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Abstract A distributive Gauss–Seidel relaxation based on the least squares commutator is
devised for the saddle-point systems arising from the discretized Stokes equations. Based
on that, an efficient multigrid method is developed for finite element discretizations of the
Stokes equations on both structured grids and unstructured grids. On rectangular grids, an
auxiliary space multigrid method using one multigrid cycle for the Marker and Cell scheme as
auxiliary space correction and least squares commutator distributive Gauss–Seidel relaxation
as a smoother is shown to be very efficient and outperforms the popular block preconditioned
Krylov subspace methods.
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1 Introduction

How to effectively solve large scale algebraic systems arising from the discretization of partial
differential equations is a fundamental question in scientific and engineering computing.
For the positive definite linear systems corresponding to elliptic boundary value problems,
multigrid (MG) methods are proven to be one of the most efficient algorithms [9,10,29,56].
However, it is much more challenging for saddle-point systems [5]. In this paper, we consider
multigrid methods for solving the linear saddle-point algebraic system arising from finite
element methods (FEM) discretization of the stationary Stokes equations
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−�u + grad p = f in �,

− div u = 0 in �,

u = gD on ∂�,

(1.1)

where u is the velocity field, p represents pressure, and f is the external force field. For the
ease of exposition, the presentation is devoted to domains � in R

2 and Dirichlet boundary
condition. Our methods can be easily generalized to domains in three dimensions and other
boundary conditions.

Among various existing solvers for the saddle point systems, one may distinguish between
Krylov iterative methods with block preconditioners and multigrid methods. For various
preconditioning techniques, we refer to [5,7,8,32] and the references therein. In this paper,
we focus on multigrid methods.

Several branches of efficient smoothers have been developed for the Stokes equations.
They can be roughly classified into two categories: coupled and decoupled smoothers [41].
Coupled smoothers [44,51], also known as Vanka smoothers, are solving a small saddle
point system at a grid point or an appropriate patch. Decoupled smoothers, i.e., equation-
wise relaxation, have an advantage in their efficiency especially when line-wise smoothers
are needed [41]. The first decoupled smoother is the DGS smoother introduced in [11]. Later
on, it was generalized to the incomplete LU factorization (ILU) smoother for a transformed
system [54,55] and was shown numerically effective [19,54]. Recently, DGS relaxation has
also been designed for the linear elasticity [59] and poroelastic system [24,25,53]. Some
other effective decoupled smoothers can be found in [4,6,48] and will be recalled in later
sections for comparison.

Among the above mentioned decoupled smoothers, DGS-type smoothers (including the
ILU smoother based on the transformed system) seem to be more efficient when applicable.
This type of smoother, however, is only known for the Marker and Cell (MAC) scheme
discretization and mini finite element on rectangular grids [19,54]. Generalization to other
stable pairs of finite element methods seems difficult; see [29, p. 248]. A recent attempt based
on high regularity of the Laplacian can be found in [3].

One main contribution of this paper is to develop DGS-type smoothers for the linear
system arising from finite element discretizations of the Stokes equations. The success of the
DGS smoother depends on the existence of a Laplacian operator �p for the discrete pressure
space such that the commutator −�grad + grad�p is small. Let A, B be the finite element
discretization of operators−� and− div, respectively. We shall chose Ap = (B B ′)−1 B AB ′
as the approximation of operator −�p . Then the commutator can be expressed as AB ′ −
B ′Ap = (I−B ′(B B ′)−1 B)AB ′. Observe that P = I−B ′(B B ′)−1 B is a projection operator
orthogonal to the range of B ′ and therefore AB ′ − B ′Ap = P(AB ′ − B ′X) for any operator
X . As a result, we minimize the Frobenius norm of the commutator in the least squares sense
and thus call the corresponding DGS smoother as Least Squares Commutator DGS (LSC-
DGS) smoother. In most existing smoothers, e.g., Braess-Sarazin smoother [6], SIMPLE
smoother [43], and inexact Uzawa methods [4,6,60] etc, a scalar parameter which could
depend on the eigenvalues of matrices under consideration, should be determined prior to
the iteration. In contrast, our LSC-DGS smoother is parameter-free and can be implemented
on the algebraic level. Numerically LSC-DGS works very well for all examples tested in this
work.

Although we found the LSC approximation Ap independently, it has been developed
in [20] (see also [21,22]), and wherein B B ′A−1

p is further used as an approximation to the
Schur complement B A−1 B ′, resulting in the so-called BFBt preconditioner. In this paper,
the LSC approximation Ap is used to construct an efficient smoother.
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Another main ingredient of multigrid methods is the coarse grid correction. In addition to
standard geometric multigrid methods, we can use MAC scheme as a ‘coarse grid correction’.
More precisely, in one V-cycle, we first perform a pre-smoothing with an effective smoother
for the Stokes equations, then call one multigrid F-cycle for the MAC scheme [11,31], and
finally complement with a post-smoothing. Notice that MAC is not always a subspace of the
discretization on the fine grid, e.g., discretization using a continuous pressure space. From
this point of view, our method is in the spirit of the auxiliary space method [57] and thus
named ASMG. It is also similar to defect correction multigrid methods [2], and the double
discretization scheme [10].

Numerical experiments are provided to show that standard geometric multigrid methods
with a few LSC-DGS relaxations converge uniformly with respect to the grid size h. It is
much more efficient and robust than inexact Uzawa smoothers [4,6,60], especially on the
unstructured grids. On rectangular grids, the proposed auxiliary space multigrid solver works
best and attains the solution in just a few normalized work units for several popular finite
element discretizations. The combination of LSC-DGS smoothing and ASMG (ASMG/LSC-
DGS) is more efficient and robust than the other methods tested. In particular, ASMG/LSC-
DGS outperforms the popular preconditioned Krylov spaces methods being two to three times
faster [19,26]. Compared with the work in [19], where traditional multigrid method with DGS
or ILU smoother is only applicable for MAC scheme and mini element discretization, the
present multigrid solver with the LSC-DGS smoother fills this gap for other finite element
discretizations.

The rest of this paper is organized as follows. In Sect. 2, we review the DGS smoother and
multigrid methods for the MAC scheme. In Sect. 3, we collect notation of the discrete setting
and discuss DGS-type smoothers for finite element discretization of the Stokes equations.
In Sect. 4, we describe our auxiliary space multigrid algorithm. In Sect. 5, we first give a
comparative study of the operation cost for the multigrid methods and preconditioned Krylov
subspace methods and then present some numerical experiments to show the efficiency of
our method. We also give conclusions and point to possible areas of future research in the
last section.

2 DGS Smoother and Multigrid for the MAC Scheme

In this section, we recall the well-known MAC scheme [31] and the multigrid method using
an effective DGS smoother [11].

2.1 MAC Scheme

The MAC scheme (see Harlow and Welch [31]) is to discretize the Stokes equations (1.1)
on staggered grids. The three unknowns u, v and p are defined at different positions on the
grid, as Fig. 1 shows: the discrete values of pressure p are defined at cell centers (•), and
the discrete values of velocity u and v are located at the grid cell faces (× and ◦). Some
values outside of the boundary must be taken care of by extrapolation, which should be at
least linear, in order not to spoil the whole approximation order [18]. To keep the notation
simple, the mesh size parameter h is skipped in u, v, p.

The Stokes equations are discretized using the nearest-neighbor central differences. More
precisely, the x- and y-momentum equations are discretized at centers of vertical edges and
centers of horizontal edges, respectively, with the standard five-point centered approximation
to −� and central difference approximation to the grad operator. The discretization of the
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Fig. 1 Staggered grid location of
unknowns for the MAC scheme.
The discrete pressure p is defined
at cell centers (filled circle). The
discrete velocity u and v are
defined at vertical edges centers
(times) and horizontal edges
centers (open circle), respectively

continuity equation div u = 0 is defined at cell centers, with the central difference approxi-
mation to the div operator. All together, the discrete approximation of the matrix-vector form
of (1.1) reads as

Lx =
(

A B ′
B 0

)(
u
p

)

=
(

f
0

)

:= b, (2.1)

where x = (u, p)t denotes the grid function, and A, B and B ′ are discrete approxima-
tions of operators −�, − div, and grad, respectively. An important feature of the MAC
scheme is that discrete operators mimic differential operators. For example, B B ′ will be the
standard five-point centered approximation to −�p for the pressure, with Neumann bound-
ary conditions [17,27]. Analysis and convergence of the MAC scheme can be found in,
e.g., [18,30,37,39].

2.2 DGS Smoother

The standard relaxations, e.g., the Gauss–Seidel relaxation, are not applicable to the system
(2.1), since L is not diagonally dominant, and especially the zero block in the diagonal
hampers the relaxation. The idea of the distributive relaxation is to transform the principle
operators to the main diagonal and apply the equation-wise decoupled relaxation.

For the Stokes equations, multiplying L with a right-side operator M given by

M =
(

I B ′
0 −B B ′

)

, (2.2)

yields

LM =
(

A W
B B B ′

)

≈
(

A 0
B B B ′

)

:= L̃M, with W = AB ′ − B ′B B ′,

in the block lower-triangular form, which is well-suited for the standard relaxations. By “≈”
here we mean that the commutator W is zero in the interior of � (i.e., when applied to p
vanishing in a certain neighborhood of ∂� [17,54]) and is of low rank. Thus it may be omitted
in order to design relaxation methods.
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Now the transformed operator L̃M is diagonally dominant and thus can be easily solved
or relaxed. Suppose L̃M is further approximated by

S =
(

Â 0
B Âp

)

, (2.3)

where Â and Â p are easily invertible approximations of A and Ap := B B ′, respectively. The
matrix MS−1 defines an iterative method for the original system (2.1):

xk+1 = xk +MS−1(b− Lxk). (2.4)

One iteration of (2.4) can be performed by the following algorithm.

Algorithm 2.1. [uk+1, pk+1] ← DGS(uk, pk)

1. Relax momentum equations

uk+ 1
2 = uk + Â−1( f − Auk − B ′ pk),

2. Relax transformed continuity equations

δq = Â−1
p (0− Buk+ 1

2 ).

3. Transform the correction back to the original variables

uk+1 = uk+ 1
2 + B ′δq,

pk+1 = pk − B B ′δq.

The so-called DGS smoother introduced by Brandt and Dinar [10,11] is derived from
consecutive Gauss–Seidel relaxation for the operator L̃M, i.e., Â and Â p are taken as the
lower or upper triangular parts of the matrix of A and B B ′, respectively. The name distributive
relaxation comes from the fact that the approximated correction S−1(b − Lxk) in (2.4) is
distributed over the entries of xk+1 through the distributive matrix M.

Instead of replacing LM by a block triangular operator S in (2.3), the ILU smoother
introduced by Wittum [54] applies an ILU-factorization to the operator LM, which results
in a better performance.

Remark 2.1 One can choose Â−1 and Â−1
p as one V-cycle for the corresponding discrete

Laplacian. With such a choice, the matrix MS−1 might be used as a block preconditioner
for solving system (2.1) with Krylov subspace methods. But this idea is not explored in this
paper.

2.3 Multigrid Methods

We use the standard geometric multigrid method. Starting from a rectangular grid with a few
elements, we consecutively refine each rectangle into four equal-size small rectangles to get
a finer grid. Starting from the finest grid, we perform the DGS smoothing and restrict the
residual equation to the coarser level. We solve the coarsest grid problem by a direct solver.
While we have already discussed the smoother, now we move to the transfer operators.
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2.3.1 Prolongation

Piecewise constant (first-order) interpolation is used for the p variable, and bilinear interpola-
tion of neighboring coarse-grid unknowns in the staggered grid is utilized for the prolongation
of velocity u and v.

2.3.2 Restriction

The restriction is the transpose of the prolongation with a suitable scaling. More precisely,
at u- and v-grid points, we consider six points restrictions, and at p-grid points, a four-point
cell-centered restriction. In stencil notation, the restriction operators are (∗ indicates the
position of the coarse-grid point)

Ru
h,2h =

1

8

⎛

⎝
1 2 1
∗

1 2 1

⎞

⎠ , Rv
h,2h =

1

8

⎛

⎝
1 1
2 ∗ 2
1 1

⎞

⎠ , R p
h,2h =

1

4

⎛

⎝
1 1
∗

1 1

⎞

⎠ .

For the isotropic (hx = hy) discretization, simple transfer operators are sufficient to obtain
optimal rates, but not sufficient in the anisotropic case. The influence of various grid transfer
operators is studied in [40].

For the MAC scheme, the multigrid method with the DGS smoothing is highly efficient
in the sense that only a few normalized work units are required to achieve the desired toler-
ance [11]. For a local mode analysis of the DGS smoothing, we refer to Niestegge and Witsch
[40] and for the convergence analysis of corresponding multigrid methods, see Wittum [55].

For systems arising from finite element discretizations, it is a challenge to determine
a suitable distributive operator M. The main difficulty is to construct Ap such that the
commutator is small or of low-rank. To the authors’ knowledge, besides the MAC scheme,
the DGS relaxation can only be applied to the mini finite element on rectangular grids [19,54]
and is not available for other finite element discretizations. This paper is the first attempt to
design DGS-type smoothers for other finite element discretizations of Stokes equations.

3 DGS Smoother for Finite Element Discretizations

We design several DGS-type smoothers for stable finite element discretizations of system
(1.1) in this section. By choosing different distributive matrices, we will address the standard
DGS, a particular DGS for continuous pressure spaces, and a new LSC-DGS smoother.

3.1 Notation

The usual weak formulation of (1.1) (assume gD = 0 for simplicity) reads as follows: find
(u, p) ∈ V× Q := H1

0 (�)2 × L2
0(�), such that

{
a(u, v)+ b(v, p) = ( f , v) , for all v ∈ V,

b(u, q) = 0, for all q ∈ Q,
(3.1)

where

a(u, v) :=
∫

�

∇u∇v dx, b(v, q) := −
∫

�

div vq dx . (3.2)
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The space H1
0 (�) denotes the usual Sobolev space of � and L2

0(�) denotes the subspace
of all L2-functions over � having mean value zero.

Let Th be a rectangular or triangular decomposition of the domain �. For approximating
the weak formulation (3.1) by FEM, one chooses appropriate Ladyzenskaja–Babuška–Brezzi
(LBB) stable spaces Vh and Qh consisting of piecewise polynomial functions to approximate
V and Q, respectively. The discrete Stokes problem reads as: find (uh, ph) ∈ Vh ×Qh , such
that

{
a(uh, vh)+ b(vh, ph) = ( f h, vh), for all vh ∈ Vh,

b(uh, qh) = 0, for all qh ∈ Qh .
(3.3)

To formulate (3.3) as operator equations and demonstrate the algorithm, we introduce the
following operators induced by the bilinear forms:

A : Vh 	→ V
′
h for uh ∈ Vh, 〈Auh, vh〉 = a(uh, vh) for all vh ∈ Vh,

B : Vh 	→ Q
′
h for vh ∈ Vh, 〈Bvh, qh〉 = b(vh, qh) for all qh ∈ Qh,

where X
′ denotes the dual of space X and 〈·, ·〉 the duality pairing. We denote B ′ as the dual

operator of B.
Using these notation, the discretization of (3.3) can be written in the form of (2.1):

Lx =
(

A B ′
B 0

) (
u
p

)

=
(

f
0

)

:= b. (3.4)

The ordering adopted for L is an uncoupled ordering of the underlying grid, i.e., the grid
values for u were listed first, followed by those for v, and then those for p. Hereafter, subscript
MAC and FE, such as LMAC, LFE, etc, will be used to distinguish the systems and variables
arising from MAC scheme (2.1) and FE discretizations (3.4).

3.2 DGS Smoother

With certain smoothness and boundary conditions, the commutator can be manipulated as

(−�+ grad div)grad = curl curl grad = 0.

Here we use the identity −� = −grad div+curlcurl, which holds in H−1 topology, and
the fact that curlgrad = 0. In short, the operators � and grad are commutative, i.e.,

�ugradp = gradp�p, (3.5)

where the subscripts are used to indicate different operators associated to the velocity and
the pressure. More precisely, �u denotes the vector Laplacian with zero Dirichlet boundary
conditions applied to the velocity, �p is the scalar Laplacian to the pressure, and gradp is
the grad operator to the pressure.

The key point to design an effective DGS smoother is the construction of Ap , a dis-
cretization of −�p with zero Neumann boundary conditions, such that (3.5) holds, at least
approximately, in the discrete level. We first try to construct Ap = αM−1

p B M−1
u B ′ by

choosing appropriate scaling α and approximations of the mass matrices of pressure Mp and
velocity Mu . For example, Mp and Mu can be replaced by their diagonal matrices Dp and
Du , respectively. The scaling α is empirical and depends on the type of elements considered.
With the above consideration, the distributive matrix is formed as

M =
(

I D−1
u B ′

0 −αD−1
p B D−1

u B ′
)

. (3.6)
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For continuous pressure element discretization, Ap can be chosen as β An , where An is the
Laplacian operator defined on the discrete pressure space, subject to the Neumann boundary
condition, and β is a suitable scaling parameter. This kind of selection yields a distributive
matrix

M =
(

I B ′
0 −β An

)

. (3.7)

3.3 LSC-DGS Smoother

To avoid the difficulty of finding correct scaling parameters case by case, we propose the
following distributive matrix

M =
(

I B ′
0 −(B B ′)−1 B AB ′

)

, (3.8)

which gives rise to the transformed system

LM =
(

A P AB ′
B B B ′

)

, with P = I − B ′(B B ′)−1 B.

Note that P : Vh → ker(B) is the orthogonal projection operator in L2 inner product to
ker(B) and hence P B ′ = 0. Consequently, the commutator reads as

W := P AB ′ = P(AB ′ − B ′Ap).

Now the only requirement is the existence of Ap such that (3.5) holds, and no explicit
construction is needed.

For a general discrete Stokes system, it is not clear whether such Ap exists or not. However,
the projection matrix makes the commutator as small as possible in the least squares sense,
i.e.,

‖P AB ′‖F ≤ min
X :Q→Q

‖AB ′ − B ′X‖F , (3.9)

where ‖ · ‖F denotes the Frobenius norm (F-norm) of matrices [22]. Indeed solving the
least-squares problem on the right of (3.9) will give the solution A∗p = (B B ′)−1 B AB ′ and
therefore it will be called Least-Squares Commutator DGS (LSC-DGS) smoother.

The LSC was firstly developed by Elman [20], and used to construct a least-squares
approximation to the Schur complement of the linearized Navier-Stokes system, yielding
the so-called BFBt preconditioner. Elman, Howle, Shadid, Shuttleworth, and Tuminaro [21]
tried to generate an sparse approximate commutator by solving (3.9) over a given sparsity
pattern, together with methods of computing sparse approximate inverses. Here we use A∗p
to devise an effective DGS smoother.

Again we take L̃M and S in (2.3) to get a DGS smoother with a different distributive
matrix. For completeness, we present the LSC-DGS relaxation algorithm below.
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Algorithm 3.1. [uk+1, pk+1] ← LSC-DGS(uk, pk)

1. Relax momentum equations

uk+ 1
2 = uk + Â−1( f − Auk − B ′ pk),

2. Relax transformed continuity equations

δq = Â−1
p (0− Buk+ 1

2 ).

3. Transform the correction back to the original variables

(3.1) uk+1 = uk+ 1
2 + B ′δq,

(3.2) pk+1 = pk − Ã−1
p B AB ′δq.

We now discuss choices of the three approximations Â, Â p and Ã p used in LSC-DGS.
The smoother Â−1 for the velocity can be the standard Gauss–Seidel relaxation which has
been shown to be effective for the Laplacian operator. When applicable, red-black or general
multi-coloring ordering is further applied to improve the smoothing effect.

In LSC-DGS, one needs to transfer the correction back to the original pressure variables
by applying (B B ′)−1 B AB ′. In step (3.2), the matrix inversion (B B ′)−1 is replaced by a
cheaper relaxation Ã−1

p which is in general different with the smoothers Â p used in step
(2). Recall that the commutator, i.e., (1,2) block of the transformed system LM, will be
W = (I−B ′ Ã−1

p B)AB ′. The closer Ã−1
p is to (B B ′)−1, the smaller ‖W‖F is. As a guideline,

from our empirical tests, Ã p can be taken to be one symmetric Gauss–Seidel relaxation for
structured grids and one V-cycle iteration for unstructured grids.

The smoother Â p will affect the projection step (3.1) of uk+ 1
2 . Choosing Â p closer to

(B B ′)−1 will make uk+ 1
2 more divergence free in each level and consequently may help in

accelerating the convergence of the whole multigrid procedure. Usually, the smoother Â p

in step (2) can be just one Gauss–Seidel iteration. For discontinuous pressure finite element
approximations, it can be chosen as an element-wise block Gauss–Seidel smoother.

Compared with the standard DGS, step (3.2) of LSC-DGS requires one more relaxation
and one more matrix-vector multiplication. On the other hand, LSC-DGS is more robust,
efficient, and parameter free. This is a typical trade off between robustness and operation
count.

3.4 Comparisons with Inexact Uzawa, Braess-Sarazin and Vanka Smoothers

In order to compare the LSC-DGS smoother with other popular smoothers, we merge step 2
and 3 in Algorithm 3.1 and rewrite LSC-DGS as follows:

uk+ 1
2 = uk + Â−1( f − Auk − B ′ pk), (3.10)

uk+1 = P̂uk+ 1
2 := (I − B ′ Â−1

p B)uk+ 1
2 , (3.11)

pk+1 = pk − ( Â p(B AB ′)−1 Ã p)
−1(0− Buk+ 1

2 ). (3.12)

Inexact Uzawa Smoother. The inexact Uzawa smoother can be summarized as the follow-
ing two steps [35,60]:

uk+1 = uk + Â−1( f − Auk − B ′ pk),
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pk+1 = pk − Ĉ−1(0− Buk+1).

Therefore, the LSC-DGS smoother can be viewed as an inexact Uzawa smoother by taking
Ĉ = Â p(B AB ′)−1 Ã p , and more importantly adding a projection step (3.11) to ensure that
uk+1 is more likely to be discretely divergence-free.

Braess-Sarazin Smoother. The Braess-Sarazin [6] or the SIMPLE-type [43,54] smoother

is to use

(
Â B ′
B 0

)−1

as a smoother for the saddle point system (3.4), which can be formulated

as DGS smoothing by taking the distributive matrix,

MS =
(

I A−1 B ′
0 −I

)

.

Therefore,

L−1 =MS(LMS)−1 =
(

I A−1 B ′
0 −I

) (
A 0
B B A−1 B ′

)−1

. (3.13)

Replacing A with easily invertible approximation Â yields the following Braess-Sarazin
smoothing procedure:

uk+ 1
2 = uk + Â−1( f − Auk − B ′ pk), (3.14)

uk+1 = (I − Â−1 B ′ Ŝ−1 B)uk+ 1
2 , (3.15)

pk+1 = pk − Ŝ−1(0− Buk+ 1
2 ), (3.16)

where Ŝ = B Â−1 B ′.
In Braess-Sarazin or SIMPLE-type smoother, Â will be chosen as Â = αdiag(A), with

an appropriate damping parameter α, which could depend on the maximum (Braess-Sarazin
smoother) or the minimum (SIMPLE-type smoother) eigenvalue of A. Also, for Braess-
Sarazin smoother [6], the inverse of the Laplacian-type operator (B Â−1 B ′)−1 should be
computed sufficiently accurate, say the relative residual is below 10−5.

Inexact symmetric Uzawa smoother. The inexact symmetric Uzawa smoother introduced
in [4] is performed by approximating (B Â−1 B ′)−1 in (3.15) and (3.16) with one or two
V-cycle iterations. The analysis of the smoothing property as well as the performance of
geometric multigrid methods using such smoothers can be found in [60,61].

The LSC-DGS smoother differs from Braess-Sarazin and inexact symmetric Uzawa
smoother in the different projections of projecting uk+1 into the divergence-free space (see
(3.11) and (3.15)) and in the way of updating the pressure equation. In LSC-DGS (3.12), the
pressure is updated using a better approximated Schur complement of the Stokes equations
than the one in (3.16).

Vanka smoother. Although Vanka smoothing can be defined for both continuous and dis-
continuous pressure elements, only discontinuous pressure element discretization is discussed
and implemented in this work.

For each cell τ ∈ Th , denote by Aτ , Bτ the element version of A and B, and Dτ the
diagonal part of Aτ . The correction proceeds on each cell as follows,

(
u
p

)

=
(

u
p

)

+
(

Dτ B ′τ
Bτ 0

)−1 (
ru
rp

)

, (3.17)

where ru = f − Aτ u− B ′τ p and rp = 0− Bτ u. Since Dτ is a diagonal matrix, the inverse of
the small saddle-point system can be computed by inverting the Schur complement Bτ D−1

τ B ′τ
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which is a matrix of small size. Suitable damping (under-relaxation) can be used to further
improve efficiency and ensure the smoothing property; see [58].

Vanka smoother can be viewed as a block-wise Gauss–Seidel procedure of the Braess-
Sarazin smoother. Therefore the difference of LSC-DGS smoother with Vanka smoother
mainly lies in the different way of updating pressure and enforcing divergence free condition.

4 Auxiliary Space Multigrid Method

In this section we apply the auxiliary space (defect correction) multigrid methods [10,28,29],
which consist of an effective smoothing and a simpler discretization serving as a coarse grid
correction, to the Stokes equations. Since the MAC scheme is only defined on uniform grids,
we restrict ourself to the finite element discretization on the rectangular grids in this section.
Similar approaches shall work if we have appropriate generalizations of the MAC scheme
and corresponding DGS to triangular grids.

4.1 Transfer Operators

We introduce the transfer operators between a finite element fine-space and the MAC
auxiliary-space. One virtue of ASMG is the simplification of the implementation. The user
only needs to code the geometric multigrid for MAC, a fine grid smoother, and transfer
operators from the discretization of consideration to MAC.

In regard to the prolongation (interpolation) operators, many prolongation methods could
be used. Fortunately, for the auxiliary space multigrid methods, the simplest of these is
quite effective. For this reason, we apply bilinear interpolation of neighboring auxiliary-
space unknowns in the MAC staggered grid. Figure 2 shows an example of the prolongation
for u from the MAC space to the bi-quadratic Q2 space. The prolongation operator takes
MAC auxiliary-space vectors ([· · · , u1, u2, u3, u4, · · · ]t ) and produces Q2 fine-space vec-
tors ([· · · , u5, u6, u7, u8, · · · ]t ) according to the following rule:

u5 = u3, u6 = 1

2
(u1 + u3), u7 = 1

2
(u3 + u4), u8 = 1

4
(u1 + u2 + u3 + u4).

The prolongation operator for v can be defined in a similar way. Piecewise constant
(first-order) interpolation for the p variables is adopted here because of its simplicity and

(a) (b)

Fig. 2 Sketch of the prolongation from the MAC to Q2. a MAC auxiliary-space points 1, 2, 3, 4. b MAC
auxiliary-space points 1, 2, 3, 4 and Q2 fine-space points 5, 6, 7, 8, etc
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effectiveness. For the bi-linear Q1 element approximation of the pressure, we use the
average of the pressure on the four cells sharing a vertex. For the discontinuous pres-
sure space Pdc

1 defined linearly in each element, the degree of freedom approximates the
cell center value takes the constant pressure from the MAC, while the degree of freedom
approximate the derivatives take values of zero. The interpolation operator will be denoted
by IFE

MAC.
We choose the restriction operator as the transpose of the prolongation operator divided

by h2 which transfers the residual of the finite element discretizations to that of the finite
difference discretization. The restriction operator will be denoted by RMAC

FE .

4.2 Multigrid Procedure

With the transfer operators defined in the previous subsection, one V-cycle multigrid proce-
dure can be summarized in the following algorithm.

Algorithm 4.1. x ← asmg-Vcycle(ν1, ν2, x, b)

1. Relax ν1 steps on LFE y = b with initial guess x.
2. Form the FE fine-space residual

r = b− LFE x

and restrict it to the MAC auxiliary-space rMAC = RMAC
FE r.

3. Solve the MAC auxiliary-space residual equation

LMACeMAC = rMAC

with one multigrid F-cycle procedure.
4. Interpolate the MAC auxiliary-space error to the FE fine-space by e =

IFE
MACeMAC and correct the FE fine-space approximation by:

x ← x + e.

5. Relax ν2 steps on LFE y = b with initial guess x.

We refer to the multigrid method based on asmg-Vcycle as asmg(ν1,ν2). In the frame-
work of defect correction multigrid, the smoothing steps in (1) and (5) can be zero, i.e.,
asmg(0, 0) or it could be replaced by the smoothing for LMAC. However, such a scheme
diverges for all finite elements we have tested. An additional and effective smoothing for the
finite element discretization is really necessary and thus our method is in the sprit of auxiliary
space method [57]. On solving the MAC auxiliary-space problem, one pre-smoothing and
post-smoothing are used for the F-cycle, i.e., F(1, 1). We can also replace F-cycle with
V-cycle or W-cycle. According to our numerical test, F(1, 1) performs equivalently well as
V(2, 2) or W(1, 1) cycles in step 3 of asmg-Vcycle.

5 Numerical Experiment

The Stokes system to be solved is

Lx =
(

A B ′
B 0

) (
u
p

)

=
(

f
0

)

:= b. (5.1)
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The selected stopping criterion is

‖r i‖l2/‖r0‖l2 < tol,

where tol is a tolerance which will be specified later for each example, and r i = b−Lxi , for
multigrid methods and r i = P−1(b− Lxi ), for preconditioned GMRES/MINRES method
with block or block-triangular preconditioner P introduced in a moment. Zero initial guess
is chosen for all tests. The estimates for asymptotic contraction factors (rate) are the averages
of relative residual (‖r3+i‖l2/‖r3‖l2)1/ i over all steps after the third step. The reason starting
from step 3 rather than step 0 is that asymptotic behavior often appears after a few iterations.

All of our algorithms are implemented using MATLAB. The built-in GMRES/MINRES
functions are used for the Krylov subspace methods. The finite element matrices on triangular
grids and rectangular grids are assembled using the software iFEM [16] and IFISS [49],
respectively. The AMG/MG implemented in the software package iFEM is used for Poisson
solvers. All tests are run on a laptop with 2.50GHz Intel(R) Core(TM) i5-2520M processor.

For all tests, the iteration steps and CPU time of each solver are listed in tables. The
code has been optimized using vectorization technique so that the CPU time could be a
good indicator of the efficiency. To further relieve the affect of programming language and
hardware, the operation count is also included. The presentation follows closely the paper
by Elman [19].

5.1 Krylov Subspace Methods with Block Preconditioners

For comparison, we will test the Krylov subspace methods with popular block precondition-
ers. For the Stokes equations, the classical block-diagonal preconditioner for MINRES [19]
method is

P =
(

A 0
0 B A−1 B ′

)

,

and the block-triangular preconditioner [19,26] for GMRES method is

P =
(

A B ′
0 −B A−1 B ′

)

.

The block preconditioning requires the solution of two systems of equations with matrices
A and B A−1 B ′ at each GMRES/MINRES iteration. If P−1 is computed exactly, the precon-
ditioned Krylov methods converges in two or three steps [36]. For practical implementations,
the Schur complement B A−1 B ′ is replaced by the mass matrix Mp of the pressure space.
For discontinuous pressure space, Mp is block diagonal and easy to invert. For continu-
ous pressure space, say Q1, the mass matrix Mp can be further replaced by its diagonal
matrix [22].

One geometrical multigrid V-cycle is used to invert the Laplacian operator A of the
velocity. ASMG is also applied in this step. For example, for Q2 element, one Gauss–Seidel
smoothing for Q2 element plus an F-cycle for P1 element serving as the auxiliary space
correction.

5.2 Operation Count

Simple comparison of iteration steps and CPU time may not be fair since the performance of
a specific method depends on the implementation and testing environment: the programming
language, optimization of codes, and the hardware (memory and cache), etc. To fairly compare
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Table 1 The operations used for each smoother/preconditioner

Smoother/Precond. Matrix-vector product required

LSCDGS 2A 2B 2B′ Â−1
p Ã−1

p

DGS (M in (3.6)) A 2B 2B′ Â−1
p 2D−1

u D−1
p

DGS (M in (3.7)) A B 2B′ Â−1
p An

Vanka N Aτ 3N Bτ N B′τ 2N D−1
τ

Inexact Sym. Uzawa A B 2B′ Â−1 VB Â−1 B′ (1, 1)

Block-diag precond. VA(1, 1) D−1
p

Block-tri precond. VA(1, 1) D−1
p B′

Table 2 The number of operations for smoothers and preconditioners

Smoother/preconditioner Q⊥1 − P0 P B
1 − P1 Q2 − Pdc

1 Q2 − Q1 P iso
2 − P1

MAC one F-cycle 2.8L 1.9L 0.4L 0.4L 0.4L
LSCDGS 2.3L 2.4L 2.2L 2.2L 2.2L
DGS 1.3L 1.6L 1.5L 1.5L 1.5L
Vanka 2.4L - 2.5L - -

Inexact Sym. Uzawa 1.7L 2.6L 1.7L 1.7L 1.7L
Block-diag precond. 2.9L 1L 2.0L 2.1L 2.1L
Block-tri precond. 3.0L 1.3L 2.2L 2.3L 2.3L

Table 3 Cost for one multigrid cycle or one step of the preconditioned Krylov subspace methods

Methods Q⊥1 − P0 Pb
1 − P1 Q2 − Pdc

1 Q2 − Q1 P iso
2 − P1

MG-LSCDGS 8.5L 7.7L 5.8L 5.8L 5.8L
MG-DGS 6.4L 6.1L 4.4L 4.4L 4.4L
MG-Vanka 8.6L - 6.4L - -

MG-iUzawa 7.2L 8.1L 4.8L 4.8L 4.8L
MINRES 4.7L 2.8L 3.3L 3.3L 3.3L
GMRES 4.0L 2.3L 3.2L 3.3L 3.3L

the efficiency of different solvers, following Elman [19], we list the operation count of each
method but only consider the dominating portion of the matrix-vector multiplication. We use
one matrix-vector product Lx as a unit, which consists of matrix-vector multiplications of
A, B, and B ′. The cost of a matrix-vector product is estimated to be the number of non-zeros
in the matrix used.

We gather the matrix-vector products used in different smoothers and preconditioners in
Table 1 and present the costs of smoothers and preconditioners in Table 2. The costs for one
multigrid cycle asmg(1,1) and Krylov subspace iteration are given in Table 3. For multigrid
methods, the costs of one V(1, 1)-cycle and F(1, 1)-cycle step are estimated as 11/3 and 9/2
work units, respectively, including one residual evaluation on the finest grid; see e.g., [15,50].
Since the iteration cost for each step of GMRES is not linear, we only count the cost for the
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Table 4 Example 1. The number of iterations and CPU time (in parentheses) of the asmg multigrid method
with different smoothers and preconditioned Krylov subspace methods for solving the system (5.1)

Smoother h Q⊥1 − P0 Pb
1 − P1 Q2 − Pdc

1 Q2 − Q1 P iso
2 − P1

1/64 6 (0.07 s) 10 (0.22 s) 7 (0.25 s) 10 (0.30 s) 13 (0.35 s)

LSC-DGS 1/128 5 (0.23 s) 10 (0.78 s) 7 (0.97 s) 9 (1.00 s) 13 (1.30 s)

1/256 5 (0.90 s) 10 (3.03 s) 7 (4.40 s) 9 (4.01 s) 12 (4.81 s)

1/64 9 (0.13 s) 23 (0.39 s) 11 (0.31 s) 21 (0.84 s) 29 (1.20 s)

DGS 1/128 9 (0.40 s) 23 (1.41 s) 11 (1.15 s) 20 (2.89 s) 28 (4.03 s)

1/256 9 (1.63 s) 22 (5.21 s) 11 (4.51 s) 20 (10.7 s) 27 (12.5 s)

1/64 5 (0.06 s) – 6 (0.24 s) – –

Vanka 1/128 5 (0.24 s) – 6 (0.94 s) – –

1/256 5 (0.89 s) – 6 (4.30 s) – –

1/64 11 (0.24 s) 11 (0.33 s) 9 (0.32 s) 14 (0.56 s) 20 (0.68 s)

iUzawa 1/128 12 (1.67 s) 12 (1.28 s) 9 (1.11 s) 14 (2.76 s) 20 (2.96 s)

1/256 12 (5.66 s) 12 (7.90 s) 9 (4.23 s) 15 (9.31 s) 21 (10.3 s)

Diag-block 1/64 46 (0.55 s) 37 (0.30 s) 30 (0.74 s) 50 (0.85 s) 47 (0.85 s)

precond. 1/128 46 (1.25 s) 37 (1.25 s) 30 (3.01 s) 48 (2.30 s) 45 (2.30 s)

(MINRES) 1/256 44 (5.07 s) 37 (4.90 s) 32 (11.7 s) 48 (10.2 s) 43 (10.2 s)

Tri-block 1/64 25 (0.60 s) 24 (1.14 s) 22 (0.96 s) 32 (1.45 s) 24 (1.05 s)

precond. 1/128 26 (1.64 s) 25 (4.99 s) 22 (4.32 s) 32 (5.35 s) 19 (4.35 s)

(GMRES) 1/256 27 (6.64 s) 25 (20.3 s) 23 (14.7 s) 33 (22.8 s) 18 (17.8 s)

preconditioner and the multiplication of L in Table 3 for GMRES. Additional cost will be
counted for the whole iteration process in the numerical experiment.

The counting is based on an N × N uniform rectangular grid. For general unstructured
grids, the number of operation for each method depends also on the topology of the underline
grids and could be slightly different.

5.3 Numerical Examples: Rectangular Grids

The first numerical experiment is carried out to show the efficiency of the LSC-DGS smoother
and the ASMG method. The grids considered are the uniform rectangular grids. A uniform
triangulation can be obtained by drawing the diagonal with positive slope in each rectangular
cell. Five stable finite element discretizations on uniform rectangular or triangular grids are
considered: Q⊥1 −P0, Pb

1 −P1, Q2−Q1, P iso
2 −P1 and Q2−Pdc

1 . Here, Q⊥1 denotes rotated
nonconforming bilinear element [46], Pb

1 stands for the piecewise linear and continuous
space with cubic element bubbles [1] on a uniform triangulation, P iso

2 is the linear element
on a uniform refined triangulation, and Pdc

1 represents disconutinous element in each small
rectangle [22]. Other low order elements including Q2−Q0, Qiso

2 −Q0, etc., have also been
tested and similar conclusions were drawn. Since the rate of convergence of these schemes
are lower than the MAC scheme, results for these schemes are not reported here.

For the ASMG algorithm, the solver for the MAC scheme is one F(1, 1) cycle, i.e., an
F-cycle with one V(1, 1) in each level. Only asmg(1, 1) is tested. The basic set up for the
smoothers is listed below.
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Table 5 Example 1. The averaged contraction rate and number of operation counts (in parentheses) of the
asmg multigrid method and preconditioned Krylov subspace methods with h = 1/256, tol = 10−6

Smoother Q⊥1 − P0 Pb
1 − P1 Q2 − Pdc

1 Q2 − Q1 P iso
2 − P1

LSC-DGS 0.12 ( 43 L) 0.33 ( 85 L) 0.13 ( 41 L) 0.28 ( 52 L) 0.30 ( 56 L)

DGS 0.27 ( 58 L) 0.49 ( 132 L) 0.37 ( 48 L) 0.58 ( 88 L) 0.61 ( 93 L)

Vanka 0.05 ( 43 L) – 0.11 ( 38 L) – –

iUzawa 0.29 ( 108 L) 0.31 ( 122 L) 0.21 ( 54 L) 0.30 ( 84 L) 0.35 ( 98 L)

MINRES 0.70 (207 L) 0.74 ( 104 L) 0.67 (106 L) 0.77 (158 L) 0.74 (152 L)

GMRES 0.42 (513 L) 0.63 (382 L) 0.39 (172 L) 0.70 (281 L) 0.51 (201L)

(1) LSC-DGS: One Gauss–Seidel iteration for computing Â−1
p and one symmetric Gauss–

Seidel iteration for Ã−1
p .

(2) DGS: Distributive matrix (3.6) is used for Q⊥1 − P0, Q2− Pdc
1 , Q2−Q1 and P iso

2 − P1

with α taking as 3/2, 1, 2, 2, respectively, and distributive matrix (3.7) is used for Pb
1 −P1

with β = 3/2. The parameters α and β have been tuned in each test.
(3) Inexact symmetric Uzawa smoother: The approximation Â = 2diag(A) for elements

of P iso
2 − P1 and Pb

1 − P1 [60], and Â = diag(A) for other finite elements are used
on rectangular grids. One AMG V(1, 1)-cycle is used to solve the approximate Schur
complement matrix B Â−1 B ′. The set up time of AMG is estimated as 1/4 of V-cycle
iterations.

(4) Vanka: Multicolor ordering of the cells is used, and one type of the matrices Aτ , Bτ and
Dτ are assembled for each colored cell. The set up time is negligible.

For all elements and methods tested in this example, the tolerance is tol = 10−6.

Example 1 Driven cavity flow problem. We consider the leaky cavity problem on a unit
square, i.e, the force f = 0 in system (1.1), and homogenous Dirichlet boundary condition
except on the top

{y = 1; 0 ≤ x ≤ 1|u = (1, 0)}.
The number of iterations and CPU time (in parentheses) of the asmg multigrid method

with different smoothers and preconditioned Krylov subspace methods is summarized in
Table 4. The estimated contraction rate and the operation count is presented in Table 5. The
cost for m steps of MINRES is counted as m(L+P−1)+ 6m·#DOF; see [42]. For GMRES,
the total costs for m steps iteration is roughly m(L+P−1)+ 4m2· #DOF; see ([47, p. 158]).
The presented results of preconditioned Krylov subspace methods agree with those in the
book by Elman et al. [22]. We have also tried other alternatives in the preconditioned Krylov
subspace method by solving the mass matrix for pressure space more accurately, or more
V-cycles for Poisson equation for velocity, etc. We found that inverting Laplacian for velocity
with one V-cycle and approximating Schur complement with the diagonal matrix of the mass
matrix is almost optimal in view of operation counts for almost all the tested elements.
We also notice that one may gain marginal efficiency by using Preconditioned Conjugate
Residual (PCR) method [19]. One may accelerate the convergence by using Chebyshev
semi-iteration in the inversion of the mass matrix [52]. As pointed out in [52], the Chebychev-
semi-iteration for the pressure mass matrix is very attractive, especially when more accurate
solution is required (smaller tolerance). For the tolerance 10−6, however, the speed up is
almost negligible, see Figure 4.1 in [52].

123



J Sci Comput

0 20 40 60 80 100 120 140 160

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

re
la

tiv
e 

re
si

du
al

work unit (L)

Q
2
−P

−1
: comparison of operation cost for various methods

MG/LSCDGS
MG/DGS
MG/Vanka
MG/iUzawa
MINRES
GMRES

0 50 100 150 200 250

re
la

tiv
e 

re
si

du
al

work unit (L)

Q
2
−Q

1
: comparison of operation cost for various methods

MG/LSCDGS
MG/DGS
MG/iUzawa
MINRES
GMRES

Fig. 3 Comparison of operation counts for multigrid method and Krylov subspace method. a Q2 − Pdc
1 .

b Q2 − Q1 (Example 1)

The residual norms against operation counts of different solvers for Q2−Pdc
1 and Q2−Q1

is plotted in Fig. 3. Similar behavior is also observed for other elements and thus only two
typical finite element pairs, one with continuous and another with discontinuous pressure
space, are shown here.

We have tested other settings having analytical solutions, similar behavior was observed.
We shall not report them.

Based on these results, we may draw the following conclusion for the performance on
uniform grids.

(1) All methods are uniformly convergent with respect to h. Namely all of them are of
optimal linear complexity.

(2) Multigrid asmg(1,1), i.e., combination of smoothing in the FE space and correction
using multigrid for MAC scheme, outperforms the popular preconditioned Krylov spaces
methods. For example, ASMG using LSC-DGS is in average two or three times faster
than preconditioned MINRES.

(3) Among the various smoothers, LSC-DGS smoother is the most efficient one in most
cases. For discontinuous pressure, Vanka smoothing is the best in terms of operation
counts, which in part is due to the multicolor ordering for the grids. For continuous
pressure spaces, due to the continuity of the pressure, it is not easy to code Vanka
smoothing for overlapping patches [33,34]. In general, geometric and basis information
is needed to code an effective Vanka smoother while LSC-DGS only uses the given
matrices and thus is more user-friendly.

5.4 Numerical Examples: Triangular Grids

For general triangular grids, we do not have efficient MG-DGS methods for MAC-type
schemes. Therefore we test the standard V-cycle or W-cycle multigrid based on the LSC-
DGS smoother. For saddle point problems, we expect the uniform convergence of W-cycle
with enough smoothing steps while V-cycle is less stable. In [60] Zulehner pointed out that
the contraction rates of multigrid methods (using an inexact Uzawa smoother) are certainly
still unsatisfactory for unstructured grids. Therefore we apply tests on three different kinds
of grids including both structured and unstructured grids.
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(a) (b) (c)

Fig. 4 Three types of meshes used in Example 2

As in [6,60], we consider the P iso
2 − P1 element (modified Taylor-Hood element) dis-

cretization: linear shape-functions on a triangular grid for the pressure and linear shape-
functions for the velocity on an uniformly refined mesh (where each triangle is divided into
four similar small triangles) [14,45]. The performance of other elements are similar. The
symbol “×” in the following tables means that the corresponding algorithm diverges.

Example 2 Classical multigrid methods with LSC-DGS smoother on triangular grids. This
example is taken from [6,60]. The analytical solution u and p are chosen as follows:

u(x, y) =
(

sin x sin y
cos x cos y

)

, p(x, y) = 2 cos x sin y + C,

where C is chosen for each specific example such that p ∈ L2
0(�).

Three different types of meshes are considered and the coarsest meshes are plotted in
Fig 4. The level k in Tables 6, 7, 8 stands for k times uniform refinement of the coarsest
mesh. For the circular domain, after each refinement, the boundary nodes are projected onto
the circle and thus results in non-nested finite element spaces. The grid in Fig. 4(b) is taken
from [6,60].

The choice of tolerance is tol = 10−8 in this example.

Example 2.1 Structured grids of a square domain. The performance of both V-cycles and
W-cycles is present in Table 6 for the structured grid shown in Fig. 4 (a). In the LSC-
DGS smoother, Â−1 is chosen as one Gauss–Seidel iteration, and Ã−1

p is one symmetric
Gauss–Seidel iteration. In the inexact symmetric Uzawa smoother, following Zulehner [60],
the smoother Â is chosen as Â = 2diag(A), and one V(2, 2)-cycle is used to solve the
approximate Schur complement Ŝ = B Â−1 B ′. For comparison, the numerical result for
ASMG-LSC-DGS is also included in Table 6.

Example 2.2 Unstructured grids of a square domain. The numerical results are reported in
Table 7 for the unstructured grids shown in Fig. 4(b). In the LSC-DGS smoother, Â−1 is one
Gauss–Seidel iteration, while Ã−1

p is chosen as one V(2, 2)-cycle, since more accurate solver
is required to guarantee the commutator W is small for the unstructured grids. In the inexact
symmetric Uzawa smoother, Â is chosen as Â = 2diag(A), and two V(2, 2)-cycles are used
to solve the approximate Schur complement Ŝ = B Â−1 B ′ to ensure the Schur complement
B A−1 B ′ being solved accurately enough.

For this example, only W-cycle is reported since V-cycle converge but not uniformly
within 5 steps of pre-smoothing and post-smoothing for both of MG-LSCDGS and
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Table 6 Example 2.1: structured grids of a square domain

level #DOF V-cycle W-cycle

(1,1) (2,2) (1,1) (2,2)

(a) MG-LSC-DGS

5 37,507 21 (0.68s) 10 (0.44s) 10 (0.51s) 7 (0.56s)

6 148,739 31 (3.64s) 10 (1.66s) 10 (2.07s) 7 (2.32s)

7 592,387 58 (27.1s) 10 (7.07s) 10 (7.22s) 7 (9.66s)

(b) ASMG-LSC-DGS

5 37,507 16 (0.43s) 13 (0.51s)

6 148,739 16 (1.42s) 13 (1.72s)

7 592,387 16 (5.80s) 13 (6.18s)

(c) MG-iUzawa

5 37,507 × 16 (1.21s) 29 (3.12s) 14 (2.30s)

6 148,739 × 16 (3.58s) 29 (8.21s) 14 (6.73s)

7 592,387 × 16 (12.9s) 29 (27.1s) 14 (22.6s)

Comparison of the iterations for three different kinds of multigrid solvers: (a) MG-LSC-DGS, (b) ASMG-
LSC-DGS, and (c) MG-iUzawa (tol = 10−8)

Table 7 Example 2.2: Unstructured grids of a square domain

level #DOF W-cycle

(1,1) (2,2) (3,3) (4,4)

(a) MG-LSC-DGS

5 41,875 35 (4.13s) 18 (3.28s) 13 (3.61s) 11 (4.04s)

6 166,691 34 (16.2s) 18 (15.3s) 13 (15.9s) 11 (16.1s)

7 665,155 34 (65.5s) 18 (56.7s) 13 (58.8s) 11 (63.6s)

(b) MG-iUzawa

5 41,875 × × 33 (11.2s) 26 (10.9s)

6 166,691 × × 33 (38.3s) 25 (37.1s)

7 665,155 × × 33 (126s) 25 (120s)

Comparison of the iterations for two different kinds of multigrid solvers: (a) MG-LSC-DGS and (b) MG-
iUzawa (tol = 10−8)

MG-iUzawa. Due to the poor mesh quality, both the cost of one iteration and the number of
iterations increases comparing to the structured grids case.

We estimate the operation cost for LSC-DGS smoother and inexact symmetric Uzawa
smoother in the unstructured grid case for P iso

2 − P1 element. The cost of one V(2, 2)-
cycle and W(3, 3)-cycle for inverting a sparse matrix with N non-zeros is about 19/3N and
13N , respectively [50]. The cost for one LSC-DGS smoother is about 2.4L, and the cost for
one inexact symmetric Uzawa smoother is about 2.6L. Therefore, the cost of one multigrid
W(3, 3)-cycle is 31.2L and 33.8L for MG-LSC-DGS and MG-iUzawa, respectively. The
comparison is plotted in Fig. 5 and the result for MG-iUzawa is consistent with that in [60].

Example 2.3 Unstructured grids of a circular domain. This example is devoted to show the
performance of multigrid V-cycle and W-cycle for a unstructured grid of a circular domain.
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Table 8 Example 2.3: Unstructured grids of a circular domain

level #DOF V-cycle W-cycle

(1,1) (2,2) (1,1) (2,2)

(a) MG-LSC-DGS

4 98,843 15 (1.97s) 9 (1.12s) 11 (1.72s) 7 (1.51s)

5 393,523 20 (6.56s) 9 (4.77s) 11 (6.10s) 7 (5.22s)

6 1,570,403 36 (50.8s) 9 (18.6s) 12 (27.5s) 7 (21.7s)

(b) MG-iUzawa

4 98,843 × 16 (1.91s) 29 (5.22s) 15 (4.9s)

5 393,523 × 16 (8.73s) 30 (17.7s) 15 (14.2s)

6 1,570,403 × 16 (34.7s) 30 (69.1s) 15 (56.7s)

Comparison of the iterations for two different kinds of multigrid solvers: (a) MG-LSC-DGS and (b) MG-
iUzawa (tol = 10−8)

Fig. 5 Example 2.2: comparison of MG-LSCDGS and MG-iUzawa on unstructured grids shown in
Fig. 4b. a Comparisons of the convergence history of W(3, 3) in items of iteration steps, b comparisons
of the convergence history of W(3, 3) in items of work units

In the LSC-DGS smoother, Â is chosen as one Gauss–Seidel iteration, and Ã p is chosen
as one symmetric Gauss–Seidel iteration. In the inexact symmetric Uzawa smoother, Â is
chosen as Â = 2diag(A), and one V(2, 2)-cycle is used to solve the approximate Schur
complement Ŝ = B Â−1 B ′. Due to the nice mesh quality, the performance of MG-LSC-DGS
is almost identical to the structured grid case, see Table 8.

Based on these results, we may conclude

(1) The performance of multigrid methods depends crucially on the quality of the mesh. For
unstructured grids with poor mesh quality, one or two V-cycles are needed for smoothers
and the iteration steps are almost doubled, which in turn increase the CPU time a lot.

(2) For both structured and unstructured grids, MG-LSC-DGS is faster than MG-iUzawa
by a factor of two or three.

(3) For structured grids, ASMG using MAC as a coarse grid correction works best. The
reason might be due to the point-wise divergence free property of the velocity approxi-
mation in the MAC scheme.
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6 Conclusions and Future Research

The Stokes system is the first step for the numerical computation of incompressible flow
equations. Our method can be extended to the Navier-Stokes equations, since no explicit
construction of Ap is required. On rectangular grids we will design fast solvers for the MAC
discretization of Navier-Stokes equation with the LSCDGS smoother, combining the idea
in [12,13] for the high-Reynolds incompressible flow, and use it as a coarse grid solver
to design an efficient multigrid solver for finite element discretization of Navier-Stokes
equations.

Another direction is to develop an efficient ASMG for triangular grids. We will first
investigate the generalization of MAC to triangular grids [23,38] and design corresponding
DGS-type smoother and multigrid methods.
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