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1 Introduction

In this paper, we develop and analyze an efficient multigrid method to solve
the finite element systems from elliptic obstacle problems on two dimensional
adaptive meshes. Adaptive finite element methods (AFEMs) based on local
mesh refinement are an important and efficient approach when the solution is
non-smooth. An optimality theory on AFEM for linear elliptic equations can
be found in Nochetto et al. [2009]. To achieve optimal complexity, an efficient
solver for the discretization is indispensable.

The classical projected successive over-relaxation method by Cryer [1979]
converges but the convergence rate degenerates quickly as the mesh size ap-
proaches zero. To speed up the convergence, different multigrid and domain
decomposition techniques have been developed (see the monograph by Ko-
rnhuber [1997] and the recent review by Graser and Kornhuber [2009].) In
particular, the constraint decomposition method by Tai [2003] is proved to
be convergent linearly with a rate which is almost robust with respect to the
mesh size in R2; but the result is restricted to uniformly refined grids.

We shall extend the algorithm and theoretical results by Tai [2003] to an
important class of adaptive grids obtained by newest vertex bisections; there-
after we call them bisection grids for short. This is new according to Graser
and Kornhuber [2009]: the existing work assumes quasi-uniformity of the un-
derlying meshes. Based on a decomposition of bisection grids due to Chen
et al. [2009], we present an efficient constraint decomposition method on bi-
section grids and prove an almost uniform convergence

J (uk)− J (u∗) ≤ C
(

1− 1

1 + | log hmin|2
)k
, (1)
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where J (u) =
∫
Ω

( 1
2 |∇u|

2 − fu) dx is the objective energy functional, uk is
the k-th iteration and u∗ is the exact solution of the constrain minimization
problem, hmin = minτ∈T diam(τ) and the grid T is obtained by bisections
from a suitable initial triangulation T0.

2 Constraint Decomposition Methods

The subspace correction framework Xu [1992] has been extended to nonlinear
convex minimization problems by Tai and Xu [2002]. This technique has also
been applied to develop domain decomposition and multigrid methods for
obstacle problems in Badea et al. [2003], Tai et al. [2002]. Furthermore, a
constraint decomposition method (CDM) was introduced and proved to have
a contraction factor which is almost independent of mesh size by Tai [2003].
In this section, we briefly review the CDM for obstacle problems.

Let V ⊂ H1
0 be a finite dimensional Hilbert space and J : K → R be a

convex functional defined over the convex set K ⊂ V. We consider the energy
minimization problem

min
v∈K
J (v). (2)

In this paper, for simplicity, we only consider the case

J (u) :=

∫
Ω

(
1

2
|∇u|2 − fu) dx and K := {v ∈ V | v ≥ 0}, (3)

where Ω ⊂ R2 is a polygonal domain, T is a conforming triangulation of Ω,
V = V(T ) is the continuous piecewise linear finite element space over T . Let
|||·||| be the norm associated to the energy J . For our choice of J in (3), the
energy norm is |||u||| = ‖∇u‖. The algorithm discussed in this paper can be
generalized to problems with more general energies and obstacles.

We decompose the space V into a sum of subspaces Vi ⊂ V, i = 1, . . . ,m:

V = V1 + · · ·+ Vm =
∑m
i=1 Vi, (4)

and further decompose the convex set K as follows

K = K1 + · · ·+ Km =
∑m
i=1 Ki with Ki ⊂ Vi (i = 1, . . . ,m), (5)

where Ki are convex and closed in Vi. Then we have the following abstract
algorithm of successive subspace correction type.

Algorithm 1 (CDM) Given an initial guess u0 ∈ K.
For k = 0, 1, . . . , till convergence

Decompose uk =
∑m
i=1 ui, such that ui ∈ Ki; and let w0 = uk.

For i = 1 : m
wi = wi−1 + argmindi

{
J (wi−1 + di) | di ∈ Vi and ui + di ∈ Ki

}
.

End For
Let uk+1 = wm.

End For
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It is clear that each iteration wi (i = 1, . . . ,m) stays in the feasible set
K due to (5). The linear convergent rate of Algorithm 1 has been established
by Tai [2003] under the following assumptions:

Assumption 2 (Assumptions on Decomposition) We assume that

1. Nonlinear Stability : For any u, v ∈ K, there exist a constant C1 > 0 and
decompositions u =

∑m
i=1 ui, v =

∑m
i=1 vi with ui, vi ∈ Ki such that

( m∑
i=1

|||ui − vi|||2
) 1

2 ≤ C1 |||u− v||| ;

2. Nonlinear Strengthened Cauchy–Schwarz : There exists C2 > 0 such that

m∑
i,j=1

| 〈J ′(wij + vi)− J ′(wij), ṽj〉 | ≤ C2

( m∑
i=1

|||vi|||2
) 1

2
( m∑
j=1

|||ṽj |||2
) 1

2

,

for any wij ∈ V, vi ∈ Vi, and ṽj ∈ Vj .

Theorem 3 (Convergence Rate of CDM) If Assumption 2 is satisfied,
then Algorithm 1 converges linearly and

J (w)− J (u∗)

J (u)− J (u∗)
≤ 1− 1

(
√

1 + C0 +
√
C0)2

, (6)

where u∗ is the solution of (2) and C0 = 2C2 + C2
1C

2
2 .

3 A Constraint Decomposition on Bisection Grids

In this section, we construct subspace decompositions of the linear finite el-
ement space V, as well as a constraint decomposition of K, on a bisection
grid T . Our new algorithm is based on a decomposition of bisection grids
introduced in Chen et al. [2009]; see also Xu et al. [2009].

For each triangle τ ∈ T , we label one vertex of τ as the newest vertex
and call it V (τ). The opposite edge of V (τ) is called the refinement edge and
denoted by E(τ). This process is called labeling of T . Given a labeled initial
grid T0, newest vertex bisection follows two rules:

1. a triangle (father) is bisected to obtain two new triangles (children) by
connecting its newest vertex with the midpoint of its refinement edge;

2. the new vertex created at the midpoint of the refinement edge is labeled
as the newest vertex of each child.

Therefore, refined grids T from a labeled initial grid T0 inherit labels according
to the second rule and the bisection process can thus proceed. We define C(T0)
as the set of conforming triangulations obtained from T0 by newest vertex
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bisection(s). It can be easily shown that all the descendants of a triangle in
T0 fall into four similarity classes and hence any triangulation T ∈ C(T0) is
shape-regular.

Let T be a labeled conforming mesh. Two triangles sharing a common edge
are called neighbors to each other. A triangle τ has at most three neighbors.
The neighbor sharing the refinement edge of τ is called the refinement neighbor
and denoted by F (τ). Note that F (τ) = ∅ if E(τ) is on the boundary of Ω.
Although E(τ) ⊂ F (τ), the refinement edge of F (τ) could be different than
E(τ). An element τ is called compatible if F (F (τ)) = τ or F (τ) = ∅. We call
a grid T compatibly labeled if every element in T is compatible and call such
a labeling of T a compatible labeling.

For a compatible element τ , its refinement edge e is called a compatible
edge, and ωe = τ ∪ F (τ) is called a compatible patch. By this definition, if
e is a compatible edge, ωe is either a pair of two triangles sharing the same
refinement edge e or one triangle whose refinement edge e is on the bound-
ary. In both cases, bisection of triangles in ωe preserves mesh conformity; we
call such a bisection a compatible bisection. Mathematically, we define the
compatible bisection as a map be : ωe → ωp, where ωp consists of all tri-
angles sharing the new point p introduced in the bisection. We then define
the addition T + be := (T \ωe) ∪ ωp. For a sequence of compatible bisections
B = (b1, b2, · · · , bm), we define

T + B := ((T + b1) + b2) + · · ·+ bm,

whenever the addition is well defined.

T4

=

T0

+

{

b1

b2

b3

b4

}

1

Fig. 1. A decomposition of a bisection grid.

Theorem 4 (Decomposition of Bisection Grids) If T0 is conforming and
compatibly labeled, then for any T ∈ C(T0), there exists a compatible bisection
sequence B = (b1, b2, · · · , bm), such that

T = T0 + B. (7)

Remark 1. We only give a pictorial demonstration in Fig. 1 to illustrate the
decomposition. For the proof of Theorem 4, we refer to Chen et al. [2009],
Xu et al. [2009]. A practical decomposition algorithm has been developed and
implemented by Chen and Zhang [2009]. ut
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Throughout this paper, we will assume that T ∈ C(T0) has been decom-
posed as in (7). We denote the intermediate grids by

Ti := ((T0 + b1) + b2) · · ·+ bi i = 1, . . . ,m,

and observe that Ti ∈ C(T0). Let P(Ti) denote the set of interior vertices of the
triangulation Ti. Denote by ψi,p ∈ V(Ti) the nodal basis function associated
with a node p ∈ P(Ti) and by ωi,p the local patch (i.e. the support of ψi,p). The
subspace corresponding to the compatible bisection bi, which introduces the
new vertex pi ∈ P(Ti), can be written as Vi := span{ψi,p, p ∈ P(Ti) ∩ ωi,pi}.
To enforce the homogenous Dirichlet boundary condition, we simply set Vi =
∅ if pi is a vertex on the boundary. Let V0 = V(T0) be the linear space
corresponding to the initial mesh T0. Then we have a space decomposition
V =

∑m
i=0 Vi.

Based on this space decomposition, there are infinitely many possibilities
to decompose the feasible set K. We do not consider the optimal way to choose
such a constraint decomposition. We simply choose

K =
∑m
i=0 Ki with Ki := {v ∈ Vi | v ≥ 0}, (8)

and focus on how to decompose u ∈ V at each iteration in Algorithm 1.
Let Wj =

∑j
i=0 Vi, j = 1, . . . ,m. For i = m,m − 1, . . . , 1, we first define

Ii−1i : Wi →Wi−1 such that

Ii−1i v(p) =

{
min{v(p), v(pi)}, if p ∈ P(Ti−1) ∩ ωi,pi
v(p), if p ∈ P(Ti−1)\ωi,pi .

We then define Qi : V → Wi−1 to be Qi := Ii−1i Iii+1 · · · Im−1m . Notice that
Qi’s are nonlinear operators, i.e. Qiu−Qiv 6= Qi(u− v). Finally we define a
decomposition u =

∑m
i=0 ui, with

um := u−Qmu, ui := Qi+1u−Qiu (i = m− 1, . . . , 1), u0 = Q1u. (9)

Comparing these with the definitions of Vi and Ki, we can easily see that
ui ∈ Ki, for i = 0, 1, . . . ,m.

Now we prove the convergence rate of the proposed algorithm.

Lemma 1 (Stability of Qi). Let u, v ∈ V. For i = 0, 1, . . . ,m and any
element τ ∈ Ti, we have

h−1τ ‖Qi+1u−Qi+1v‖L2(τ) ≤ C
(
1 + | log(hτ/hmin)|

) 1
2 ‖u− v‖H1(ωi,τ ),

where C is a generic constant independent of the meshsize.

Proof. From the definition of Qi, for any u, v ∈ V, we have that

‖Qi+1u−Qi+1v‖L2(τ) ≤ C
∑

p∈P(Ti)∩τ

‖u−v‖L∞(ωi,p)|τ |
1
2 ≤ Chτ‖u−v‖L∞(ωi,τ ).

The result then follows directly from the discrete Sobolev inequality between
L∞ and H1 in two dimensions; see Bramble et al. [1986]. ut
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| |
x1 x3 x2x5 x4

u

Q2u

Q1u

Figure 1. Decomposition of u.

1

Fig. 2. A one-dimensional example for the decomposition of u. Suppose the initial
grid T0 = {(x1, x3), (x3, x2)}. And the final grid T can be viewed as T0 + b1 + b2
where b1 bisects the element (x3, x2) and introduces x4 and b2 bisects (x1, x2) and
introduces x5. As we discussed above T1 = T0 + b1 and T = T2 = T1 + b2. From the
definition of Qi, we can easily obtain a decomposition of u.

We introduce the generation of elements and compatible bisections. The
generation of each element in the initial grid T0 is defined to be 0, and the
generation of a child is 1 plus that of the father. In Xu et al. [2009] we proved
that all triangles in a compatible patch ωe have the same generation, which
can be used to define the generation, gen(·), for a compatible bisection be and
the corresponding new vertex. For two different compatible bisections, be1 and
be2 , with the same generation, their patch are disjointed, i.e., ωe1 ∩ ωe2 = ∅.

Lemma 2 (Stable Decomposition). For any u, v ∈ K, the decompositions
u =

∑m
i=0 ui, v =

∑m
i=0 vi given by (9) satisfy(

m∑
i=0

|||ui − vi|||2
) 1

2

≤ C
(
1 + | log hmin|) |||u− v||| ;

Proof. First note that the support of Vi is restricted to the extended patch
ω̃i,pi := ∪x∈ωi,piωi,x. Using inverse inequality and stability of Qi, we have

|||ui − vi|||2ω̃i,pi ≤ C‖h
−1
τ (ui − vi)‖2L2(ω̃i,pi )

≤ C(1 + | log hmin|) |||u− v|||2ω̃i,pi .

For bisections with the same generation k, the extended patches, ω̃i,pi , have
finite overlapping and ∪p,gen(p)=k ω̃i,pi ≤ C|Ω|. Let L = maxτ∈T gen(τ). Then

m∑
i=1

|||ui − vi|||2ω̃i,pi =

L∑
k=1

∑
pi,gen(pi)=k

|||ui − vi|||2ω̃i,pi ≤ CL(1+| log hmin|) |||u− v|||2Ω .

The result then follows from the observation that L ≤ C| log hmin|. ut

The proof of the following Strengthened Cauchy–Schwarz (SCS) inequality
can be found in Xu et al. [2009]. The idea of the proof is to apply standard SCS
for each compatible decomposition and then rearrange the sum by generations.
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Lemma 3 (Strengthened Cauchy Schwarz Inequality). For any ui, vi ∈
Vi, i = 0, . . . ,m, we have∣∣∣ m∑

i=0

m∑
j=0

(∇ui,∇vj)
∣∣∣ ≤ C( m∑

i=0

|ui|21
)1/2( m∑

i=1

|vi|21
)1/2

. (10)

Applying the abstract theory (Theorem 3) and Lemma 2 and Lemma 3,
we get the following rate of convergence.

Theorem 5 (Convergent Rate) Let uk be the k-th iteration of Algorithm 1
with the decomposition (9). We then have the following convergence rate

J (uk)− J (u∗) ≤ C
(

1− 1

1 + | log hmin|2
)k
. (11)

4 Numerical Experiments

In this section, we use a numerical example by Tai [2003] to test the proposed
algorithm: Let Ω = (−2, 2)2, f = 0 and the obstacle χ(x) =

√
1− |x|2 if

|x| ≤ 1 and −1, otherwise. In this case, the exact solution is known to be

u∗(x) =

{√
1− |x|2 if |x| ≤ r∗
− r2∗ ln(|x|/2)

√
1− r2∗ otherwise,

where r∗ ≈ 0.6979651482. We give the Dirichlet boundary condition according
to the exact solution above.

Adaptive mesh Degrees of freedom hmin Reduction factor

1 719 1.563e-2 0.508
2 1199 1.105e-2 0.599
3 2107 7.813e-3 0.660
4 3662 5.524e-3 0.651
5 6560 3.901e-3 0.691
6 11841 2.762e-3 0.701

Table 1. The reduction factors for the CDM algorithm on adaptively refined meshes.
The reduction factor is the ratio of energy error between two consecutive iterations.

The contraction factors are computed and reported in Table 1 for a se-
quence of adaptive meshes, where the adaptive mesh refinement is driven by
a posteriori error estimators starting from a uniform initial mesh; such adap-
tive algorithms and estimators can be found in Siebert and Veeser [2007] for
example. The linear convergence rate is confirmed by our numerical exper-
iments and the reduction rate is evaluated when the convergence becomes
linear; there is a superlinear region in the beginning.
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