Py,

frr(x) < frr(x), Vo € Q.

Proof. For any x € 0, let 71,7 be the simplices containing x in 7' and T, respectively. By
the definition of 7, the lifting of vertices of 7 lie above F.. It means 74 lies above F;.. Note
that

(r1, fr,r(m)) = T{a (12, fr,7(m2)) = Té,

the desired result then follows.

Thus a global algorithm to construct a function dependent Delaunay triangulation can be
obtained by using the standard algorithm of constructing convex hull for a given point set. A
local algorithm is to replace a small subsets of elements by other such sets while preserving the
position of the points. In two dimensions, it is called edge swapping, which is one of the most
popular algorithm used to generate a Delaunay triangulation. By Theorem 2.6, we can use the
interpolation error as a criterion of choosing the right triangulation locally. For special function
f(x) = ||x||?, in views of Theorem 2.3 this criterion is equivalent to the most commonly used
empty sphere criterion. We will discuss further these issues in a future paper.

3. Optimal Delaunay Triangulation

We have shown that when points are fixed, a Delaunay triangulation optimizes the connec-
tivity for a finite point set. Now we free the points to find the optimal triangulation.

Definition 3.1. Let Py stand for the set of all triangulations with at most N vertices. Given
a continuous convex function f on Q and 1 < p < 00, a triangulation T* € Py is optimal if

Q(T™, f,p) = TiengN Q(T, f,p).

By results from previous section, an optimal triangulation must be a Delaunay triangulation.
Thus we call it an optimal Delaunay triangulation. The following theorem concerns the existence
of the optimal Delaunay triangulation.

Theorem 3.2. Given 1 < p < oo and a convex function f, an optimal triangulation in Py
erists.

Proof. By the lifting method, we note that adding a new point into a simplex 7 the new
triangulation obtained by connecting it to the vertices of 7 is not worse than the original one
since f is convex. Therefore, we may prove the result for the triangulation with exactly N
vertices.

Let us take a sequence of triangulations {T#}% | C Py with vertices V¥ = (x1,...,xn) € QV
such that

klgI;o Q(T", f,p) = T’}EH;N Q(T, f,p).

By the compactness of ), we may suppose that there exists V* € QY such that limy_,o V¥ =
V*, namely

lim x¥ =x, VxFeVk i=1,.. N.
k—oo © ¢ ¢
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Because of the finite possible connectivity for N vertices, we may also assume {7%}2 yield
the same connectivity. We index the simplices as 75, ...,T]’\“,T. The signed volume vol(7) of a
simplex 7 with vertices x1,...,Xp+1 is defined as
vol(7) = det |x2 — X1 X3 — X1 ... Xpp1 — X1,

which is obviously a continuous function with respect to its vertices. Since vol(r; Ky >0,k =
L,..,n,..,j = 1,.., Ny, we conclude that vol(77°) > 0,j = 1,..., Ny and thus V* with the
same connectivity yields a triangulation 7*. It might be nonconforming in the sense that
there exist vertices lie in the interior of the boundary of some simplices. For a non-conforming
triangulation, the linear interpolation is well defined except on the boundary of each simplex
which is a measure zero set. Thus the interpolation error is well defined. Furthermore, a
careful check of the proof of Lemma 2.7 tells us that Q(7”,[|x||*,p) = min 5 Q(T, [Ix[]*,p),

where Py includes the non-conforming triangulation, namely we allow hanging points. Since
Q(T®, f,p) = Z]. Q(T]k, f,p), the quality Q(T*, f,p) is continuous with respect to k, and thus

Q(DT*, f,p) < Q(T*, f.p) = lim Q(T*,f,p) = inf Q(Tf.p).
k—00 TEPN
Where DT*, the Delaunay triangulation of points V*, is our optimal triangulation.

Remark 3.3. We can also define the optimal triangulation in the class Pn,., the set of tri-
angulations with at most Np simplices. It is slightly different with the optimal triangulation
in Py since with the same vertices, we can have two triangulations with different number of
simplices. The existence of such optimal triangulation can be proved in the similar way.

The optimal triangulation will benefit for the approximation since it contains more information
than linear approximant. We first present an explicit formula for Q(7, f,1). We denote x;
the vertices of the triangulation, §2; the union of all simplices using x;, and |A| the Lebesgue
measure of set A in R™.

Lemma 3.4. For a convex function f,

AT ) =7 ¥ Felul = [ 7eoix

x; €T
Proof. Because frr(x) > f(x) in Q, we get

QT £,1) = Z/sz dx—/f

TET
n+1
= n+1§r<|r|;fka>_/Qf(x)dx
= 3 s 21~ [ feoix

Since Ef\;l || = (n+ 1)|9], the first term is indeed a numerical quadrature scheme of the
integral of f. The quality is just to measure the error of this scheme. We are going to find the
optimal one.

Let us look at the interpolation error in the patch ;. We replace the vertex x; by any
x € ();, keeping the connectivity, and try to minimize the error locally as a function of x; See
Fig. 2.

Theorem 3.5. If triangulation is optimal in the sense of minimizing Q(T, f,1) for a convex
function f in C1(Q), then for an interior vertex x;, we have

Vf<xi>=—ﬁ S @l Y rew). (3.1)

T;E€Q; Xp €Tj,Xp £Xi
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Proof. By Lemma 3.4,

192
n+1

(Il > flxw)) +

T EQ; Xk €T, XpFX

)= | F0ix

Since we only adjust the location of x;, [, f(x)dx is a constant. We only need to minimize

1 1€
E(x) = > (meol D few) + 5 (). (3:2)
n+1 n+1
T;EQ; XK €T, X #X
The domain of E(x) is the biggest convex set A contained in 2; such that x € A will not
result in overlapping simplices. Since there exists a small neighborhood of x; in A, A is not
empty and x; is an interior point of A. By the optimality of the triangulation, we conclude

that x; is a critical point of E(x).

VAN

Figure 2. Local minimization

Remark 3.6. The theorem is also true if the triangulation is only a local minimizer. It is
useful in practice since most algorithms only give us local minimizers.

Note that the right hand side of (3.1) only involves the nodal values of function, it can be used
to recovery the gradient from its nodal value if the triangulation is optimal. If the triangulation
is not optimal, (3.1) will guide us to move the vertex x; in its local patch to optimize the
interpolation error and thus can be used as a mesh smoothing.

4. Nearly Optimal Triangulation

In previous section, we have given a necessary condition for an optimal Delaunay triangu-
lation for p = 1 and a convex function f. In general, it is difficult, if it is not impossible, to
find useful sufficient conditions for the optimal Delaunay triangulation. Instead we try to find
a triangulation T such that Q(7Tn, f,p) < CQ(Tx, f,p), where C' is a constant independent of
N and Ty is the optimal Delaunay triangulation in Px. We call such a 7n a nearly optimal
triangulation. In this section, we will give two practical sufficient conditions based on the error
estimate in our recent work [3].

Given a function f € C%(Q), we call a symmetric positive definite matrix H € R**" to be
a majorizing Hessinan of f if

E(V2 ()€ < o€’ H(x)E, E€R",x €N

for some positive constant cg.
For a triangulation 7y, where NV is the number of simplices, we will define a new metric

H, = (det H) =+ H.

There are two conditions for a triangulation 7x to be an nearly optimal triangulation. The
first assumption asks the mesh to capture the high oscillation of the Hessian metric, namely H
does not change very much on each element.
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(A1) There exist two positive constants ap and a; such that
& H§ <EH(x)E < af'HE, EERT,

where H, is the average of H over 7.
The second condition asks that 7 is quasi-uniform under the new metric induced by H,.
(A2) There exists two positive constants 8y and £ such that
2 d?,i max,e7 |7|

— 57 < Bo, V7 € Tand ————— < f3,, (4.1)
| 7|2/ min, 7 |7

where |7| is the volume of 7 and d,; is the length of the i-th edge of 7 under the new metric
Hp, respectively.

Theorem 4.1. Let f € C2(Q) and Ty satisfy assumptions (A1) and (A2). The following error

estimate holds:
Q(T, f,p) < CBBI /" N=2/m|| R/ det ()| en

=i (@)

for some constant C = C(n,p, co, ap, ).
For a convex function, we also have a lower bound [3].

Theorem 4.2. Suppose there is a family of triangulations {Tn} of Q satisfying

lim max diam(r) =0,
N—ocoT7ETN

where N s the element number of the triangulation, then for a strictly convexr (or concave)
function f € C*(Q), we have:

lim inf N*/"Q(Tx, f,p) > LCy || /det(V2f)|| en _ .
N0 ’ L2Fn (Q)
The equality holds if and only if all edges are asymptotic equal under the metric Hy,.
For a sequence of optimal Delaunay triangulations 75, it is easy to show that
lim Q(TF, f,p) =0.
—00
With the fact that f is strictly convex, we know {73} satisfying

lim max diam(r) = 0.
N—ocoT€TR
Note that the number of vertices, and the number of simplices are in the same order when one
of them goes to infinity. Thus for N large enough, a triangulation 7 which satisfies condition
(A1) and (A2) will be a nearly optimal triangulation, namely

QT f,p) < ONT2M [/ det(H)| zn ) < CQUTR f.p).
We summarize it as a theorem.

Theorem 4.3. For a strictly convex function f and sufficient large N, the triangulation Ty
which satisfies assumptions (A1) and (A2) is a nearly optimal triangulation.

(A1) is easy to be satisfied if f € C? and N is large enough. (A2) will direct our construction
of the nearly optimal triangulation. The first inequality in (4.1) means that each 7 is shape-
regular under the metric Hy,. The second inequality (4.1) means that all elements 7 are of
comparable size (under the new metric), which is a global condition. It means that the mesh
will concentrate at the region where det H,(x) is large. A nearly optimal mesh should satisfy
both local and global conditions. The dependence of [y and ; appeared in the estimate
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suggests that the constants 8y and ; can be used as a measure of the mesh quality. For a
related discussion and application of these mesh qualities to variational mesh adaptation, we
refer to Huang [12].

5. Concluding Remarks

In this paper, we have shown that a Delaunay triangulation is an optimal triangulation for
linear approximation to the isotropic function ||x||> when grid points are fixed. We further
define an error-based quality and consider the optimal triangulation when grid points are free
to move. The existence of the optimal triangulation is proved if the function is convex and
a necessary condition for the optimal triangulation minimizing Q(T, f,1) and two sufficient
conditions for a nearly optimal triangulation are obtained.

By this unified approach, we can generalize DT and edge flipping to anisotropic case. Mesh
smoothing can be also developed based on this approach. We will study the optimization
problem for the optimal Delaunay triangulation and develop a multigrid-like algorithm in a
further work.
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