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Abstract. The stability and accuracy of a streamline diffusion finite element

method (SDFEM) on arbitrary grids applied to a linear 1-d singularly per-

turbed problem are studied in this paper. With a special choice of the stabi-
lization quadratic bubble function, the SDFEM is shown to have an optimal

second order in the sense that ‖u − uh‖∞ ≤ C infvh∈V h ‖u − vh‖∞, where

uh is the SDFEM approximation of the exact solution u and Vh is the lin-

ear finite element space. With the quasi-optimal interpolation error estimate,
quasi-optimal convergence results for the SDFEM are obtained. As a conse-

quence, an open question about the optimal choice of the monitor function for

a second order scheme in the moving mesh method is answered.

1. Introduction

In this paper, we shall analyze the optimality of a specially designed streamline
diffusion finite element method for the singularly perturbed problem

−εu′′ − b(x)u′ = f in (0, 1),(1.1)
u(0) = u(1) = 0,(1.2)

where the positive diffusion constant ε satisfies 0 < ε � b0 ≤ b(x),∀x ∈ [0, 1] and
b is sufficiently smooth. We do not assume f is smooth which means the equation
(1.1) should be understood in the distributional sense for general f .

It is well known that the standard finite element method (FEM) on quasiuni-
form grids is not uniformly stable with respect to ε. The error bounds presented in
the classic error analysis of FEM become meaningless when ε goes to zero. Therefore
we are looking for so-called ε-uniform methods where the stability and accuracy are
independent of ε. The most popular method for the convection-dominated problem
is the streamline diffusion finite element method (SDFEM) introduced by Hughes et.
al. [19]. The SDFEM is quite satisfactory for practical situations and many conver-
gence estimates have been done in the literature [20, 21, 28, 37, 36, 5, 26, 33, 31].
It is, however, very hard to prove the SDFEM is ε-uniformly optimal in the L∞
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norm on arbitrary grids even for the one dimensional linear singularly perturbed
problem [31, 32].

In our recent work [11], when the convection coefficient b is constant, we proved
that a specially designed SDFEM approximation uh is quasi-optimal in the sense
that

(1.3) ‖u− uh‖∞ ≤ C inf
vh∈V h

‖u− vh‖∞,

where u is the solution of singularly perturbed problem (1.1)-(1.2), uh is the nu-
meric solution obtained by the SDFEM and V h is the piecewise linear and global
continuous finite element space. We would like to explicitly point out that here C
is a constant that is independent of both ε and N . In this paper, we extend the
estimate (1.3) to a slightly more general variable coefficients b(x). Furthermore, we
shall establish this estimate by means of discrete Green functions which is different
from the approach used in [11].

Thanks to (1.3) the convergence of the SDFEM becomes an approximation
problem which is well studied in the literature (see, e.g. [15, 9]). If the grid is qua-
siuniform under the metric |u′′|1/2, we are able to get a quasi-optimal interpolation
error estimate, namely ‖u−uI‖ ≤ C‖u′′‖1/2N

−2, where ‖u′′‖1/2 := (
∫ 1

0
|u′′|1/2dx)2.

One commonly used approach to construct such a quasiuniform grid under some
metric is the use of monitor function and equidistribution principal [4, 29, 12, 13].

Many people use the arc-length as the monitor function, namely M =
√

1 + |u′|2
or its discrete analogue [29, 24, 12, 13]. The first order uniform convergence on
the equidistributed grid is obtained even for the fully adapted algorithm [24, 13].
In this sense, an optimal choice of monitor function for the first order scheme is the
arc-length.

By our theory if the grid is obtained by equidistributing |u′′|1/2, the SDFEM
approximation to the solution of (1.1)-(1.2), with a careful choice of the stabilization
function, has a quasi-optimal second order convergence, namely

(1.4) ‖u− uh‖∞ ≤ C‖u′′‖1/2N
−2.

(1.4) is the most desirable estimate we may expect to obtain for problem (1.1)-(1.2).
Thus an optimal choice of the monitor function is |u′′|1/2. Note that ‖u′′‖1/2 is ε-
uniformly bounded in many cases, the convergence (1.4) is indeed ε-uniform. The
uniform convergence of two special a priori grids, Bakhvalov and Shishkin grids can
be easily obtained in this framework [11].

The layout of the rest of this paper is as follows: in the next section we will
describe the standard FEM and introduce the SDFEM. In Section 3, we will make
use of discrete Green functions to prove the (l∞, w−1,∞) stability of the SDFEM. In
Section 4, we will show the truncation error in w−1,∞ norm is bounded by ‖u−uI‖∞.
As a consequence we obtain the quasi-optimality of SDFEM. In Section 5, we will
recall a quasi-optimal interpolation error estimate to prove the convergences of
SDFEM on some a priori grids.

2. The streamline diffusion finite element method

In this section, we shall introduce the SDFEM for the singularly perturbed
problem (1.1)-(1.2) and our special choice of the stabilization function.
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Let H1 = {v ∈ L2, v′ ∈ L2} and H1
0 = {v ∈ H1, v(0) = v(1) = 0}. The weak

solution to (1.1)-(1.2) is a function u ∈ H1
0 such that

(2.1) a(u, v) = (f, v), ∀v ∈ H1
0 ,

where (·, ·) is the L2 inner product and a(u, v) = ε(u′, v′)− (bu′, v). The existence
and uniqueness of the weak solution are easy to establish.

For a positive integer N , let TN = {xi|0 = x0 < x1 < ... < xN+1 = 1}
be an arbitrary grid, τi denote the element [xi−1, xi] and hi = xi − xi−1. We
denote by ϕi(x) the nodal basis function at point xi and the finite element space
V h = {vh|vh =

∑N+1
i=0 viϕi(x)}. The standard finite element discretization of (2.1)

is to find a uh ∈ V h such that uh(0) = uh(1) = 0 and

a(uh, vh) = (f, vh),∀ vh ∈ V h ∩H1
0 .

To introduce the SDFEM, we first modify our weak form to be

ã(u, v) := a(u, v)−
N+1∑
i=1

∫ xi

xi−1

δi(−εu′′ − bu′)bv′,

where δi is a stabilization function in [xi−1, xi]. We will discuss the choice of δi in
a moment. For the exact solution u of (1.1)-(1.2), it satisfies

ã(u, v) = f̃(v), for all v ∈ H1
0 ,

where f̃(v) = (f, v)−
∑N+1

i=1

∫ xi

xi−1
δifbv′. The SDFEM is to find uh ∈ V h such that

(2.2) ã(uh, vh) = f̃(vh), ∀ vh ∈ V h ∩H1
0 .

With a slightly abuse of the notation, we still use uh to denote the vector
(uh(x1), ..., uh(xN )) ∈ RN . Taking vh = ϕi in (2.2), we obtain an algebraic equation
Auh = fh, where A = (aij) is a tri-diagonal matrix and (fh)i = f̃(ϕi). Direct
calculation gives us that

ai,i−1 = − ε

hi
+

∫ xi

xi−1
bϕi

hi
−

∫ xi

xi−1
δib

2

h2
i

,

ai,i =
ε

hi
+

ε

hi+1
−

∫ xi

xi−1
bϕi

hi
+

∫ xi+1

xi
bϕi

hi+1
+

∫ xi

xi−1
δib

2

h2
i

+

∫ xi+1

xi
δi+1b

2

h2
i+1

,

ai,i+1 = − ε

hi+1
−

∫ xi+1

xi
bϕi

hi+1
−

∫ xi+1

xi
δi+1b

2

h2
i+1

,

with standard modifications for i = 1 and i = N .
The choice of the stabilization function δi is the key point in our paper. We

choose

(2.3) δi = κihiϕiϕi−1,

where

κi =


ε−1hi if ε >

∫ xi

xi−1
bϕi,

(
∫ xi

xi−1
b2ϕiϕi−1)−1

∫ xi

xi−1
bϕi if ε ≤

∫ xi

xi−1
bϕi.

Lemma 2.1. If δi is determined by (2.3), A is an M-matrix.
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Proof. With the choice (2.3), it is easy to see ai,i−1 < 0. Since ai,i+1 < 0
and ai,i−1 + ai,i + ai,i+1 = 0, we know ai,i > 0 and a1,1 > a1,2. Thus A is an
M-matrix. �

In recent years, it is shown that the SDFEM can be derived from more general
fundamental principles such as residual-free bubble finite element method [6, 17].
The choice of the stabilization function can be chosen as an approximation of a
special local bubble function on each element. Our choice of δi is a quadratic
bubble function.

3. Stability of the SDFEM

In this section we shall prove the (l∞, w−1,∞) stability [1, 25] of the SDFEM
which is a discrete analogue of the (L∞,W−1,∞) stability of the continuous differ-
ential operator [24, 13]. For the terminology, we refer to [25] and [23]. Here we
follow [1, 25] to use the discrete Green functions.

The i-th discrete Green function Gi is a function in Vh satisfying Gi(0) =
Gi(1) = 0 and

(3.1) ã(ϕj , G
i) = δi

j ,

where δj
i is the Kronecker symbol.

Lemma 3.1. Let Gi =
∑N

j=1 Gi
jϕj, we have the following properties of Gi

j.

(1) Gi
j ≥ 0, 1 ≤ i, j ≤ N

(2) 0 ≤ Gi
1 < ... < Gi

i > Gi
i+1 > .... > Gi

N .

(3) Gi
i ≤ b−1

0 .

Proof. (1) and (2) easily follow from the property that A is an M-matrix.
For (3), we first note that (3.1) implies that for any vh ∈ Vh, ã(vh, Gi) = vh(xi).
Taking vh =

∑i
k=1 ϕk, we get

(3.2)
N∑

j=1

i∑
k=1

aj,kGi
j = 1.

Since aj,j−1 + aj,j + aj,j+1 = 0, we can simplify (3.2) to

(a1,1 + a1,2)Gi
1 + ai+1,i(Gi

i+1 −Gi
i) + (ai,i−1 + ai,i + ai+1,i)Gi

i = 1.

Note that, by (1) and (2), the first two terms in the left side are positive and

ai,i−1 + ai,i + ai+1,i =
1

hi+1

∫ xi+1

xi

b ≥ b0.

Therefore Gi
i ≤ b−1

0 . �

Lemma 3.2. The SDFEM with δi determined by (2.3) applied to any grid is
(l∞, w−1,∞) uniform stable in the sense that

‖vh‖∞ ≤ 2
b0

max
j=1,..,N

|
N∑

k=j

(Avh)k|, ∀vh ∈ Vh.
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Proof.

vh(xi) = ã(vh, Gi) =
N∑

j=1

Gi
j ã(vh, ϕj)

=
N∑

j=1

Gi
j(Avh)j =

N∑
j=1

[
(Gi

j−1 −Gi
j)

N∑
k=j

(Avh)k

]
.

Therefore we have

‖vh‖∞ ≤
N∑

j=1

|Gi
j −Gi

j−1| max
j=1,..,N

|
N∑

k=j

(Avh)k|

≤ max
i=1,...,N

2Gi
i max

j=1,..,N
|

N∑
k=j

(Avh)k|

≤ 2
b0

max
j=1,..,N

|
N∑

k=j

(Avh)k|.

�

4. Quasi-optimality of the SDFEM

In this section, we shall analyze the truncation error of the SDFEM in the
l−1,∞ norm and thus get the quasi-optimality of the SDFEM.

For a given grid TN , let uI be the linear interpolant of u and e(x) = (uI −
uh)(x) =

∑
eiϕi with ei = e(xi), i = 1, 2, ..., N . Since ã(u− uh, vh) = 0, we obtain

the error equation

ã(e, ϕi) = ã(uI − u, ϕi), i = 1, 2, ..., N,(4.1)
e0 = eN+1 = 0.(4.2)

The right side (ã(uI − u, ϕi)) corresponds to the truncation error in the finite
difference method. A direct calculation gives us

Lemma 4.1.

ã(uI − u, ϕi) = ti − ti+1 + si,

where

ti =
1
hi

∫ xi

xi−1

b(uI − u)(4.3)

+
ε

hi

∫ xi

xi−1

bδi(uI − u)′′(4.4)

+
1
hi

∫ xi

xi−1

b2δi(uI − u)′,(4.5)

and

si =
∫ xi+1

xi−1

b′(uI − u)ϕi.
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Lemma 4.2. Assume b ∈ W 2,1, then
N∑

i=1

|si| ≤ C‖u− uI‖∞, and ‖ti‖∞ ≤ C‖u− uI‖∞

Proof. First
N∑

i=1

|si| ≤ ‖u− uI‖∞
N∑

i=1

∫ xi+1

xi−1

|b′| = |b|1,1‖u− uI‖∞.

For (4.3),

| 1
hi

∫ xi

xi−1

b(uI − u)| ≤ ‖u− uI‖∞‖b‖∞.

For (4.4)

ε

hi

∫ xi

xi−1

bδi(uI − u)′′ =
κiε

hi

1
hi

∫ xi

xi−1

b(x− xi−1)(xi − x)(uI − u)′′.

If ε ≥
∫ xi

xi−1
bϕi−1, then κiε/hi = 1. Otherwise,

κiε

hi
≤ ‖b‖∞κi ≤ (

‖b‖∞
b0

)2.

Thus we only need to bound∣∣∣ 1
hi

∫ xi

xi−1

b(x− xi−1)(xi − x)(uI − u)′′
∣∣∣

=
∣∣∣ 1
hi

∫ xi

xi−1

[b(x− xi−1)(xi − x)]′′(uI − u)
∣∣∣

≤ ‖u− uI‖∞
1
hi

∫ xi

xi−1

∣∣∣[b(x− xi−1)(xi − x)]′′
∣∣∣.

Now we estimate

I =
1
hi

∫ xi

xi−1

∣∣∣[b(x− xi−1)(xi − x)]′′
∣∣∣

≤ 1
hi

∫ xi

xi−1

(∣∣∣b′′(x− xi−1)(xi − x)
∣∣∣ + 2

∣∣∣b′[(x− xi−1)(xi − x)]′
∣∣∣ + |2b|

)
= I1 + I2 + I3.

It is easy to get

|I1| ≤ hi

∫ xi

xi−1

|b′′| ≤ ‖b‖2,1,

|I2| ≤
∫ xi

xi−1

|b′| ≤ |b|1,1, and |I3| ≤ 2‖b‖∞.

For (4.5), following the same pattern, we obtain∣∣∣ 1
hi

∫ xi

xi−1

b2δi(uI − u)′
∣∣∣ ≤ ‖b‖∞(‖b‖∞ + |b|1,1)‖u− uI‖∞.

Combining these estimates together and the fact that W 2,1 is embedded into L∞,
we finish the proof. �
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With Theorem 3.2 and Lemma 4.2 we can bound the discretization error by
the interpolation error.

Lemma 4.3.
‖u− uh‖∞ ≤ C‖u− uI‖∞.

Proof. By Lemma 3.2, we have

‖uI − uh‖∞ ≤ C max
j=1,..,N

∣∣∣ N∑
k=j

(A(uI − uh))k

∣∣∣
= C max

j=1,..,N

∣∣∣ N∑
k=j

ã(uI − u, ϕk)
∣∣∣

≤ C
(

max
j=1,..,N

|tj − tN |+
∣∣ N∑

i=1

si

∣∣)
≤ C

(
2‖ti‖∞ +

N∑
i=1

∣∣si

∣∣)
≤ C‖u− uI‖∞.

The desired result follows from the triangle inequality. �

Theorem 4.4. Let uh be the SDFEM approximation to the solution of equations
(1.1)-(1.2) with stabilization function δi determined by (2.3), we have

‖u− uh‖∞ ≤ C inf
vh∈V h

‖u− vh‖∞.

Proof. Let us define an operator Ph : H1
0 → Vh by Phu = uh. By Lemma 4.2,

‖u− uh‖∞ ≤ C‖u− uI‖∞ ≤ C(‖u‖∞ + ‖uI‖∞) ≤ C‖u‖∞.

Thus
‖Phu‖∞ = ‖uh‖∞ ≤ ‖u‖∞ + ‖u− uh‖∞ ≤ C‖u‖∞.

With the property P 2
h = Ph, for any vh ∈ V h, we have

‖u− uh‖∞ = ‖(I − Ph)(u− vh)‖∞ ≤ C‖u− vh‖∞.

Since it is true for any vh ∈ V h
0 , we finish the proof. �

5. Convergence of the SDFEM

In this section, we shall first recall an interpolation error estimate from [14, 15]
and then present a general convergence result for the SDFEM. We shall make use
of the a priori bound of the |u′′| for the problem (1.1)-(1.2) to construct a priori
quasi-optimal grid which yields a ε-uniform second order convergence.

Given a function u ∈ C2[0, 1], a function H(x) is called a majorizing second
derivative of u, if |u′′(x)| ≤ H(x), x ∈ (0, 1). With this majorizing second derivative,
we can define a new metric on [0, 1] by H. For an element τi ∈ T , its length in
the metric H are denoted by |τi|H , namely |τi|H =

∫ xi

xi−1
H1/2(x)dx. The basic

assumptions we need are

(A1) H is monotone in each element τi, i = 1, 2, ..., N + 1.
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(A2) |τi|H is almost equidistributed in the sense that

max
i
|τi|H ≤ β

N

N+1∑
i=1

|τi|H .

Theorem 5.1. Let u ∈ C2[0, 1] and the mesh TN satisfy assumptions (A1) and
(A2), the following error estimate holds:

(5.1) ‖u− uI‖∞ ≤ C‖H‖1/2N
−2,

for some constant C = C(α0, α1, β).

Remark 5.2. This error estimate is optimal in the sense that for a strictly con-
vex (or concave) function, the above inequality holds asymptotically in a reversed
direction [9].

In our recent work [9], we have developed a general interpolation error estimate
in any spatial dimension and for general Lp norm. In high dimensions, the new
metric is given by a scaling, which depends on p and dimensions n, of the ma-
jorizing Hessian matrix of the approximated function u. The monotonicity in the
assumption (A1) is replaced by no oscillation. For details, we refer to our recent
work [9, 10, 8, 7].

Theorem 5.3. Let uh be the SDFEM approximation to the solution to (1.1)-
(1.2) on a grid satisfying assumptions (A1) and (A2), and δi is determined by (2.3),
then

‖u− uh‖∞ ≤ C‖H‖1/2N
−2.

Proof. It is an immediate consequence of Lemma 4.3 and Theorem 5.1. �

To construct an appropriate layer-adapted grids, the key is to get a majoriz-
ing second derivative. Fortunately for most singularly perturbed problems in one
dimension we do have a priori bound of |u′′| which happens to be monotone. The
following a priori bound of the derivatives of the solution is well known in the
literature. See for example [22, 30] or [27].

Lemma 5.4. Let u be the solution to equation (1.1)-(1.2) with smooth source
term f , we have a priori bound for u(k), k = 0, 1, 2 that is

|u(k)(x)| ≤ 1 + ε−ke−b0x/ε, k = 0, 1, 2 ∀x ∈ [0, 1].

Based on this majorizing second derivative, a quasi-optimal mesh is obtained
by using the following monitor function

(5.2) M = H1/2 =
(
1 + ε−2e−b0x/ε

)1/2
.

Corollary 5.5. The SDFEM approximation with δi determined by (2.3) to
(1.1)-(1.2) with smooth right side f on the grid obtained by the equidistribution of
the monitor function M in (5.2) will give a uniform second order approximation
uh, namely

‖u− uh‖∞ ≤ CN−2.

Many existing layer-adapted grids, including Shishkin grids and Bakhvalov
grids, can be thought as approximations of the quasi-optimal grids by using sim-
ple approximations of the monitor function (5.2). Convergences of our SDFEM on
those grids can be found at [11].
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We would like to point out that Theorem 5.3 can be also applied to non-smooth
data f . If we can get a priori information of the second derivative and adapt the
grid to capture the singularity of the solution, then we can get the second order
uniform convergence. For example, the following equation is considered in [31]
(with a different sign of the convection coefficient).

−εu′′ − b(x)u′ = f + δ(· − d) on Ω− ∪ Ω+,(5.3)
u(0) = u(1) = 0,(5.4)

where Ω = (0, 1), d ∈ Ω,Ω− = (0, d),Ω+ = (d, 1) and δ(· − d) denotes the Dirac-
delta function at point d. Function f is sufficiently smooth on Ω̄. The equation
(5.3)-(5.4) should be understood in the distribution sense and it is well known that
it has a unique solution u ∈ H1

0 (Ω) which has an exponential interior layer at x = d
and boundary layer at x = 0. Furthermore, the following a priori estimate of the
second derivative can be found at [31].

|u(k)(x)| ≤ C(1 + ε−ke−b0x/ε), x ∈ Ω−, k = 0, 1, 2, 3.

|u(k)(x)| ≤ C(1 + ε−ke−b(x−d)/ε), x ∈ Ω+, k = 0, 1, 2, 3.

With this information we can construct the corresponding layer-adapted grid
to obtain the optimal convergence rate of the SDFEM. This example illustrate the
usefulness of the quasi-optimality of the SDFEM considering the fact that results
for singularly perturbed problem with discontinuous right-hand side are relatively
rare [31, 16].

6. Conclusion and further remarks

In this paper, we have shown the quasi-optimality of a specially designed SD-
FEM for a singularly perturbed problem. With a priori information of the second
derivative of the solution, we could construct a mesh to obtain an optimal second
order convergence.

In practice, u′′ is unknown. Basically we have two ways to prove the conver-
gence of a fully adapted algorithm. One is to derive a posteriori error estimate for
our optimal SDFEM using the framework in [23]. It is interesting to note that the
estimate (4.4) in [23] for a different second-order method is a discrete version of
the estimate given by Theorem 5.3. Another approach is to recovery u′′ from the
numerical solution, in which the superconvergence theory will play an important
role. On superconvergent recovery schemes, we refer to Zikienwicz-Zhu [38, 39],
Hoffmann-Schatz-Wahlbin-Wittum [18], Zhang-Naga [35], Bank-Xu [2, 3], and
Xu-Zhang [34] etc. The difficulty is again the ε-uniformity. If ε is too small while
the initial grid is coarse. It is hopeless to get a reasonable information of u′′ from
the recovery scheme. Therefore it is desirable to have a robust way to construct a
mesh which satisfies conditions (A1) and (A2). In [8], we developed a multilevel ho-
motopic adaptive methods for convection dominated problems in two dimensions.
This paper can be seen as the first step of the mathematical justification of our
algorithm.
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