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ABSTRACT. This paper shows that the optimal simplex, in the sense of minimizing the
linear interpolation error of the quadratic function u(x) = x2 measured in Lp-norm, is
the equilateral simplex. It also contains several explicit formulae on the best interpolation
error when the volume of the simplex is one.

1. INTRODUCTION AND MAIN RESULTS

Let τ be a d-simplex in Rd and u(x), where x ∈ Rd, be a convex quadratic function.
The linear nodal interpolation uI(x) is the affine function such that uI(xi) = u(xi) for
all vertices xi of τ . Let vol(τ) be the Lebesgue measure of τ in Rd. We shall consider the
following minimization problem:

(1.1) min
τ,vol(τ)=1

‖u− uI‖Lp(τ), where 1 ≤ p ≤ ∞,

That is to find the best shape of a simplex with a fixed volume by minimizing the interpo-
lation error in Lp norm. Since the linear interpolation will preserve the linear polynomial,
we can assume u(x) = xtAx, where A is a symmetric positive definite d× d matrix. By
the change of variables y =

√
Ax, we can further assume the convex quadratic function

as u(x) = x2 := xtx.
The problem (1.1) has been studied by many mathematicians in different context during

the last three decades [27, 14, 3, 2, 25, 26, 21, 22, 16, 17, 4, 12, 13, 15, 19, 23, 5, 6, 18, 7, 8,
10, 9, 1, 11]. The answer to (1.1), when u(x) = x2, is that the best simplex is the regular
simplex, i.e., the equilateral simplex. In this paper we shall give a unified proof about this
fact and present several explicit formulae on the best interpolation error when the volume
of the simplex is one.

Theorem 1.1. Let u(x) = x2. For any 1 ≤ p ≤ ∞, d ≥ 1, there exists a constant Cd,p
such that

(1.2) ‖u− uI‖Lp(τ) ≥ Cd,p vol(τ)1/p+2/d,

and the equality holds if and only if τ is equilateral.

The constants Cd,p are useful in other related problems. For example, in [9] we show
that Cd,∞ is closely related to the sphere covering problem and Cd,1 to optimal polytopes
approximation of convex bodies. Therefore it is desirable to determine the constant Cd,p
explicitly.

Remark 1.2. We have the following formulae:
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• for p =∞,

(1.3) Cd,∞ =
d

d+ 1
d!2/d

(d+ 1)1/d
;

• for 1 ≤ p <∞,

Cd,p =

{
1

vol(τ)

∫
τ

[
1−

d+1∑
i=1

λ2
i (x)

]p
dx

}1/p

d!2/d

(d+ 1)1/d
(1.4)

=


∞∑
j=0

(−1)j
d!(p)j

(2j + d)!

∑
|α|=j

(2α)!
α!


1/p

d!2/d

(d+ 1)1/d
,(1.5)

where {λi(x)}d+1
i=1 is the barycentric coordinates of x, (p)j = p(p − 1) · · · (p −

j + 1) is the Pochhammer symbol, and α is a d+ 1-multi-index.

The formula (1.4) can be simplified in several ways. For example, in two dimensions,
by choosing the equilateral triangle inscribed to the unit circle with a vertex being (0, 1),
one can obtain

(1.6) C2,p =
(

4
3
√

3

)1+1/p
[

π

p+ 1
− 6

∫ 1

1/2

x(1− x2)p arccos
1
2x

dx

]1/p

.

The formula (1.5) is obtained by the Taylor expansion of the integrand in (1.4) and an
integral formula of barycentric coordinates. Another formula for integers p involving only
finite summation will be presented in Section 3.

By the relation between Lp-norms, we have the following properties of Cd,p.

(1) Cd,p is monotone increasing with respect to p:

Cd,p < Cd,q, if 1 ≤ p < q ≤ ∞.

(2) limp→∞ Cd,p = Cd,∞. We choose p ≥ 1 as integers and use (1.5) to get

(1.7) lim
p→∞

 p∑
j=0

(−1)jp!d!
j!(2j + d)!

∑
|α|=j

(2α)!
α!

1/p

=
d

d+ 1
.

The rest of this paper is organized as follows. In Section 2, we shall introduce barycen-
tric coordinates and derive an error formula for the linear interpolation of quadratic func-
tions. In Section 3, we shall prove the Theorem 1.1 and determine the constant Cd,p.

2. SIMPLEX AND BARYCENTRIC CALCULUS

2.1. Simplex and barycentric coordinate. Let xi = (x1,i, · · · , xd,i)t, i = 1, · · · , d+ 1
be d + 1 points in Rd. For two points x,y ∈ Rd, −→xy represents the vector pointing
from x to y. We say x1, . . . ,xd+1 do not all lie in one hyperplane if the d-vectors
−−−→x1x2, . . . ,

−−−−−→x1xd+1 are linear independent. For any x ∈ Rd, we can find unique d + 1
real numbers λi(x), i = 1, . . . , d+ 1, such that

(2.1) x =
d+1∑
i=1

λi(x)xi, and
d+1∑
i=1

λi(x) = 1.
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The numbers λi(x) are called barycentric coordinates of x with respect to the d+1 points
x1, . . . ,xd+1. The convex hull of d+1 points x1, . . . ,xd+1 is the set of points of Rd with
barycentric coordinates satisfying 0 ≤ λi(x) ≤ 1, i = 1, . . . , d+ 1. Namely

(2.2) τ := {x =
d+1∑
i=1

λi(x)xi | 0 ≤ λi ≤ 1, i = 1, . . . , d+ 1,
d+1∑
i=1

λi(x) = 1}

We call τ the d-simplex generated by the points x1, . . . ,xd+1, which are called the vertices
of τ . For an integer 1 ≤ m ≤ d − 1, an m-dimensional face of τ is any m-simplex
generated by m + 1 of the vertices of τ . A one-dimensional face is an edge with two
ending vertices.

2.2. Multi-index and an integral formula. We shall introduce some short-hand notation
for multiple indices. A k- multi-index vector α is a k-tuple of non-negative integers α =
(α1, α2, · · · , αk). The length of α is defined by |α| =

∑k
i=1 αi, and the factorial of α is

α! = α1!α2! · · ·αk!. For a vector x = (x1, x2, · · · , xk), we define xα = xα1
1 xα2

2 · · · x
αk

k .
Note that in the notation xα, the power α is a vector having the same length as that of the
vector x. It should not be confused with the notation x2 := xtx =

∑d
i=1 x

2
i .

Thanks to the multi-index notation, when j ≥ 1 is an integer, we have a compact
formula on the power of a sum

(2.3)
( k∑
i=1

xi

)j
=

∑
α,|α|=j

j!
α!
xα,

where α is a k-multi-index. The following integral formulae can be easily proved by the
induction of d.

Lemma 2.1. Let τ be a d-simplex and λ = (λ1, λ2, · · · , λd+1). For a d + 1 multi-index
α, one has

(2.4)
∫
τ

λα(x)dx =
α!d!

(|α|+ d)!
vol(τ),

2.3. Linear interpolation and error formula. Given a d-simplex τ ∈ Rd and a continu-
ous function u(x) defined over τ , we define the linear nodal interpolation of u by setting

(2.5) uI(x) =
d+1∑
i=1

u(xi)λi(x).

We shall give an explicit formula for uI − u when u is a quadratic function. Throughout
this paper, ∇u denotes the gradient of u, ∇2u the Hessian matrix, and H = 1

2∇
2u. Note

that the error formula presented below holds for any quadratic function. It is not restricted
to the convex case.

Lemma 2.2. Let τ be a d-simplex with vertices (x1,x2, · · · ,xd+1), and u be a quadratic
function. Let l2ij = (xi − xj)tH(xi − xj) with H = 1

2∇
2u. Then

(uI − u)(x) =
d+1∑

i,j=1,j>i

(λiλj)(x)l2ij .(2.6)

Proof. By Taylor expansion,

(2.7) u(xi) = u(x) +∇u(x)(xi − x) +
1
2
(x− xi)t∇2u(x− xi).
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Multiplying both sides of (2.7) by λi and summing up for all i, we obtain
d+1∑
i=1

λiu(xi) = u(x)
d+1∑
i=1

λi +∇u(x)
d+1∑
i=1

λi(xi − x) +
d+1∑
i=1

λi(x− xi)tH(x− xi).

By the definition (2.5), the left hand side is uI(x). By the property (2.1), the first term in
the right hand side is u(x) and the second term is vanished. We thus obtain

(2.8) uI(x)− u(x) =
d+1∑
i,j=1

λiλj(xj − xi)tH(x− xi).

Switching the index i, j, we obtain an equivalent formula

(2.9) uI(x)− u(x) =
d+1∑
i,j=1

λiλj(xi − xj)tH(x− xj).

Summing (2.8) and (2.9), we obtain

uI(x)− u(x) =
1
2

d+1∑
i,j=1

λi(x)λj(x)l2ij =
d+1∑

i,j=1,j>i

λi(x)λj(x)l2ij .

�

When u is convex, the quantity l2ij represents the square of the edge length of −−→xixj
under the metric H . We can then use well known geometric inequalities to study the
optimization problem (1.1). For general quadratic functions, l2ij could be negative which
makes the optimization problem more complicated.

3. OPTIMAL SIMPLEX

3.1. Lp-norm for p ≥ 1. In the formula (2.6), there are two summation indices i and j.
It would be more convenient to switch to one single index, say lexigraphically, i.e. l2k, k =
1, 2, . . . , Nd, where Nd = d(d + 1)/2 is the number of edges of a d-simplex. For a given
index k = 1, 2, . . . , Nd, we shall use i and j to denote the indices of two ending vertices
of the k-th edge. Let b = (b1, b2, · · · , bNd

), bk = λiλj and t = (t1, t2, · · · , tNd
), tk =

l2ij , k = 1, . . . , Nd. We define the following function:

Ep(t) =
∫
τ

[
b(x) · t

]p
dx.

Let D = {t ∈ RNd ,
∑Nd

k=1 tk = 1, tk > 0, k = 1, 2, . . . , Nd}. The sequence {tn}
generated by the following procedure is useful.

1 subroutine {tn} = equidistribution(t)

2 Starting from t0 = t. Set n = 0.

3 while maxk tnk > mink tnk
4 Choose tni = maxk tnk and tnj = mink tnk;

5 Update tn+1
i = (tni + tnj )/2, tn+1

j = (tni + tnj )/2;

6 Set n = n + 1;

7 end

Lemma 3.1. For any t ∈ D, t 6= t∗, let {tn} be the sequence generated by the subroutine
equidistribution(t). Then

(1) limn→∞ ‖tn − t∗‖∞ = 0.
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(2) when p > 1, Ep(tn+1) < Ep(tn).

Proof. Obviously {maxk tnk} is a strictly decreasing sequence bounded below by 1/Nd.
Therefore limn→∞maxk tnk exists. Suppose maxk tnk = 1/Nd + δ with δ > 0. Since
mink tnk < 1/Nd < maxk tnk , maxk tn+Nd

k ≤ 1/Nd + δ/2. This implies that

lim
n→∞

max
k

tnk = 1/Nd.

Similarly one can prove limn→∞mink tnk = 1/Nd. Then (1) follows.
To prove (2), without loss of generality, we assume tn1 = maxk tnk , t

n
2 = mink tnk , and

define
t(s) = (a+ s, a− s, tn3 , · · · , tnNd

), for s ∈ (−a, a),
where a = (tn1 + tn2 )/2. Let us consider the 1-dimensional function

(3.1) f(s) := Ep(t(s)).

Then

tn = t(s∗), Ep(tn) = f(s∗) for s∗ = (tn1 − tn2 )/2,

and tn+1 = t(0), Ep(tn+1) = f(0).

By the direct computation, we obtain

f ′(0) = p

∫
τ

[b(x) · t(0)]p−1 (b1 − b2)(x)dx, and(3.2)

f ′′(s) = p(p− 1)
∫
τ

[b(x) · t(s)]p−1 (b1 − b2)2(x)dx.(3.3)

By the symmetric of the function b(x) · t(0), we have∫
τ

[b(x) · t(0)]p−1
b1(x)dx =

∫
τ

[b(x) · t(0)]p−1
b2(x)dx,

and thus f ′(0) = 0. Since p > 1 and b(x) · t(s) > 0, we also have f ′′(s) > 0 for all
s ∈ (−a, a), i.e., f(s) is strictly convex in the interval (−a, a). We conclude that s = 0 is
the minimal point of f(s) in (−a, a). Noting that s∗ ∈ (−a, a) and s∗ 6= 0, we obtain

Ep(tn+1) = f(0) < f(s∗) = Ep(tn).

�

Lemma 3.2. For any t = (t1, t2, · · · tNd
) with tk > 0, k = 1, 2, · · · , Nd,

(3.4) Ep(t) ≥ Ep(t∗)

(
Nd∑
i=1

ti

)p
,

where t∗ = (1/Nd, 1/Nd, · · · , 1/Nd).When p > 1 the equality holds if and only if t = t∗.

Proof. When p = 1, by (2.4),

E1(t) =
Nd∑
k=1

tk

∫
τ

bk(x)dx =
d! vol(τ)
(d+ 2)!

Nd∑
k=1

tk = E1(t∗)
Nd∑
k=1

tk.

Namely (3.4) holds for p = 1.
We then prove (3.4) for p > 1. By the following obvious identity

Ep
( t∑Nd

k=1 tk

)
=

Ep(t)(∑Nd

k=1 tk
)p ,
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it suffices to prove that for p > 1

(3.5) Ep(t) ≥ Ep(t∗), ∀ t ∈ D,

and the equality holds if and only if tk = 1/Nd for all k = 1, · · · , Nd.
For any t ∈ D, t 6= t∗, we consider the sequence {tn} generated by the subroutine

equidistribution(t). By Lemma 3.1 (1), tn → t∗ in the maximum norm. Since
Ep(t) is a continuous function of t in the maximum norm, Ep(t∗) = limn→∞Ep(tn). By
Lemma 3.1 (2)

Ep(t) = Ep(t0) > Ep(t1) > · · · > Ep(t∗).
The inequality (3.5) then follows. �

The next step is to connect the edge length with the volume of a simplex. The following
lemma can be found at [20] (p.517).

Lemma 3.3. Let τ be a d-simplex and lk the edge length of τ, k = 1, · · · , d(d+1)/2. One
has

d(d+1)/2∑
k=1

l2k ≥
d(d+ 1)d!2/d

(d+ 1)1/d
vol(τ)2/d,

the equality holds if and only if τ is equilateral.

We are in a position to prove Theorem 1.1 for 1 ≤ p <∞.
Proof of Theorem 1.1 for 1 ≤ p <∞. For u(x) = x2, |(uI − u)(x)| = (uI − u)(x), and
tk = l2k > 0, k = 1, . . . , Nd. Therefore

‖u− uI‖Lp(τ) = Ep(t)1/p ≥ Ep(t∗)1/p
Nd∑
k=1

l2k ≥ Ep(t∗)1/p
d(d+ 1)d!2/d

(d+ 1)1/d
vol(τ)2/d.

By Lemma 3.2 and Lemma 3.3, all equalities hold if and only if all edge lengths are equal.
We thus proved that the optimal simplex is the equilateral simplex. �

The following identity is useful for the determination of Cd,p.

Lemma 3.4. One has

(3.6)
Nd∑
k=1

bk(x) =
1
2

[
1−

d+1∑
i=1

λ2
i (x)

]
.

Proof.
Nd∑
k=1

bk =
1
2

d+1∑
i,j=1,i6=j

λiλj =
1
2

[( d+1∑
i=1

λi

)2

−
d+1∑
i=1

λ2
i

]
=

1
2

[
1−

d+1∑
i=1

λ2
i

]
.

�

To get the formula of the constant Cd,p, let us compute Ep(t∗) using (3.6)

Ep(t∗)1/p =
1
Nd

{∫
τ

[ Nd∑
k=1

bk(x)
]p
dx

}1/p

=
1

d(d+ 1)

{∫
τ

[
1−

d+1∑
i=1

λ2
i (x)

]p
dx

}1/p
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which leads to the formula of Cd,p in (1.4). The formula (1.5) comes from the combination
of the Taylor series

(3.7) (1− x)p =
∞∑
j=0

p(p− 1) · · · (p− j + 1)
j!

(−1)jxj , |x| < 1,

with the expression of a power of a sum using multi-index notation( d+1∑
i=1

λ2
i

)j
=

∑
α,|α|=j

j!
α!
λ2α,

and the integral formula (2.4). Since λi(x) ∈ (0, 1), for any x ∈ τ and x /∈ ∂τ ,
d+1∑
i=1

λ2
i (x) <

d+1∑
i=1

λi(x) = 1,

Taylor series (3.7) for x =
∑
i λ

2
i converges uniformly. We thus can exchange the summa-

tion and the integration in the derivation of Cd,p.
We shall derive another formula for integers p ≥ 1. Given a d(d+ 1)/2-multi-index β,

we define a new d+ 1-multi-index γ such that

(3.8) bβ = λγ .

With this notation, we can write out the error formulae for convex quadratic functions u

(3.9) ‖u− uI‖pLp(τ) =
p!d! vol(τ)
(2p+ d)!

∑
|β|=p

γ!
β!
tβ, for integers p ≥ 1.

and compute Ep(t∗)1/p as

Ep(t∗)1/p =
1
Nd


∫
τ

[ d(d+1)/2∑
k=1

bk(x)
]p
dx


1/p

=
2

d(d+ 1)

∫
τ

∑
|β|=p

p!
β!
bβdx

1/p

=
2

d(d+ 1)

∫
τ

∑
|β|=p

p!
β!
λγdx

1/p

=
2 vol(τ)1/p

d(d+ 1)

 p!d!
(2p+ d)!

∑
|β|=p

γ!
β!

1/p

,

which leads to the following formula

(3.10) Cd,p =

 p!d!
(2p+ d)!

∑
|β|=p

γ!
β!

1/p

2 d!2/d

(d+ 1)1/d
.

Comparing (1.5) and (3.10), we obtain an interesting identity:

(3.11)
2p

(2p+ d)!

∑
|β|=p

γ!
β!

=
p∑
j=0

(−1)j

j!(2j + d)!

∑
|α|=j

(2α)!
α!

, for integers p ≥ 1.

3.2. Maximum norm. Although the same conclusion holds for p =∞, the proof and the
determination of the best constant is different. The proof of the following results can be
found at [9, 23, 24]. For the completeness, we include the proof here.

Lemma 3.5. Let R be the minimal radius of all balls covering τ . Then for u(x) = x2,

‖uI − u‖L∞(τ) = R2.
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Proof. By (2.7),E(x) := uI(x)−u(x) depends only on the quadratic part of the function.
Let xo be the circum-center of τ and Rτ the circum-radius. We consider another quadratic
function v(x) = ‖x − xo‖2. Then vI is a constant function, i.e., vI = R2

τ since v(xi) =
R2
τ . By looking at this way, we obtain

(3.12) E(x) = uI(x)− u(x) = vI(x)− v(x) = R2
τ − ‖x− xo‖2.

Obviously
max
x∈τ

E(x) = R2
τ −min

x∈τ
‖x− xo‖2.

If xo ∈ τ , then maxx∈τ E(x) = R2
τ . Otherwise E(x) attains its maximum at x∗, the

projection of xo to τ . Namely

max
x∈τ

E(x) = R2
τ − ‖xo − x∗‖2.

In this case x∗ is on some facet σ of τ , which is a (d− 1)-simplex. By the definition of the
projection, for x ∈ σ
(3.13) ‖x− x∗‖2 + ‖x∗ − xo‖2 = ‖x− xo‖2.
Without loss of generality, we may assume σ is opposite to the vertex xd+1, namely σ is
generated by x1,x2, ...,xd. By (3.13), all the distances between xi (1 ≤ i ≤ d) and x∗

are equal. Thus x∗ is the circum-center of σ and maxx∈τ E(x) = R2
σ , where Rσ is the

radius of the circum-sphere of σ.
When xo ∈ τ , obviously B(xo, Rτ ) covers τ . When xo /∈ τ , we shall prove the ball

centered at x∗ with radius Rσ can also cover the simplex τ .
By the characterization of the projection (xo − x∗) · (xd+1 − x∗) ≤ 0, we obtain

‖xd+1 − x∗‖2 = ‖xd+1 − xo‖2 + ‖xo − x∗‖2 + 2(xd+1 − xo) · (xo − x∗)
= R2

τ − ‖xo − x∗‖2 + 2(xd+1 − x∗) · (xo − x∗)
≤ R2

τ − ‖xo − x∗‖2 = R2
σ.

This proves the vertex xd+1 is covered by the ball B(x∗, Rσ). As a circum-sphere of σ,
x1, . . . ,xd, vertices of σ are covered by this ball. Therefore τ ⊂ B(x∗, Rσ).

Now we prove R is the minimal radius of all balls covering τ , where R = Rτ or
Rσ . The intersection of all balls centered at vertices xi with radius R is only x∗, i.e.,
∩d+1
i=1B(xi, R) = x∗. Thus for any other sphere B(y, Ry) covers τ . If y 6= x∗, then there

exists i such that y /∈ B(xi, R). Therefore Ry ≥ ‖xi − y‖ > R. �

Proof of Theorem 1.1 for p = ∞. When ‖uI − u‖L∞(τ) = R2
τ , we use the geometric

inequality [20] (p.515) between the circum-radius and the volume of a simplex:

(3.14) R2
τ ≥

d

d+ 1
d!2/d

(d+ 1)1/d
vol(τ)2/d.

The equality holds if and only if τ is regular.
When ‖uI − u‖L∞(τ) = R2

σ , we shall construct a simplex τ ′ with vol(τ ′) ≥ vol(τ)
and τ ′ is inscribed to B(x∗, Rσ). Let us choose a coordinate such that x∗ is the origin and
σ is on the hyperplane xd+1 = 0. We project the vertex xd+1 to the boundary of the ball
and denote the projection as x′d+1. Then x′d+1 and σ generate an inscribed simplex τ ′ with
vol(τ ′) ≥ vol(τ).

Applying (3.14) to τ ′, we obtain

(3.15) R2
σ ≥

d

d+ 1
d!2/d

(d+ 1)1/d
vol(τ ′)2/d ≥ d

d+ 1
d!2/d

(d+ 1)1/d
vol(τ)2/d.
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Combining (3.14) and (3.15), we finish the proof. �
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[27] L. F. Tóth. Lagerungen in der Ebene, auf der Kugel und im Raum. Springer, Berlin, reprinted 1972.


