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Abstract. An efficient multigrid solver for the Oseen problems discretized by Marker

and Cell (MAC) scheme on staggered grid is developed in this paper. Least squares
commutator distributive Gauss-Seidel (LSC-DGS) relaxation is generalized and de-

veloped for Oseen problems. Residual overweighting technique is applied to further
improve the performance of the solver and a defect correction method is suggested

to improve the accuracy of the discretization. Some numerical results are presented

to demonstrate the efficiency and robustness of the proposed solver.
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1. Introduction

We consider multigrid (MG) methods for the following linearized steady-state in-

compressible Navier-Stokes (NS) equations (Oseen model) in two dimensions:





−µ∆u+ (a · ∇)u+∇p =f , in Ω,

∇ · u =0, in Ω,

u = g, on ∂Ω,

(1.1)

where µ = 1/Re, with Re the Reynold number, u = (u, v)t is the velocity, a =
(a(x, y), b(x, y))t is the flow function satisfying diva = 0, g is the boundary data, and

f = (f1, f2)
t is the external force. This linearized model usually comes from using the

Picard’s iteration to solve the NS equation, see, e.g. [13] (Section 7.2.2).
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Spatial discretization of the Oseen model (1.1) using either finite element or finite

difference method leads to a large-scale sparse saddle point system of the following

matrix form
(
F B′

B 0

)(
u

p

)
=

(
f

0

)
, (1.2)

where u now denotes the discrete velocity, p denotes the discrete pressure, F is the

discretization of −µ∆ + (a · ∇), B′ is the discrete gradient, and B is the (negative)

discrete divergence.

Much work has been done for developing efficient solvers for (1.2), especially ef-

ficient preconditioners for Krylov subspace methods based on the block matrix form,

see, e.g. [1, 13] and references therein. Multigrid methods have also been considered,

for example [6,14,16,18,19,22,24,25,33]. We are interested in efficient MG methods

that are robust with respect to both the mesh size h and the Reynold number Re.
For low Reynold number flow, John et. [18, 19] use multiple discretizations which

combines a higher order finite element discretization with a lower order finite element

approximation as a coarse grid solver. In [14], Fuchs and Zhao considered the distribu-

tive Gauss-Seidel (DGS) smoother and have shown that MG method using the DGS

smoother works for enclosed flows in three dimensions with low Re numbers.

For high Reynolds number, the Oseen model becomes convection dominated and

development of robust MG methods becomes more and more challenging. Brandt and

Yavneh [6] propose a MG solver combined with a DGS smoother for high-Reynolds

incompressible entering flows. They use standard or narrow upwind schemes of first

or second order to discretize the convection term. Similar to the DGS smoother for

Stokes problem [5], a good pressure convection-diffusion operator which almost com-

mutes with the divergence operator is constructed to design an efficient DGS smoother.

Based on such smoother, Thomas, Diskin and Brandt [24] obtain textbook multigrid

efficiency for a model problem of flow past a finite flat plate. However, in this work,

the construction of the pressure convection-diffusion operator is done for special flows,

essentially constant flows, and it is not easy to generalize such construction to general

flows. In [33], Zhang develop a MG solver with a second order upwind scheme for

the convection term. Vanka smoother [25] with under-relaxation is used which is not

robust with respect to the Re number. The number of iterations of MG cycles increases

dramatically when Re number increases, i.e. 5 ∼ 300 steps with Re number from the

range of 100 ∼ 5000. In [16], Hamilton, Benzi, and Haber considered MG methods for

the Marker-and-Cell (MAC) discretization using smoothers based on Hermition/skew-

Hermitian (HSS) and augmented Lagrangian (AL) splittings. For steady state Oseen

problem, the proposed MG methods show moderate degeneracy on the Reynolds num-

ber up to Re = 2048.

In this paper, we consider least-square commutator distributive Gauss-Seidel (LSC-

DGS) relaxation for solving the Oseen equation discretized by the MAC discretization

with a first order upwind scheme. Central difference stencils are used for both con-

vection and diffusion operators. To stabilize the scheme, the viscosity µ is replaced
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by a numerical viscosity µh = h‖a‖∞/2. LSC-DGS smoother, first proposed in [26]

for Stokes problems, constructs the commutator in a purely algebraic way and, there-

fore, automatically provides a convection-diffusion operator for the pressure variable

that can be used in the DGS smoothers. The first order upwind scheme depends on

the mesh size h and thus the coarse grid problem is not the original problem consid-

ered in the fine mesh. To minimize the discrepancy between levels, we apply W-cycle

method based the overweighting technique proposed in [7]. According to the numeri-

cal results, the resultingW-cycle MG methods is robust and efficient for the first order

upwind MAC discretization.

Ideally fast solvers should be incorporated with the discretization to achieve certain

accuracy with nearly optimal computational complexity [3]. Our solver developed in

this work, however, is limited to the first order upwinding scheme. We expect the

MG solver based on the LSC-DGS smoother for the first order upwinding scheme can

be used as a preconditioner or in the defect-correction procedure for other high order

stable or unstable discretizations on the same rectangular grids or other unstructured

grids. In this paper, we explore the potential along this direction by considering a

simple example. We apply defect-correction [4, 15] framework to a central difference

discretization, which is known to be a second order but unstable scheme, on the same

rectangular grid. In one defect correction iteration, only fewW-cycles for the first order

upwind discretization are applied. The numerical results for a second order unstable

discretization show that the defect-correct procedure improves the overall accuracy

within several MG iterations.

The rest of the paper is organized as follows. In section 2, we construct LSC-DGS

smoother for the Oseen problem. In section 3, we present the W-cycle with residual

overweighting and in section 4, we present the defect-correction method. In section

5, we provide several numerical examples to show the robustness and efficiency of our

MG solver.

2. LSC-DGS Smoother for the Oseen Problem

In this section, we generalize the LSC-DGS smoother [26] designed for the Stokes

equations to the Oseen problem.

2.1. Discretization

The system (1.1) can be written in the operator form:
(
−µ∆+ a · grad grad

− div 0

)(
u

p

)
=

(
f

0

)
(2.1)

We discretize system (2.1) with (Marker and Cell) MAC scheme on a staggered grid

(see Fig. 1) and obtain the following matrix form
(
F B′

B 0

)(
u

p

)
=

(
f

0

)
, or simply Lx = b. (2.2)
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In order to avoid introducing more notation, we also use u, p and f as vectors when

there is no ambiguity. F and B are the central differential approximations of operators

−µh∆+ a · grad and − div respectively with the numerical viscosity µh = h‖a‖∞/2.
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Figure 1: Location of unknowns on a staggered grid. The discrete pressure p is defined at cell centers (•).
The discrete velocity u and v are defined at vertical edges centers (×) and horizontal edges centers (◦),
respectively.

It is well known that for convection dominated convection-diffusion operators−µ∆+
a · grad, the central difference scheme leads to a unstable scheme. To stabilize the dis-

cretization, we change the viscosity µ to a numerical viscosity µh = h‖a‖∞/2 which

results in a first order upwind scheme. The stencil for the horizontal velocity u is

h‖a‖∞
2




−1
−1 4 −1

−1


+

ha

2




0
−1 0 1

0


 ,

and the stencil for the vertical velocity v is

h‖a‖∞
2




−1
−1 4 −1

−1


+

hb

2




1
0 0 0
−1


 .

This guarantees that the matrix F is an M -matrix and Gauss-Seidel iteration without

special ordering converges for computing F−1. We do not use the standard upwinding

stencil for the convection term, i.e., one sided difference based on the sign of a, which

also leads to an M -matrix discretization of operator F . This is due to the fact that the

commutator in the smoother to be developed in Section 2.3 will be small only if central

difference stencils are used for both convection and diffusion operators.

2.2. Distributive Gauss-Seidel Smoother

An iterative method for solving the linear system (2.2) can be written in the follow-

ing general formulation, starting from an initial guess x0, for k = 0, 1, 2, . . . ,

xk+1 = xk +R(b− Lxk), (2.3)
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whereR is an approximation of L−1. Note that, we may need to include a scaling factor

into R in order to ensure the iterative method is convergent, i.e., ρ(I −RL) < 1 where

I denotes identity matrix and ρ(·) denotes the spectral radius. Using R as an iterative

method may be very slow, i.e., ρ(I − RL) could be very close to one, say 1 − Ch2.
However to be an effective smoother, R only needs to reduce the high frequency part

of the error.

Effective smoothers for Stokes and Navier-Stokes equations include distributive

Gauss-Seidel (DGS) smoothers [5], incomplete LU decomposition for a transformed

system [27, 28], block Jacobi and Gausss-Seidel smoother which is better known as

Vanka smoother [25], constrained smoother by Braess and Sarazin [2], and smoothers

based on the Hermitian/skew-Hermitian (HSS) and augmented Lagrangian (AL) split-

tings [16] etc. We refer to the review [22] for a more completed list.

We shall construct an effective DGS type smoother for the Oseen problem. The

standard relaxations, e.g., the Gauss-Seidel relaxation, are not applicable to the system

(2.2). This is because the 2 × 2 matrix L is not diagonally dominant and especially

one diagonal block is zero. The idea of the distributive relaxation is to transform the

principle operators to the main diagonal and apply the equation-wise decoupled re-

laxation. We first recall the traditional DGS smoother applied to the Oseen problem.

In [5], Brandt and Dinar introduced a distributive matrix

M =

(
I B′

0 −Fp

)
,

where Fp is a suitable approximation of the convection-diffusion operator −µ∆+a∂x+
b∂y for the pressure. MultiplyingM to the right of L, we have

LM =

(
F FB′ −B′Fp

B BB′

)
≈

(
F 0
B BB′

)
=: L̃M

and consequently

L−1 =M(LM)−1 ≈ML̃M
−1

.

Now the approximation of the transformed operator L̃M is diagonally dominant (in-

deed lower triangular) and thus can be easily solved or relaxed. Suppose L̃M is further

approximated by

S =

(
Su 0
B Sp

)
, (2.4)

where Su and Sp are effective smoothers for F and Ap := BB′, respectively. Note that

for the MAC scheme, Ap is the discrete (negative) Laplacian operator −∆p for pres-

sure with Neumann boundary condition. The matrixMS−1 will introduce an effective

smoother for the original system (2.2):

xk+1 = xk +MS−1(b− Lxk). (2.5)
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The name distributive relaxation comes from the fact that the correction S−1(b−Lxk)
in (2.5) is distributed over the entries of xk+1 through the distributive matrixM.

In the construction of a distributive smoother, we neglect the (1, 2) block of the

transformed system. This can be justified if the commutator FB′ − B′Fp is small in

magnitude or is of low rank. Therefore, how to construct such operator Fp is the key

to the success of the traditional DGS relaxation. For entering flows, in [6], Brandt and

Yavneh proposed a construction of such Fp and numerically verify its efficiency. For

general flows, such as enclosed or recirculating flow, the construction of operator Fp is

less straightforward.

2.3. Least-Square Commutators Distributive Gauss-Seidel Relaxation

As mentioned before, the crucial part of the DGS relaxation is how to choose Fp

such that the commutator FB′ −B′Fp is as small as possible. One natural approach is

to minimize the commutator FB′ − B′Fp in certain norm which leads to the LSC-DGS

smoother proposed in [26] for Stokes equations. We adopt this idea here and develop

a LSC-DGS smoother for the Oseen problem.

To this end, we solve the following minimization problem

min
X

E(X) = min
X
‖FB′ −B′X‖F , (2.6)

where ‖ · ‖F denotes the Frobenius norm (F-norm) of matrices. By simple calcula-

tion [13], we have

Fp := argmin
X

E(X) = (BB′)−1BFB′.

With such choice of Fp, we have

M =

(
I B′

0 −(BB′)−1BFB′

)
,

and

LM =

(
F FB′ −B′Fp

B BB′

)
=

(
F PFB′

B BB′

)

where P = I −B′(BB′)−1B is the l2-projection to the div-free space. Since the ker(B)
is orthogonal to the range of B′, we have PB′ = 0 and consequently, PFB′ = P (FB′−
B′X) for any X : RNp → R

Np , where Np is the dimension of the pressure space. This

means that, with this special choice of Fp, we do our best to minimize the effect of the

(1, 2) block of the transformed matrix.

Whether the PFB′ is negligible or not will depend on the discretization. This is

the main motivation we chose MAC as our discretization. It can be verified by direct

calculation that

∆B′ = B′∆p (2.7)

for standard central difference stencils. Due to the Dirichlet boundary condition, the

stencil for the near boundary nodes of velocity will be modified and thus violates the
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commutative relation. But for interior nodes or periodic boundary condition, (2.7)

holds. Therefore the commutator is small for the diffusion part. For the convection

part, it is also straight forward to verify that for a constant flow (a · ∇)B′ = B′(∇ · a)
when the central difference stencil is used. Therefore we could expect the commutator

for the convection term is small when a is smooth.

We then have

LM ≈

(
F 0
B BB′

)
=: L̃M.

Similar to the traditional DGS relaxation, we use

ML̃M
−1

=

(
I B′

0 −(BB′)−1BFB′

)(
F 0
B BB′

)−1

as an approximation of L−1. The matrixMS−1 will introduce an effective smoother for

the original system (2.2) where S is given in (2.4). The (BB′)−1 in the (2, 2) block of

M will be replaced by an effective smoother also. Since the least square commutator

is used to design the distributive matrix, we call the resulting smoother Least-Squares

Commutator DGS (LSC-DGS) smoother. One iteration of LSC-DGS smoother can be

performed by the following algorithm.

Algorithm 1. LSC-DGS Smoother [uk+1, pk+1]← LSC-DGS(uk, pk)

1. Relax the momentum equation

uk+ 1

2 = uk + S−1
u (f −Auk −B′pk),

2. Relax the transformed continuity equation

δq = S−1
p (0−Buk+ 1

2 ).

3. Distribute the correction back to the original variables

uk+1 = uk+ 1

2 +B′δq,

pk+1 = pk − S−1
p BFB′δq.

Since Ap is a discrete Laplacian operator for the pressure, smoother Sp can be cho-

sen as a (symmetric) Gauss-Seidel iteration and can be implemented in an algebraic

way by forming Ap explicitly. When applicable, red-black or general multi-coloring or-

dering can be further applied to improve the smoothing effect. Thanks to the first order

upwind scheme we use, the matrix F is an M-matrix and thus Su can be also chosen as

a symmetric Gauss-Seidel iteration. No special ordering is needed.

Compared with the standard DGS (i.e. an explicit Fp or its action is constructed a

priori), step 3 of LSC-DGS requires one more relaxation and one more matrix-vector
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multiplication. On the other hand, LSC-DGS can be implemented using existing matri-

ces without further intelligent investigation.

We want to point out that the LSC-DGS smoother is closely related to the block

preconditioner proposed in [11, 12]. The LSC was firstly developed by Elman [11],

and used to construct a least-squares approximation to the Schur complement of the

linearized Navier-Stokes system, yielding the so-called BFBt preconditioner. Elman,

Howle, Shadid, Shuttleworth, and Tuminaro [12] improved the LSC by using scaling

of mass matrices, together with methods of computing sparse approximate inverses.

For the MAC scheme, the mass matrix is a scaling of the identity matrix and thus not

needed in our construction.

3. W-cycle Multigrid with Overweighting

Recall that, in order to obtain a stable discretization for high Reynolds number, i.e.

small viscosity µ, we consider a first order upwind scheme by replacing µ by µh =
h‖a‖∞/2. Namely, we solve the following Oseen problem

Lhxh =

(
−µh∆+ a · grad grad

− div 0

)(
uh

ph

)
= bh (3.1)

discretized by the standard MAC scheme. Note that, the operator Lh depends on the

mesh size h on each level. Careful consideration is needed for designing efficient MG

method for solving such linear systems. The continuation of the numerical viscosity

will be explored in a multilevel fashion.

In [7], Brandt and Yavneh developed aW-cycle with overweighting for the convection-

dominated convection-diffusion equation discretized by a stable first order discretiza-

tion. The idea is to overweight the coarse grid correction based on the local mode

analysis. Here, we adopt such idea to the Oseen equation.

Denote Th as the grid with mesh size h and TH as the coarse grid with H = 2h.

Denote the standard prolongation and restriction operator as IhH and IHh . In stencil

notation, the restriction operators are (∗ indicates the position of the coarse-grid point)

(IHh )u =
1

8



1 2 1
∗

1 2 1


 , (IHh )v =

1

8



1 1
2 ∗ 2
1 1


 , (IHh )p =

1

4



1 1
∗

1 1


 .

The prolongation will be the transpose of the restriction. Note that on the coarse grid

TH , we are inverting the operator LH which is different from LHh , the discretization of

Lh restricted to the coarse grid. A weight greater than one (overweighting) is applied

to the coarse grid correction to minimize the discrepancy of this inconsistency.

TheW-cycle with overweighting is defined in Algorithm 2 as follows.
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Algorithm 2. W-cycle with overweighting: xh ← W ow(Lh, bh,xh)

1. Relax s1 steps on Lhyh = bh with initial guess xh.

2. Transfer residual to the coarse grid H

rH1 = IHh (bh −Lhxh),

and solve the coarse grid problem LHeH1 = rH1 , approximately by one

step ofW-cycle on the coarse grid, i,e,

eH1 ← W ow(LH , rH1 ,0).

3. Modify the right hand side of the coarse grid problem,

rH2 = rH1 + (LH −αLHh )eH1 ,

then solve the following coarse grid problem LHeH2 = rH2 , approxi-

mately by another step ofW-cycle, i.e.,

eH2 ← W ow(LH , rH2 ,0).

Here α = diag(αuI, αpI).

4. Interpolate and add eH2 to xh, comply with s2 post-smoothing steps.

xh = xh +αIhHeH2 .

Following the methodology proposed in [7], the scaling factor αu and αp can be

computed by the local mode analysis and optimization for minimizing the error am-

plification factors. As the procedure is similar to [7], we skip the details here and

refer interested readers to [7] for the detailed derivation. In the numerical results we

showed below, we choose αu = 4/3 and αp = 1. Such choice makes sense because the

convection-diffusion operator mainly applies on u, therefore, only the velocity needs

certain overweighting to minimize the discrepancy between the levels due to the stabi-

lized diffusion coefficients. For the pressure, the overweighting is unnecessary.

Residual overweighting technique tries to achieve a compromise between fully and

partially corrected error components in the coarse grid correction step by overweight-

ing the residuals. As pointed out in [7, 30], residual overweighting technique works

well for scalar convection problems and can be applied to convection-like problems in-

dividually with careful choice of the weights depend on alignment between grid lines

and flow characteristics. In [31], overweighting technique is combined with upstream

discretization and downstream relaxation and efficient MG method (even V-cycle) has
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been developed for advection problems with closed characteristics. However, the over-

weighting is optimal without physical diffusions and may have problems for convection-

diffusion problems with significant physical diffusions. Therefore, special attention is

needed when applying the overweighting technique to NS equations, especially with

wide variation of the Reynolds number.

There are other approaches to improve the coarse-grid approximation. For exam-

ple, [10] proposed a modified coarse-grid operator for scalar convection problems,

and [23] apply Krylov-subspace acceleration methods with MG methods for convection-

diffusion and Navier-Stokes problems. In general, conditions on effective coarse-grid

discretization can be found in [30]. On the other hand, “global” relaxations, such as

ILU and line smoothers, are also used to reduce the smooth error components that can

not be well corrected on coarse grid, see [21,32].

4. Defect Correction Procedure

The W-cycle MG method developed in the previous section is for the first order

upwind MAC scheme. In practice, the accuracy of such first order scheme usually is

not satisfactory and the biggest Reynolds such first order scheme can handle is limited

by the mesh size h. In order to improve the accuracy, we apply the defect correction

technique, see, e.g. [4,15].

The idea is that we consider a high order discretization, which shares the same

degree of freedoms (DoFs) with the MAC scheme, for the original Oseen model (1.1)

on the same grid. We denote it by

L̄hx̄h = b̄
h
.

Note that, the high order discretization L̄h can be either stable or unstable and it is used

to improve the accuracy of the first order upwind MAC scheme Lh by the following

defect correction procedure.

xh
0 =

(
Lh

)−1

bh; xh
k = xh

k−1 +
(
Lh

)−1 (
b̄
h
− L̄hxh

k−1

)
, k = 1, 2, · · · .

It is easy to see that if ρ
(
I −

(
Lh

)−1
L̄h

)
< 1, the above defect correction iteration will

converge to x̄h as k 7→ ∞ which might be a unstable solution of the Oseen problem

because we do not require the high order discretization L̄h be stable. Therefore, as

suggested in [4, 15], we use the defect correction iteration as a finite process rather

than compute its limit. To further improve the efficiency, we use few (say, 2 or 3,) W-

cycles to approximate
(
Lh

)−1
in the defect correction procedures. The overall defect

correction procedure we propose is summarized in Algorithm 3.
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Algorithm 3. Defect Correction Procedure.

1. xh
0 = W ow(Lh, bh,0),

2. for k = 1, · · · , MaxIt

3. Compute residual: rh = b̄
h
− L̄hxh

k−1,

4. Solve the residual equation approximately: eh ← W ow(Lh, rh,0),

5. Update: xh
k ← xh

k−1 + eh.

6. end

The defect correction procedure we present here is under rather simple settings that

L̄h is discretized on the same rectangular grid used by the first order upwind MAC and

also shares the same DoFs with the MAC scheme. In general, such defect correction

procedure can be applied to more general high order discretizations on the same grid

or other grids. In such case, transfer operators will be involved to transfer between the

high order discretization and the first order upwind MAC scheme, and extra smoothing

steps may be needed for the high order discretization where LSC-DGS smoother can be

used. And it is better to use as a preconditioner in the auxiliary space preconditioning

framework [29].

We emphasize that the primary goal of applying a simple defect correction proce-

dure here is to improve the accuracy of numerical solution rather than the convergence

order. For hyperbolic and convection-dominated problems, effective defect-correction

procedure needs careful design though it is widely used in practice [20]. In [8, 17],

careful studies show that the convergence behavior of defect correction procedure de-

generates for both central difference scheme and a second order upwind scheme while

still is satisfactory for upwind-biased schemes, for example, Fromm’s scheme or van

Leer’s third-order scheme. Even for Fromm’s scheme case, half-space analysis shows

that the initial convergence rate may be slow when a first-order accurate operator Lh

is used and the number of iterations required to reach the asymptotic convergence

rate is grid-dependent. However, if the operator Lh and L̄h have the same order ac-

curacy, the defect correction procedure demonstrates good efficiency. We refer to [9]

for the details. Due to the complication of designing efficient defect correction pro-

cedure for convection-dominated problems, the choice of high accuracy discretization

L̄h, the convergence behavior of the defect correction procedure with the proposedW-

cycle multigrid with overweighting as
(
Lh

)−1
, and theoretical analysis (e.g. half-space

analysis) of the overall defect correction scheme are subject to the future research.
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5. Numerical experiment

In this section, we design numerical experiments to demonstrate the effectiveness of

the LSC-DGS based multigrid methods (MG-LSC-DGS) for the Oseen equations using

the first order upwind MAC scheme as well as the defect correction procedure. We

mainly consider the following two examples.

Example 5.1. Let Ω be the unit square (0, 1)× (0, 1). The analytical solution u and p are

chosen as follows, so that
∫
Ω
p dxdy = 0:

u(x, y) =

(
(1− cos(2πx)) sin(2πy)
cos(2πy − 1) sin(2πx)

)
, p(x, y) =

1

3
x3 −

1

12
.

and

a =

(
x sin(2πy)
y sin(2πx)

)
.

The viscosity µ = 10−12. The right hand side f is computed accordingly.

The second example is the standard leaky lid-driven cavity problem but with a

prescribed flow [13].

Example 5.2. Let Ω be the unit square (0, 1) × (0, 1). We choose

a =

(
8x(x− 1)(1 − 2y)
8(2x− 1)y(y − 1)

)
.

The viscosity µ = 10−6 and the external force f = 0. Homogeneous Dirichlet boundary

conditions are used for all velocity components except a positive unit horizontal velocity

along the top edge is used.

For Example 5.1, the viscosity µ = 10−12 has no influence on the exact solution

because the exact solution is chosen priorly and f is computed accordingly. Moreover,

in the upwind scheme, numerical viscosity µh = h‖a‖∞/2 ≫ µ is used on which

the numerical solution depends. For Example 5.2, the exact solution depends on the

viscosity µ = 10−6 although it is not known. The numerical solution of our first order

upwind scheme depends on the numerical viscosity µh = h‖a‖∞/2 rather than µ.

We first test the performance of the MG method using the LSC-DGS smoother. We

apply the W-cycle MG method with overweighting. Here, in one step of LSC-DGS

smoother for the Oseen problem, we use one step of symmetric Gauss-Seidel smoother

for F−1 and (BB′)−1 respectively. For the overweighting scaling parameter, we choose

αu = 4/3 and αp = 1 as mentioned before. The coarsest grid is h = 1/4. To show

the contraction rate, we set the relative error tolerance to be 1e-10. We also collect

iteration steps for tolerance 1e-4, which is enough for the first order scheme up to

mesh size h = 2−11.
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Table 1: Number of iterations of MG-LSC-DGS for Example 5.1 (W(1,1)-cycle).

h µh = h‖a‖∞/2 tol = 1e-10 Rate tol = 1e-4

1/64 1/128 20 0.305 7

1/128 1/256 19 0.283 6

1/256 1/512 18 0.262 6

1/512 1/1024 17 0.250 6

1/1024 1/2048 16 0.244 6

1/2048 1/4096 16 0.245 6

Table 2: Number of iterations of MG-LSC-DGS for Example 5.2 (W(1,1)-cycle).

h µh = h‖a‖∞/2 tol = 1e-10 Rate tol = 1e-4

1/64 1/64 17 0.268 6

1/128 1/128 16 0.266 5

1/256 1/256 17 0.278 5

1/512 1/512 19 0.306 5

1/1024 1/1024 21 0.331 5

1/2048 1/2048 23 0.358 5

In Table 1 and 2, we show the number of iterations of the MG-LSC-DGS method for

both examples. Here, the averaged “Rate” is computed as follows

Rate =
1

#steps

#steps∑

i=4

exp

(
log(‖ri‖/‖r4‖)

(i− 3)

)
,

where ‖ri‖ is the ℓ2 norm of residual at the i-th step and #steps is the overall number

of iterations. From these tables, we can see the number of iteration remains almost the

same and it is robust with respect to the numerical viscosity µh. We want to comment

that in [16], the same driven cavity example was considered and also is discretized by

the MAC scheme. Smoothers based on HSS and AL splitting as well as B-S smoother

were considered, and the overall V(1, 1)-cycle MG method is used as a preconditioner

for FGMRes method. All the smoothers degenerate in performance with respect to

decreasing viscosity (see Table III, IV, V, and VI in [16]). Here, we use W(1, 1)-cycle

as a standard alone iterative solver for a first order upwind MAC scheme. The overall

performance is robust with respect to both h and µ, which demonstrates the robustness

of our MG-LSC-DGS method. One step of LSC-DGS smoother is simply one symmetric

Gauss-Seidel (SGG) iteration for velocity and two SGS for pressure which is much

cheaper than HSS, AL splitting and B-S smoothers. For the same tolerance 10−4, our

method only needs 5−6 steps comparing 20−30 steps for methods in [16]. In addition,

we save several matrix-vector multiplications by not using a Krylov subspace method
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as an outer iteration. This demonstrates the efficiency of our multigrid solver.

Because we use first order upwind MAC scheme, the accuracy of the solution might

not be satisfactory though the MG method works well. Therefore, as discussed in Sec-

tion 4, we use defect correction procedure to further improve the overall accuracy. In

our numerical experiments, we choose the high order discretization L̄h to be the cen-

tral difference MAC scheme for the true viscosity. Note that this discretization is second

order consistent but unstable. We use it as a preliminary example to demonstrate the

efficiency of the defect correction procedure.

Table 3: Defect correction procedure of Example 5.1 (µ = 10
−12).

Before defect correction After defect correction

h ‖uI − uh‖ ‖pI − ph‖ ‖uI − uh‖ ‖pI − ph‖

1/64 2.59e-1 1.06e-1 3.93e-2 1.27e-2

1/128 1.52e-1 6.15e-2 1.67e-2 4.91e-3

1/256 8.36e-2 3.54e-2 8.28e-3 2.10e-3

1/512 4.69e-2 2.06e-2 4.22e-3 9.71e-4

1/1024 2.63e-2 1.32e-2 2.19e-3 4.95e-4

1/2048 1.54e-2 9.35e-3 1.12e-3 2.63e-4

In Table 3, we consider the recirculating flow example (Example 5.1) and the de-

fect correction procedure. Here, (Lh)−1 is replaced by 2 steps of W(1, 1)-cycle MG

method using the LSC-DGS smoother and 6 steps of defect correction steps are applied

(overall 12 steps of W(1, 1)-cycle). The quantity uh, ph are numerical approximation

and uI , pI are interpolant of the true solutions at location of unknowns, respectively.

The norm is the scaled l2-norm of vectors h‖ · ‖l2 which mimics the L2-norm of corre-

sponding functions. From the table, we can see that the defect correction procedure

improves the accuracy (10 - 30 times better) even when we are using an unstable high

order discretization and a very small viscosity µ = 10−12. This demonstrates the ef-

ficiency of the defect correction procedure. It should be mentioned that though the

accuracy is improved, the overall convergence order is still first order. As discussed in

the last paragraph of Section 4, for convection-dominated problems, we do not use an

upwind-biased discretization in L̄h and Lh is only first oder accuracy, which may cause

degenerated convergence behavior in the defect-correction procedure. We can expect

the improvement of the convergence order if both L̄h and Lh are chosen properly and

the proposed MG-LSC-DGS scheme is adjusted accordingly.

We do not show the defect correction results for the driven cavity example (Exam-

ple 5.2) due to the following two reasons. First, we do not have an analytic solution to

compare with. Second, for convection dominated problems have singularity, vortices,

and/or boundary layers, such as the driven cavity problem, using unstable high or-

der scheme or high order upwind scheme might not be appropriate (see, e.g. [8, 17]).

Therefore, upwind-biased high order schemes and possibly adaptive grids should be
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used for such cases. Moreover, stable high order schemes might be used as Lh in order

to achieve full efficiency of the defect correction technique for convection-dominated

problems as suggested in [9]. The investigation along this line subjects to future re-

search.
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