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Abstract The stability and accuracy of a standard finite element method (FEM) and
a new streamline diffusion finite element method (SDFEM) are studied in this paper
for a one dimensional singularly perturbed connvection-diffusion problem discretized
on arbitrary grids. Both schemes are proven to produce stable and accurate approxima-
tions provided that the underlying grid is properly adapted to capture the singularity
(often in the form of boundary layers) of the solution. Surprisingly the accuracy of
the standard FEM is shown to depend crucially on the uniformity of the grid away
from the singularity. In other words, the accuracy of the adapted approximation is very
sensitive to the perturbation of grid points in the region where the solution is smooth
but, in contrast, it is robust with respect to perturbation of properly adapted grid inside
the boundary layer. Motivated by this discovery, a new SDFEM is developed based
on a special choice of the stabilization bubble function. The new method is shown
to have an optimal maximum norm stability and approximation property in the sense
that ‖u − uN ‖∞ ≤ C infvN ∈V N ‖u − vN ‖∞, where uN is the SDFEM approximation
in linear finite element space V N of the exact solution u. Finally several optimal con-
vergence results for the standard FEM and the new SDFEM are obtained and an open
question about the optimal choice of the monitor function for the moving grid method
is answered.
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168 L. Chen, J. Xu

1 Introduction

It has been numerically observed and sometimes theoretically verified that the standard
finite element method (FEM) [10,40,56,57] and the streamline diffusion finite element
method (SDFEM) [39,54] often give good and stable approximations of singularly
perturbed boundary-value problems if the underlying grid is properly adapted to cap-
ture the singularity of the solution such as sharp boundary layers. In this paper, we
give a careful analysis of this phenomenon and further develop improved algorithms.

The model problem we will study is a linear convection-dominated stationary con-
vection-diffusion problem:

−εu′′ − bu′ = f in (0, 1), (1)

u(0) = g0, u(1) = g1, (2)

where the diffusion constant ε satisfies 0 < ε � b. For the simplicity of analysis, we
assume the convection coefficient b is constant and positive. Most results in this paper
remain true if b is a smooth enough function with a positive lower bound [13].

The solution to (1)–(2) typically has a boundary layer at x = 0 and thus the
standard FEM approximation on a uniform grid will yield nonphysical oscillation
unless the mesh size compares with ε (see, e.g. [41,42,47]). To obtain a reliable
numerical approximation, one approach is to use highly non-uniform mesh which is
adapted to capture the boundary layer. Examples of this approach are layer-adapted
grids [1,38,46,52] or grids by the equidistribution of monitor functions [7,17,18,55].
Another approach is to invoke some form of upwinding to stabilize the scheme. The
SDFEM, introduced first by Hughes and Brooks in [28], is one of such stabilized meth-
ods and it can also be derived from more general approaches based on, for example,
residual-free bubble finite element method [5,22] and multiscale variational methods
[27,29].

The above approaches and their combinations have been observed to work well in
practice. Their error analysis, however, is not so easy. The classic convergence result
for the standard FEM is not appropriate in the sense that the accuracy depends not
only on the number of the grid nodes N but also on the parameter ε. When ε is small,
the error bound becomes prohibitively large. This paper is devoted to the ε-uniform
convergence. All the error bounds in this paper are ε-uniform unless it is explicitly
expressed otherwise.

1.1 Smooth solutions

To isolate the stability issue, the first question we would like to ask is about a smooth
solution to this equation. Namely, if the solution to (1)–(2) happens to be smooth (say,
‖u(3)‖∞ is uniformly bounded), does the standard FEM on a quasiuniform grid TN

give an accurate approximation to the solution?
Let uN be the standard finite element approximation of the exact solution u based

on the grid TN . Here are the answers to the above question.
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Stability and accuracy of AFEM for singularly perturbed problems 169

1. The stability of the standard FEM depends on the parity of the number of unknowns
for uniform grids. Namely ‖u−uN ‖∞ ≤ CN−2 if the number of unknowns is even,
while the method is not ε-uniformly stable if the number of unknowns is odd.

2. When the number of unknowns is even, the method can be stabilized if we only
move any one grid point within O(ε) to one of its neighbor.

3. For quasi-uniform grids, we show that ‖u − uN ‖∞ = O(N−1) at best in gen-
eral. Although for the nodal interpolation uI the error is of second order, namely
‖u − uI ‖∞ ≤ CN−2.

1.2 Solutions with boundary layers

In most cases of interest, such as the homogeneous boundary condition with a smooth
source term, the solution to (1)–(2) has a boundary layer at x = 0. In order to cap-
ture the boundary layer highly nonuniform layer-adapted grids need to be adopted.
Among them, Bakhvalov grid [1] and Shishkin grid [52] are two commonly used
grids. For these two grids, the uniform convergence of the standard FEM is well
known [33,38,41]: the following two error estimates

‖u − uN ‖∞ ≤ CN−2 and ‖u − uN ‖∞ ≤ CN−2 ln2 N , (3)

are valid for Bakhvalov grid and Shishkin grid respectively.
A careful analysis in this paper will provide some further insights to this type of

results. Namely the optimality of the convergence rate in (3) depends crucially on the
uniformity of the grid in the smooth part. If the grid is only quasiuniform outside of
the boundary layer, we can only expect in general

‖u − uN ‖∞ = O(N−1).

But if the grid is indeed uniform away from the boundary layer, the estimate (3)
remains valid even if the grid is locally perturbed (in a locally quasi-uniform manner)
within the boundary layer. From both theoretical and practical points of view, we find
this is a rather significant phenomenon for singularly perturbed problems.

1.3 Uniform stability of a new SDFEM

For singularly perturbed problems, special stablized methods such as the streamline
diffusion finite element method (SDFEM) are more often used than the standard finite
element method. Many convergence estimates of the SDFEM [3,4,30,31,44,58] have
been done for quasiuniform meshes which show that the SDFEM is able to capture
the main feature of the solution without using layer-adapted meshes to resolve the
boundary layer. Nevertheless, very few ε-uniformly pointwise convergence results
are obtained inside the boundary layer [39,53,54].

We will propose a new SDFEM for the problem (1)–(2) and analyze it on arbitrary
grids TN . With a special choice of the stabilization bubble function, we will prove that
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170 L. Chen, J. Xu

the new SDFEM approximation ũN is nearly optimal (or so-called quasi-optimal) in
the maximum norm, namely

‖u − ũN ‖∞ ≤ C inf
vN ∈V N

‖u − vN ‖∞, (4)

where V N is the linear finite element space based on TN with appropriate boundary
conditions. We would like to explicitly point out again that here C is a constant that
is independent on both ε and N .

The estimate (4) is the most desirable estimate we may expect to obtain for the
problem (1)–(2). Such types of estimates have been known for “diffusion dominated”
problem in both one and two dimensions [50,51]. But we have not seen such an
estimate for singularly perturbed problems. The added difficulty is of course the uni-
formity with respect to ε. Effort to obtain such type of result can also be found in
[48,49].

1.4 Convergence of the new SDFEM and optimal monitor function

Thanks to (4) the convergence of the new SDFEM becomes an approximation problem
which is well studied in the literature (see, e.g. [11,19]). If, for example, the function
|u′′|1/2 is monotone, there exists a grid such that

‖u − uI ‖∞ ≤ C‖u′′‖1/2 N−2, (5)

and thus by (4)

‖u − ũN ‖∞ ≤ C‖u − uI ‖∞ ≤ C‖u′′‖1/2 N−2, (6)

where ‖u′′‖1/2 :=
(∫ 1

0 |u′′|1/2dx
)2

. Note that ‖u′′‖1/2 is ε-uniformly bounded in

many cases, the convergence (6) is indeed ε-uniform.
A commonly used approach to constructing such a grid is the use of the monitor

function M(x) and the equidistribution principle. The grid TN = {0 = x0 < · · · <

xN+1 = 1} is chosen such that

xi+1∫

xi

M(x) dx = constant, i = 0, 1, 2, . . . , N .

In the literature, the monitor function resulting a first order uniform convergence is
the arc-length function M =

√
1 + |u′|2 or its discrete analogue [14,15,35,45]. The

optimal choice of the monitor function for a second order uniform convergent scheme
remains open. Based on our convergence result (6) M = |u′′|1/2 is evidently a monitor
function that leads to the optimal rate of convergence.

The layout of the rest of this paper is as follows: in the next section we will study
the standard FEM for smooth solutions and solutions with boundary layers. In Sect. 3,
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Stability and accuracy of AFEM for singularly perturbed problems 171

we will develop a new SDFEM and analyze its stability and convergence. The last
section contains some concluding remarks.

2 Stability analysis of the standard FEM

In this section we will study the stability of the standard FEM applied to the problem
(1)–(2) on arbitrary grids. The approach used here mainly follows the work of Kopteva
for central difference discretization in [33].

Let us first introduce some notation. For a positive integer N , let TN := {xi | 0 =
x0 < x1 < · · · < xN+1 = 1} be an arbitrary grid and let ϕi be the nodal basis function
at point xi . The linear finite element space V N := {vN |vN = ∑N+1

i=0 viϕi }. For a func-
tion u ∈ C[0, 1], let ui := u(xi ) be the nodal values and let uI := ∑N+1

i=0 uiϕi be the
nodal interpolant of u. The discrete maximum norm of u is denoted by ‖u‖∞,TN :=
max0≤i≤N+1 |ui |. For an index set I ⊂ {0, 1, . . . , N + 1}, ‖u‖∞,I := maxi∈I |ui |.
On the other hand, given a discrete function {vi , i = 0, 1, . . . , N + 1}, the same letter
without the subindex will denote the piecewise linear and global continuous func-
tion in V N , i.e. v := ∑N+1

i=0 viϕi . Thus the discrete maximum norm for the discrete
function vi will be written as ‖v‖∞,TN .

2.1 Basic error equation

Let H1 = {v | v ∈ L2(0, 1), v′ ∈ L2(0, 1)} and H1
0 = {v | v ∈ H1, v(0) = v(1) = 0}.

The weak solution to the problem (1)–(2) is a function u ∈ H1 satisfying u(0) =
g0, u(1) = g1 and

a(u, v) = ( f, v) ∀ v ∈ H1
0 , (7)

where (·, ·) is the L2 inner product and a(u, v) = ε(u′, v′) + (bu, v′). The existence
and uniqueness of the weak solution are easy to establish.

The finite element discretization of (7) is to find a uN ∈ V N such that uN (0) =
g0, uN (1) = g1 and

a(uN , vN ) = ( f, vN ) ∀ vN ∈ V N ∩ H1
0 . (8)

Let e = uI − uN = ∑N+1
i=0 eiϕi . Since a(u − uN , vN ) = 0, we obtain the error

equation

a(e, ϕi ) = a(uI − u, ϕi ), i = 1, 2, . . . , N , (9)

e0 = eN+1 = 0. (10)

Let ai, j = a(ϕ j , ϕi ), i, j = 1, . . . , N and hi = xi − xi−1, i = 1, . . . , N + 1. It is
easy to get

a(e, ϕi ) = ai,i−1ei−1 + ai,i ei + ai,i+1ei+1, for i = 1, 2, . . . , N ,
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where

ai,i−1 = − ε

hi
+ b

2
, ai,i = ε

hi
+ ε

hi+1
, ai,i+1 = − ε

hi+1
− b

2
,

with standard modifications for i = 1 and i = N . It is well known that if h =
maxi hi ≤ 2ε/b, the matrix A = (ai, j ) will be an M-matrix and thus the scheme
satisfies a discrete maximum principle. We are more interested in the case ε � h
where in general the discrete maximum principle is not valid. We will solve the error
equation directly. This procedure is essentially an LU factorization of a tridiagonal
system.

Lemma 1 The error equation (9)–(10) can be written as

(DN e)i − (DN e)i+1 = ri − ri+1, i = 1, 2, . . . , N , (11)

e0 = eN+1 = 0, (12)

where

(DN e)i =
(

ε

bhi
+ 1

2

)
ei −

(
ε

bhi
− 1

2

)
ei−1 and ri = 1

hi

xi∫

xi−1

(uI − u)(x) dx .

Proof Since a(ϕi , 1) = 0, we get a(ϕi , ϕi−1 + ϕi+1) = −a(ϕi , ϕi ), namely ai,i =
−ai−1,i − ai+1,i . Therefore

a(e, ϕi ) = ai,i−1ei−1 + ai,i ei + ai,i+1ei+1

= ai,i−1ei−1 − ai−1,i ei − ai+1,i ei + ai,i+1ei+1

= b
[
(DN e)i − (DN e)i+1

]
.

On the other hand

xi∫

xi−1

(uI − u)′ϕ′
i (x) dx = (uI − u)|xi

xi−1
−

xi∫

xi−1

(uI − u)ϕ′′
i (x) dx = 0,

since (uI − u)(xk) = 0 for k = i − 1, i and ϕ′′
i = 0 in [xi−1, xi ]. The right hand side

of (9) becomes

a(uI − u, ϕi ) =
xi+1∫

xi−1

b(uI − u)ϕ′
i = b(ri − ri+1).

The desired result then follows. 
�
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Stability and accuracy of AFEM for singularly perturbed problems 173

It is easy to see that (DN e)i = ri − C with an appropriate constant C such that
e0 = eN+1 = 0. However it is difficult to determine C explicitly. Instead we use the
following splitting of ei .

Lemma 2

ei = Wi − WN+1

VN+1
Vi , i = 1, 2, . . . , N ,

where Vi solves the difference equation

(DN V )i = 1, i = 1, 2, . . . , N + 1, V0 = 0,

and Wi solves the difference equation

(DN W )i = ri , i = 1, 2, . . . , N + 1, W0 = 0.

Proof It is clear that ei = Wi − CVi . Since eN+1 = 0, we get C = WN+1/VN+1. 
�
Lemma 3 Let

λi =
(

ε

bhi
− 1

2

) (
ε

bhi
+ 1

2

)−1

, Si
j =

i∏
k= j

λk, i, j = 1, 2, . . . , N + 1,

(with the convention that if j > i, Si
j = 1) then for i = 0, 1, . . . , N + 1,

Vi = 1 − Si
1,

and

Wi =
i∑

j=1

[
r j (1 − λ j )Si

j+1

]
= ri − r1Si

1 +
i−1∑
j=1

[
(r j − r j+1)Si

j+1

]
.

Proof By the definition of Wi , we have

(
ε

bhi
+ 1

2

)
Wi −

(
ε

bhi
− 1

2

)
Wi−1 = ri , i = 1, 2, . . . , N + 1,

and thus

Wi = λi Wi−1 + (1 − λi )ri , i = 1, 2, . . . , N + 1.

Here we use the relation 1 − λi =
(

ε
bhi

+ 1
2

)−1
. Since W0 = 0, we get

Wi =
i∑

j=1

[
r j (1 − λ j )Si

j+1

]
=

i∑
j=1

r j

(
Si

j+1 − Si
j

)
.

123
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By the discrete version of integration by parts (summation by parts), we get

Wi = ri − r1Si
1 +

i−1∑
j=1

[
(r j − r j+1)Si

j+1

]
.

The formula of Vi can be obtained by replacing ri = 1 in the above identity. 
�
The following two lemmas concern the stability of the scheme.

Lemma 4 If TN satisfy the condition

|VN+1|−1 =
∣∣∣∣∣1 −

N+1∏
i=1

λi

∣∣∣∣∣
−1

≤ ρstab, (13)

then

‖e‖∞,TN ≤ 2(ρstab + 1)‖W‖∞,TN .

Proof It is easy to see |λi | ≤ 1 and thus |Vi | ≤ 2. If (13) holds, then from Lemma 2,
we can easily get |ei | ≤ 2ρstab|WN+1| + |Wi |, which leads to the lemma. 
�
Lemma 5 Let I be an index set and l(I ) := ∑

i∈I hi . If λi ≥ 0, for i ∈ I , then TN

satisfies condition (13) with

ρstab = (1 − e−bl(I )/(2ε))−1.

Proof We note that, if λi ≥ 0, then bhi ≤ 2ε. Using the simple inequality that
ln(1 − x) ≤ −x for x ∈ (0, 1), we have

∑
i∈I

ln λi =
∑
i∈I

ln

(
1 − 2bhi

2ε + bhi

)
≤ −

∑
i∈I

2bhi

2ε + bhi

≤ −b
∑

i∈I hi

2ε
= −bl(I )

2ε
.

Therefore
∣∣∣∣∣1 −

N+1∏
i=1

λi

∣∣∣∣∣ ≥ 1 −
∣∣∣∣∣
∏
i∈I

λi

∣∣∣∣∣ ≥ 1 − e−bl(I )/(2ε),

as desired. 
�
When all λi ≥ 0, the resulting matrix is an M-matrix. By Lemma 5, it is stable with
ρstab ≈ 1. To stabilize the scheme, according to Lemma 5, we only need l(I ) = O(ε).
Note that a local grid refinement usually produces such grids. It justifies that the grid
adaptation will enhance the stability of the scheme which is often observed in the
numerical computation.
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2.2 Smooth solutions

In this subsection we will consider the case when the solution to (1)–(2) is smooth and
the grid is uniform.

Lemma 6 If ‖u(k)‖∞, k = 1, 2, 3 are uniformly bounded, for a uniform grid TN , we
have:

‖r‖∞,TN ≤ CN−2 and max
1≤i≤N

|ri − ri+1| ≤ CN−3,

and thus

‖W‖∞,TN ≤ CN−2.

Proof It is easy to see that

ri = 1

2
h2

i u′′(ξi ), with some ξi ∈ [xi−1, xi ].

Therefore |ri | ≤ CN−2, and

|ri − ri+1| = |h2
i u′′(ξi ) − h2

i+1u′′(ξi+1)| ≤ N−3‖u(3)‖∞.

For the estimate of ‖W‖∞,TN , we use the fact that |Si
j | ≤ 1 to get

|Wi | ≤ 2‖r‖∞,TN +
N∑

i=1

|ri − ri+1| ≤ CN−2.


�
Lemma 7 For a uniform grid TN with N interior points, we have

1. if N is even, then

∣∣∣∣∣1 −
N+1∏
i=1

λi

∣∣∣∣∣
−1

≤ C;

2. if N is odd, for a fixed N, then limε→0

(
1 − ∏N+1

i=1 λi

)−1 = ∞.

Proof (1) If λi ≥ 0, the stability result follows from Lemma 5. If λi < 0, since N is
even,

1 −
N+1∏
i=1

λi = 1 − (−1)N+1
N+1∏
i=1

|λi | = 1 +
N+1∏
i=1

|λi | > 1.
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(2) When N is odd,

1 −
N+1∏
i=1

λi = 1 − (−1)N+1
N+1∏
i=1

|λi | = 1 −
N+1∏
i=1

|λi |.

Note that limε→0 |λi | = 1, we conclude that limε→0

(
1 − ∏N+1

i=1 λi

)−1 = ∞. 
�
With Lemma 6 and 7, we immediately get the following result.

Theorem 1 Let u be the solution of (7) and let uN be the standard finite element
approximation of u based on a uniform grid TN . Suppose ‖u(k)‖∞, k = 1, 2, 3 are
uniformly bounded. Then ‖u − uN ‖∞ ≤ CN−2 if the number of unknowns is even,
while the method is not ε-uniformly stable if the number of unknowns is odd.

Lemma 7 says that for smooth solutions and uniform grids, when ε is small, the
stability of the scheme depends on the parity of the grid. An intuitive way to under-
stand this interesting phenomenon is to consider the limiting matrix as ε goes to zero
which is for the reduced problem −bu′ = f . Both the PDE operator and the corre-
sponding matrix are skew symmetric. Thus if the dimension of the matrix is odd, it
has a zero eigenvalue. The corresponding eigenvector spans the kernel of the discrete
problem which makes the scheme unstable. For this simple example, the eigenvector is
(1, 0, 1, . . . , 0, 1). Indeed, Lenferink [36] eliminates every other unknown to stabilize
the scheme.

It is interesting to note that if we modify the grid such that one element has O(ε)

mesh size, the scheme will be stabilized.

Lemma 8 Let Pei := bhi/(2ε) be the grid Peclét number. If there exists an element
[xk−1, xk] in the grid TN such that

ρ0 ≤ Pek ≤ ρ−1
0 , for some ρ0 ∈ (0, 1], (14)

then TN satisfies condition (13) with ρstab = (1 + ρ−1
0 )/2.

Proof Note that the function |x − 1|/(x + 1) is increasing for x > 1 and decreaseing
for x ≤ 1. With the assumption (14), if Pek > 1 then

|λk | = Pek − 1

Pek + 1
≤ ρ−1

0 − 1

ρ−1
0 + 1

= 1 − ρ0

1 + ρ0
.

Otherwise

|λk | = 1 − Pek

Pek + 1
≤ 1 − ρ0

1 + ρ0
.

Therefore
∣∣∣∣∣1 −

N+1∏
i=1

λi

∣∣∣∣∣ > 1 − |λk | ≥ 2ρ0

1 + ρ0
,

as desired. 
�

123



Stability and accuracy of AFEM for singularly perturbed problems 177

Since the local mesh refinement will generate some grids with the same scaling of
ε, in view of Lemma 8 it will stabilize the standard FEM.

Lemma 9 Let the grid TN satisfy: (1) there exists an hk satisfying (14) for some
1 ≤ k ≤ N + 1 and (2) hi = CN−1 for i = 1, . . . , N + 1, i �= k. Then

‖W‖∞,TN ≤ CN−2.

Proof By the proof of Lemma 6, it is easy to see

‖r‖∞,TN ≤ CN−2 and |ri − ri+1| ≤ CN−3 for i �= k − 1, k.

Therefore

|Wi | ≤ 2‖r‖∞,TN + |rk−1 − rk | + |rk − rk+1| +
N∑

i=0,i �=k−1,k

|ri − ri+1|

≤ 6‖r‖∞,TN +
N∑

i=0,i �=k−1,k

|ri − ri+1| ≤ CN−2.


�
Combining Lemmas 8 and 9, we get the following result.

Theorem 2 Let the grid TN satisfy conditions in Lemma 9 (namely it is uniform except
for one element that has size of O(ε)). If ‖u(k)‖∞, k = 1, 2, 3 are uniformly bounded,
then the standard FEM approximation uN based on TN satisfy

‖u − uN ‖∞ ≤ CN−2.

In the proof of Lemma 9, we use the uniformity of the grid to bound the summation
of |ri − ri+1| with few exceptions. We will show the uniformity of the grid is crucial
for the second order convergence by the following example.

Example 1 There exist a sequence of quasiuniform grids {TN } such that the standard
finite element approximation uN to the following equation:

− εu′′(x) − u′(x) = −2ε − 2x, x ∈ (0, 1), (15)

u(0) = 0, u(1) = 1, (16)

is only first order provided ε is small enough.

The real solution of (15)–(16) is u = x2. Let N be an odd integer and TN be the
uniform grid with equal size h. We modify

x2i+1 = (i + 0.25)h, i = 0, 1, . . . ,
N + 1

2
− 1.
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In this case

ri − ri+1 = (−1)i h2, i = 1, . . . , N .

Let us choose small ε such that λi < 0. Note that SN+1
i = (−1)i |SN+1

i | also oscillates,
we have

(ri − ri+1)SN+1
i = h2

∣∣∣SN+1
i

∣∣∣ > h2q N−i+1
ε ,

where qε = (5 − 8εN )(5 + 8εN )−1. Therefore

|WN+1| ≥ h2

(
N+1∑
i=1

|SN+1
i | − 1

)
≥ h2

(
1 − q N+2

ε

1 − qε

− 1

)
.

Since limε→0(1 − q N )(1 − q)−1 = N , we may choose ε small enough such that
|WN+1| ≥ (N + 1)h2. Note that W1 = (1 − λ1)h2

1 ≥ 5/2h2, we have

‖uI − uN ‖∞ ≥ |e1| ≥ |WN+1| − |W1| ≥ (N − 4)h2 ≥ CN−1.

For smooth functions, we know that, on a quasi-uniform grid, the interpolation
error is still of second order, namely ‖u −uI ‖ ≤ CN−2. The optimal convergence rate
we would like to expect for the numerical solution is also of second order. Example 1
tells us for singularly perturbed problems, when ε � 1, we may lose one order of
accuracy for the standard FEM if we perturb the uniform grid to be a quasi-uniform
one. In other words, the standard FEM is not stable with respect to the perturbation of
the grid.

2.3 Solutions with boundary layers

In this subsection, we will consider the solutions with boundary layers and prove the
convergence of the standard FEM on two special layer adapted grids: Bakhvalov grid
and Shishkin grid. The convergence result is known; see for example [33]. However
we will show the accuracy of the standard FEM depends crucially on the uniformality
of the grid in the smooth part.

More speficially we will consider equation (1)–(2) with homogeneous boundary
condition and smooth source term f . Namely

− εu′′ − bu′ = f in (0, 1), (17)

u(0) = u(1) = 0. (18)

The solution to (17)–(18) typically has a boundary layer near x = 0. The following a
priori bound of the derivatives of the solution is well known in the literature, see for
example [32,42,47] or [41].

123



Stability and accuracy of AFEM for singularly perturbed problems 179

Lemma 10 Let u be the solution to equation (17)–(18), we have the following a priori
bound:

|u(k)(x)| ≤ C(1 + ε−ke−bx/ε) ∀x ∈ [0, 1], k = 0, 1, 2, 3.

Layer-adapted grids are needed to capture the boundary layer. The first such grid
is Bakhvalov grid [1] . Let N be an even integer and

θ = min

{
1

2
,

2ε ln ε−1

b

}
.

In [0, θ ] we put N/2 elements such that

xi∫

xi−1

ε−1e−bx/(2ε) dx = 2

N

θ∫

0

ε−1e−bx/(2ε) dx,

namely

xi = −2ε

b
ln

(
1 − 2(1 − ε)

i

N

)
, i = 0, 1, . . . , N/2.

In [θ, 1], we put N/2 uniform grids and denote the mesh size H = 2(1 − θ)/N ≤
CN−1.

The interpolation error estimate on Bakhvalov grid is known [38] which can be also
derived from Theorem 7 in Sect. 3.2.

Lemma 11 Let u be the solution to (17)–(18). For Bakhvalov grid,

‖u − uI ‖L∞ ≤ CN−2.

To prove the convergence, we need the following technical lemma.

Lemma 12 For j < i , let I = { j, j + 1, . . . , i} and hI = maxk∈I hk . We have

1.
|Wi | ≤ |W j | + |ri | + |r j | +

∑
k∈I\{i}

|rk − rk+1|, (19)

2. If λk ≥ 0, k ∈ I , then
|Wi | ≤ |W j | + 2 max

k∈I\{ j} |rk |. (20)

Proof By Lemma 3, we get

Wi = Si
j+1W j +

i∑
k= j+1

rk

(
Si

k+1 − Si
k

)

= Si
j+1W j + ri − r j Si

j +
i−1∑
k= j

[
(rk − rk+1)Si

k+1

]
.

Hence (19) follows from the fact |Si
j | ≤ 1.
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If λk ≥ 0, k ∈ I, then Si
k is monotone decreasing with respect to k, and thus

|Wi | ≤ |W j | + max
j+1≤k≤i

|rk |
∣∣∣∣∣∣

i−1∑
k= j

(
Si

k − Si
k+1

)
∣∣∣∣∣∣
≤ |W j | + 2 max

k∈I\{ j} |rk |.


�
Theorem 3 For Bakhvalov grid, the standard FEM approximation is uniformly opti-
mal. Namely

‖u − uN ‖∞ ≤ CN−2.

Proof We divide TN into boundary layer I1 = {0, 1, . . . , N/2} and smooth part I2 =
{N/2 + 1, . . . , N + 1} by the transition point θ . In I1, it is easy to see hi/ε = CN−1

by the mean value theorem. Thus λi > 0, i ∈ I1 for sufficient large N (independent
of ε). Since l(I1) = θ , the stability of the scheme follows from Lemma 5.

With W0 = 0 and (20) we have

‖W‖∞,I1 ≤ ‖r‖∞,I1 ≤ C‖u − uI ‖∞ ≤ CN−2. (21)

In the smooth part [θ, 1]

‖W‖∞,I2 ≤ |WN/2+1| + |rN/2+1| + |rN+1| +
∑

i∈I2\{N+1}
|ri − ri+1|

≤ |WN/2| + C‖r‖∞,TN +
∑
i∈I2

C‖u(3)‖∞,[xi−1,xi+1]H3.

By (21) the first two terms are bounded by CN−2. We now estimate the third term

∑
i∈I2

‖u(3)‖∞,[xi−1,xi+1]H3 ≤ H2

⎛
⎝∑

i∈I2

(1 + ε−3e−bx/ε)H

⎞
⎠

≤ N−2

1∫

θ

(1 + ε−3e−bx/ε) dx

≤ CN−2.

Combining those estimates together, we get

‖uI − uN ‖∞ ≤ C‖W‖∞,TN ≤ CN−2.
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The result then follows from the triangle inequality

‖u − uN ‖∞ ≤ ‖u − uI ‖∞ + ‖uI − uN ‖∞,

and the interpolation error estimate for ‖u − uI ‖∞. 
�
Another simple layer adapted grid is Shishkin grid [52]. Let N be an even integer and
the transition point

θ = min

{
1

2
,

2ε ln N

b

}
.

In practice, ε is so small that θ = 2b−1ε ln N . Then [0, θ ] and [θ, 1] are divided into
N/2 equidistant subintervals. The following interpolation error estimate for Shishkin
grid is well known [37,38,41,47].

Lemma 13 Let u be the solution to (17)–(18). For Shishkin grid,

‖u − uI ‖L∞(xi−1,xi ) ≤
⎧
⎨
⎩

CN−2 ln2 N , i = 1, 2, . . . , N/2,

CN−2, i = N/2 + 1, . . . , N + 1.

Similar to the proof of Theorem 3, we can get the convergence of the standard FEM
approximation on Shishkin grid.

Theorem 4 For Shishkin grid, the standard FEM approximation uN is an almost
seconder order approximation

‖u − uN ‖∞ ≤ CN−2 ln2 N ,

From the proof of Theorem 3, we see inside the boundary layer, we use |ri | ≤
‖u − uI ‖∞,[xi ,xi+1] and only need to bound the interpolation error. Therefore the grid
inside the boundary layer can be relaxed to be quasiuniform. While in the smooth
part, we need the uniformity of the grid to ensure |ri − ri+1| ≤ CN−3. Actually, the
convergence rate highly depends on the uniformality of the grid in the smooth part.

We can construct an example similar to Example 1 to show that when the smooth
part of layer adapted grids is only quasiuniform, the convergence rate will degrade to
the first order for small ε.

Example 2 There exist a sequence of Bakhvalov type grids {TN } such that the standard
FEM approximation uN to the following equation:

− εu′′(x) − u′(x) = −2ε − 2x, x ∈ (0, 1), (22)

u(0) = 1, u(1) = 1, (23)

is only of first order provided ε is small enough. Namely

‖u − uN ‖∞ ≥ CN−1, but ‖u − uI ‖∞ ≤ CN−2.
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The real solution to (22)–(23) is

u = e−x/ε − e−1/ε

1 − e−1/ε
+ x2,

which contains a boundary layer near x = 0. We modify the Bakhvalov grid in the
smooth part by moving all odd grid points (except xN+1) with a right offset h/4. In
this case, ri −ri+1 = (−1)i N−2, i > N/2+1 and for small ε, the error in the smooth
part will accumulate to N−1. The proof is the same as that in Example 1.

Note that for such a modified Bakhvalov grid, the interpolation errror is still
of second order, namely ‖u − uI ‖∞ ≤ CN−2. Example 2 implies that the accuracy
of the adapted approximation of standard FEM is very sensitive to the perturbation of
grid points in the region where the solution is smooth.

3 A new SDFEM and error analysis

In this section, we will propose a new SDFEM based on a special choice of the sta-
bilization bubble functions and prove that the new method produces a nearly optimal
approximation.

3.1 The new SDFEM and its uniform stability

To introduce the SDFEM, we first modify our bilinear form to be

ã(u, v) := a(u, v) −
N∑

i=1

xi∫

xi−1

δi (−εu′′ − bu′)bv′,

where δi is a stabilization function in [xi−1, xi ]. We will discuss the choice of δi in a
moment. For the exact solution u of (1)–(2), it satisfies

ã(u, v) = f̃ (v) ∀v ∈ H1
0 ,

where f̃ (v) = ( f, v) − ∑N
k=1

∫ xk
xk−1

δk f bv′. The SDFEM is to find ũN ∈ V N such
that ũN (0) = g0, ũN (1) = g1 and

ã(uN , vN ) = f̃ (vN ) ∀ vN ∈ V N ∩ H1
0 . (24)

In the traditional SDFEM, δi is chosen to be a proper constant, such as hi , on each
interval [xi−1, xi ]. The key in the new SDFEM is that δi is chosen to be a bubble
function on each [xi−1, xi ] defined as follows

δi = min

{
hi

2ε
,

1

b

}
hi (ϕiϕi−1)(x). (25)
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Recall that ϕi is the nodal basis function at point xi , so δi is a quadratic bubble func-
tion with scale hi . It is interesting to note that the bubble function is used in some
general stabilized method such as residual-free bubble finite element method [5,22]
and multiscale variational methods [27,29].

With such a special choice of δi , we have the most desirable stability estimate stated
in the following theorem.

Theorem 5 Let ũN be the SDFEM approximation to equation (1)–(2) with stabiliza-
tion function δi determined by (25) and let V N

D := {vN ∈V N , vN (0)=g0, vN (1)= g1},
we have

‖u − ũN ‖∞ ≤ C inf
vN ∈V N

D

‖u − vN ‖∞.

The rest of this section is devoted to the proof of Theorem 5. Similar to the standard
FEM, we write the error equation for e = uI − ũN as:

ã(e, ϕi ) = ã(uI − u, ϕi ), i = 1, 2, . . . , N (26)

e0 = eN+1 = 0. (27)

Lemma 14 The error equation (26) can be written as

(D̃N e)i − (D̃N e)i+1 = r̃i − r̃i+1, i = 1, 2, . . . , N

e0 = eN+1 = 0,

where

(D̃N e)i =
(

ε + b2δ̄i

bhi
+ 1

2

)
ei −

(
ε + b2δ̄i

bhi
− 1

2

)
ei−1,

δ̄i = 1

hi

xi∫

xi−1

δi (x) dx,

and

r̃i = 1

hi

⎡
⎣

xi∫

xi−1

(uI − u)(x) dx (28)

+
xi∫

xi−1

δiεu′′ dx (29)

−
xi∫

xi−1

bδi (uI − u)′ dx

⎤
⎦. (30)
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Let ε̃i = ε + b2δ̄i ,

λ̃i =
(

ε̃i

bhi
− 1

2

) (
ε̃i

bhi
+ 1

2

)−1

,

and S̃i
j , W̃i , Ṽi be defined similarly. We can follow the same lines in Sect. 2 to solve

the error equation and get similar results in the last section.
The following lemma is crucial to obtain our main theorem.

Lemma 15 For δi given by (25), we have

|r̃i | ≤ C

hi

xi∫

xi−1

|u − uI | dx, and thus ‖r̃‖∞,TN ≤ ‖u − uI ‖∞. (31)

Proof We will prove (31) by estimating the three terms (28)–(30) respectively. The
proof for (28) is trivial. For (29), we have

∣∣∣∣∣∣
1

hi

xi∫

xi−1

εδi u
′′ dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

xi∫

xi−1

min

{
1

2
,

ε

bhi

}
hi (ϕiϕi−1)u

′′ dx

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1

2hi

xi∫

xi−1

(x − xi−1)(x − xi )u
′′(x) dx

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

1

2hi

xi∫

xi−1

(x − xi−1)(x − xi )(u − uI )
′′(x) dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣

1

hi

xi∫

xi−1

(uI − u)(x) dx

∣∣∣∣∣∣
.

The last step follows from integration by parts twice.
For (30), we have

∣∣∣∣∣∣
1

hi

xi∫

xi−1

bδi (uI − u)′ dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

hi

xi∫

xi−1

bδ′
i (uI − u) dx

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

xi∫

xi−1

(uI − u)(ϕi−1ϕi )
′ dx

∣∣∣∣∣∣

≤ 1

hi

xi∫

xi−1

|uI − u| dx .


�
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Theorem 6 For the SDFEM with δi determined by (25), we have

‖uI − ũN ‖∞ ≤ C‖u − uI ‖∞,

and thus

‖u − ũN ‖∞ ≤ C‖u − uI ‖∞.

Proof If
hi

2ε
<

1

b
, then

δ̄i = h2
i

4ε
and

ε + b2δ̄i

hi
= ε

hi
+ b2hi

4ε
≥ b

2
.

Otherwise

δ̄i = hi

2b
and

ε + b2δ̄i

hi
>

b2δ̄i

hi
≥ b

2
.

Thus λ̃i ≥ 0, for all i = 1, . . . , N + 1. By Lemma 4, we have ‖uI − ũN ‖∞ ≤
C‖W̃‖∞,TN and by Lemma 12 we have ‖W̃‖∞,TN ≤ C‖r̃‖∞,TN .

Now using Lemma 15, we have:

‖uI − ũN ‖∞ ≤ C‖r̃i‖∞,TN ≤ C‖u − uI ‖∞.

The second inequality in the theorem is obtained by the triangle inequality. 
�
We are now in a position to prove the main theorem in this section.

Proof of Theorem 5 Let us first consider the case g0 = g1 = 0. We denote the corre-
sponding finite element space by V N

0 . We define the projection operator

PN : H1
0 → V N

0 by PN u = ũN .

By Theorem 6,

‖u − ũN ‖∞ ≤ C‖u − uI ‖∞ ≤ C(‖u‖∞ + ‖uI ‖∞) ≤ C‖u‖∞.

Thus

‖PN u‖∞ = ‖ũN ‖∞ ≤ ‖u‖∞ + ‖u − ũN ‖∞ ≤ C‖u‖∞.

With the property P2
N = PN , for any vN ∈ V N

0 , we have

‖u − ũN ‖∞ = ‖(I − PN )(u − vN )‖∞ ≤ C‖u − vN ‖∞.

Since it is true for any vN ∈ V N
0 , the optimality result for homogeneous boundary

condition is then obtained.
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For general boundary conditions, we define u∗
N = (g1 − g0)x + g0 which belongs

to V N
D . Note that u − u∗

N ∈ H1
0 solving the following equation

−εv′′ − bv′ = f + bu∗
N in (0, 1), v(0) = 0, v(1) = 0.

Thus PN (u−u∗
N ) is well defined. On the other hand ũN −u∗

N is also a SDFEM approx-
imation of the above equation. By the uniqueness, we have ũN − u∗

N = PN (u − u∗
N ).

Therefore

‖u − ũN ‖∞ = ‖(u − u∗
N ) − PN (u − u∗

N )‖∞
≤ C inf

vN ∈V N
0

‖u − u∗
N − vN ‖∞

= C inf
vN ∈V N

D

‖u − vN ‖∞.


�

3.2 The convergence of the new SDFEM

We first discuss how to adapt the grid to get optimal interpolation error estimates. Given
a function u ∈ C2[0, 1], a positive function H(x) is called a majorant of the second
order derivative of u, if |u′′(x)| ≤ H(x), x ∈ (0, 1). For an element τi = [xi−1, xi ],
its length in the metric H are denoted by |τi |H , namely

|τi |H =
xi∫

xi−1

H1/2(x) dx .

We need two basic assumptions to get a nearly optimal interpolation error estimate.

(A1) H is monotone in each element τi , i = 1, 2, . . . , N + 1.
(A2) |τi |H is nearly equidistributed in the sense that

max
1≤i≤N+1

|τi |H ≤ C

N

N+1∑
i=1

|τi |H .

Theorem 7 [17,19] Let u ∈ C2[0, 1] and the mesh TN satisfy assumptions (A1) and
(A2), the following error estimate holds:

‖u − uI ‖∞ ≤ C‖H‖1/2 N−2, (32)

where

‖H‖L1/2 :=
⎛
⎝

1∫

0

H1/2 dx

⎞
⎠

2

.
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Remark 1 This error estimate is optimal in the sense that for a strictly convex (or
concave) function, the above inequality holds asymptotically in a reversed direction
with H = |u′′|.

In our recent work [11], we have developed a general interpolation error estimate in
any spatial dimension and for general L p norms. In high dimensions, the new metric
is given by a scaling of the majorant of the Hessian matrix H . The monotonicity in the
assumption (A1) is replaced by no oscillation of H in each element. For details and
applications, we refer to our recent work [8–12]. For other related works, we refer to
[2,16,20,23,25,26,43].

The assumption (A2) can be used to direct our construction of the nearly optimal
mesh. In the context of the so-called moving mesh method [6,24,26], it can be done by
the equidistribution of a monitor function. A monitor function M = M(u, u′, u′′, . . .)
is a function involving u and its derivatives. We say that the grid TN nearly equidis-
tributes the monitor function M if

xi+1∫

xi

M dx ≤ C

N

1∫

0

M dx, i = 0, 1, 2, . . . , N .

Based on the interpolation error estimates, an optimal monitor function for linear
interpolant is M = H1/2.

Theorem 8 Let ũN be the SDFEM approximation to the solution to (1)–(2) on a grid
obtained by nearly equidistributing a monotone majorant H of the second derivative
of u and δi is determined by (25), then

‖u − ũN ‖∞ ≤ C‖H‖1/2 N−2.

The convergence of the new SDFEM on different interesting cases can be obtained
as corollaries of Theorem 8 and the interpolation error estimates. The convergence rate
is not sensitive to the perturbation of the grid since it is controlled by the interpolation
error. For equation (17)–(18), the convergence of the new SDFEM on different layer
adapted grids is straightforward.

Corollary 1 The SDFEM approximation ũN with δi determined by (25) to
(17)–(18) on the grid obtained by the nearly equidistribution of monitor function
M = √

1 + ε−2e−bx/ε satisfies

‖u − ũN ‖∞ ≤ CN−2.

Corollary 2 The SDFEM approximation ũN with δi determined by (25) to (17)–(18)
on Bakhvalov grid satisfies

‖u − ũN ‖∞ ≤ CN−2.

123



188 L. Chen, J. Xu

Corollary 3 The SDFEM approximation ũN with δi determined by (25) to (17)–(18)
on Shishkin grid satisfies

‖u − ũN ‖∞ ≤ CN−2 ln2 N .

We would like to emphasis again that in the proof of the uniform optimality of
the new SDFEM, we do not make use of the a priori information about |u′′| and the
structure of the grid. The ε-uniform stability result Theorem 8 can be applied for
non-smooth data f also.

To show the convergence, all we need to do is to adapt the grid to get a good inter-
polant. It could be done by a posterior error estimate [34] or a priori estimate of u′′.
For example, let us consider the following equation as studied in [48].

− εu′′ − bu′ = f + δ(· − d) on Ω− ∪ Ω+, (33)

u(0) = u(1) = 0, (34)

where Ω = (0, 1), d ∈ Ω,Ω− = (0, d),Ω+ = (d, 1) and δ(· − d) denotes the
Dirac-delta function at point d. Function f is sufficiently smooth on Ω̄ . The equation
(33)–(34) should be understood in the distribution sense and it is well known that it
has a unique solution u ∈ H1

0 (Ω) which has an exponential interior layer at x = d and
boundary layer at x = 0. Furthermore, the following a priori estimate of the second
derivative can be found at [48]:

|u(k)(x)| ≤ C(1 + ε−ke−bx/ε), x ∈ Ω−, k = 0, 1, 2, 3, and

|u(k)(x)| ≤ C(1 + ε−ke−b(x−d)/ε), x ∈ Ω+, k = 0, 1, 2, 3.

With this information we can construct the corresponding layer-adapted grid to get an
optimal interpolant uI and thus obtain the optimal convergence of the new SDFEM.
This example illustrates the usefulness of the near optimality of the SDFEM (Theo-
rem 6) considering the fact that results for singularly perturbed problems with discon-
tinuous right-hand side are relatively rare [21,48].

4 Concluding remarks

In this paper, we have shown the stabilization effect of the adaptive grid for the standard
finite element method and developed an optimal streamline diffusion finite element
method. The main results are listed below.

1. We found that the uniformity of the grid in the smooth part of the solution plays a
crucial role for the optimality of the approximation.

2. In contrast, the new streamline diffusion finite element method that we developed
inherits a quasi-optimal approximation property which is uniform with respect
to ε.

3. With the optimal interpolation error estimate, we have answered an open ques-
tion about the optimal choice of the monitor function for the singularly perturbed
problem.
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The above results raise many interesting questions for singularly perturbed problems in
multiple dimensions. It is natural to expect that similar results should be still valid, but
a rigorous theoretical analysis are still lacking and further research is still required.
But at least our one dimensional results should provide some guidance to adaptive
finite elements in high dimensions. For example, it is easy to construct a grid which
is quasiuniform in the smooth part such that the convergence rate is deteriorated.
Since for general domains in high dimensions, it is not easy to get uniform grids, the
stabilization of the standard FEM is needed.

Acknowledgments The authors wish to express their sincere thanks to Professors Douglas N. Arnold,
Franco Brezzi and Endre Süli for helpful discussions.
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