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Abstract Some error analyses on virtual element methods (VEMs) including inverse
inequalities, norm equivalence, and interpolation error estimates are developed for
polygonal meshes, each element of which admits a virtual quasi-uniform triangulation.
This sub-mesh regularity covers the usual ones used for theoretical analysis of VEMs,
and the proofs are presented by means of standard technical tools in finite element
methods.

Keywords Virtual elements · Inverse inequality · Norm equivalence · Interpolation
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1 Introduction

Since the pioneer work in [2–4], virtual element methods (VEMs) have been widely
used to approximate various partial differential equations in recent years. Compared
with the standard finite element methods (cf. [10,17]), such methods have several
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significant advantages: (1) they are natively adapted to polygonal/polyhedral meshes,
leading to great convenience in mesh generation for problems with complex geome-
tries. For example, in [16] a simple and efficient interface-fitted polyhedral mesh
algorithm is developed and VEM has been successfully applied to the elliptic inter-
face problem. (2) They are suitable for attacking high-order elliptic problems. For
instance, it is very difficult to construct the usual H2-conforming finite element method
for fourth-order elliptic problems, hence many nonconforming elements were devised
to overcome the difficulty (see [25]). It is, however, very straightforward to construct
H2-conforming virtual element methods for this type of problems (cf. [13]). Until now,
both conforming and nonconforming VEMs for elliptic problems have been developed
with elaborated details (cf. [2,3,8,13,15,16,20]).

Error estimates for approximation spaces play fundamental roles in theoretical
analysis of finite element methods, so do the inverse inequality and the norm equiv-
alence between the continuous and discrete norms of a finite element function. They
are equally important for the virtual element methods. Such results were stated or
implied in the papers [2,3], though the detailed justifications were not presented.
More recently, in the papers [7,15], the inverse inequalities ((4.9) and (4.11) in [7])
and the norm equivalence (Lemma 4.9 in [15]) were derived in detail, respectively. Let
Th be a polygon mesh, which consists of a finite number of simple polygons (i.e. open
simply connected sets with non-self-intersecting polygonal boundaries). All the results
mentioned above were obtained using the so-called generalized scaling argument (cf.
[14]), based on the following assumptions on Th in two-dimensional cases:

C1. There exists a real number γ > 0 such that, for each element K ∈ Th , it is
star-shaped with respect to a disk of radius ρK ≥ γ hK , where hK is the diameter
of K .

C2. There exists a real number γ1 > 0 such that, for each element K ∈ Th , the
distance between any two vertices of K is ≥ γ1hK .

Using the similar arguments in [21], these estimates still hold if any element K ∈ Th

is the union of a finite number of polygons satisfying conditions C1 and C2.
The key idea of the generalized scaling argument (still called the scaling argument

in [14]) is the use of the compactness argument. To convey the basic ideas, a simple
proof of the inverse inequality is presented as follows:

‖∇v‖0,K ≤ Ch−1
K ‖v‖0,K ∀ v ∈ VK , (1)

where VK is a finite dimensional space of shape functions defined over a polygon
K ∈ Th , and C is a generic constant independent of the mesh size hK . With a scaling
transformation, it suffices to derive the estimate (1) provided that hK = 1. In this case,
under the assumptions of C1 and C2, the set K consisting of all such K can be viewed
as a compact set in certain topology. Then, let

C(K ) = sup
v∈VK

‖∇v‖0,K

‖v‖0,K
. (2)

If C(K ) can be proved to be continuous with respect to K ∈ K in the sense of the
aforementioned topology, then it is evident that C(K ) can attain its maximum C over
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K, leading to the desired estimate (1) readily; we refer the reader to the proof of Lemma
4.1 for the details of such arguments.

Hence, when applying the generalized scaling argument to derive the estimate (1)
for virtual element spaces, we require to show the solution of the Poisson equation
defined over K depends on the shape of K continuously, since the local space VK is
defined with the help of the Laplacian operator (for details see [2,3] or Sect. 2). In
fact, such results can be obtained rigorously in a very subtle and technical way (cf.
[19]).

Similarly, we remark that we should use the trace inequality or the Sobolev embed-
ding inequality over K carefully, since the generic constant depends on the geometric
nature of K implicitly.

Based on the above comments, in this paper, we aim to derive all the results men-
tioned above through only the mathematical tools widely-used in the community of
finite element methods, to shed light on theoretical analysis of virtual element methods
in an alternative way. To this end, we impose the following mesh regularity condition
for a family of meshes {Th}h under discussion:

A1. For each K ∈ Th , there exists a “virtual triangulation” TK of K such that TK is
uniformly shape regular and quasi-uniform. The corresponding mesh size of TK

is proportional to hK . Each edge of K is a side of a certain triangle in TK .

It is evident that the mesh Th fulfilling the conditions C1 and C2 naturally satisfy
the above conditions. We shall derive some error analysis on VEMs including inverse
inequalities, norm equivalence, and interpolation error estimates for several types of
VEM spaces, under the mesh regularity conditions A1 which cover the usual ones
frequently used in the analysis of virtual element methods. The idea of using a “vir-
tual” triangulation can be traced back to regular decomposition condition in the error
analysis of mimetic finite difference methods (cf. [12]).

For triangular meshes, one can use an affine transformation to map an arbitrary
triangle to a so-called reference triangle and then work on the reference triangle.
Results established on the reference triangle can be pulled back to the original triangle
by estimating the Jacobian of the affine map. For polygons, scaling can be still used but
not the affine transformation. Therefore we cannot work on a reference polygon which
does not exist for a family of polygons with general shapes. Instead we decompose a
polygon K into shape regular triangles and use the scaling argument in each triangle.

Throughout this paper, we will always assume the mesh Th satisfies the conditions
A1, and the generic constant hidden in the symbol � depends only on the parameters
involving the shape regularity and quasi-uniformity of the auxiliary triangulation TK

given inA1. Moreover, for any two quantities a and b, “a � b” indicates “a � b � a”.
We will also use the standard notations and symbols for Sobolev spaces and their
norms/semi-norms; the reader is referred to [1] for details.

Denote by VK a virtual element space, whose precise definition can be found in
Sect. 2. With the help of A1, we are going to rigorously prove: for all v ∈ VK

1. Inverse inequality: |v|1,K � h−1
K ‖v‖0,K .

2. Norm equivalence: hK ‖χ(v)‖l2 � ‖v‖0,K � hK ‖χ(v)‖l2 , where χ(v) is the
vector formed by the degrees of freedom of v.
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3. Stability estimate of the VEM formulation:

‖∇v‖2
0,K �

∥
∥
∥∇�∇

k v

∥
∥
∥

2

0,K
+

∥
∥
∥χ

(

v − �∇
k v

)∥
∥
∥

2

l2
,

‖∇v‖2
0,K �

∥
∥
∥∇�∇

k v

∥
∥
∥

2

0,K
+

∥
∥
∥χ∂K

(

v − �0
kv

)∥
∥
∥

2

l2
,

where �∇
k ,�0

k are H1, L2-projection to the polynomial space Pk(K ), respectively.
4. Interpolation error estimate: if IK u ∈ VK denotes the canonical interpolant defined

by d.o.f. of u, then

‖u − IK u‖0,K + hK |u − IK u|1,K � hk+1
K ‖u‖k+1,K ∀u ∈ Hk+1(K ).

After completing this work, we are aware that similar studies were also developed
in a recent paper [11] with respect to mesh conditions C1 and C2. The analysis is
based on a variety of estimates related to a mesh dependent norm

|||v|||2k,K := hK

∑

e∈∂K

∥
∥
∥�0

k,ev

∥
∥
∥

2

0,e
+

∥
∥
∥�0

k−2,K v

∥
∥
∥

2

0,K
,

which plays the role of ‖ · ‖0,K though not knowing their hK -independent equiva-
lence. For example, a different inverse inequality |v|1,K � h−1

K |||v|||k,K is obtained
(cf. Lemma 2.19 in [11]). However, as the continuous L2-norm is used for a VEM
function, there is no discussion on the norm equivalence between this norm and the
l2-norm of its degrees of freedom. As we shall show in Sect. 4, it is by no means trivial
to derive such norm equivalence. Moreover, it deserves to point out that similar results
for stability and error estimates for the interpolation operators were recently presented
in [6], where a different stabilization involving boundary derivatives (cf. [26]) was
also analyzed.

The rest of the paper is organized as follows. The virtual element method is
introduced in Sect. 2. Inverse inequalities, norm equivalence, and interpolation error
estimates for several types of VEM spaces are derived with technical details in Sects. 3–
5, respectively.

2 Virtual element methods

A two dimensional domain � is decomposed into a polygonal mesh Th so that each
element in Th is a simple polygon and a generic element is denoted by K . We work
under the two dimensional setting for a clear illustration, and the generalization to
higher dimensions shall be commented afterwards.

To present the main idea, we consider the simplest Poisson equation with zero
Dirichlet boundary condition:

−�u = f in �, u|∂� = 0.
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The weak formulation is: given an f ∈ L2(�), find u ∈ H1
0 (�) such that

a(u, v) := (∇u,∇v) = ( f, v) ∀v ∈ H1
0 (�). (3)

2.1 Assumptions on the polygon mesh

As mentioned in the introduction, we shall carry out the analysis based on the assump-
tion A1, for which some more discussions are given as follows. Recall that a triangle
is shape regular if there exists a constant κ such that the ratio of the diameter of this
triangle to the radius of its inscribed circle is bounded by κ . It is also equivalent to the
condition that the minimum angle is bounded below by a positive constant θ . A trian-
gulation T is quasi-uniform if any two triangles in the triangulation are of comparable
sizes. Namely there exists a constant σ , such that maxτ∈T hτ ≤ σ minτ∈T hτ . The
term “uniform” means the constants κ, θ and σ are independent of K .

By assumption A1, the number of triangles of each ‘virtual triangulation’ TK is
uniformly bounded by a number L and the size of each triangle is comparable to that
of the polygon, i.e. hK � hτ ≤ hK , ∀τ ∈ TK . The constants in our inequalities
depend on the shape regularity constant κ (or equivalently θ ) and the quasi-uniformity
constant σ (or equivalently L).

Assumption A1 is introduced so that the estimates for finite elements on triangles
can be used. If K is assumed to be star-shaped and each edge is of comparable size,
e.g. assumptionC2, then a virtual triangulation can be obtained by connecting vertices
of K to the center of the star. In contrast, A1 allows the union of star-shaped regions
to form irregular polygons.

Note that such virtual triangulations can be created with additional artificial vertices
in the interior of K but not on ∂K .

2.2 Spaces in virtual element methods

Let k, l be two non-negative integers. Introduce the following space on K

Vk,l(K ) :=
{

v ∈ H1(K ) : v|∂K ∈ Bk(∂K ),�v ∈ Pl(K )
}

, (4)

where Pl(K ) is the space of polynomials of total degree ≤ l on K and conventionally
P−1(K ) := {0}, and Bk(∂K ) is a function space on the boundary ∂K defined by

Bk(∂K ) =
{

v ∈ C0(∂K ) : v|e ∈ Pk(e) for all edges e ⊂ ∂K
}

.

That means, the restriction of Vk,l(K ) to ∂K is a standard conforming Lagrange
element of degree k.The shape function in (4) is well-defined, but the point-wise value
of a function v ∈ Vk,l(K ) requires solving a boundary value problem on K , thus
being implicitly defined and not explicitly known. The novelty of VEM is that the
shape function is determined implicitly, but the degrees of freedom (d.o.f.) are still
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enough to produce a stable discrete method directly as for the usual finite element
method.

To present the d.o.f., we first introduce a scaled monomial Mr (D) on a d-
dimensional domain D

Mr (D) :=
{(

x − xc

hD

)s

, |s| ≤ r

}

(5)

where hD is the diameter of D, xc the centroid of D, and r a non-negative integer.
When D is a polygon, xc is chosen as the average of coordinates of all vertices of D
and thus |x − xc| ≤ hD for all x ∈ D.

We then introduce the dual space

Xk,l(K ) = span
{

χa, χk−2
e , χ l

K

}

, (6)

where the functional vectors are

• χa : the values at the vertices of K ;

• χk−2
e : the moments on edges up to degree k − 2

χe(v) = |e|−1(m, v)e ∀m ∈ Mk−2(e),∀ edge e ⊂ ∂K ;

• χ l
K : the moments on element K up to degree l

χK (v) = |K |−1(m, v)K ∀m ∈ Ml(K ).

The verification
(Vk,l(K ))′ = Xk,l(K ), (7)

is called unisovlence and has been established in [3]. See also [5] for a shorter proof.

Remark 2.1 The operator � used in the definition of VEM space (4) can be replaced
by other operators as long as the space Vk,l(K ) contains a polynomial space with
appropriate degree, which ensures the approximation property. For example, when
K is triangulated to form a triangulation TK , we can introduce a standard k-th order
Lagrange element space Sk(TK ) on TK and impose �hv ∈ Pl(K ) where �h is the
standard Galerkin discretization of � related to Sk(TK ). From this point of view, VEM
is similar to a certain kind of subgrid upscaling.

Relabel the d.o.f. by a single index i = 1, 2, . . . , Nk,l := dim Vk,l(K ). Associated
with each d.o.f., there exists a basis {φ j } of Vk,l(K ) such that χi (φ j ) = δi j for
i, j = 1, . . . , Nk,l . Then every function v ∈ Vk,l(K ) can be expanded as

v(x) =
Nk,l∑

i=1

χi (v)φi (x)
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and in numerical computation it can be identified as a vector v ∈ R
Nk,l in the form

v = (χ1(v), χ2(v), . . . , χNk,l (v))ᵀ.

The isomorphism can be denoted by

χ : Vk,l(K ) → R
Nk,l , χ(v) = (χ1(v), χ2(v), . . . , χNk,l (v))ᵀ.

The inverse of this isomorphism is denoted by

� : R
Nk,l → Vk,l(K ), �(v) = φ · v,

if the basis is treated as a vector φ = (φ1, φ2, . . . , φNk,l )
ᵀ.

Among different choices of the index (k, l) in Vk,l(K ), the first VEM space in [3]
is

Vk(K ) := Vk,k−2(K ). (8)

Later on, in order to compute the L2-projection of VEM functions, a larger space is
introduced in [2] with the form

Ṽk(K ) := Vk,k(K ), (9)

from which a new VEM space is given by

Wk(K ) :=
{

w ∈ Ṽk(K ) :
(

w − �∇
k w, q∗)

K
= 0 ∀q∗ ∈ Mk(K )\Mk−2(K )

}

,

(10)
where �∇

k stands for the H1-projection to Pk(K ), defined in the next section. The
spaces Vk(K ) and Wk(K ) are different but share the same d.o.f. For the same vector
v ∈ R

Nk,k−2 , we can then have different functions �V (v) ∈ Vk(K ) and �W (v) ∈
Wk(K ) and in general �V (v) �= �W (v).

Function spaces in each element are used to design a H1-conforming virtual element
space on the whole domain � in the standard way. Concretely speaking, given a
polygon mesh Th of � and a given integer k ≥ 1, we define

V k,l
h =

{

v ∈ H1(�) : v|K ∈ Vk,l(K ) ∀K ⊂ Th

}

,

Vh =
{

v ∈ H1(�) : v|K ∈ Vk(K ) ∀K ⊂ Th

}

,

Ṽh =
{

v ∈ H1(�) : v|K ∈ Ṽk(K ) ∀K ⊂ Th

}

,

Wh =
{

v ∈ H1(�) : v|K ∈ Wk(K ) ∀K ⊂ Th

}

.

The d.o.f. can be defined for the global space in the natural way.
For the pure diffusion problem, the choice of Vh is enough to produce numerical

solutions with optimal accuracy. However, when dealing with second order elliptic
equations with lower-order terms (e.g., reaction-diffusion problems), the use of the
function spaces Wh and Ṽh are more efficient (see [2]).
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2.3 Approximate stiffness matrix

A conforming virtual finite element space V 0
h := Vh ∩ H1

0 (�) is chosen to discretize
(3). We cannot, however, compute the Galerkin projection of u to V 0

h since the tra-
ditional way of computing a(uh, vh) using numerical quadrature requires point-wise
information of functions and their gradient inside each element. In virtual element
methods, only d.o.f is enough to assemble an approximated stiffness matrix.

Define a local H1 projection �∇
k : H1(K ) → Pk(K ) as follows: given v ∈ H1(K ),

let �∇
k v ∈ Pk(K ) satisfy

(

∇�∇
k v,∇ p

)

K
= (∇v,∇ p)K for all p ∈ Pk(K ).

The right hand side can be written as

(∇v,∇ p)K = −(v,�p)K + 〈v, n · ∇ p〉∂K .

When v is in a VEM space with l ≥ k − 2 (including Vk(K ), Ṽk(K ) or Wk(K )), the
above quantity can be computed using d.o.f. of v since, for p ∈ Pk(K ), �p ∈ Pk−2(K )

and ∇ p · n ∈ Pk−1(e), e ∈ ∂K . The operator �∇
k can be naturally extended to the

global space V k,l
h in an element-wise way.

As (∇·,∇·) is only semi-positive definite, a constraint should be imposed to elimi-
nate the constant kernel. When �∇

k is applied to a VEM function, we shall choose the
constraint

∫

K
v dx =

∫

K
�∇

k v dx if l ≥ 0

or in the lowest order case
∫

∂K
v ds =

∫

∂K
�∇

k v ds if l = −1.

Both constraints can be expressed in terms of the d.o.f. of a VEM function.
For later uses, let us next recall the following Poincaré–Friedrichs inequality for

v ∈ H1
0 (K )

‖v‖0,K ≤ hK ‖∇v‖0,K , (11)

and the following result established in [9].

Lemma 2.2 (Poincaré–Friedrichs inequality [9]) The following Poincaré–Friedrichs
inequality holds

∥
∥
∥v − �∇

k v

∥
∥
∥

0,K
� hK

∥
∥
∥∇

(

v − �∇
k v

)∥
∥
∥

0,K
∀v ∈ H1(K ). (12)

The scaling factor hK is not presented in the form in [9] but can be easily obtained by the
following scaling argument. The transformation x̂ = (x−xc)/hK is applied on x ∈ K ,
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so that K̂ , the image of K , is contained in the unit disk. The transformed triangulation
TK̂ is still shape regular so that we can apply results in [9]. Then the constant hK can
be obtained by scaling back to K . As pointed out in [9], the generic constant depends
only on the shape regularity not the quasi-uniformity of the triangulation TK .

With the help of the projection operator �∇
k , the first part of the approximated

stiffness matrix of the virtual element method can be formed from the following
bilinear form

a
(

�∇
k u,�∇

k v
)

.

2.4 Stabilization

The approximate bilinear form a(�∇
k u,�∇

k v) alone does not lead to a stable method,
since it is not coercive in general, and hence a stabilization term should be added
correspondingly. To ensure the stability while maintaining the accuracy, the following
assumptions on the element-wise stabilization term SK (·, ·) are imposed in VEM (cf.
[3]).

• k-consistency: for pk ∈ Pk(K )

SK (pk, v) = 0 ∀v ∈ Vh .

• stability:

SK (ũ, ũ) � (∇ũ,∇ũ)K ∀ũ ∈
(

I − �∇
k

)

Vh .

We then define

ah(u, v) := a
(

�∇
k u,�∇

k v
)

+
∑

K∈Th

SK (u, v).

Now, we are ready to propose a VEM discretization of (3) as follows.
Find uh ∈ Vh such that

ah(uh, vh) = ( f,�hvh) ∀vh ∈ Vh, (13)

where �hvh = �∇
1 vh for k = 1 and �hvh = �0

k−2vh for k ≥ 2.
It is mentioned that VEMs are a family of numerical methods different in the choice

of stabilization terms. The k-consistency implies the above method passes the usual
Patch Test, i.e., if u ∈ Pk(�), then

a(u, vh) = ah(u, vh) for all vh ∈ Vh .

The stability implies

a(v, v) � ah(v, v) for all v ∈ Vh .
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An abstract error estimate of VEM with stabilization satisfying k-consistency and
stability is given in [3]. See also [6,11] for recent progress along this line.

In the continuous level, a stabilization term can be a scaled L2-inner product

h−2
K

(

u − �∇
k u, v − �∇

k v
)

K
. (14)

The k-consistency is obvious as �∇
k preserves polynomials of degree ≤ k. The stability

can be proved using an inverse inequality and the Poincaré–Friedrichs type inequality,
and it will be proved rigorously later on.

In the implementation, the stabilization (14) is realized as

Sχ (u, v) := χ
((

I − �∇
k

)

u
)

· χ
((

I − �∇
k

)

v
)

, (15)

that is, the l2-inner product of the d.o.f. vectors is used to approximate the L2-inner
product of the functions involved. The scaling factor h−2

K is absorbed into the definition
of d.o.f. through the scaling of the monomials [cf. (5)]. The norm equivalence of l2

and L2 norm is well-known for standard finite element spaces. Rigorous justification
for functions in VEM spaces will be established in Sect. 4 (see also Lemma 4.9 in
[15]).

3 Inverse inequalities

In this section we shall establish the inverse inequality

‖∇v‖0,K ≤ Ch−1
K ‖v‖0,K for all v ∈ Vk,l(K ).

As previously mentioned in the introduction, one approach is to use the fact that
all norms are equivalent on a finite dimensional space like Vk,l(K ). However, this
argument cannot show the dependence of the generic constant C on the geometric
nature of K . To overcome this difficulty, we shall derive the inequality with the help
of a shape regular and quasi-uniform ‘virtual triangulation’ TK and using the fact that
�v ∈ Pl .

Note that if the definition of virtual element spaces is modified by using the discrete
Laplacian operator (cf. Remark 2.1), then the inverse inequality is trivially true as now
the function in VEM space is a finite element function on the virtual triangulation.

We first establish an inverse inequality for polynomial spaces on polygons.

Lemma 3.1 (Inverse inequality of polynomial spaces on a polygon) There holds

‖g‖0,K � h−i
K ‖g‖−i,K for all g ∈ Pk, i = 1, 2.

Proof Restricted to one triangle τ ∈ TK , g is a polynomial. Using the scaling argu-
ment, one has ‖g‖0,τ � h−i

τ ‖g‖−i,τ , for i = 1, 2. According to the definition of a
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dual norm, we easily know ‖g‖−i,τ ≤ ‖g‖−i,K . Therefore

‖g‖2
0,K =

∑

τ∈TK

‖g‖2
0,τ �

∑

τ∈TK

h−2i
τ ‖g‖2−i,τ � h−2i

K ‖g‖2−i,K ,

as required. ��
Let Sk(TK ) be the standard continuous k-th order Lagrange finite element space on

TK and S0
k (TK ) := Sk(TK ) ∩ H1

0 (K ). Define QK : Vk,l(K ) → Sk(TK ) as follows:

1. QK v|∂K = v|∂K ;
2. (QK v, φ)K = (v, φ)K for all φ ∈ S0

k (TK ).

That means, the projection function preserves the boundary value of the original VEM
function, and the interior nodal values are further determined by the orthogonality
conditions imposed. Now, let us prove the following stability result of QK .

Lemma 3.2 (Weighted stability of QK ) For any ε > 0, there holds

h1/2
K ‖QK v‖0,∂K + ‖QK v‖0,K � (1 + ε−1)‖v‖0,K + εhK ‖∇v‖0,K , v ∈ Vk,l(K ),

where the generic constant is independent of the parameter ε.

Proof First of all, write QK v = v∂,h +v0,h , where v∂,h is a function in Sk(TK ) which
vanishes on the interior nodes of Sk(TK ) and is equal to v on ∂K . It is evident that
v0,h = QK v − v∂,h ∈ S0

k (TK ). Therefore

(QK v, QK v)K = (QK v, v∂,h)K + (QK v, v0,h)K =: I1 + I2.

The first term can be bounded by

I1 ≤ ‖QK v‖0,K ‖v∂,h‖0,K .

By the definition of QK , the second term can be bounded as

I2 = (v, v0,h)K ≤ ‖v‖0,K ‖v0,h‖0,K ≤ ‖v‖0,K
(‖v∂,h‖0,K + ‖QK v‖) .

Hence, we have by Young’s inequality that

‖QK v‖0,K � ‖v‖0,K + ‖v∂,h‖0,K . (16)

So the key is to estimate the boundary term ‖v∂,h‖0,K . For a boundary edge e,
denote by τe the triangle in TK with e as an edge. By the definition of v∂,h , we have

‖v∂,h‖2
0,K �

∑

e⊂∂K

‖v∂,h‖2
0,τe

�
∑

e⊂∂K

‖v∂,h‖2
0,ehe =

∑

e⊂∂K

‖v‖2
0,ehe,
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where, in the derivation of the last step, we also use the fact v∂,h |∂K = QK v|∂K =
v|∂K .

On the other hand, for a bounded domain ω with Lipschitz boundary, the estimate
‖v‖2

0,∂ω � ‖v‖0,ω‖∇v‖0,ω holds for any v ∈ H1(ω) (see [10]). Hence, it follows
from the scaling argument and Young’s inequality that on each triangle τe, there holds
the following weighted trace estimate

he‖v‖2
0,e � ε−2‖v‖2

0,τe
+ ε2h2

e‖∇v‖2
0,τe

.

Summing over e ⊂ ∂K and taking square root yield

‖v∂,h‖0,K � h1/2
K ‖QK v‖0,∂K � ε−1‖v‖0,K + εhK ‖∇v‖0,K , (17)

from which and (16) the desired inequality for ‖QK v‖0,K follows readily. The inequal-
ity (17) also implies the desired estimate for h1/2

K ‖QK v‖0,∂K directly. The proof is
complete. ��

To develop various estimates for a function in VEM spaces, we shall separate it
into two functions, related to the moment and the trace of the function, respectively.

Lemma 3.3 (An H1-orthogonal decomposition) Every function v ∈ H1(K ) admits
the decomposition

v = v1 + v2,

where

1. v1 ∈ H1(K ), v1|∂K = v|∂K ,�v1 = 0 in K ,
2. v2 ∈ H1

0 (K ),�v2 = �v in K .

Furthermore the decomposition is H1-orthogonal in the sense that

‖∇v‖2
0,K = ‖∇v1‖2

0,K + ‖∇v2‖2
0,K .

Proof One can simply choose v2 as the H1-projection of v to H1
0 (K ), i.e., v2 ∈ H1

0 (K )

satisfies the variational equation

(∇v2,∇φ)K = (∇v,∇φ)K for all φ ∈ H1
0 (K ),

and then set v1 = v − v2. Equivalently, one can set v1 to be a harmonic function in K
which has the same boundary value of v, and then let v2 = v − v1. ��

For the harmonic part, we have the following inequality.

Lemma 3.4 (A weighted inequality of the harmonic part of a VEM function) For any
function v ∈ Vk,l(K ), let v1 ∈ H1(K ), v1|∂K = v|∂K ,�v1 = 0 in K . Then for any
ε > 0, there holds

‖∇v1‖0,K � h−1
K (1 + ε−1)‖v‖0,K + ε‖∇v‖0,K ,

where the generic constant is independent of ε.
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Proof Using the fact �v1 = 0 in K , one has

‖∇v1‖0,K = inf
w∈H1(K ),w|∂K =v1|∂K

‖∇w‖0,K . (18)

Observe that QK v|∂K = v1|∂K and QK v ∈ H1(K ). Therefore, from the principle
of energy minimization (18), the inverse inequality for functions in Sk(TK ), and the
weighted stability of QK , it follows that

‖∇v1‖0,K ≤‖∇(QK v)‖0,K �h−1
K ‖QK v‖0,K ≤ h−1

K (1 + ε−1)‖v‖0,K + ε‖∇v‖0,K ,

as required. ��
We now estimate the second part in the decomposition.

Lemma 3.5 (Inverse inequality of non-zero moments part) For any function v ∈
Vk,l(K ), let v2 ∈ H1

0 (K ) satisfies �v2 = �v in K . Then

‖∇v2‖0,K � h−1
K ‖v‖0,K .

Proof As v2 ∈ H1
0 (K ) and �v2 = �v in K , applying the integration by parts yields

‖∇v2‖2
0,K = −(�v2, v2)K = −(�v, v2)K ≤ ‖�v‖0,K ‖v2‖0,K ,

which along with the Poincaré–Friedrichs inequality (11) for v2 ∈ H1
0 (K) implies

‖∇v2‖0,K ≤ hK ‖�v‖0,K . (19)

For v ∈ Vk,l(K ), one can apply the inverse inequality to �v ∈ Pl :

‖�v‖K � h−2
K ‖�v‖−2,K ≤ h−2

K ‖v‖0,K . (20)

Hence, the combination of (19) and (20) immediately leads to the desired estimate. ��
Now, we summarize our main result in this section as follows.

Theorem 3.6 (Inverse inequality of a VEM function) The following inverse inequality
holds:

‖∇v‖0,K � h−1
K ‖v‖0,K for all v ∈ Vk,l(K ).

Proof By Lemmas 3.4 and 3.5, one has

‖∇v‖0,K ≤ ‖∇v1‖0,K + ‖∇v2‖0,K � h−1
K ‖v‖0,K + ε‖∇v‖0,K .

Choose ε small enough and absorb the term ε‖∇v‖0,K to the left hand side to get the
desired inverse inequality. ��
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As an application of the inverse inequality, we prove the L2-stability of the projec-
tion operators QK and �∇

k restricted to VEM spaces.

Corollary 3.7 (L2-stability of QK ) The operator QK : Vk,l(K ) → Sk(TK ) is L2-
stable, i.e.,

‖QK v‖0,K � ‖v‖0,K for all v ∈ Vk,l(K ).

Proof Simply apply the inverse inequality to bound hK ‖∇v‖0,K � ‖v‖0,K in Lemma
3.2 to get the desired result. ��
Corollary 3.8 (L2-stability of �∇

k ) Let k, l be two positive integers and l ≥ k − 2.
The operator �∇

k : Vk,l(K ) → Pk(K ) is L2-stable, i.e.,

∥
∥
∥�∇

k v

∥
∥
∥

0,K
� ‖v‖0,K , for all v ∈ Vk,l(K ).

Proof By the triangle inequality and the Poincaré–Friedrichs inequality, we have

∥
∥
∥�∇

k v

∥
∥
∥

0,K
≤ ‖v‖0,K +

∥
∥
∥v − �∇

k v

∥
∥
∥

0,K
� ‖v‖0,K + hK

∥
∥
∥∇

(

v − �∇
k v

)∥
∥
∥

0,K
.

Then by the H1-stability of �∇
k and the inverse inequality

hK

∥
∥
∥∇

(

v − �∇
k v

)∥
∥
∥

0,K
� hK ‖∇v‖0,K � ‖v‖0,K .

The proof is thus completed. ��

4 Norm equivalence

We shall prove the norm equivalence between L2-norm of a VEM function and l2-
norm of the corresponding vector representation using d.o.f. In light of this result, we
are able to derive two stabilization methods used in VEM formulation.

4.1 Norm equivalence of polynomial spaces on a polygon

We begin with a norm equivalence of polynomial spaces on polygons.

Lemma 4.1 (Norm equivalence of polynomial spaces on a polygon) Let g =
∑

α gαmα be a polynomial on K . Denote by g = (gα) the coefficient vector. Then the
following norm equivalence holds

hK ‖g‖l2 � ‖g‖0,K � hK ‖g‖l2 .
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Proof The inequality ‖g‖0,K � hK ‖g‖l2 is straightforward. As xc is the average of
coordinates of all vertices of the polygon, we have ‖mα‖∞,K ≤ 1 and thus ‖mα‖0,K �
hK . Then by the triangle inequality and the Cauchy–Schwarz inequality,

‖g‖0,K ≤
∑

α

|gα|‖mα‖0,K � hK ‖g‖l2 .

The proof of the lower bound hK ‖g‖l2 � ‖g‖0,K is technical. Again the standard
scaling argument cannot be applied since there is no reference polygon. Instead we
choose a circle Sτ inside a triangle τ ∈ TK such that the radius satisfies rτ = δhK ,
where the constant δ ∈ (0, 1) depending only on the shape regularity and quasi-
uniformity of the triangulation TK . After applying an affine map x̂ = (x − xc)/hK ,
the transformed circle Ŝτ with radius δ is contained in the unit disk centered at the
origin. As Sτ ⊂ K , we have

‖g‖0,K ≥ ‖g‖0,Sτ = ‖ĝ‖0,Ŝτ
hK , (21)

where ĝ(x̂) := g(x). Let M̂i j = ∫

Ŝτ
m̂i m̂ j dx̂ and M̂ = (M̂i j ). Then

‖ĝ‖2
0,Ŝτ

= gᵀM̂ g ≥ λmin(M̂)‖g‖2
l2 , (22)

where λmin(M̂) denotes the smallest eigenvalue of the mass matrix M̂ . It is evident to
check that the entry M̂i j of the mass matrix is a continuous function of the center c of
the circle Ŝτ . Hence, we simply write λmin(M̂) as λmin(c), which is also continuous
with respect to c. On the other hand, by the construction, c is contained in the unit disk.
We then let λ∗ = minc,|c|≤1 λmin(c) and obtain a uniform bound ‖ĝ‖2

0,Ŝτ
≥ λ∗‖g‖2

l2 .

Notice that after the scaling, the proof is done on a reference circle and thus the constant
λ∗ depends only on the radius δ of Ŝτ .

Combining (21) and (22), the following desired inequality is obtained with a con-
stant depending only on the shape regularity and quasi-uniform constants of the
triangulation TK :

hK ‖g‖l2 � ‖g‖0,K ,

as required. ��

4.2 Norm equivalence for VEM spaces

In this subsection, we are going to prove the norm equivalence of the L2-norm of
VEM functions to the l2-norm of their corresponding d.o.f. vectors.

Lemma 4.2 (Lower bound) For any v ∈ Vk,l(K ), the following estimate holds:

hK ‖χ(v)‖l2 � ‖v‖0,K .
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Proof The d.o.f.s are grouped into two categories: χ∂K (·) are d.o.f.s associated with
the boundary of K , and χ K (·) are moments in K .

Restricted to the boundary, v|∂K ∈ Bk(K ) consists of standard Lagrange elements.
A standard scaling argument yields

hK ‖χ∂K (v)‖l2 � h1/2
K ‖v‖0,∂K .

Apply the weighted trace theorem in Lemma 3.2, and the inverse inequality of functions
in VEM spaces to obtain

h1/2
K ‖v‖0,∂K � ‖v‖0,K + hK ‖∇v‖0,K � ‖v‖0,K .

For the d.o.f.s of interior moments, applying the Cauchy–Schwarz inequality gives

|K |−1
∫

K
vm dx ≤ |K |−1‖v‖0,K ‖m‖0,K � h−1

K ‖v‖0,K for all m ∈ Ml(K ).

Combining the estimate of χ∂K (·) and χ K (·) finishes the proof. ��
The proof of the estimate of the upper bound turns out to be technical. Again we

shall use the H1 decomposition presented in Lemma 3.3.

Lemma 4.3 (Upper bound for the harmonic part) For any v ∈ Vk,l(K ), let v1 ∈
H1(K ) satisfy v1|∂K = v|∂K and �v1 = 0 in K . Then

‖v1‖0,K � hK ‖χ∂K (v)‖l2 .

Proof By the construction v1 can be written as

v1 =
N∂K∑

i=1

χi (v1)φi (x),

where {φi |∂K } ⊂ Bk(∂K ) is a dual basis of χ∂K on the boundary and �φi = 0 inside
K . By the Cauchy–Schwarz inequality, it suffices to prove ‖φi‖0,K � hK .

Restricting φi to the boundary, one can use the scaling argument for each edge and
conclude ‖φi‖∞,∂K � 1. As φi is harmonic, by the maximum principle, ‖φi‖∞,K ≤
‖φi‖∞,∂K � 1. Then ‖φi‖0,K � hK follows. ��
Lemma 4.4 (Upper bound for the moment part) For any v ∈ Vk,l(K ), let v2 ∈ H1

0 (K )

satisfy �v2 = �v in K . Then

‖v2‖0,K � hK ‖χ(v)‖l2 .

Proof Let g = −�v = −�v2. Then by integration by parts

‖∇v2‖2
0,K = −(�v2, v2)K = (g, v2)K = (g, v)K − (g, v1)K . (23)
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Expand g in the basis mα , i.e. g = ∑

α gαmα and denote by g = (gα). Then by the
Cauchy–Schwarz inequality and the norm equivalence for g in Lemma 4.1, one has

(g, v)K = |K |
∑

α

gαχα(v) � h2
K ‖g‖l2‖χ K (v)‖l2 � hK ‖g‖0,K ‖χ K (v)‖l2 .

An upper bound of ‖∇v2‖0,K is then obtained by substituting the above estimate into
(23):

‖∇v2‖2
0,K � hK ‖�v2‖0,K

(‖χ K (v)‖l2 + ‖v1‖0,K
)

� ‖∇v2‖0,K ‖χ(v)‖l2 , (24)

i.e.,

‖∇v2‖0,K � ‖χ(v)‖l2 .

In the derivation of (24), we have also used the inverse inequality and the upper bound
for v1 established in Lemma 4.3 and the inverse inequality for �v2 ∈ Pk−2 (cf. Lemma
3.1).

Finally the proof is completed by using the Poincaré–Friedrichs inequality
‖v2‖0,K � hK ‖∇v2‖0,K for v2 ∈ H1

0 (K ). ��
In summary, the following theorem holds.

Theorem 4.5 (Norm equivalence between L2 and l2-norms) For any v ∈ Vk,l(K ),
the following norm equivalence holds

hK ‖χ(v)‖l2 � ‖v‖0,K � hK ‖χ(v)‖l2 .

For functions in space Vk(K ), Theorem 4.5 can be applied directly. For space
Wk(K ) ⊂ Vk,k(K ), if Theorem 4.5 is applied to functions in Vk,k(K ), additional
moments in χk

K \χk−2
K are involved. Henceforth we shall show that no additional

moments are required for Wk(K ).

Corollary 4.6 (Norm equivalence between L2 and l2-norms for Wk(K )) For any
v ∈ Wk(K ), the following norm equivalence holds:

hK ‖χ(v)‖l2 � ‖v‖0,K � hK ‖χ(v)‖l2 .

Proof The lower bound hK ‖χ(v)‖l2 � ‖v‖0,K is trivial, since Wk(K ) is a subspace of
Vk,k(K ), and the d.o.f.s in Vk,k(K ), comparing with that of Wk(K ), contain additional
moments with weights χk

K \χk−2
K . To prove the upper bound, it suffices to bound these

additional moments by the other degrees of freedom.
By the definition of Wk(K ),

(v, m)K =
(

�∇
k v, m

)

K
for all m ∈ Mk(K )\Mk−2(K ).
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Thus, by the Cauchy–Schwarz inequality and the bound ‖m‖0,K � hK , it suffices to
bound ‖�∇

k v‖0,K . Using the d.o.f.s of v ∈ Wk(K ), we can find another function ṽ ∈
Vk(K ) such that χ(ṽ) = χ(v). Notice that the projection �∇

k is uniquely determined
by the d.o.f.s, so

�∇
k v = �∇

k ṽ.

Then by the L2-stability of �∇
k in Corollary 3.8 and the norm equivalence for

ṽ ∈ Vk(K ), we obtain
∥
∥
∥�∇

k v

∥
∥
∥

0,K
=

∥
∥
∥�∇

k ṽ

∥
∥
∥

0,K
� ‖ṽ‖0,K � hK ‖χ(ṽ)‖l2 = hK ‖χ(v)‖l2 .

With the above estimate in mind, we have, for χ ∈ χk
K \χk−2

K ,

|χ(v)| = |K |−1|(v, m)K | � h−1
K

∥
∥
∥�∇

k v

∥
∥
∥

0,K
� ‖χ(v)‖l2 .

The proof is complete. ��

4.3 Norm equivalence of VEM formulation

With Theorem 4.5, we can obtain the following stability result.

Theorem 4.7 (Norm equivalence for stabilization using �∇
k ) For v ∈ Vk(K ) or

Wk(K ), the following norm equivalence holds

‖∇v‖2
0,K �

∥
∥
∥∇�∇

k v

∥
∥
∥

2

0,K
+

∥
∥
∥χ

(

v − �∇
k v

)∥
∥
∥

2

l2
.

Proof By the definition of �∇
k , the orthogonality holds:

‖∇v‖2
0,K =

∥
∥
∥∇�∇

k v

∥
∥
∥

2

0,K
+

∥
∥
∥∇

(

v − �∇
k v

)∥
∥
∥

2

0,K
. (25)

Using the inverse inequality and norm equivalence for L2-norm, one can obtain

∥
∥
∥∇

(

v − �∇
k v

)∥
∥
∥

0,K
� h−1

K

∥
∥
∥v − �∇

k v

∥
∥
∥

0,K
�

∥
∥
∥χ

(

v − �∇
k v

)∥
∥
∥

l2
.

It is noted that for v ∈ Wk(K ) ⊂ Vk,k(K ), additional moments in χk
K \χk−2

K are
involved when the norm equivalence is applied for functions Vk,k(K ). However, these
moments vanish for v − �∇

k v, according to the definition of Wk(K ).
To prove the lower bound, we shall apply the Poincaré–Friedrichs inequality in

Lemma 2.2 and the lower bound in the norm equivalence to get

∥
∥
∥χ

(

v − �∇
k v

)∥
∥
∥

l2
� h−1

K

∥
∥
∥v − �∇

k v

∥
∥
∥

0,K
�

∥
∥
∥∇

(

v − �∇
k v

)∥
∥
∥

0,K
,

as required. ��
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Following [2], we introduce the L2-projection �0
k : Wk(K ) → Pk(K ) and verify

the stability of another stabilization using �0
k . For moments up to k − 2, the d.o.f.s of

VEM function v ∈ Wk(K ) can be used, and �∇
k v is used for higher moments. That

is: given v ∈ Wk(K ), define �0
kv ∈ Pk(K ) such that

{(

�0
kv, m

)

K = (v, m)K for all m ∈ Pk−2(K ),
(

�0
kv, m

)

K = (

�∇
k v, m

)

K for all m ∈ Pk(K )\Pk−2(K ).

Using the slice operator I − �0
k , the stabilization can be reduced to the d.o.f.s on the

boundary only.

Corollary 4.8 (Norm equivalence for stabilization using �0
k) For v ∈ Wk(K ), the

following norm equivalence holds

‖∇v‖2
0,K �

∥
∥
∥∇�∇

k v

∥
∥
∥

2

0,K
+

∥
∥
∥χ∂K

(

v − �0
kv

)∥
∥
∥

2

l2
.

Proof As both �∇
k and �0

k preserve polynomial of degree k, (I − �0
k)v = (I −

�0
k)(I − �∇

k )v and (I − �∇
k )v = (I − �∇

k )(I − �0
k)v.

Using the stability of �∇
k in H1-seminorm and the inverse inequality for VEM

functions, we get

∥
∥
∥∇

(

I − �∇
k

)

v

∥
∥
∥

0,K
=

∥
∥
∥∇

(

I − �∇
k

) (

I − �0
k

)

v

∥
∥
∥

0,K
≤

∥
∥
∥∇

(

I − �0
k

)

v

∥
∥
∥

0,K

� h−1
k

∥
∥
∥

(

I − �0
k

)

v

∥
∥
∥

0,K
.

Going backwards, using the approximation property of the L2-projection yields

∥
∥
∥

(

I − �0
k

)

v

∥
∥
∥

0,K
=

∥
∥
∥

(

I − �0
k

) (

I − �∇
k

)

v

∥
∥
∥

0,K
� hK

∥
∥
∥∇

(

I − �∇
k

)

v

∥
∥
∥

0,K
.

In summary, the following norm equivalence is obtained

h−1
K

∥
∥
∥

(

I − �0
k

)

v

∥
∥
∥

0,K
�

∥
∥
∥∇

(

I − �∇
k

)

v

∥
∥
∥

0,K
.

Furthermore, observing that the moment d.o.f.s χ K for v − �0
kv vanish, we have

from Theorem 4.5 that h−1
K ‖(I − �0

k)v‖0,K is equivalent to ‖χ∂K (v − �0
kv)‖l2 . This

combined with (25) implies the desired result readily. ��
Remark 4.9 An L2-projection �0

k to Pk(K ) can be defined using moments d.o.f.s of
a VEM function in Vk,k(K ). Given a function v ∈ Vk,k(K ), denote by v0 = �0

kv and
vb = v|∂K , then (vb, v0) is a variant of the so-called weak function introduced in the
weak Galerkin methods (cf. [24]). The stabilization term can be formulated as

(

χ∂K (ub − u0),χ∂K (vb − v0)
)

.
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The approximated gradient ∇�∇
k v is indeed a variant of a weak gradient of the weak

function (vb, v0). It is also equivalent to a special version of HDG: the embedded
discontinuous Galerkin method (cf. [18,22]).

5 Interpolation error estimates

In this section, we shall provide interpolation error estimates for several interpolations
to VEM spaces. The following projection and interpolants of a function v ∈ H1(K )∩
C0(K̄ ) are used in this section:

• vπ ∈ Pk(K ): the L2 projection of v to the polynomial space;
• vc ∈ Sk(TK ): the standard nodal interpolant to finite element space Sk(TK ) based

on the auxiliary triangulation TK of K ;
• vI ∈ Vk(K ) defined as the solution of the local problem

�vI = �vπ in K , vI = vc on ∂K .

• IK v ∈ Vk(K ) defined by d.o.f., i.e.,

IK v = vc on ∂K , (IK v, p)K = (v, p)K , ∀p ∈ Pk−2(K ).

• I W
K v ∈ Wk(K ) defined by d.o.f., i.e.,

I W
K v = vc on ∂K , (I W

K v, p)K = (v, p)K , ∀p ∈ Pk−2(K ).

Error estimates of vπ and vc are well known (see e.g. [10]): for wK = vc or vπ

‖v − wK ‖0,K + hK |v − wK |1,K � hk+1
K ‖v‖k+1,K ∀v ∈ Hk+1(K ). (26)

Remark 5.1 Error estimate for vπ is usually presented for a star-shaped domain but
can be generalized to a domain which is a union of star shaped sub-domains (see [21]).
Under Assumption A1, the polygon K satisfies the previous condition, so the estimate
(26) holds for wK = vπ .

The following error estimate can be found in [23, Proposition 4.2]. For complete-
ness, we present a shorter proof by comparing vI with vc.

Lemma 5.2 (Interpolation error estimate of uI ) The following optimal order error
estimate holds:

‖v − vI ‖0,K + hK |v − vI |1,K � hk+1
K ‖v‖k+1,K ∀v ∈ Hk+1(K ). (27)

Proof By the triangle inequality, it suffices to estimate the difference vI −vc ∈ H1
0 (K ).

By the Poincaré–Friedrichs inequality ‖v‖0,K ≤ hK ‖∇v‖0,K for v ∈ H1
0 (K ), it

suffices to bound the H1-seminorm of vI − vc.
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Recalling the definition of vI and noting vI − vc ∈ H1
0 (K ), we have

(∇vI ,∇(vI − vc))K = (∇vπ ,∇(vI − vc))K .

Therefore

‖∇(vI − vc)‖2
0,K = (∇(vπ − vc),∇(vI − vc))K .

By the Cauchy–Schwarz inequality and the triangle inequality, there holds

‖∇(vI − vc)‖0,K ≤ ‖∇(vπ − vc)‖0,K ≤ ‖∇(v − vc)‖0,K + ‖∇(v − vπ )‖0,K .

The desired result then follows readily from error estimates for vc and vπ together. ��

Now we estimate v − IK v by comparing IK v with vI .

Theorem 5.3 (Interpolation error estimate of IK v) For v ∈ Hk+1(K ), the following
optimal order error estimate holds in both L2 and H1-norm

‖v − IK v‖0,K + hK |v − IK v|1,K � hk+1
K ‖v‖k+1,K .

Proof By the triangle inequality and error estimate on vI in (27), it suffices to estimate
vI − IK v ∈ H1

0 (K ) as follows:

(∇(vI − IK v),∇(vI − IK v))K = −(�(vI − IK v), vI − IK v)K

= (�(vI − IK v), v − vI )K

≤ ‖�(vI − IK v)‖0,K ‖v − vI ‖0,K

� h−1
K ‖∇(vI − IK v)‖0,K hk+1

K ‖v‖k+1,K .

The first step involves integration by parts and the fact vI − IK v ∈ H1
0 (K ). The term

(�(vI − IK v), v − IK v) = 0 is due to �(vI − IK v) ∈ Pk−2(K ) and the moment
preservation of the canonical interpolation. The last step uses the inverse inequality
for �(vI − IK v) ∈ Pk−2(K ) in (3.1) and error estimate of v − vI in (27). The desired
error estimate then follows from canceling one ‖∇(vI − IK v)‖0,K . ��

Next, we present the interpolation error estimate of v − I W
K v by comparing I W

K v

with IK v.

Theorem 5.4 (Interpolation error estimate of I W
K v) For v ∈ Hk+1(K ), the optimal

order error estimate holds in both L2 and H1-norm

∥
∥
∥v − I W

K v

∥
∥
∥

0,K
+ hK

∥
∥
∥∇

(

v − I W
K v

)∥
∥
∥

0,K
� hk+1

K ‖v‖k+1,K .
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Proof Again by the triangle inequality and the obtained error estimate for v − IK v,
it suffices to estimate I W

K v − IK v ∈ H1
0 (K ). A crucial observation is that both inter-

polants, although in different VEM spaces, share the same d.o.f., i.e., χ(I W
K v) =

χ(IK v). Therefore �∇
k I W

K v = �∇
k IK v = �∇

k v.

Using the norm equivalence in Theorem 4.7, we have:

∥
∥
∥∇

(

I W
K v − IK v

)∥
∥
∥

0,K
≤

∥
∥
∥∇

(

I − �∇
k

)

I W
K v

∥
∥
∥

0,K
+

∥
∥
∥∇

(

I − �∇
k

)

IK v

∥
∥
∥

0,K

�
∥
∥
∥χ

(

I − �∇
k

)

I W
K v

∥
∥
∥

l2
+

∥
∥
∥∇

(

I − �∇
k

)

IK v

∥
∥
∥

0,K

=
∥
∥
∥χ

(

I − �∇
k

)

IK v

∥
∥
∥

l2
+

∥
∥
∥∇

(

I − �∇
k

)

IK v

∥
∥
∥

0,K

�
∥
∥
∥∇

(

I − �∇
k

)

IK v

∥
∥
∥

0,K

�
∥
∥
∥∇

(

v − �∇
k v

)∥
∥
∥

0,K
+ ‖∇ (v − IK v)‖0,K

� ‖∇ (v − IK v)‖0,K ,

as required. ��
Remark 5.5 Notice that the norm equivalence to I W

K v− IK v cannot be applied directly
since they are in different spaces. Here we use the relations �∇

k I W
K v = �∇

k IK v = �∇
k v

and χ(I W
K v) = χ(IK v) as a bridge to switch the estimate for I W

K v to that of IK v.

6 Conclusion and future work

In this paper we have established the inverse inequality, norm equivalence between the
norm of a virtual element function and its degrees of freedom, and interpolation error
estimates for several VEM spaces on a polygon which admits a virtual quasi-uniform
triangulation, i.e., Assumption A1.

We note thatA1 rules out polygons with high aspect ratio. Equivalently the constant
is not robust to the aspect ratio of K . For example, a rectangle K with two sides hmax
and hmin. It can be decomposed into union of shape regular rectangles but the number
depends on the aspect ratio hmax/hmin. In numerical simulation, however, VEM is also
robust to the aspect ratio of the elements. In a forthcoming paper, we will examine
anisotropic error analysis of VEM based on certain maximum angle conditions.

We present our proofs in two dimensions but it is possible to extend the techniques
to three dimensions. The outline is given as follows. Given a polyhedral region K , we
need to assume A1 holds for each face F ⊂ ∂K and are able to prove results restricted
to each face. Then we assume A1 holds for K and prove results as for the 2-D case.
It is our ongoing study to develop the details in this case.
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