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ABSTRACT. This is the documentation of the local mesh refinement usingnewest
bisection or longest bisection in MATLAB. The new feature ofour implemen-
tation is the edge marking strategy to ensure the conformity. The short imple-
mentation is helpful for the teaching of adaptive finite element methods and pro-
gramming in more advanced languages.

1. INTRODUCTION

The aim of this report is to document a short implementation of newest vertex
bisection and longest edge bisection in 60 lines in MATLAB. This short implemen-
tation is helpful for the teaching of adaptive finite elementmethods. It can be easily
adapted to other language, such as Fortran and C. The new feature of our algorithm
is a new edge marking strategy for the completion. This work is in the sprit to the
“Ten digit, five seconds, and one page” [50] and continuationof a recent trend in
the short implementation of algorithms in MATLAB [47, 17, 2,6, 1, 37].

Adaptive finite element methods (AFEMs) are now widely used in the numerical
solution of partial differential equations (PDEs) to achieve better accuracy with
minimum degrees of freedom. A typical loop of AFEM through local refinement
involves

(1.1) SOLVE → ESTIMATE → MARK → REFINE .

More precisely to get a refined triangulation from the current triangulation, we
first solve the PDE to get the solution on the current triangulation. The error is
estimated using the solution, and used to mark a set of of triangles that are to be
refined. Triangles are refined in such a way to keep two most important properties
of the triangulations: shape regularity and conformity.

Recently, several convergence and optimality results havebeen obtained for
adaptive finite element methods on elliptic PDEs [20, 34, 48,25, 18, 16, 14, 35, 31,
15, 12] which justify the advantage of local refinement over uniform refinement of
the triangulations.

In most of those works, newest vertex bisection is used in theREFINE step. It
has been shown that the mesh obtained by this dividing rule isconforming and
uniformly shape regular. In addition the number of elementsadded in each step is
under constroled which is crucial for the optimality of the local refinement. There-
fore we mainly discuss newest vertex bisection in this report and include another
popular bisection rule, longest edge bisection, as a variant of it.

MATLAB allows one to very quickly implement numerical methods due to its
vast predefined mathematical library and compact vector/matrix operations. The
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price we pay for this simplicity is the efficiency of the algorithm. Since MATLAB
is an interpretive language, the run time can be much greaterthan that of compiled
programming language like Fortran or C. To speed up the algorithm in MATLAB,
one should try to avoidfor loops as much as possible using MATLAB’s vector-
ized addressing and built-in functions. Our code is optimized in this sprit.

The outline of the rest is as the following. In Section 2, we review newest
vertex bisection. In Section 3, we discuss the implantationdetails: data structure,
marking strategies and refinement. In Section 4, we provide numerical examples
and in Appendix we list the code.

2. BISECTIONS IN ADAPTIVE FINITE ELEMENT METHODS

In this section we shall give a review of newest vertex bisection and longest edge
bisection. In short, newest vertex bisection always bisects a triangle along the edge
opposite to its newest vertex while longest edge bisection always bisects a triangle
along the longest edge of a triangle.

Before we get into the details of those bisection methods, wefirst introduce
two important properties of triangulations. A triangulation Th (also indicated by
mesh or grid) ofΩ ⊂ R

2 is a decomposition ofΩ into a set of triangles. It is
calledconformingor compatibleif the intersection of any two trianglesτ andτ ′

in Th either consists of a common vertexxi, edgeE or empty. An edge of a
triangle is callednon-conformingif there is a vertex in the interior of that edge
and that interior vertex is calledhanging node. See Fig. 1(a) for examples of
non-conforming triangles and hanging nodes.

For meshes with hanging nodes, several special basis and more complicated
matrix assembly may be required. While for a conforming mesh, only one finite
element basis for the reference element is necessary. We would like to keep this
property of the triangulations.

A triangulationTh is shape regularif

(2.1) max
τ∈Th

diam(τ)2

|τ |
≤ σ

wherediam(τ) is the diameter ofτ and|τ | is the area ofτ . A sequence of triangu-
lation {Tk, k = 0, 1, · · · } is calleduniform shape regularif σ in (2.1) is indepen-
dent withk.

The shape regularity of triangulations assures that anglesof the triangulation
remains bounded away from0 andπ which is important to control the interpolation
error inH1 norm [3] and the condition number of the stiffness matrix [26].

Remark 2.1. We would like to point out that in some applications with boundary
layers or interior layers, an optimal triangulation may require a high aspect ratio
corresponding to the Hessian matrix of the solution[36, 23, 24, 22, 21, 27, 28, 19].
In these cases, we do not need to keep the shape regularity of the triangulation but
the conformity is still needed.

After we marked a set of triangles to be refined, we need to carefully design the
rule for dividing the marked triangles such that the refined mesh is still conforming
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(a) Bisect a triangle (b) Completion

FIGURE 1. Newest vertex bisection

and shape regular. Such refinement rules include red and green refinement [8],
longest edge bisection [40, 39] and newest vertex bisection[46]. In MATLAB’s
PDE toolbox, the first two refinement methods are implemented. As we point out
in the introduction, we will mainly discuss newest vertex bisection and include
longest edge bisection as a variant of it.

2.1. Newest vertex bisection.Given a shape regular triangulationT of Ω, for
each triangleτ ∈ T , we label one vertex ofτ as peakor newest vertex. The
opposite edge of the peak is calledbaseor refinement edge. This process is called
a labeling ofT . The rule of newest vertex bisection includes:

(1) a triangle is bisected to two new children triangles by connecting the peak
to the midpoint of the base;

(2) the new vertex created at a midpoint of a base is assigned to be the peak of
the children.

Once the labeling is done for an initial triangulation, the decent triangulations in-
herit the label by the rule (2) such that the bisection process can proceed.

We now summarize three important properties of newest vertex bisection.
Sewell [46] showed that all the decendants of an original triangle fall into four

similarity classes (Fig. 2.1) and hence triangulations obtained by newest vertex
bisection is uniformly shape regular.

After the marked triangles are bisected, what in general breaks conformity, to
recovery the conformity, bisections are propagated to eliminate the hanging nodes.
See Fig. 1(b) for a illustration. This process is calledcompletionor closure.

One step of completion may produce more hanging nodes and thus we have to
show the completion process will terminate. Mitchell [32] and Bansch [11] show
the completion will terminate. We shall discuss this issue in Section 3.2.

The last property is not used in this report but is essential for the optimality of
the AFEM. It says the completion will not add too many elements comparing to
the marked elements.

Binev, Dahmen and DeVore [14] show that ifM is the collection of all trian-
gles refined in going from some well labeled (we shall explorethis later) initial
conforming triangulationT0 to Tk, then

#Tk ≤ #T0 + C#M,
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FIGURE 2. Four similarity classes of triangles generated by
newest vertex bisection

where#A denotes the cardinality of the setA. Recently, this result is extended to
a bisection scheme of simplices in general spacial dimensions by Stevenson [49].

2.2. Longest edge bisection.The longest edge bisection are proposed and studied
by Rivara’s group [41, 42, 43, 40]. In this method, trianglesare always bisected
using one of their longest edges.

In the longest edges bisection, every time the largest angleis divided and thus
it is reasonable to expect this bisection will maintain the shape regularity. Indeed,
it has been proven by Rosenberg and Stenger [44] that the smallest angle is at
least half of the smallest angle in the initial triangulation. The termination of the
completion process has been shown by Rivara.

We shall view the longest edge bisection as a variant of newest vertex bisection
using a different labeling scheme. Namely we label the base of each triangle as
its longest edge. Unlike newest vertex bisection, this labeling is performed in the
beginning of each loop like (1.1). This viewpoint will unifythe implementation of
those two bisections methods.

In some cases, those two bisections are equivalent. This happens whenever
the longest edge is always opposite newest vertex. One important such example
is uniform meshes: meshes obtained by dividing rectangles into triangles using
their diagonals. The peaks are always at the right angles andthe longest edges are
opposite to the peaks. Indeed isosceles right triangles areoptimal, in terms of angle
conditions, for bisection methods [33].

3. IMPLEMENTATION

In this section, we shall discuss the implementation of newest vertex and longest
edge bisection. The new feature is a new edge marking strategy to ensure the con-
formity which makes the bisection can be implemented in 60 lines in MATLAB.

3.1. Data Structure. We shall first discuss the data structure to represent trian-
gulations and facilitate the refinement procedure. There isa diploma for the data
structure in the implementation level. If more sophisticated data structure is used
to easily traverse on the mesh, for example, to get all triangles surrounding a vertex
or an edge, it will simplify the implementation of refinement. On the other hand,
once a triangle is bisected, one has to update those sophisticated data structure
which complicates the implementation.

We only keep updating two basic data structurenode , elem to represent the
triangulation. The following few lines will build other data structure used in the
bisection algorithm. Before we explain it line by line, we would like to point out
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(a) A simple triangluation (b) Dual graph

FIGURE 3. A triangulation and its dual graph

that since we make use built-in functions in MATLAB, the construction of those
data structure is efficient. We thus rebuild those data structure in the beginning
of each loop (1.1). If one uses Fortran or C and concerns the optimality of the
operations, one has to update those auxiliary data structure whenever performing
bisections of triangles.
edge=[elem(:,[1,2]); elem(:,[1,3]); elem(:,[2,3])];
edge=unique(sort(edge,2),’rows’);
N=size(node,1); NT=size(elem,1); NE=size(edge,1);
dualedge=sparse(elem(:,[1,2,3]),elem(:,[2,3,1]),[1: NT,1:NT,1:NT],N,N);
d2p=sparse(edge(:,[1,2]),edge(:,[2,1]),[1:NE,1:NE], N,N);

node , elem are standard data structure to represent a triangulation. In the node
matrix node , the first and second rows containx- andy-coordinates of the nodes
in the mesh. In the element matrixelem , the three rows contain indices to the
vertices of elements, given in anti-clockwise order.

Note that a cyclical permutation of three indices of a triangle represents the
same triangle. We shall make use the order of vertices to represent a labeling of
a triangle. Namely we assumeelem(t,1) is always the peak oft. New added
elements will follow this rule.

For the triangulation in Fig. 3.1, the indices of nodes is indicated by bigger num-
bers and the indices of triangles is given by circled numbers. Suppose it represents
the square[0, 1] × [0, 1]. Then thenode , elem matrix are given in the Table 3.1.
edge=[elem(:,[1,2]); elem(:,[1,3]); elem(:,[2,3])];
edge=unique(sort(edge,2),’rows’);

In the edge matrixedge , the first and second rows contain indices of the starting
and ending point. The row ofedge is sorted in the way that for every edgek,
edge(k,1)<edge(k,2) . For the triangulation in Fig. 3.1, the indices for edges
is in small numbers. Theedge array is listed in the Table 3.1.

N=size(node,1); NT=size(elem,1); NE=size(edge,1);

N, NT, andNEare number of nodes, triangles, and edges, respectively.

dualedge=sparse(elem(:,[1,2,3]),elem(:,[2,3,1]), [1: NT,1:NT,1:NT],N,N);

For a given triangulationT , its dual graph is defined as follows. Triangles in
T are interior dual nodes in the dual graph and those nodes are connected if two
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t elem(t,1) elem(t,2) elem(t,3)

1 2 3 1
2 4 1 3

v node(v,1) node(v,2)

1 0 0
2 1 0
3 1 1
4 0 1

k edge(k,1) edge(k,2)

1 1 2
2 2 3
3 3 4
4 1 4
5 1 3

(i,j) dualedge(i,j) d2p(i,j)
(3,1) 2 5
(1,3) 1 5
(1,2) 2 1
(2,1) 0 1
(2,3) 2 2
(3,2) 0 2
(3,4) 1 3
(4,3) 0 3
(4,1) 1 4
(1,4) 0 4

TABLE 1. Data structure for the triangulation in Fig. 3(a)

triangles are neighbors i.e. they share a common edge. We also introduce boundary
dual nodes in the dual graph for boundary edges and connect dual boundary nodes
to interior dual nodes if the corresponding edges of a boundary dual node is an
edge of the triangle corresponding to the interior dual node. Two boundary nodes
are connected if the corresponding edges share a common vertex. Fig. 3(b) is the
dual graph of the triangulation in Fig. 3(a).

dualedge is anN × N sparse non-symmetric matrix which stores the non-
boundary edges of the dual graph of the triangulation. Namely the dash line in Fig.
3(a). It can be formed by the following loop.
for t=1:NT

dualedge(elem(t,1),elem(t,2))=t;
dualedge(elem(t,2),elem(t,3))=t;
dualedge(elem(t,3),elem(t,1))=t;

end

By the definition,dualedge(i,j) denotes the elementτ (if it exists) such that
vivj is an edge ofτ anddualedge(j,i) will give another (if it exists) elementτ ′

such that edgevjvi is an edge ofτ ′. If one of them is zero, it implies that this edge
is a boundary edge.

One should avoidfor loop as much as possible when coding in MATLAB
since each line in the loop will be interpreted in each iteration. This can quickly
add significant overhead when dealing with large systems (asis often the case with
finite element codes). To this end, we use thesparse function because of the nice
summation property for duplicated indices. Tryhelp sparse in MATLAB for
the usage. It will become quite nature and useful after you get used to it.
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d2p=sparse(edge(:,[1,2]),edge(:,[2,1]),[1:NE,1:NE], N,N);

d2p is anN×N symmetric sparse matrix which denotes the index map between
dual edge and primary edge set. Again we usesparse command which does the
same as the following loop
for k=1:NE

i=edge(k,1); j=edge(k,2);
d2p(i,j)=k; d2p(j,i)=k;

end

3.2. Initial labeling. In this subsection, we shall discuss labeling algorithms for
the initial triangulation which is crucial to ensure the completion will terminate in
finite steps.

We begin with some concepts. Given a labeled triangulationT , an edge iscom-
patible if it is the base of all triangles sharing it. A triangle iscompatibleif its base
is compatible. A labeled triangulationT is calledcompatibleif every triangle in
T is compatible and the label ofT is called acompatible label. Fig. 3.2 shows a
compatible (Fig. 4(b)) and non-compatible (Fig. 4(a)) label for a triangulation. In
this figure, the peak of each triangle is denoted by a small dotnear the vertex. It
is obvious that the completion for a compatible triangulation is terminated in one
step.

Theorem 3.1(Mitchell 1988). For any conforming triangulationT , there exist a
compatible label scheme.

Proof. For simplicity, we assumeΩ is simply connected. It is easy to see that the
dual graph ofT is a 3-regular graph, i.e. each dual node has degree 3. And the
dual graph has no cut edges, i.e. removing one dual edge, the dual graph is still
connected. Note that a compatible label corresponds to a perfect matching of the
dual graph. By the graph theory [30], which can be traced backto Petersen (1891)
[38], every 3-regular graph without cut edges has a perfect matching. �

The above theorem only ensures the existence of a compatiblelabel. The next
question is on algorithms for this compatible label. Although for general k-regular
graph (every node hask-degree), the problem to find a perfect matching is N-P
hard, for 3-regular planar graph, there does exist polynomial time algorithms to
find a perfect matching. Recently in [13] it has been shown that this even can be
done inO(N) operations for a triangulation withN elements.

Theorem 3.2(Biedl et al 1999). For a triangulation T with N triangles, there
exists anO(N)-time algorithm which give a compatible label ofT .

It is a temptation to put such labeling algorithm inside newest vertex bisection.
Namely we always call a labeling algorithm in the beginning of loop (1.1) such
that the current triangulation is compatible. Then no extraeffort is required to en-
sure the conformity. However since we change the peaks in every loop, we cannot
prevent the angle to be unacceptably large or small. Furthermore, Mitchell [32]
shows that if the the refined triangulations are always compatible, the only possi-
bility is to perform the uniform refinement of an initial compatible triangulation.
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FIGURE 4. Different labeling for a triangulation

In this sense, the complexity of the completion for non-compatible triangulation is
the price we have to pay for the efficiency of the local refinement.

It is desirable that the initial labeling can be done in an optimal way. But the
algorithm presented in [13] is kind of complicate. Note thatfor newest vertex bi-
section we only need to labeling the initial triangulation which has, in practice,
small number of elements. We would like to sacrifice the complexity for the sim-
plicity.

In our implementation, we shall choose a longest edge as the base for each trian-
gle in the initial triangulationT0. Such labeled triangulation may not be compatibly
divisible. But we shall show the completion will termiante for every triangulation
refined from such labeledT0 using newest vertex bisection in Section 3.3.

Although the completion will terminate for longest edge labeling, the refine-
ment of an element can enforce the bisection of remote elements. Here we use
this method for its simplicity. If one implement bisection using Fortran or C, one
had better give a compatible labeling for the initial triangulation. For a simple
algorithm, we refer to Zikatanov [54].

We now list and explain our code for the labeling.
function elem=label(node,elem)
edgelength(:,1)=(node(elem(:,3),1)-node(elem(:,2),1 )).ˆ2 ...

+(node(elem(:,3),2)-node(elem(:,2),2)).ˆ2;
edgelength(:,2)=(node(elem(:,1),1)-node(elem(:,3),1 )).ˆ2 ...

+(node(elem(:,1),2)-node(elem(:,3),2)).ˆ2;
edgelength(:,3)=(node(elem(:,3),1)-node(elem(:,2),1 )).ˆ2 ...

+(node(elem(:,3),2)-node(elem(:,2),2)).ˆ2;
[temp,I]=max(edgelength,[],2);
elem((I==2),[1 2 3])=elem((I==2), [2 3 1]);
elem((I==3),[1 2 3])=elem((I==3), [3 1 2]);

The first 3 lines is to compute the edge lengths. Then we find thelongest edge
and switch the nodes of each triangle such thatelem(t,1) is always opposite to
the longest edge.

Note that for newest vertex bisection, once the peak (or base) for the initial
triangulation is chosen, the peak or base for decent triangulations are assigned by
newest vertex bisection rule. Thus we only need to call this subroutine for the
initial triangulation.
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If we relabel the longest edge as the base in each loop, then itbecomes longest
edge bisection. Thus we include amethod input argument in our bisection algo-
rithm.
function [node,elem,marker,d2p] = bisection(node,elem, eta,theta,method)
if (method==1), elem = label(node,elem); end

When method==1 , we call the label subroutine and the bisection becomes
longest edge bisection. Otherwise it is newest vertex bisection.

3.3. Marking strategy. In this subsection, we shall discuss marking strategies
used in our algorithm. We need to distinguish two types of marking: one is to
mark triangles for reducing the error and another one is to mark edges for the
conformity.

Marking triangles for reducing the error.Let us first discuss the marking strategy
used with the error indicator. Let

η2 =
∑

τ∈Th

η2
τ

be an error indicator with local contributionsητ associated with a triangleτ . The
traditional maximum marking strategy is to mark triangulationsτ∗ such that

ητ∗ ≥ θ max
τ∈Th

ητ , for someθ ∈ (0, 1).

This marking strategy is proposed in the pioneering work [4]by Babuska and Vo-
gelius and currently used in the MATALBEadaptmesh function.

We shall use the bulk marking strategy proposed by Dörfler [25]. With such
strategy, one defines the marking setM such that

(3.1)
∑

τ∈M

η2
τ ≥ θ η2, for someθ ∈ (0, 1).

Bigger θ will result more refinement of triangles in one loop and smaller θ will
result more optimal grid but more refinement loops. Usually we chooseθ = 0.2 −
0.5.

The advantage of the bulk marking strategy is that one can prove for elliptic
problems, with other reasonable assumptions, the approximation error is decreased
by a fixed factor for each loop (1.1) and thus the local refinement will convergence.
Furthermore it will give optimal numerical approximation in terms of the number
of degrees of freedoms. For details we refer to [20, 34, 48, 25, 18, 16, 14, 35, 31,
15, 12].

Completion.After those marked triangles are bisected, the crucial problem now is
maintaining of the mesh conformity. We first survey two basicapproaches for the
completion and then propose a new edge marking strategy.

A standard iterative algorithm of the completion is the following. LetM denotes
the set of triangles to be refined.

Iterative algorithm
SUBROUTINE completion
WHILE M 6= ∅ DO
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Bisect eacht ∈ M ;
Let nowM be the set of non-conforming triangles.

END WHILE

A more efficient recursive algorithm is proposed by Mitchell[32, 33] and gen-
eralized by Kossaczký [29] to 3-D. Because of the efficiency, it is implemented in
the adaptive finite element package ALBERTA [45]. This approach is based on
an observation that if a triangle is not compatible, then after a single division of
the the neighbor opposite the peak, it will be. Of course, it may be possible that
the neighboring triangle is also not compatible, so the algorithm recursively check
the neighboring triangle until a compatible triangle is found. The recursion occurs
before the division, so it always bisect a pair of compatibletriangles (except near
the boundary) and thus the conformity is ensured.

Recursive algorithm
SUBROUTINE divide triangle(τ )
IF τ is not compatibleTHEN

divide triangle(neighbor ofτ opposite the peak)
divide the triangleτ and the neighbor opposite the peak ofτ .

END IF

One has to show the recursion will terminate. Indeed there exists a labeled
triangulation such that the recursion does not terminate. See Fig. 4(a) for such
an example. Note that the labeled triangulation in Fig. 4(a)is non-compatible.
Mitchell [32, 33] proved that if the initial triangulation is compatible labeled, then
the recursion will terminate. Let the triangles of the initial triangulation be assigned
generation1. Let children have generationi + 1 wherei is the generation of the
parent.

Theorem 3.3(Mitchell 1988). If the initial triangulation is compatible, the length
of the recursion ofdivide triangle(t) in Recursive algorithm is bounded by the
generation ofτ .

The proof of this theorem based on the fact that if a triangle is not compatible,
the triangle opposite its peak has one less generation provided that the initial tri-
angulation is compatible. And thus the generation of the triangles decreases with
each recursive call. Since the minimum generation is1, the number of recursive
calls is bounded by the generation of the first triangle.

We can relax the compatible requirement for the initial triangulation. For exam-
ple, we can use longest edge labeling. Indeed Kossaczký justify this choice.

Theorem 3.4(Kossaczký 1994). Suppose that each triangle of the initial trian-
gulation has the unique longest edge. Let the base of each triangle of an initial
triangulationT0 be the longest edge of the triangle. Thendivide triangle(t) stops
onT0 and also on every refinement ofT0, created by this method.

The above theorem need a well-defined tie-breaking for the comparison of the
edge length. Due to the round-off error, the example in Fig. 4(a) is still possi-
ble. Note that many mesh generators will generate grids containing a sub-grid like
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Fig. 4(a). To apply the recursive algorithm, it is safe to geta compatible initial
triangulation.

Marking edges for the conformity.We shall propose a new approach to address the
conformity issue. Note that in the output mesh, the new points are always middle
points of some edges of the input mesh. Instead of operating on triangles, we mark
a set of edges. The marking strategy is that if an edge is marked, then the base of
the triangles sharing that edge should be marked too.

This marking strategy can be implemented in a recursive way using a minor
modification ofdivide triangle(t) .
Recursive edge marking algorithm
SUBROUTINE mark(τ )
mark the base ofτ
τ ′ = neighbor ofτ opposite the peak
IF base ofτ ′ is not markedTHEN

mark(τ ′)
END IF

The termination of the recursion is obvious since every recursion will mark an
edge and the number of edges for the current triangulation are finite.

To control the stack and easily access to the data structure,we implement a
non-recursive edge marking strategy. We list our code below.
total = sum(eta); [temp,ix] = sort(-eta);
current = 0; marker = zeros(NE,1);
for t = 1:NT

if (current > theta * total), break; end
index=1; ct=ix(t);
while (index==1)

base = d2p(elem(ct,2),elem(ct,3));
if (marker(base)>0), index=0;
else

current = current + eta(ct);
N = size(node,1)+1;
marker(d2p(elem(ct,2),elem(ct,3))) = N;
node(N,:) = mean(node(elem(ct,[2 3]),:));
ct = dualedge(elem(ct,3),elem(ct,2));
if (ct==0), index=0; end

end
end

end

The first line is to compute the total sum of the error estimator η and sort the
index by the value ofη in decent order.current is used to denote the current
summation of the error indicator contributed by marked triangles. We do a loop for
elem matrix, and mark the triangles. Line 4 is the bulk marking strategy.

The arraymarker is used to denote wether the edge is marked or not. If
marker(k)=0 , it means thek-th edge is not marked. Otherwisemarker(k) de-
notes the global index of the new nodes (the middle point of thek-th edge).

For current trianglect , we first get its base usingd2p matrix. If the base ofct
is not marked, we mark this edge, introduce the new nodes and add the coordinates
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FIGURE 5. Divide a triangle according to the marked edges

of this new nodes is added into thenode matrix. Then we take the neighbor con-
taining its base and repeat the process. Thewhile loop ends until the base ofct
is already marked or it is a boundary edge.

We only append new nodes in thenode matrix during the marking. Since we
do not bisect any triangles, we can keep using the auxiliary data structureedge ,
dualedge ,d2p .

3.4. Refinement. Refinement is short and easy since the conformity is ensured in
the marking step. It is purely local in the sense that we only need to divide each
triangle according to how many edges are marked.
for t=1:NT

base=d2p(elem(t,2),elem(t,3));
if (marker(base)>0)

p=[elem(t,:), marker(base)];
elem=divide(elem,t,p);
left=d2p(p(1),p(2)); right=d2p(p(3),p(1));
if (marker(right)>0)

elem=divide(elem,size(elem,1), [p(4),p(3),p(1),marke r(right)]);
end
if (marker(left)>0)

elem=divide(elem,t,[p(4),p(1),p(2),marker(left)]);
end

end
end
%-------------------------------------------------- --------------------
function elem=divide(elem,t,p)
elem(size(elem,1)+1,:)=[p(4),p(3),p(1)]; elem(t,:)=[ p(4),p(1),p(2)];

We first explain thedivide function. t is the current triangle to be divided. Its
vertices arep(1), p(2), p(3), andp(4) is the new vertex added in its base (Fig. 5).
We modify the current trianglet and add one new element toelem array. Note
that in those elements, the first node is changed top(4), newest vertex added by
the bisection.

We do a loop forelem matrix. For each triangle, we first check if its base is
marked. If so we divide it and then check the other two edges. If one of them is
marked, we then divide children with suitable order. See Fig. 5 for an illustration.

4. NUMERICAL EXAMPLE

In this section, we shall present a numerical example to showhow to cooperate
our bisection algorithm in adaptive finite element methods.
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We will solve the following crack problem consider in [35, 51]. Let Ω = {|x|+
|y| < 1}\{0 ≤ x ≤ 1, y = 0} with a crack and the solutionu satisfies the Poisson
equation

−∆u = f, in Ω u = uD onΓ1, and
∂u

∂n
= g onΓ2,

wheref = 1, Γ1 = ∂Ω, andΓ2 = ∅. We chooseuD such that the exact solutionu
in polar coordinates is

u(r, θ) = r
1

2 sin
θ

2
−

1

4
r2.

We use piecewise linear and global continuous finite elementto solve this Pois-
son equation. The initial grid is given by hand. For general domains, one can use
MATLAB’s PDE tool box or use distmesh [37], a simple mesh generator written
in MATLAB, to generate an initial mesh and calllabel for the initial labeling.

For the assembling and solving of Poisson equation, we use the short finite ele-
ment implementation in [1]. We optimize the code by avoidingthe for loop. It is
much faster than the original implementation in [1].

We shall use|u|2,1,τ , theW 2,1 norm of u, as our error indicator. By the em-
bedding theorem and the optimality of the finite element solution uh based on the
triangulationTh, it is easy to show that

|u − uh|
2
1 ≤ C

∑

τ∈Th

|u|22,1,τ .

Furthermore, if the triangulationTN with N elements equidistributes theW 2,1

norm of u in the sense that|u|2,1,τ ≤ CN−1|u|2,1,Ω, ∀τ ∈ TN , then the finite
element approximationuN based onTN is of optimal approximation order [5]:

(4.1) |u − uN |1 ≤ CN−1/2|u|2,1,Ω.

Sinceu is unknown andD2uh is zero almost everywhere, in the estimate func-
tion, we first use simplest Zienkiewicz-Zhu recovery [52, 53] to get a piecewise
linear approximation of∇u, denoting byRuh, and then use∇Ruh as a piecewise
constant approximation ofD2u. Sophisticated approximation ofD2u, for exam-
ple, the method by Bank and Xu [9, 10], can be also implementedefficiently in
MATLAB.

After the current triangulation is refined, one needs to update the boundary
edges. Thanks to our data structure, the updating of boundary edges can be sim-
ply done by the following function. In the function,bdedge is a subset ofedge
array.
function bdedge=updatebd(marker,bdedge,d2p)
ND=size(bdedge,1);
for k=1:ND

i=bdedge(k,1); j=bdedge(k,2);
if marker(d2p(i,j)) >0

bdedge(k,:)=[i,marker(d2p(i,j))];
bdedge(size(bdedge,1)+1,:)=[j,marker(d2p(i,j)];

end
end
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(a) Original mesh (b) mesh after10 iterations

(c) mesh after15 iterations (d) mesh after20 iterations

FIGURE 6. Meshes after different iterations

For domains with curved boundaries, one needs to project themiddle points
on the boundary edges to the boundary. To this end,bdedge should store more
information; See, for example, the data structure used in PLTMG [7].

Fig. 6 displays the grid for several loops of (1.1). The MATLAB code for the
crack problem is listed in Appendix.
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APPENDIX A: M ATLAB CODE FORBISECTION

function [node,elem,marker,d2p] = bisection(node,elem, eta,theta,method)
if (method==1), elem = label(node,elem); end
edge = [elem(:,[1,2]); elem(:,[1,3]); elem(:,[2,3])];
edge = unique(sort(edge,2),’rows’);
N = size(node,1); NT = size(elem,1); NE = size(edge,1);
dualedge = sparse(elem(:,[1,2,3]),elem(:,[2,3,1]),[1: NT,1:NT,1:NT],N,N);
d2p = sparse(edge(:,[1,2]),edge(:,[2,1]),[1:NE,1:NE], N,N);
total = sum(eta); [temp,ix] = sort(-eta);
current = 0; marker = zeros(NE,1);
for t = 1:NT

if (current > theta * total), break; end
index=1; ct=ix(t);
while (index==1)

base = d2p(elem(ct,2),elem(ct,3));
if (marker(base)>0), index=0;
else

current = current + eta(ct);
N = size(node,1)+1;
marker(d2p(elem(ct,2),elem(ct,3))) = N;
node(N,:) = mean(node(elem(ct,[2 3]),:));
ct = dualedge(elem(ct,3),elem(ct,2));
if (ct==0), index=0; end

end
end

end
for t = 1:NT

base = d2p(elem(t,2),elem(t,3));
if (marker(base)>0)

p = [elem(t,:), marker(base)];
elem = divide(elem,t,p);
left = d2p(p(1),p(2)); right = d2p(p(3),p(1));
if (marker(right)>0)

elem = divide(elem,size(elem,1),[p(4),p(3),p(1),marke r(right)]);
end
if (marker(left)>0)

elem = divide(elem,t,[p(4),p(1),p(2),marker(left)]);
end

end
end
hold off; trimesh(elem,node(:,1),node(:,2),zeros(size (node,1),1));
view(2),axis equal,axis off
%-------------------------------------------------- ---------------------
function elem = divide(elem,t,p)
elem(size(elem,1)+1,:) = [p(4),p(3),p(1)];
elem(t,:) = [p(4),p(1),p(2)];
%-------------------------------------------------- ----------------------
function elem=label(node,elem)
edgelength(:,1)=(node(elem(:,3),1)-node(elem(:,2),1 )).ˆ2 ...

+ (node(elem(:,3),2)-node(elem(:,2),2)).ˆ2;
edgelength(:,2)=(node(elem(:,1),1)-node(elem(:,3),1 )).ˆ2 ...

+ (node(elem(:,1),2)-node(elem(:,3),2)).ˆ2;
edgelength(:,3)=(node(elem(:,3),1)-node(elem(:,2),1 )).ˆ2 ...

+ (node(elem(:,3),2)-node(elem(:,2),2)).ˆ2;
[temp,I]=max(edgelength,[],2);
elem((I==2),[1 2 3])=elem((I==2),[2 3 1]);
elem((I==3),[1 2 3])=elem((I==3),[3 1 2]);
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APPENDIX B: MATLAB CODE FOR THE CRACK PROBLEM

function crack
clear all
% Initial Mesh
node = [1,0; 0,1; -1,0; 0,-1; 0,0; 1,0];
elem = [5,1,2; 5,2,3; 5,3,4; 5,4,6];
Dirichlet = [1,2; 2,3; 3,4; 4,6; 1,5; 5,6];
Neumann = [];
% Adaptive Finite Element Method
for step = 1:20

% Step1: Solver
u = Poisson(node, elem, Dirichlet, Neumann, @f, @u_D, @g);
% Step2: Estimate
eta = estimate(node,elem,u);
% Step3: Refine
[node,elem,marker,d2p] = bisection(node,elem,eta.ˆ2,0 .4,0);
% refine boundary edges
Dirichlet = updatebd(Dirichlet,marker,d2p);
Neumann = updatebd(Neumann,marker,d2p);

end
u = Poisson(node, elem, Dirichlet, Neumann, @f, @u_D, @g);

% -------------------------------------------------- -----------------------
function z = f(p) % data
z = 1;
% -------------------------------------------------- -----------------------
function z = u_D(p) % Dirichlet boundary condition
r = sqrt(sum(p.ˆ2,2));
z = sqrt(0.5 * (r-p(:,1)))-0.25 * r.ˆ2;
% -------------------------------------------------- -----------------------
function z = g(p) % Neumann boundary condition
z = 0;
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