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Abstract

This paper presents a weak virtual element method on general meshes for the Stokes–Darcy problem with the Beavers–
Joseph–Saffman interface condition. The velocity is discretized by the H(div) virtual element. The pressure is approximated by
discontinuous piecewise polynomials. Besides, a polynomial space on the element faces is introduced to approximate the tangential
trace of the velocity in the Stokes equations. The velocity on the discrete level is exactly divergence free and thus the exact mass
conservation is preserved in the discretization. The well-posedness of the discrete problem is proved and an a priori error estimate is
derived that implies the error for the velocity in a suitable norm does not depend on the pressure. A series of numerical experiments
are reported to illustrate the performance of the method.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Coupling incompressible flow and porous media flow has received increasing attention over the past decades, being
involved in many applications, such as ground water contamination and industrial filtration. This coupled phenomenon
is mathematically expressed by the Stokes–Darcy problem that consists of the Stokes equations to govern the flow in
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the free fluid region and Darcy’s law to describe the flow in the porous media, and three transmission conditions at the
interface, namely mass conservation, the balance of the normal stresses and the well-known Beavers–Joseph–Saffman
condition [1,2].

Various numerical methods have been developed to approximate the solution of the Stokes–Darcy problem (see
for instance [3–11]), most of which are based on the second order primal formulation of Darcy’s law. The numerical
schemes in these references do not satisfy the exact mass conservation property. In this paper, we adopt the perspective
of the mixed form in which both the velocity and the pressure simultaneously arise in Darcy’s law. So that two variables
in the whole domain, i.e., the velocity and the pressure, are now needed to be well approximated. It is emphasized
that the velocity field on the discrete level must retain normal continuity and preserve the exact mass conservation
property that is critical for the transport problem to avoid creating artificial mass sources and sinks [12]. Therefore,
the mixed finite element method (MFEM) [13] is a better choice for dealing with this problem.

There are several stable and convergent mixed finite element discretization strategies developed for the Stokes–
Darcy problem. In [14], the authors studied the mathematical theory and associated numerical analysis of a mixed
variational formulation. There, standard Stokes elements like the Taylor–Hood element were proposed for the Stokes
equations, and mixed finite element like the Raviart–Thomas element for Darcy’s law. They also introduced a
Lagrange multiplier representing the trace of the Darcy pressure on the common interface to enforce the continuity
of the normal velocity weakly. A similar method was also presented in [15–17], where the Bernardi–Raugel element
was employed for the Stokes equations. To prevent one from using Lagrange multipliers and impose the first type
of transmission conditions essentially, the authors in [18,19] used divergence conforming finite elements for the
velocities in the whole domain via the ideas of discontinuous Galerkin (DG) method [20]. One advantage of such
an approach is that the velocity on the discrete level satisfies the exact divergence free constraint. The other is that
there only exists an integral term of the tangential velocity in the bilinear form. More research concerning MFEM for
the Stokes–Darcy problem can be found in [21–24]. It should be mentioned that all of these methods are proposed on
simplicial meshes.

In the recent years, several novel numerical methods on general meshes have been introduced, and then received
attention in partial differential equations since their great flexibility of element-geometry. Such methods include virtual
element method (VEM) [25–29], weak Galerkin (WG) method [30–32], mimetic finite difference (MFD) method
[33–35], hybrid high order method [36,37], hybridizable discontinuous Galerkin (HDG) method [38–40], and so on.
Within our knowledge, however, there are few studies of the Stokes–Darcy problem by using these methods. A family
of WG finite element discretization has been proposed in [41] where the velocity and the pressure are approximated
by discontinuous piecewise polynomials, respectively, and weak gradient and divergence are introduced to handle the
nonconformity. DG method for the Stokes equations combining with MFD method for Darcy’s law was studied by
Lipnikov et al. in [42]. In these works, the error estimates for the velocity still depend on the pressure. Recently, a
strongly conservative HDG/mixed finite element method for the Stokes–Darcy problem has been presented in [43].
In that work, the HDG method and the MFEM were used in the Stokes and Darcy subdomains, respectively. The
stability of the numerical scheme holds if the penalty parameter is sufficiently large. The use of MFEM in the Darcy
subdomain also limits the application of the method to simplicial meshes.

The focus of this paper is to apply a new numerical method proposed in [44] for the Stokes equations to the
Stokes–Darcy problem by employing an exact divergence free element on polygonal or polyhedral meshes. For the
Stokes equations, Chen and Wang [44] proposed a divergence free weak virtual element method (WVEM) on general
meshes. They used H(div) virtual element [45,46] to discretize the velocity, and discontinuous piecewise polynomials
to approximate the pressure. In addition, the tangential continuity is enforced by introducing a polynomial space on
the element faces and defining a weak symmetric gradient following the idea of WG method [30]. The WVEM is
exactly divergence free and robust with respect to the pressure.

As an extension, we shall combine the WVEM for the Stokes equations and the H(div) virtual element for the Darcy
law to end up with a stable discretization for the coupled problem. We point out that two issues need to be addressed.
First, we aim to choose a discrete space for Darcy’s law such that the interface condition of mass conservation becomes
essential. Here we will use H(div) virtual element to approximate the velocity in Darcy’s law, which leads to a unified
discretization for both the Stokes and Darcy sides. Consequently, the velocity on the discrete level still belongs to the
exactly divergence free space, and the tangential space on the element faces is only defined in the Stokes domain. This
choice also allows the use of hanging nodes on the interface in the implementation. Second, as mentioned before, the
bilinear form involves an integral term of the tangential velocity. We define a suitable H1 seminorm ||| · ||| such that the
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discrete scheme is stable and an a priori error estimate can be derived. To this end, a mesh dependent H1 seminorm on
the discrete space is defined in (4.2), and the well-posedness of the discrete scheme is proved by using the classical
saddle point theory. We therefore present an approach that is exactly divergence free and pressure-robust.

Specifically, let u and p be the velocity and the pressure of the Stokes–Darcy problem, respectively, and assume
that (uh, ph) is the solution of the discrete problem (4.1) and (uI , pI ) is the interpolation of the exact solution, then
we obtain

|||uh − uI ||| + ∥ph − pI ∥ ≲ hk
(
ν

1
2 ∥u∥k+1,Ωs + K−

1
2 ∥u∥k,Ωd

)
+ ν−

1
2 h∥f − Πo

hf∥Ωs ,

where ν denotes the viscosity constant, K stands for the permeability, f is an external force and Πo
h represents the

piecewise L2 projection to Pk polynomial space.
Another point we would like to emphasize is that, unlike the traditional finite element methods, there are non-

polynomial functions in the virtual element space. In other words, one does not know explicitly the shape function.
The degrees of freedom are only used in the assembly process of the matrix. Thus the VEM is convenient to implement,
especially for the vector space, e.g., H(div) virtual element space.

The paper is structured as follows. In Section 2, we shall recall and state the Stokes–Darcy model problem. In
Section 3, the weak virtual element space will be introduced. The Stokes–Darcy problem is then discretized by
the weak virtual element method in Section 4, where we also prove the well-posedness of the discrete problem.
In Section 5, we derive an a priori error estimate in a suitable norm. In Section 6, numerical experiments are presented
to validate the theoretical results. Finally, conclusions are drawn in Section 7.

2. Model statement

Throughout the paper, we often use bold fonts to express vector variables, operators, and spaces. Standard notations
are defined for the scalar Sobolev space H s(D) or the vector Sobolev space Hs(D) (s ≥ 0) in an open bounded domain
D ⊂ Rd (d = 2 or 3), equipped with norm ∥ · ∥s,D and seminorm |·|s,D . The space H 0(D) (or H0(D)) coincides with
L2(D) (or L2(D)), for which the norm and the inner product are represented by ∥ · ∥D and (·, ·)D , respectively. We
also define the following vector Sobolev spaces,

H(div, D) := {v ∈ L2(D) : div v ∈ L2(D)} d = 2 or 3,

H(rot, D) := {v ∈ L2(D) : rot v ∈ L2(D)} d = 2,

H(curl, D) := {v ∈ L2(D) : curl v ∈ L2(D)} d = 3,

where the operators div and curl denote the standard divergence and curl. For any v = (v1, v2) in L2(D), we will set
rot v =

∂v2
∂x −

∂v1
∂y .

We consider a coupled Stokes–Darcy model in an open, bounded and convex polygonal or polyhedral domain
Ω ⊂ Rd , consisting of a free fluid region Ωs and a porous medium region Ωd , with interface Γ = Ω s ∩ Ωd , as
depicted in Fig. 1. Denote by Γs = ∂Ωs \Γ , Γd = ∂Ωd \Γ the outer boundary, thus we can express that ∂Ω = Γs ∪Γd

and Γs ∩ Γd = ∅. We also use ns and nd to denote the unit outward normal vectors on ∂Ωs and ∂Ωd , respectively.
Note that ns = −nd on Γ .

Denote by u = (us, ud ) the fluid velocity and by p = (ps, pd ) the fluid pressure, where ui = u|Ωi and pi = p|Ωi ,
i = {s, d}. In Ωs , the fluid flow is assumed to be governed by the Stokes equations:

− div(2νϵ(us)) + ∇ ps = f in Ωs, (2.1a)

div us = 0 in Ωs, (2.1b)

us = 0 on Γs, (2.1c)

where ν > 0 stands for the constant viscosity, ϵ(us) = (∇us +∇uT
s )/2 is the symmetric gradient of us , and f ∈ L2(Ωs)

is a given external force. In Ωd , the porous media flow motion is governed by Darcy’s law:

K−1ud = −∇ pd in Ωd , (2.2a)

div ud = g in Ωd , (2.2b)

ud · nd = 0 on Γd , (2.2c)
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Fig. 1. A sketch of the free fluid domain Ωs , the porous media domain Ωd and the interface Γ in two dimensions.

where K denotes the permeability of the medium, is assumed to be a constant and bounded below. The source term
g ∈ L2(Ωd ) is assumed to have zero mean value on Ωd , so that it is compatible with the boundary condition. The
key part of this coupled model is a set of interface conditions that describe how different types of flow interact at the
fluid/porous medium interface Γ :

us · ns = ud · ns, (2.3a)

− 2νϵ(us)ns · ns + ps = pd , (2.3b)

− 2νϵ(us)ns · τ j = αus · τ j , j = 1, . . . , d − 1, (2.3c)

where τ j , j = 1, . . . , d−1, denote the unit tangent vectors on Γ , α is a positive parameter depending on the properties
of the porous medium. The conditions (2.3a) and (2.3b) represent the mass conservation and balance of normal stress
across the interface, respectively. Eq. (2.3c) is the classical Beavers–Joseph–Saffman (BJS) condition [1,2].

We define two function spaces for the velocity and the pressure as

V := {v ∈ L2(Ω ) : div v ∈ L2(Ω ), v|Ωs ∈ H1(Ωs), v = 0 on Γs, v · nd = 0 on Γd},

Q := L2
0(Ω ) = {q ∈ L2(Ω ) :

∫
Ω

q dx = 0}.

Using integration by parts and the interface conditions (2.3) lead to the weak formulation: Find u ∈ V and p ∈ Q
such that

a(u, v) + b(v, p) = (f , v)Ωs ∀v ∈ V, (2.4a)

b(u, q) = −(g, q)Ωd ∀q ∈ Q, (2.4b)

where

a(u, v) = (2νϵ(u), ϵ(v))Ωs + (K−1u, v)Ωd +

d−1∑
j=1

α⟨u|Ωs · τ j , v|Ωs · τ j ⟩Γ ,

b(v, q) = −(div v, q),

where ⟨·, ·⟩Γ denotes (d − 1)−dimensional inner product on Γ . The well-posedness of problem (2.4) can be found
in [14].

3. Weak virtual element space

Let Th be a decomposition of Ω into non-overlapping (possibly non-convex) polygons or polyhedra which are
aligned with the interface Γ , with characteristic mesh size h, and Fh be the collection of all the (d − 1)−dimensional
faces. Here we assume that the mesh Th is shape regular in the sense that: (1) each element E ∈ Th (and each face



1002 G. Wang, F. Wang, L. Chen et al. / Computer Methods in Applied Mechanics and Engineering 344 (2019) 998–1020

f ∈ Fh) is star shaped, (2) the diameters of the faces and elements are equivalent h f ≃ hE . The mesh is also assumed
to be quasi-uniform in the sense that the diameters of all the elements are of comparable size. For each element
E ∈ Th , we define nE as the unit outward normal vector on ∂ E and the subscript will be dropped in a clear case.

Due to the assumption that the elements are not cut by the interface Γ , the partition Th can be naturally divided
into two sets denoted by Th,s = Th ∩Ω s and Th,d = Th ∩Ωd . The set of all faces of the decomposition Th,s is denoted
by Fh,s . Note that Fh,s includes faces belonging to the interface Γ . We point out that hanging nodes on Γ are allowed
in practice, that is to say, the intersection angle between two adjacent faces is allowed to be 180 degree.

As usual, for a positive integer k, Pk denotes the space of polynomials with total degree less than or equal to k, and
Pk denotes the corresponding vector polynomial space. For a face f in one dimension with midpoint x f and length
h f , a basis for Pk( f ) is defined as

Pk( f ) :=

{
1,

x − x f

h f
,
( x − x f

h f

)2
, . . . ,

( x − x f

h f

)k}
. (3.1)

For a two-dimensional element E with centroid xE and diameter hE , a basis for Pk(E) is

Pk(E) :=

{(x − xE

hE

)α

, |α| ≤ k
}
, (3.2)

where, for a nonnegative multi-index α = (α1, α2), we set |α| = α1 + α2 and if x = (x, y) then xα
= xα1 yα2 . Similar

notation can be applied in three dimensions.

3.1. H(div)-conforming virtual element space

On each element E in Th , following [46], for every integer k ≥ 1, a local space is defined as follows, if d = 2,

VE := {v ∈ H(div, E) ∩ H(rot, E) : v · n ∈ Pk( f ), ∀ f ⊂ ∂ E, div v ∈ Pk−1(E), rot v ∈ Pk−1(E)},

if d = 3,

VE := {v ∈ H(div, E) ∩ H(curl, E) : v · n ∈ Pk( f ), ∀ f ⊂ ∂ E, div v ∈ Pk−1(E), curl v ∈ curl (Pk(E))}.

It is easy to check that Pk(E) belongs to VE , which ensures an optimal approximation property of the space. As a
completely different approach, compared with the traditional finite element method, there is no explicit expression of
a basis function in VE . The degrees of freedom are only used in the assembly process of the matrix, which explains
the name virtual element method. By patching VE over all elements E ∈ Th , the following global virtual element
space is a conforming discretization to H(div,Ω ),

Vdiv
h := {v ∈ H(div,Ω ) : v ∈ VE , ∀E ∈ Th, v · n = 0 on ∂Ω},

where n denotes the unit outward normal vector on the boundary ∂Ω .
In VE we define the following degrees of freedom (d.o.f.):

Type I
∫

f
v · n qk ds ∀qk ∈ Pk( f ), f ⊂ ∂ E,

Type II
∫

E
v · qk−2 dx ∀qk−2 ∈ ∇ Pk−1(E),

Type III
∫

E
v · qk dx ∀qk ∈ (∇ Pk+1(E))⊥,

where (∇ Pk+1(E))⊥ denotes the L2 orthogonal complement of ∇ Pk+1(E) in Pk(E). The unisolvence can be found
in [46] and thus is skipped here. Fig. 2 shows the d.o.f. of the lowest order element on a polygon in two dimensions.
In fact, the three polynomials v · n ∈ Pk( f ), div v ∈ Pk−1(E) and rot v ∈ Pk−1(E) if d = 2 (or curl v ∈ curl (Pk(E))
if d = 3) are computable using only the degrees of freedom of v, see [46] for details.

On each element E , we now define a L2 projection operator Πo
E . For each v ∈ VE , we define Πo

E v ∈ Pk(E) as∫
E
Πo

E v · q dx =

∫
E

v · q dx ∀q ∈ Pk(E). (3.3)
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Fig. 2. An illustration of the d.o.f. of the lowest order element (k = 1) in two dimensions. The d.o.f. in VE are colored in black, while the tangential
d.o.f. in V f are colored in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

For any v ∈ VE , the L2 projection Πo
E v is actually computable using only its d.o.f. [46]. In consideration of the

orthogonal decomposition Pk(E) = (∇ Pk+1(E))⊥ ⊕ (∇ Pk+1(E)) and Type III d.o.f., we need only to determine∫
E v · ∇ pk+1 dx which is also computable through integration by parts∫

E
v · ∇ pk+1 dx = −

∫
E

div v pk+1 dx +

∫
∂ E

v · n pk+1 ds.

As mentioned before, v · n and div v are known from the d.o.f. of v. Therefore, all integral terms on the right-hand side
of the above equality are again computable.

3.2. Weak virtual element space

On each E ∈ Th,s , we use RM(E) to denote the space of rigid motions,

RM(E) := {c + Rx, c ∈ Rd , R ∈ Sd},

where Sd is the space of anti-symmetric d × d matrices. The trace of the rigid motion on each f ⊂ ∂ E forms a finite
dimensional space denoted by

RM( f ) := {v ∈ L2( f ) : v = ṽ| f for some ṽ ∈ RM(E), f ⊂ ∂ E}.

We now introduce a space V f := Pk−1( f ) + RM( f ) for any f ∈ Fh,s to involve the tangential part of the velocity.
We note that V f = Pk−1( f ) for k > d − 2. For ease of presentation, we usually express the vector polynomial space
V f in d dimensions, e.g., for all v ∈ V f , we write it as

v =

∑
j=1,...,d−1

v jτ j , v j ∈ Pk−1( f ),

where τ j , j = 1, . . . , d − 1, denote orthogonal unit tangential vectors on the face. Then, the element boundary space
is defined as

Vt
h := {vt

∈ L2(Fh,s) : vt
| f ∈ V f , ∀ f ∈ Fh,s, vt

= 0 on Γs}.

Combining the above two kinds of spaces together gives our weak virtual finite element space:

Vh := {vh = (vdiv
h , vt

h), vdiv
h ∈ Vdiv

h , vt
h ∈ Vt

h}.

We remark that for any vh in Vh , its first part vdiv
h is defined in the whole partition Th , while its second part vt

h is defined
only on Fh,s which is the set of all faces of Th,s , and vt

h is single valued on each face.
For any E ∈ Th,s and its each face f , in order to establish the connection between the H(div)-conforming virtual

element space VE and the tangential space V f , we further introduce a projection to the tangential polynomial space
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on each element face. On the face f ⊂ ∂ E , for each v ∈ H1(E), we define (Πt
∂ E v)| f ∈ V f as∫

f
Πt

∂ E v · q ds =

∫
f

v|E · q ds ∀q ∈ V f . (3.4)

For the term
∫

f v|E · q ds, it is computable if v ∈ Pk(E); however, it is not computable if v ∈ VE , since there is no
tangential d.o.f. of v. In the following definition, the projection Πt

∂ E will act on Πo
E v instead of v, so that

∫
f Π

o
E v|E ·q ds

is computable.
Let Vh(E) be the restriction of Vh on each element E ∈ Th,s . Following [44], we now directly give the definition

of a weak symmetric gradient for functions in Vh(E). Let Ps
k−1(E) be the space of symmetric matrices, whose

components are polynomials of degree at most k − 1. For any v = (vdiv, vt ) ∈ Vh(E) and any W ∈ Ps
k−1(E), we

define ϵw
E (v) ∈ Ps

k−1(E) as

(ϵw
E (v),W)E = (ϵ(Πo

E vdiv),W)E + ⟨Π∂ EJ∂ E (v),Wn⟩∂ E , (3.5)

where

Π∂ E v := (v · n)n + Πt
∂ E v,

J∂ E (v) := J n
∂ E (v) + J τ

∂ E (v) with J τ
∂ E (v) :=

d−1∑
j=1

J τ j
∂ E (v),

J n
∂ E (v) := ((vdiv

− Πo
E vdiv) · n)n,

J τ j
∂ E (v) := ((vt

− Πo
E vdiv) · τ j )τ j j = 1, . . . , d − 1.

With the help of these notation, we can rewrite Π∂ EJ∂ E (v) as

Π∂ EJ∂ E (v) = ((vdiv
− Πo

E vdiv) · n)n +

d−1∑
j=1

((vt
− Πt

∂ E (Πo
E vdiv)) · τ j )τ j .

We note that the projection Πt
∂ E acts on the polynomial Πo

E vdiv but not the virtual function vdiv and thus the term
Π∂ EJ∂ E (v) is still computable.

3.3. Interpolation error estimates

On one hand, for every E ∈ Th , given any v ∈ H1(E), the local interpolation operator Idiv
E : H1(E) → VE is

defined by the degrees of freedom, i.e.,∫
f

Idiv
E v · n qk ds =

∫
f

v · n qk ds ∀qk ∈ Pk( f ), f ⊂ ∂ E, (3.6a)∫
E

Idiv
E v · qk−2 dx =

∫
E

v · qk−2 dx ∀qk−2 ∈ ∇ Pk−1(E), (3.6b)∫
E

Idiv
E v · qk dx =

∫
E

v · qk dx ∀qk ∈ (∇ Pk+1(E))⊥. (3.6c)

On the other hand, for any E ∈ Th,s , the local tangential interpolation operator Πt
∂ E v is defined as described in (3.4).

Therefore, we can group the above two operators into IE v = (Idiv
E v,Πt

∂ E v). Note that the second part Πt
∂ E v is defined

in the free fluid region Ωs .

Lemma 3.1. We have for any W ∈ Ps
k−1(E) that

(ϵ(v),W)E = (ϵw
E (IE v),W)E , (3.7)

where IE v = (Idiv
E v,Πt

∂ E v).

Proof. The proof follows directly from the definitions of the weak symmetric gradient and the interpolation, i.e., (3.5)
and (3.6). □



G. Wang, F. Wang, L. Chen et al. / Computer Methods in Applied Mechanics and Engineering 344 (2019) 998–1020 1005

Throughout the paper, we employ the expression a ≲ b to denote that there exists a positive constant C independent
of the mesh size h such that a ≤ Cb. But C may depend on ν, K or α. We also use a ≃ b to denote that a and b are
equivalent. Under the mesh assumptions, some standard techniques still hold [47,48], e.g., the inverse inequality, the
trace theorem, the Bramble–Hilbert lemma. The stability of the interpolating operator can be found in [49]. Here we
summarize the following error estimates contained in [44].

Lemma 3.2. Suppose that the element E is shape regular. Then, for all v ∈ Hk+1(E), the following estimates hold
true for the operators IE = (Idiv

E ,Πt
∂ E ) and Πo

E

∥v − Πo
E v∥E + h∥∇(v − Πo

E v)∥E + h
1
2 ∥v − Πo

E v∥∂ E ≲ hk+1
∥v∥k+1,E , (3.8a)

∥v − Idiv
E v∥E + ∥v − Πo

E Idiv
E v∥E + h∥∇(v − Πo

E Idiv
E v)∥E ≲ hk+1

∥v∥k+1,E , (3.8b)

∥Π∂ EJ∂ E (IE v)∥∂ E ≲ hk+
1
2 ∥v∥k+1,E , (3.8c)

∥ϵ(v) − ϵw
E (IE v)∥E + h∥ϵ(v) − ϵw

E (IE v)∥1,E ≲ hk
∥v∥k+1,E . (3.8d)

When the subscript E is replaced by the mesh size h, the operators introduced above are element-wise defined on
corresponding domain, i.e., (ϵw

h (·))|E = ϵw
E (·), Πo

h |E = Πo
E , Idiv

h |E = Idiv
E , Πt

h |E = Πt
∂ E , Ih |E = IE . The interpolation

to Vh is defined as Ih = (Idiv
h ,Πt

h).

4. The discrete problem and its well-posedness

4.1. Discretization

Let Qh ⊂ L2
0(Ω ) be a discontinuous piecewise Pk−1 element space. Then, the corresponding discrete variational

formulation reads as follows: Find uh = (udiv
h , ut

h) ∈ Vh and ph ∈ Qh such that

ah(uh, vh) + b(vh, ph) = (f ,Πo
hvdiv

h )Ωs ∀vh ∈ Vh, (4.1a)
b(uh, qh) = −(g, qh)Ωd ∀qh ∈ Qh, (4.1b)

where

ah(uh, vh) : = (2νϵw
h (uh), ϵw

h (vh))Ωs + 2νs1(uh, vh) +

d−1∑
j=1

α⟨ut
h · τ j , vt

h · τ j ⟩Γ

+ (K−1Πo
hudiv

h ,Πo
hvdiv

h )Ωd + K−1s2(udiv
h , vdiv

h ),

b(vh, qh) : = −(div vdiv
h , qh),

and s1(·, ·) and s2(·, ·) are stabilization terms defined as

s1(uh, vh) =

∑
E∈Th,s

⟨
h−1Π∂ EJ∂ E (uh),Π∂ EJ∂ E (vh)

⟩
∂ E ,

s2(udiv
h , vdiv

h ) =

∑
E∈Th,d

DE ((I − Πo
h)udiv

h , (I − Πo
h)vdiv

h ),

where DE is the identity matrix with respect to the local basis determined by the d.o.f. (see [45]).
For any vh = (vdiv

h , vt
h) ∈ Vh , we define a mesh dependent H1 seminorm as follows

|||vh |||
2

:= |||vh |||
2
Ωs

+ |||vh |||
2
Ωd

, (4.2)

with

|||vh |||
2
Ωs

=

∑
E∈Th,s

(
2ν∥ϵw

h (vh)∥2
E + 2νh−1

∥Π∂ EJ∂ E (vh)∥2
∂ E +

d−1∑
j=1

α∥vt
h · τ j∥

2
∂ E∩Γ

)
,

|||vh |||
2
Ωd

= K−1
∥Πo

hvdiv
h ∥

2
Ωd

+ K−1s2(vdiv
h , vdiv

h ) + ∥div vdiv
h ∥

2
Ωd

.

In the following, we first present a technical lemma, and then give the Poincaré and the Korn inequalities,
respectively. Proofs of the following three lemmas have been reported in [44].
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Lemma 4.1. On each element E ∈ Th,s , we have for any vh = (vdiv
h , vt

h) ∈ Vh that

∥vdiv
h − Πo

E vdiv
h ∥

2
E ≲ h∥J n

∂ E (vdiv
h )∥2

∂ E , (4.3a)

∥J∂ E (vh)∥2
∂ E ≲ ∥Π∂ EJ∂ E (vh)∥2

∂ E + h∥ϵ(Πo
E vdiv

h )∥2
E . (4.3b)

Lemma 4.2. For any vh ∈ Vh , we have the Poincaré inequality:

∥vdiv
h ∥

2
Ωs

≲
∑

E∈Th,s

(
∥∇Πo

E vdiv
h ∥

2
E + h−1

∥Π∂ EJ∂ E (vh)∥2
∂ E

)
. (4.4)

Lemma 4.3. The Korn inequality holds for any vh ∈ Vh that∑
E∈Th,s

∥∇Πo
E vdiv

h ∥
2
E ≲ ∥ϵw

h (vh)∥2
+

∑
E∈Th,s

h−1
∥Π∂ EJ∂ E (vh)∥2

∂ E . (4.5)

We then give a norm equivalence result below.

Lemma 4.4. For any vh = (vdiv
h , vt

h) ∈ Vh , it holds that

K−1
∥vdiv

h ∥
2
Ωd

≲ (K−1Πo
hvdiv

h ,Πo
hvdiv

h )Ωd + K−1s2(vdiv
h , vdiv

h ) ≲ K−1
∥vdiv

h ∥
2
Ωd

. (4.6)

Proof. As discussed in [45], the bases (3.1) and (3.2) were chosen such that each of the degrees of freedom in Type
I, II and III scales like vdiv

h times hE . So that, the sum of their squares will scale like ∥vdiv
h ∥

2
0,E . As a consequence, the

bilinear form s2(vdiv
h , vdiv

h ) will scale as ∥(I − Πo
h)vdiv

h ∥
2
Ωd

. We then have from the definition (3.3) that

K−1
∥vdiv

h ∥
2
Ωd

= K−1
∥vdiv

h − Πo
hvdiv

h + Πo
hvdiv

h ∥
2
Ωd

= K−1
∥Πo

hvdiv
h ∥

2
Ωd

+ K−1
∥vdiv

h − Πo
hvdiv

h ∥
2
Ωd

≃ K−1
∥Πo

hvdiv
h ∥

2
Ωd

+ K−1s2(vdiv
h , vdiv

h ).

The proof is completed. □

Lemma 4.5. The seminorm ||| · |||, as defined in (4.2), is a norm in the finite dimensional space Vh .

Proof. We only need to check the positivity property of the seminorm ||| · |||. To this end, suppose that |||vh ||| = 0
for some vh = (vdiv

h , vt
h) ∈ Vh . We first obtain vdiv

h |Ωd = 0 from |||vh |||Ωd = 0 and Lemma 4.4. Then, we have that
vdiv

h |Ωs = 0 from the Korn inequality (4.5), the Poincaré inequality (4.4) and the facts ϵw
E (vh) = 0, Π∂ EJ∂ E (vh) = 0

for any E ∈ Th,s . In addition, on the boundary ∂ E , it holds that (vt
h − Πt

∂ E (Πo
E vdiv

h )) · τ j = 0, which implies that vt
h

equals zero on Fh,s . Finally, we achieve the desired result vh = 0. □

4.2. The well-posedness of the discrete problem

In this subsection, we shall prove that both ah(·, ·) and b(·, ·) are continuous, ah(·, ·) is coercive in the discrete
kernel of Vh and b(·, ·) satisfies the discrete inf–sup condition. Therefore, the discrete problem (4.1) has a unique
solution.

Lemma 4.6. For any uh, vh ∈ Vh and qh ∈ Qh , the two bilinear forms ah(·, ·) and b(·, ·) have following upper
bounds, i.e.,

ah(uh, vh) ≲ |||uh ||| · |||vh |||, (4.7a)

b(vh, qh) ≲ b∗
|||vh ||| · ∥qh∥, (4.7b)

where b∗
= max

{
1

√
ν
, 1

}
is a positive constant.
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Proof. The Cauchy–Schwarz inequality and the definition (4.2) of the norm yield the first inequality (4.7a). On one
hand, for any E ∈ Th,s , by integration by parts and the property of L2 projection, we have

∥div vdiv
h − divΠo

hvdiv
h ∥

2
E =

∫
∂ E

div(vdiv
h − Πo

hvdiv
h )(vdiv

h − Πo
hvdiv

h ) · nds

≤ ∥J n
∂ E (vdiv

h )∥∂ E∥div(vdiv
h − Πo

hvdiv
h )∥∂ E .

The trace inequality and the fact div(vdiv
h − Πo

hvdiv
h ) ∈ Pk−1(E) give that

∥div(vdiv
h − Πo

hvdiv
h )∥

2
∂ E ≲ h−1

∥div(vdiv
h − Πo

hvdiv
h )∥

2
E + h∥∇div(vdiv

h − Πo
hvdiv

h )∥
2
E

≲ h−1
∥div(vdiv

h − Πo
hvdiv

h )∥
2
E .

Then, it follows that

∥div vdiv
h − divΠo

hvdiv
h ∥E ≲ h−

1
2 ∥J n

∂ E (vdiv
h )∥∂ E .

By summing over E in Th,s , and using the triangle inequality and the Korn inequality (4.5), we obtain

b(vh, qh) ≤ (∥div(vdiv
h − Πo

hvdiv
h )∥Ωs + ∥divΠo

hvdiv
h ∥Ωs )∥qh∥Ωs

≲
1

√
ν
|||vh |||Ωs ∥qh∥Ωs .

On the other hand, for any E ∈ Th,d , the inequality (4.7b) follows directly from the Cauchy–Schwarz inequality.
Finally, we complete the proof by collecting these two cases. □

Define the discrete kernels of the space Vh as

Zh(g) := {vh ∈ Vh : b(vh, qh) = −(g, qh)Ωd , ∀qh ∈ Qh},

Zh := Zh(0) = {vh ∈ Vh : b(vh, qh) = 0, ∀qh ∈ Qh}.

Hence, for any vh ∈ Zh we easily see that div vdiv
h = 0.

Lemma 4.7. The bilinear form ah(·, ·) is Zh-elliptic, i.e.,

ah(vh, vh) = |||vh |||
2

∀vh ∈ Zh . (4.8)

Proof. Using the fact div vdiv
h = 0 in Zh directly gives the desired result. □

Lemma 4.8. The bilinear form b(·, ·) satisfies the discrete inf–sup condition, i.e.,

sup
vh∈Vh

b(vh, qh)
|||vh |||

≳ b∗∥qh∥ ∀qh ∈ Qh, (4.9)

where b∗ =

√
min

{
K, 1

ν
, 1

α

}
is a positive constant.

Proof. It is well known that for any qh ∈ Qh , there exists a function v ∈ H1
0(Ω ) satisfying

div v = qh and ∥v∥1,Ω ≲ ∥qh∥.

We define vh = (vdiv
h , vt

h) as vdiv
h |E = Idiv

E v on E ∈ Th and vt
h |∂ E = Πt

∂ E v on E ∈ Th,s . Then, for any q ∈ Pk−1 on
E ∈ Th , we have∫

E
div vdiv

h q dx = −

∫
E

vdiv
h ∇q dx +

∫
∂ E

vdiv
h · n q ds = −

∫
E

v ∇q dx +

∫
∂ E

v · n q ds =

∫
E

div v q dx.

By noting that div v = qh ∈ Pk−1(E), we obtain the equality

div vdiv
h = qh .

With vh restricted to Ωd , according to the inequality (3.8b), we deduce

∥vdiv
h ∥Ωd ≤ ∥v∥Ωd + ∥v − vdiv

h ∥Ωd ≲ ∥v∥1,Ωd .
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Then, when vh restricted to Ωs , it follows from the triangle inequality and (3.8d) that

∥ϵw
h (vh)∥Ωs ≤ ∥ϵw

h (vh) − ϵ(v)∥Ωs + ∥ϵ(v)∥Ωs ≲ ∥v∥1,Ωs .

By using the inequality (3.8c), it holds that∑
E∈Th,s

h−1
∥Π∂ EJ∂ E (vh)∥2

∂ E ≲
∑

E∈Th,s

∥v∥2
1,E = ∥v∥2

1,Ωs
.

For the tangential part in the definition of the norm, we apply the trace theorem to arrive∑
E∈Th,s

d−1∑
j=1

∥vt
h · τ j∥

2
∂ E∩Γ ≲

∑
E∈Th,s

∥v∥2
∂ E∩Γ ≲ ∥v∥2

Γ ≲ ∥v∥2
1,Ωs

.

Summing over the above inequalities and applying the equality div vdiv
h = qh , we obtain√

min
{
K,

1
ν
,

1
α

}
|||vh ||| ≲ ∥qh∥,

and therefore, we derive that

sup
vh∈Vh

|b(vh, qh)|
|||vh |||

= sup
vh∈Vh

|(div vdiv
h , qh)|

|||vh |||
= sup

vh∈Vh

∥qh∥
2

|||vh |||
≳ b∗∥qh∥,

where b∗ =

√
min

{
K, 1

ν
, 1

α

}
. This concludes the proof. □

From Lemmas 4.6–4.8, and the standard framework for saddle point problem [13], we conclude the well-posedness
of the discrete problem.

Theorem 4.9. There exists a unique solution (uh, ph) ∈ Vh × Qh to problem (4.1) such that

|||uh ||| + ∥ph∥ ≲ ∥Πo
hf∥Ωs + ∥g∥Ωd . (4.10)

5. Error analysis

The purpose of this section is to derive error estimates of uh in the ||| · |||-norm and ph in the standard L2 norm. To
this end, let (u, p) be the solution to (2.1)–(2.3). Then, we define the interpolation uI = (udiv

I , ut
I ) as udiv

I |E = Idiv
E u,

ut
I |∂ E = Πt

∂ E u, pI = Ph p, where Ph denotes the L2 projection to the space Qh . We will derive the upper bounds of
uh − uI and ph − pI .

To derive the error equation (5.5), only minimum regularity for the solution is used. To get the optimal error
estimates, however, we need more regularity, i.e., us ∈ Hk+1(Ωs), ud ∈ Hk(Ωd ) and p ∈ H k(Ω ), which in turn
requires the interface Γ is smooth enough.

5.1. Error equation

Let vh = (vdiv
h , vt

h) ∈ Zh , then we have div vdiv
h = 0. We compute ah(uh, vh) by using the integration by parts and

Eqs. (2.1a), (2.2a), (4.1a),

ah(uh, vh) = (f ,Πo
hvdiv

h )Ωs + (div vdiv
h , ph)

= (f ,Πo
hvdiv

h )Ωs + (div vdiv
h , p)

= (f ,Πo
hvdiv

h )Ωs − (vdiv
h , ∇ p)Ωs − (vdiv

h , ∇ p)Ωd + ⟨ps − pd , vdiv
h · ns⟩Γ

= (f + 2νdiv ϵ(u),Πo
hvdiv

h − vdiv
h )Ωs + (K−1u, vdiv

h )Ωd − (2νdiv ϵ(u),Πo
hvdiv

h )Ωs

+ ⟨ps − pd , vdiv
h · ns⟩Γ .

(5.1)
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We further simplify the third term on the right-hand side of (5.1). It follows from integration by parts that

(−2νdiv ϵ(u),Πo
hvdiv

h )Ωs = (2νϵ(u), ϵ(Πo
hvdiv

h ))Ωs −

∑
E∈Th,s

⟨
2νϵ(u)n,Πo

hvdiv
h

⟩
∂ E

= (2νϵ(u), ϵ(Πo
hvdiv

h ))Ωs +

∑
E∈Th,s

⟨
2νϵ(u)n,J∂ E (vh)

⟩
∂ E

−

∑
E∈Th,s

⟨
2νϵ(u)n, (vdiv

h · n)n +

d−1∑
j=1

(vt
h · τ j )τ j

⟩
∂ E∩Γ

,

(5.2)

where we have used the properties that both vdiv
h · n and vt

h are single valued on the faces in Ωs and vanish on the outer
boundary Γs . Now we compute ah(uI , vh). By using another version of weak symmetric gradient ϵw

h (see [44]), we
have

(−2νϵw
h (uI ), ϵw

h (vh))Ωs = (−2νϵw
h (uI ), ϵ(Πo

hvdiv
h ))Ωs + (−2νϵw

h (uI ), ϵw
h (vh) − ϵ(Πo

hvdiv
h ))Ωs

= (−2νϵw
h (uI ), ϵ(Πo

hvdiv
h ))Ωs +

∑
E∈Th,s

⟨
−2νϵw

h (uI )n,J∂ E (vh)
⟩
∂ E . (5.3)

Collecting equalities (5.2), (5.3) and reusing the interface conditions (2.3b), (2.3c), we further deduce that

− (2νdivϵ(u),Πo
hvdiv

h )Ωs + ⟨ps − pd , vdiv
h · ns⟩Γ − ah(uI |Ωs , vh |Ωs )

= 2ν(ϵ(u) − ϵw
h (uI ), ϵ(Πo

hvdiv
h ))Ωs +

∑
E∈Th,s

2ν
⟨
(ϵ(u) − ϵw

h (uI ))n,J∂ E (vh)
⟩
∂ E − 2νs1(uI , vh)

−

∑
E∈Th,s

⟨
2νϵ(u)n, (vdiv

h · n)n +

d−1∑
j=1

(vt
h · τ j )τ j

⟩
∂ E∩Γ

+ ⟨ps − pd , vdiv
h · ns⟩Γ −

d−1∑
j=1

α⟨ut
I · τ j , vt

h · τ j ⟩Γ

=

∑
E∈Th,s

2ν
⟨
(ϵ(u) − ϵw

h (uI ))n,J∂ E (vh)
⟩
∂ E − 2νs1(uI , vh).

(5.4)

Therefore, combining equalities (5.1) and (5.4), we obtain the error equation which can be summarized in the
following lemma.

Lemma 5.1. For any vh ∈ Zh , we have

ah(uh − uI , vh)

= (f + 2νdiv ϵ(u),Πo
hvdiv

h − vdiv
h )Ωs +

∑
E∈Th,s

2ν
⟨
(ϵ(u) − ϵw

h (uI ))n,J∂ E (vh)
⟩
∂ E − 2νs1(uI , vh)

+ K−1(u − Πo
hudiv

I , vdiv
h )Ωd − K−1s2(udiv

I , vdiv
h ). (5.5)

5.2. Error estimates

With the error equation established in Lemma 5.1, we are ready to present error estimates of scheme (4.1).

Theorem 5.2. Let (u, p) be the solution to (2.1)–(2.3) and (uh, ph) ∈ Vh × Qh be the solution to (4.1). Furthermore,
assume that us ∈ Hk+1(Ωs), ud ∈ Hk(Ωd ) and p ∈ H k(Ω ). Then, the following estimate holds true,

|||uh − uI ||| + ∥ph − pI ∥ ≲ hk
(
ν

1
2 ∥u∥k+1,Ωs + K−

1
2 ∥u∥k,Ωd

)
+ ν−

1
2 h∥f − Πo

hf∥Ωs . (5.6)

Moreover, we have

∥p − ph∥ ≲
1
b∗

(
ν

1
2 hk

∥u∥k+1,Ωs + K−
1
2 hk

∥u∥k,Ωd + ν−
1
2 h∥f − Πo

hf∥Ωs

)
+ hk

∥p∥k,Ω . (5.7)

Proof. Choosing vh = uh − uI , using the Zh-coercivity of ah(·, ·) and Lemma 5.1, we get

|||uh − uI |||
2 ≲ ah(uh − uI , vh) ≜ I1 + I2 + I3 + I4 + I5.
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We are ready to derive an upper bound for each term Ii , i = 1, . . . , 5. For the first term I1, a use of the Cauchy–
Schwarz inequality and the inequalities (3.8a), (4.3a) yields

I1 =
(
(I − Πo

h)(f + 2νdiv ϵ(u)),Πo
hvdiv

h − vdiv
h

)
Ωs

≤
(
∥f − Πo

hf∥Ωs + 2ν∥div ϵ(u) − Πo
hdiv ϵ(u)∥Ωs

)
∥Πo

hvdiv
h − vdiv

h ∥Ωs

≲
(
∥f − Πo

hf∥Ωs + νhk−1
∥u∥k+1,Ωs

) ⎛⎝ ∑
E∈Th,s

h∥J n
∂ E (vdiv

h )∥2
∂ E

⎞⎠ 1
2

≲
(
ν−

1
2 h∥f − Πo

hf∥Ωs + ν
1
2 hk

∥u∥k+1,Ωs

)
|||vh |||Ωs .

(5.8)

The second term I2 can be bounded by using the Cauchy–Schwarz inequality, the trace inequality and the
inequalities (3.8d), (4.3b) in turn, so that we obtain

I2 ≤

∑
E∈Th,s

2ν∥ϵ(u) − ϵw
h (uI )∥∂ E∥J∂ E (vh)∥∂ E

≲ νhk
∥u∥k+1,Ωs

⎛⎝ ∑
E∈Th,s

h−1
∥Π∂ EJ∂ E (vh)∥2

∂ E + ∥ϵw
h (vh)∥2

E

⎞⎠ 1
2

≲ ν
1
2 hk

∥u∥k+1,Ωs |||vh |||Ωs .

(5.9)

To get the bound for I3, by using the Cauchy–Schwarz inequality and the inequality (3.8c), we find

I3 = −2ν
∑

E∈Th,s

h−1⟨Π∂ EJ∂ E (uI ),Π∂ EJ∂ E (vh)
⟩
∂ E

≲ ν
∑

E∈Th,s

h−1
∥Π∂ EJ∂ E (uI )∥∂ E∥Π∂ EJ∂ E (vh)∥∂ E

≲ ν
∑

E∈Th,s

hk−
1
2 ∥u∥k+1,E∥Π∂ EJ∂ E (vh)∥∂ E

≲ ν
1
2 hk

∥u∥k+1,Ωs |||vh |||Ωs .

(5.10)

Let us now bound I4 and I5 together. Taking q = Πo
hvdiv

h in the definition (3.3) and using the Cauchy–Schwarz
inequality, we have that ∥Πo

hvdiv
h ∥Ωd ≤ ∥vdiv

h ∥Ωd . Based on this result, we then have from the inequality (3.8b) that

I4 + I5 = K−1(u − Πo
hudiv

I , vdiv
h )Ωd − K−1s2(udiv

I , vdiv
h )

≲ K−1
∥u − Πo

hudiv
I ∥Ωd ∥vdiv

h ∥Ωd + K−1
∥udiv

I − Πo
hudiv

I ∥Ωd ∥vdiv
h − Πo

hvdiv
h ∥Ωd

≲ K−1 (
∥u − Πo

hudiv
I ∥Ωd + ∥udiv

I − u + u − Πo
hudiv

I ∥Ωd

)
∥vdiv

h ∥Ωd

≲ K−1 (
∥u − udiv

I ∥Ωd + ∥u − Πo
hudiv

I ∥Ωd

)
∥vdiv

h ∥Ωd

≲ K−1hk
∥u∥k,Ωd ∥vdiv

h ∥Ωd

≲ K−
1
2 hk

∥u∥k,Ωd |||vh |||Ωd .

(5.11)

So that, we have proved that

|||uh − uI ||| ≲ hk
(
ν

1
2 ∥u∥k+1,Ωs + K−

1
2 ∥u∥k,Ωd

)
+ ν−

1
2 h∥f − Πo

hf∥Ωs .

In order to conclude, it remains to bound the term pI − ph . We observe from Lemma 4.8 that there exists
vh = (vdiv

h , vt
h) ∈ Vh such that

div vdiv
h = pI − ph and b∗|||vh ||| ≲ ∥pI − ph∥.
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Then, we derive that

∥pI − ph∥
2

= (pI − ph, div vdiv
h )

= (pI , div vdiv
h ) − (ph, div vdiv

h )

= (pI , div vdiv
h ) + (f ,Πo

hvdiv
h )Ωs − ah(uh, vh)

= (pI , div vdiv
h ) + (f ,Πo

hvdiv
h − vdiv

h )Ωs + (−2νdiv ϵ(u) + ∇ p, vdiv
h )Ωs − ah(uh, vh)

+ (∇ p, vdiv
h )Ωd − (∇ p, vdiv

h )Ωd

= (pI − p, div vdiv
h ) + (f ,Πo

hvdiv
h − vdiv

h )Ωs + (−2νdiv ϵ(u), vdiv
h )Ωs − ah(uh, vh)

+ ⟨ps − pd , vdiv
h · ns⟩Γ + K−1(u, vdiv

h )Ωd .

(5.12)

Using the fact (pI − p, div vdiv
h ) = 0, the deduction of (5.1)–(5.11) and the continuous property (4.7a), we obtain

∥pI − ph∥
2

= (f ,Πo
hvdiv

h − vdiv
h )Ωs + (−2νdiv ϵ(u), vdiv

h )Ωs

+ ⟨ps − pd , vdiv
h · ns⟩Γ + K−1(u, vdiv

h )Ωd − ah(uI , vh) + ah(uI − uh, vh)

≲
(
ν

1
2 hk

∥u∥k+1,Ωs + K−
1
2 hk

∥u∥k,Ωd + ν−
1
2 h∥f − Πo

hf∥Ωs

)
|||vh |||.

(5.13)

Combining the above bounds gives the first inequality (5.6). With the triangle inequality, this further leads to

∥p − ph∥ ≤ ∥p − pI ∥ + ∥pI − ph∥ ≲ hk
∥p∥k,Ω + ∥pI − ph∥. (5.14)

The second inequality (5.7) is obtained by combining the above two bounds. The proof is completed. □

6. Numerical experiments

In this section, we shall present some two-dimensional numerical experiments to confirm our theoretical results.
As mentioned before, we can only compute three terms for the function u on an element E ∈ Th , i.e., u · n on ∂ E and
div u, rot u inside E . Therefore, the error u − uh is not computable. Instead, we compute three errors, respectively,
eu := uh − uI , ep := Ph p − ph , ẽp = p − ph . We will present the errors ∥eu∥0,h , |||eu|||, ∥ep∥ and ∥ẽp∥ by using the
lowest order element (k = 1), where the norm ∥ · ∥0,h is defined as

∥eu∥
2
0,h :=

∑
E∈Th

∥Πo
E ediv

u ∥
2
E +

∑
E∈Th,s

h∥Π∂ EJ∂ E (eu)∥2
∂ E +

∑
E∈Th,d

DE ((I − Πo
h)ediv

u , (I − Πo
h)ediv

u ).

Note that this norm can be computed using the matrices assembled from the degrees of freedom and the discrete
scheme (4.1). In order to demonstrate that the method produces a divergence free velocity, the quantity ∥div udiv

h −

χΩd gI ∥ denoted by δ will be computed, where χΩd denotes the characteristic function of the subdomain Ωd and
gI = Ph g.

6.1. Example 1

Let the domain be Ω = (0, 1) × (0, 2), where Ωs = (0, 1) × (1, 2) and Ωd = (0, 1) × (0, 1). Take the parameters
as ν = 1, α = 1 and K = I, where I is the identity matrix. We test eight types of meshes, as shown in Fig. 3, that
is, uniform triangular mesh T 1, uniform rectangular mesh T 2, quadrilateral mesh T 3 by perturbing the interior nodes
of T 2 with a parameter 0.25 (see [50] for details), polygonal mesh T 4 generated by the dual of the triangle mesh T 1,
distorted polygonal mesh T 5, centroid Voronoi Tessellation (CVT) mesh T 6 generated by PolyMesher package [51],
non-convex mesh T 7 and hybrid mesh T 8 by directly cutting the triangular mesh across the interface. All types of
meshes are aligned to the interface. The exact solution is set to be

us =

(
− cos(πx) sin(πy)
sin(πx) cos(πy)

)
, ud =

(
−πy cos(πx)

− sin(πx)

)
,

ps = sin(πx), pd = y sin(πx).

It is easy to check that the given exact solution satisfies the interface conditions (2.3). Note that the normal velocity is
continuous, but the tangential velocity is discontinuous across the interface Γ . In addition, the pressure is continuous
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Fig. 3. Illustrations of meshes. The interface Γ is colored in red. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
The errors for a series of the uniform triangular meshes T 1 (upper) and uniform rectangular meshes T 2 (below) for Example 1.

♯Dof ∥eu∥0,h r |||eu||| r ∥ep∥ r ∥ẽp∥ r δ

108 2.4179e−01 – 1.3747e+00 – 1.3158e+00 – 1.3503e+00 – 6.6242e−16
400 4.0579e−02 5.96 5.9916e−01 2.29 6.4716e−01 2.03 6.6558e−01 2.03 1.1588e−15

1536 7.3584e−03 5.51 2.7503e−01 2.18 3.1017e−01 2.09 3.1988e−01 2.08 8.4911e−15
6016 1.5444e−03 4.76 1.3226e−01 2.08 1.5015e−01 2.07 1.5518e−01 2.06 5.163e−15

23808 3.6397e−04 4.24 6.5290e−02 2.03 7.3705e−02 2.04 7.6266e−02 2.03 4.5393e−14
94720 8.9523e−05 4.07 3.2527e−02 2.01 3.6546e−02 2.02 3.7836e−02 2.02 4.7371e−13

377856 2.2286e−05 4.02 1.6248e−02 2 1.8212e−02 2.01 1.8860e−02 2.01 2.2231e−12

256 4.2869e−02 – 4.8691e−01 – 2.4169e−01 – 3.0734e−01 – 7.1572e−16
960 6.3121e−03 6.79 1.7507e−01 2.78 1.0863e−01 2.22 1.4480e−01 2.12 9.4663e−15

3712 9.1972e−04 6.86 6.9836e−02 2.51 4.5237e−02 2.4 6.5937e−02 2.2 2.4446e−14
14592 1.5425e−04 5.96 3.1790e−02 2.2 1.5633e−02 2.89 2.8642e−02 2.3 3.9544e−14
57856 3.1658e−05 4.87 1.5443e−02 2.06 4.9643e−03 3.15 1.2987e−02 2.21 6.0122e−13

230400 7.4051e−06 4.28 7.6617e−03 2.02 1.5407e−03 3.22 6.1953e−03 2.1 1.0154e−12

on Γ . The error profiles and the quantity δ are listed in Tables 1–4, where r denotes the corresponding ratios of the
errors on two successive meshes. We observe that |||eu|||, ∥ep∥ and ∥ẽp∥ converge in the order of O(h), in accordance
with Theorem 5.2. Beyond that, a superconvergence effect for ∥ep∥ is also observed on meshes T 2, T 4, T 5 and T 7

(see columns 6–7 in Tables 1–4). In addition, it is observed that the error ∥eu∥0,h for the velocity is of the order O(h2).
We also find that the quantity δ is machine zero for all meshes.

6.2. Example 2

In this test, the domain is Ω = (0, 1) × (−1, 1), where Ωs = (0, 1) × (0, 1) and Ωd = (0, 1) × (−1, 0). All
parameters retain unchanged as set in Example 1 except that K = βI, β is a positive constant determined later. The
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Table 2
The errors for a series of quadrilateral meshes T 3 (upper) and polygonal meshes T 4 (below) for Example 1.

♯Dof ∥eu∥0,h r |||eu||| r ∥ep∥ r ∥ẽp∥ r δ

256 5.6585e−02 – 5.9050e−01 – 2.8526e−01 – 3.4445e−01 – 3.1043e−15
960 9.8395e−03 5.75 2.3773e−01 2.48 1.2854e−01 2.22 1.6066e−01 2.14 2.6235e−15

3712 3.0387e−03 3.24 1.4201e−01 1.67 6.9536e−02 1.85 8.4884e−02 1.89 3.9218e−14
14592 7.4209e−04 4.09 7.1197e−02 1.99 2.4108e−02 2.88 3.4253e−02 2.48 7.0002e−15
57856 1.8701e−04 3.97 3.4774e−02 2.05 8.9992e−03 2.68 1.5158e−02 2.26 2.7818e−13

230400 4.6761e−05 4 1.7282e−02 2.01 3.7744e−03 2.38 7.1700e−03 2.11 2.9581e−13

188 1.0426e−01 – 1.0879e+00 – 7.6995e−01 – 7.9928e−01 – 1.307e−15
524 6.8255e−02 1.53 9.9104e−01 1.1 1.1014e+00 0.699 1.1127e+00 0.718 3.1416e−15

1652 1.9286e−02 3.54 6.7429e−01 1.47 6.6446e−01 1.66 6.7061e−01 1.66 2.6424e−15
5732 4.5597e−03 4.23 3.8811e−01 1.74 2.5188e−01 2.64 2.5642e−01 2.62 5.5409e−14

21188 1.0455e−03 4.36 2.0637e−01 1.88 7.9958e−02 3.15 8.3676e−02 3.06 2.6967e−14
81284 2.4712e−04 4.23 1.0606e−01 1.95 2.4323e−02 3.29 2.7344e−02 3.06 1.6379e−13

318212 6.0017e−05 4.12 5.3712e−02 1.97 7.5248e−03 3.23 9.8049e−03 2.79 3.2573e−12

Table 3
The errors for a series of the distorted polygonal meshes T 5 (upper) and CVT meshes T 6 (below) for Example 1.

♯Dof ∥eu∥0,h r |||eu||| r ∥ep∥ r ∥ẽp∥ r δ

188 1.2543e−01 – 1.0766e+00 – 8.0609e−01 – 8.3713e−01 – 1.0688e−15
524 7.9650e−02 1.57 1.0387e+00 1.04 9.8332e−01 0.82 9.9781e−01 0.839 4.0252e−15

1652 3.6352e−02 2.19 8.1766e−01 1.27 9.8203e−01 1 9.8752e−01 1.01 2.534e−14
5732 1.1961e−02 3.04 5.2069e−01 1.57 5.1413e−01 1.91 5.1724e−01 1.91 6.1254e−14

21188 3.3174e−03 3.61 2.9046e−01 1.79 1.7536e−01 2.93 1.7780e−01 2.91 1.427e−13
81284 8.6528e−04 3.83 1.5212e−01 1.91 5.2219e−02 3.36 5.4304e−02 3.27 1.9211e−13

318212 2.2168e−04 3.9 7.7596e−02 1.96 1.5706e−02 3.32 1.7408e−02 3.12 4.4855e−12

370 5.2713e−02 – 7.7433e−01 – 4.7835e−01 – 5.0612e−01 – 4.8967e−14
1484 1.1695e−02 4.51 4.6202e−01 1.68 2.6807e−01 1.78 2.8142e−01 1.8 8.6134e−15
5636 2.5037e−03 4.67 2.6874e−01 1.72 9.8175e−02 2.73 1.0774e−01 2.61 3.9267e−15

22796 5.8092e−04 4.31 1.3947e−01 1.93 3.2687e−02 3 3.9389e−02 2.74 3.5223e−14
93369 1.3961e−04 4.16 7.0702e−02 1.97 1.8291e−02 1.79 2.1324e−02 1.85 2.1709e−13

Table 4
The errors for a series of the non-convex meshes T 7 (upper) and the hybrid meshes T 8 (below) for Example 1.

♯Dof ∥eu∥0,h r |||eu||| r ∥ep∥ r ∥ẽp∥ r δ

128 2.7451e−01 – 1.3361e+00 – 4.1707e−01 – 5.5428e−01 – 8.2942e−16
448 7.9067e−02 3.47 1.0331e+00 1.29 6.6463e−01 0.628 6.9290e−01 0.8 2.5806e−15

1664 1.9670e−02 4.02 6.8398e−01 1.51 4.8134e−01 1.38 4.9143e−01 1.41 2.53e−15
6400 4.2670e−03 4.61 3.8798e−01 1.76 2.1580e−01 2.23 2.2141e−01 2.22 1.2507e−14

25088 9.7599e−04 4.37 2.0518e−01 1.89 7.5727e−02 2.85 7.9674e−02 2.78 4.9222e−14
99328 2.3567e−04 4.14 1.0524e−01 1.95 2.4033e−02 3.15 2.7033e−02 2.95 1.9963e−13

395264 5.8192e−05 4.05 5.3257e−02 1.98 7.4619e−03 3.22 9.6934e−03 2.79 1.5299e−12

1096 2.0144e−02 – 4.1673e−01 – 8.9366e−01 – 8.9844e−01 – 2.7579e−14
4210 5.3477e−03 3.77 2.2782e−01 1.83 4.7146e−01 1.9 4.7374e−01 1.9 3.7243e−14

16291 1.4033e−03 3.81 1.2003e−01 1.9 2.1472e−01 2.2 2.1598e−01 2.19 1.4737e−13
64135 3.6298e−04 3.87 6.1438e−02 1.95 9.0451e−02 2.37 9.1195e−02 2.37 1.0135e−12

254446 9.1803e−05 3.95 3.0970e−02 1.98 4.1179e−02 2.2 4.1587e−02 2.19 1.8494e−13

exact solution is given as

us =

⎛⎜⎝ 1
π

cos(x) sin(2πy)(
−2 +

1
π2 sin2(πy)

)
sin(x)

⎞⎟⎠ ,
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Table 5
The errors for a series of the uniform triangular meshes T 1 (upper) and uniform rectangular meshes T 2 (below) for Example 2.

♯Dof ∥eu∥0,h r |||eu||| r ∥ep∥ r ∥ẽp∥ r δ

108 1.2749e−01 – 7.9976e−01 – 5.4454e−01 – 6.2954e−01 – 1.2009e−15
400 4.3483e−02 2.93 5.9676e−01 1.34 3.5578e−01 1.53 3.8950e−01 1.62 1.5454e−15

1536 1.3647e−02 3.19 3.5061e−01 1.7 1.5700e−01 2.27 1.7591e−01 2.21 4.9151e−15
6016 3.7629e−03 3.63 1.8593e−01 1.89 5.8587e−02 2.68 7.0755e−02 2.49 5.7292e−15

23808 9.7365e−04 3.86 9.4615e−02 1.97 2.3113e−02 2.53 3.0458e−02 2.32 1.6892e−14
94720 2.4586e−04 3.96 4.7531e−02 1.99 1.0396e−02 2.22 1.4369e−02 2.12 2.9838e−14

377856 6.1631e−05 3.99 2.3794e−02 2 5.0308e−03 2.07 7.0643e−03 2.03 6.959e−14

256 4.0816e−02 – 6.4836e−01 – 4.0329e−01 – 4.4747e−01 – 7.5094e−16
960 1.2746e−02 3.2 3.9053e−01 1.66 1.6135e−01 2.5 1.8833e−01 2.38 2.5107e−15

3712 3.3740e−03 3.78 2.0724e−01 1.88 4.8548e−02 3.32 6.8684e−02 2.74 4.5074e−15
14592 8.5512e−04 3.95 1.0532e−01 1.97 1.2903e−02 3.76 2.7509e−02 2.5 6.9276e−15
57856 2.1473e−04 3.98 5.2882e−02 1.99 3.2828e−03 3.93 1.2584e−02 2.19 2.9961e−14

230400 5.3776e−05 3.99 2.6469e−02 2 8.2477e−04 3.98 6.1298e−03 2.05 3.4015e−14

Table 6
The errors for a series of quadrilateral meshes T 3 (upper) and polygonal meshes T 4 (below) for Example 2.

♯Dof ∥eu∥0,h r |||eu||| r ∥ep∥ r ∥ẽp∥ r δ

256 4.1183e−02 – 6.4991e−01 – 4.3626e−01 – 4.7830e−01 – 1.0468e−15
960 1.4197e−02 2.9 3.9982e−01 1.63 1.6517e−01 2.64 1.9233e−01 2.49 2.2929e−15

3712 3.6576e−03 3.88 2.1087e−01 1.9 5.5205e−02 2.99 7.3930e−02 2.6 5.0121e−15
14592 9.5297e−04 3.84 1.0749e−01 1.96 1.8176e−02 3.04 3.0628e−02 2.41 1.6484e−14
57856 2.3922e−04 3.98 5.4035e−02 1.99 7.0881e−03 2.56 1.4230e−02 2.15 2.7534e−14

230400 5.9914e−05 3.99 2.7028e−02 2 3.2900e−03 2.15 6.9914e−03 2.04 4.2802e−14

188 8.9911e−02 – 7.1150e−01 – 3.4776e−01 – 4.6596e−01 – 1.0507e−15
524 4.6706e−02 1.93 5.8148e−01 1.22 3.1724e−01 1.1 3.6479e−01 1.28 1.6686e−15

1652 1.5372e−02 3.04 3.8038e−01 1.53 1.5255e−01 2.08 1.8037e−01 2.02 2.8797e−15
5732 4.2929e−03 3.58 2.0994e−01 1.81 5.1165e−02 2.98 7.1312e−02 2.53 4.5268e−15

21188 1.1383e−03 3.77 1.0853e−01 1.93 1.4915e−02 3.43 2.9304e−02 2.43 1.7115e−14
81284 2.9406e−04 3.87 5.4887e−02 1.98 4.1943e−03 3.56 1.3383e−02 2.19 2.6052e−14

318212 7.4793e−05 3.93 2.7559e−02 1.99 1.2039e−03 3.48 6.4911e−03 2.06 5.1762e−14

ps =
1
β

(
(ey

+ e−y) sin(x) − (1 − cos(1))(e1
− e−1)

)
,

ud =

(
− cos(x)(ey

− e−y)
− sin(x)(ey

+ e−y)

)
,

pd =
1
β

(
(ey

− e−y) sin(x) − (1 − cos(1))(2 − e1
− e−1)

)
.

On one hand, we remark that the above exact solution does not satisfy the second interface condition (2.3b). A
nonhomogeneous term η is included, i.e.,

− 2νϵ(us)ns · ns + ps = pd + η,

where η is a given function on Γ according to the exact solution. The variational form (4.1) after modification only
adds one term ⟨−η, vdiv

h ·ns⟩Γ to the right-hand side of Eq. (4.1a). On the other hand, we see that the normal velocity is
continuous, while the tangential velocity is discontinuous, and the pressure is discontinuous on Γ . We first take β as 1,
which makes the scale of the pressure remains at about 1. The error results and the quantity δ are listed in Tables 5–8,
respectively. The numerical results indicate that the convergence rates predicted by Theorem 5.2 are achieved for
corresponding solutions and the quantity δ is close to zero.

To verify the robustness of our method with respect to the pressure, we now take β = 10−4. It is easy to observe
that the scale of the pressure is now around 104. The errors and the quantity δ are listed in Table 9. It is observed that
the ratios for all errors are still optimal. Although the larger pressure scale increases the error ∥ẽp∥, both the L2 and
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Table 7
The errors for a series of the distorted polygonal meshes T 5 (upper) and CVT meshes T 6 (below) for Example 2.

♯Dof ∥eu∥0,h r |||eu||| r ∥ep∥ r ∥ẽp∥ r δ

188 1.0950e−01 – 7.3245e−01 – 3.9547e−01 – 5.1838e−01 – 1.3046e−15
524 6.7280e−02 1.63 6.6711e−01 1.1 4.2700e−01 0.926 4.7268e−01 1.1 2.4941e−15

1652 3.3775e−02 1.99 5.0655e−01 1.32 2.7503e−01 1.55 2.9792e−01 1.59 3.0501e−15
5732 1.1938e−02 2.83 3.1206e−01 1.62 1.1794e−01 2.33 1.3245e−01 2.25 8.6151e−15

21188 3.4544e−03 3.46 1.6946e−01 1.84 3.8805e−02 3.04 4.9536e−02 2.67 9.8694e−15
81284 9.1594e−04 3.77 8.7135e−02 1.94 1.1016e−02 3.52 1.9047e−02 2.6 3.2278e−14

318212 2.3465e−04 3.9 4.3961e−02 1.98 2.9411e−03 3.75 8.3379e−03 2.28 5.7592e−14

370 3.1870e−02 – 5.4888e−01 – 2.7228e−01 – 3.2535e−01 – 4.2154e−11
1484 9.1070e−03 3.5 3.1733e−01 1.73 1.0616e−01 2.56 1.3651e−01 2.38 8.6522e−13
5636 2.1837e−03 4.17 1.5737e−01 2.02 2.9744e−02 3.57 5.4166e−02 2.52 7.1239e−15

22672 5.6818e−04 3.84 7.9993e−02 1.97 8.3703e−03 3.55 2.3615e−02 2.29 1.0342e−14
94658 1.3612e−04 4.17 3.9095e−02 2.05 2.8410e−03 2.95 1.1206e−02 2.11 3.1267e−14

Table 8
The errors for a series of the non-convex meshes T 7 (upper) and the hybrid meshes T 8 (below) for Example 2.

♯Dof ∥eu∥0,h r |||eu||| r ∥ep∥ r ∥ẽp∥ r δ

128 1.3256e−01 – 8.5599e−01 – 5.2379e−01 – 6.6397e−01 – 4.7225e−16
448 5.2154e−02 2.54 6.9144e−01 1.24 3.8121e−01 1.37 4.3218e−01 1.54 1.4889e−15

1664 1.6039e−02 3.25 4.1465e−01 1.67 1.6393e−01 2.33 1.9263e−01 2.24 1.7918e−15
6400 4.2120e−03 3.81 2.2135e−01 1.87 5.3370e−02 3.07 7.3372e−02 2.63 4.2946e−15

25088 1.0621e−03 3.97 1.1309e−01 1.96 1.5116e−02 3.53 2.9310e−02 2.5 1.0793e−14
99328 2.6642e−04 3.99 5.6937e−02 1.99 4.0686e−03 3.72 1.3183e−02 2.22 2.0023e−14

395264 6.6752e−05 3.99 2.8536e−02 2 1.0966e−03 3.71 6.3606e−03 2.07 4.3324e−14

1096 1.3864e−02 – 2.9912e−01 – 2.1347e−01 – 2.3372e−01 – 2.7127e−15
4210 3.9254e−03 3.53 1.6429e−01 1.82 9.3744e−02 2.28 1.0518e−01 2.22 6.9942e−15

16291 1.0531e−03 3.73 8.5612e−02 1.92 4.0280e−02 2.33 4.6820e−02 2.25 1.5956e−14
64135 2.7138e−04 3.88 4.3451e−02 1.97 1.8389e−02 2.19 2.1925e−02 2.14 2.1227e−14

254446 6.8523e−05 3.96 2.1826e−02 1.99 8.8610e−03 2.08 1.0685e−02 2.05 4.6299e−14

H1 errors for the velocity have little change compared with those in Tables 5–8. These results agree with Theorem 5.2.
The results for the case of β = 104 are similar and thus not provided here. The quantity δ is not affected and keeps be
machine zero.

6.3. Example 3

We now present a numerical experiment to verify the robustness of mass conservation with respect to the
permeability of the porous medium. This experiment has been conducted in [18]. Let the computational domain
be Ω = (0, 2) × (0, 2), where Ωs = (0, 1) × (0, 2) and Ωd = (1, 2) × (0, 2). In the domain of Stokes flow, we take
a quadratic inflow profile us = (y(2 − y), 0) on the left and no-slip conditions us = 0 on the top and bottom. For
the Darcy part, slip conditions ud = 0 are imposed on the top and bottom, while the Dirichlet condition pd = 0 is
imposed on the right. The data on the right-hand side are chosen as f = 0 and g = 0. Choose ν = 1, α =

0.1
√

β
and the

parameter β (K = βI) varies from 10−6 to 10−8. Three types of meshes are used, respectively, T 1, T 3 and T 8. Fig. 4
shows the hybrid mesh T 8 which is aligned to the interface. A simple integral tells that the incoming flux on the left
of the whole domain is 4

3 . The results of the mass difference between the inflow and outflow side of the domain are
displayed in Table 10. We observe that the mass flux error is close to the computational accuracy. This result is better
than that of Ref. [18] in which the minimum of the mass flux errors on the triangular meshes is 5.1e − 11. In fact,
we have also obtained similar results for other types of meshes and thus do not report them here. Table 11 shows the
results of the quantity δ for different K and different meshes. It is observed that the quantity δ is of machine precision
in all cases. Therefore, we claim that the weak virtual element method retains the mass conservation strongly.
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Table 9
The errors for a series of meshes for Example 2 with β = 10−4.

♯Dof ∥eu∥0,h r |||eu||| r ∥ep∥ r ∥ẽp∥ r δ

23808 8.5482e−04 – 9.4772e−02 – 2.4144e−02 – 1.9837e+02 – 1.5024e−14
T 1 94720 2.1721e−04 3.94 4.7542e−02 1.99 1.0533e−02 2.29 9.9189e+01 2 3.094e−14

377856 5.4541e−05 3.98 2.3795e−02 2 5.0483e−03 2.09 4.9595e+01 2 5.7066e−14

14592 7.7140e−04 – 1.0532e−01 – 1.3319e−02 – 2.4295e+02 – 9.4927e−15
T 2 57856 1.9318e−04 3.99 5.2880e−02 1.99 3.3966e−03 3.92 1.2148e+02 2 1.4993e−14

230400 4.8312e−05 4 2.6469e−02 2 8.5370e−04 3.98 6.0741e+01 2 3.431e−14

14592 8.6371e−04 – 1.0746e−01 – 1.8944e−02 – 2.4645e+02 – 1.419e−14
T 3 57856 2.1885e−04 3.95 5.4030e−02 1.99 7.2213e−03 2.62 1.2336e+02 2 2.0526e−14

230400 5.4721e−05 4 2.7049e−02 2 3.2883e−03 2.2 6.1698e+01 2 5.8648e−14

21188 9.5310e−04 – 1.1092e−01 – 1.6394e−02 – 2.5224e+02 – 1.5782e−14
T 4 81284 2.5120e−04 3.79 5.5141e−02 2.01 4.5586e−03 3.6 1.2709e+02 1.98 2.3182e−14

318212 6.4339e−05 3.9 2.7589e−02 2 1.2909e−03 3.53 6.3785e+01 1.99 3.7964e−14

21188 2.6756e−03 – 1.7095e−01 – 4.7289e−02 – 3.0788e+02 – 1.1747e−14
T 5 81284 6.7689e−04 3.95 8.7185e−02 1.96 1.3312e−02 3.55 1.5537e+02 1.98 3.5381e−14

318212 1.7205e−04 3.93 4.3965e−02 1.98 3.5323e−03 3.77 7.8020e+01 1.99 5.9555e−14

5636 2.1554e−03 – 1.8691e−01 – 3.2500e−02 – 4.5268e+02 – 7.3145e−15
T 6 22672 5.0818e−04 4.24 8.1593e−02 2.29 8.5751e−03 3.79 2.2082e+02 2.05 8.6933e−15

94658 1.2247e−04 4.15 3.9245e−02 2.08 2.8791e−03 2.98 1.0840e+02 2.04 3.6235e−14

25088 9.7677e−04 – 1.1492e−01 – 1.5504e−02 – 2.5112e+02 – 1.1164e−14
T 7 99328 2.4525e−04 3.98 5.7041e−02 2.01 4.1961e−03 3.69 1.2539e+02 2 1.6062e−14

395264 6.1493e−05 3.99 2.8545e−02 2 1.1299e−03 3.71 6.2653e+01 2 2.7851e−14

16291 1.0158e−03 – 8.7386e−02 – 4.0783e−02 – 2.3867e+02 – 1.211e−14
T 8 64135 2.5899e−04 3.92 4.3606e−02 2 1.8472e−02 2.21 1.1939e+02 2 2.7506e−14

254446 6.5459e−05 3.96 2.1843e−02 2 8.8735e−03 2.08 5.9716e+01 2 4.3081e−14

Table 10
Mass difference between the inflow and outflow sides of the domain for Example 3.

T 1 T 3 T 8

♯Dof K = 10−6I K = 10−8I ♯Dof K = 10−6I K = 10−8I ♯Dof K = 10−6I K = 10−8I

232 2.2204e−16 2.2204e−16 152 2.2204e−16 4.4409e−16 405 2.2204e−16 0
880 2.2204e−16 4.4409e−16 560 0 0 1533 0 0

3424 2.2204e−16 0 2144 2.2204e−16 0 6089 2.2204e−16 0

Table 11
The quantity δ for Example 3.

T 1 T 3 T 8

♯Dof K = 10−6I K = 10−8I ♯Dof K = 10−6I K = 10−8I ♯Dof K = 10−6I K = 10−8I

232 3.8999e−16 3.1372e−15 152 2.4797e−16 2.7610e−15 405 9.1794e−16 7.0524e−16
880 8.4294e−16 6.4566e−15 560 5.1633e−16 5.5207e−15 1533 1.6588e−15 1.4514e−15

3424 1.5621e−15 1.2854e−14 2144 1.4743e−15 1.0995e−14 6089 3.2403e−15 3.2821e−15

6.4. Example 4

In this test, our method is applied to filtration problem [11,52]. The computational domain is concentric quarter
circular divided into the free fluid and the porous medium domains as shown in Fig. 5(a), where the radii are r1 = 1,
r2 = 2 and r3 = 3. The inflow profile us = (− x

30 , −
y

30 ) is imposed on Γs,1, us = 0 is imposed on Γs,2 and Γs,3. We
also impose zero Dirichlet condition on Γd,1 and slip condition ud = 0 on Γd,2 and Γd,3. Set f = 0 in Ωs and g = 0
in Ωd . Choose the parameters as ν = 1, α =

0.1
√

β
(note that K = βI). We use quadrilateral mesh Th with perturbed

interior nodes as shown in Fig. 5(b). We first choose β to be 10−7 such that the permeability K in Ωd is equal to
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Fig. 4. Illustration of mesh T 8 for Example 3. The vertical interface is colored in red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. (a): Computational domain for filtration problem; (b): illustration of mesh. The interface Γ is colored in red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

10−7I. Considering the velocity uh is not explicitly expressed, the L2 projection Πo
hudiv

h is plotted in Fig. 6(a), and
the pressure ph is presented in Fig. 6(b). Second, we choose a lower permeability, i.e., K = 10−12I. The projection
velocity Πo

hudiv
h and the pressure ph are shown in Fig. 7, respectively. As we observe that the lower permeability

results in a build up of the pressure. These results are consistent with those obtained in [11].
Another point we are interested in is the mass conservation. Let Γs,1,h ⊂ Fh be a partition of the inflow side

Γs,1, and similarly, Γd,1,h be a partition of the outflow side Γd,1. Since the inflow velocity us is provided, a simple
computation gives the mass on the inflow side,

Θin =

∫
Γs,1

u · n ds =
3π

20
,

where n denotes the unit inward normal vector on Γs,1. After uh is solved, the mass on the outflow side is computed by

Θout =

∫
Γd,1,h

udiv
h · n ds,

where n denotes the unit outward normal vector on Γd,1,h . We also compute another type of mass on the inflow side as

Θ̃in =

∫
Γs,1,h

u · n ds.
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Table 12
Mass difference between the inflow and outflow sides of the domain and the quantity δ for Example 4.

K = 10−7I K = 10−12I

♯Dof |Θin − Θout| |Θ̃in − Θout| δ |Θin − Θout| |Θ̃in − Θout| δ

196 5.3646e−03 0 6.2986e−17 5.3646e−03 0 1.0538e−16
728 1.3446e−03 2.2204e−16 2.0268e−16 1.3446e−03 2.7756e−16 2.1411e−16

2800 3.3637e−04 1.0547e−15 4.2687e−16 3.3637e−04 8.8818e−16 2.9211e−15
10976 8.4105e−05 7.7716e−16 8.9465e−16 8.4105e−05 8.3217e−16 9.0375e−16
43456 2.1027e−05 5.5511e−16 1.7663e−15 2.1027e−05 4.9909e−16 1.8037e−15

Fig. 6. The Euclidean norm of Πo
hudiv

h (a) and the pressure ph (b) with the permeability K = 10−7I in Example 4.

Fig. 7. The Euclidean norm of Πo
hudiv

h (a) and the pressure ph (b) with the permeability K = 10−12I in Example 4.

The mass differences |Θin − Θout|, |Θ̃in − Θout| and the quantity δ are reported in Table 12. On one hand, three
numerical methods in [11] were employed for solving the Stokes–Darcy problem. And among the three, the DG–DG
scheme of order two performs better and the corresponding rate of mass difference |Θin − Θout| is O(h3/2). From
Table 12 we can observe a higher convergence rate O(h2) for all K compared with that of the DG–DG scheme of
order two. On the other hand, we see that the mass difference |Θ̃in −Θout| is close to the computational accuracy. Note
that the inflow side Γs,1 is a curve and its partition Γs,1,h is a polygonal line. So that the partition Th leads to mass loss
to some extent and |Θin − Θout| is larger than |Θ̃in − Θout| under the same d.o.f.

7. Conclusions

In this paper, we have presented a weak virtual element method on general meshes for the Stokes–Darcy problem.
We use the H(div) virtual element to discretize the velocity and discontinuous piecewise polynomials to approximate
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the pressure. We also introduce a polynomial space on the element faces to approximate the tangential trace of the
velocity in the Stokes equations. The velocity on the discrete level is exactly divergence free. Using the classical saddle
point theory, we have proved the well-posedness of the discrete problem. Further, we derive an a priori error estimate
that implies the velocity error is pressure-independent, which means our method is pressure-robust. A number of
two-dimensional numerical experiments have shown the robustness of mass conservation and pressure with respect
to the shape of grid and the permeability of the porous media. Our ongoing work is extending the method for solving
the Navier–Stokes–Darcy problem. In the future, we will explore more general problems, such as time-dependent
Stokes–Darcy problem and Stokes–Darcy/transport problem.
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