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Abstract In this paper,we study fast iterative solvers for the solutionof fourth order parabolic
equations discretized by mixed finite element methods. We propose to use consistent mass
matrix in the discretization and use lumpedmassmatrix to construct efficient preconditioners.
We provide eigenvalue analysis for the preconditioned system and estimate the convergence
rate of the preconditioned GMRes method. Furthermore, we show that these preconditioners
only need to be solved inexactly by optimal multigrid algorithms. Our numerical examples
indicate that the proposed preconditioners are very efficient and robust with respect to both
discretization parameters and diffusion coefficients. We also investigate the performance of
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multigrid algorithms with either collective smoothers or distributive smoothers when solving
the preconditioner systems.

Keywords Fourth order problem · Multigrid method · GMRes · Mass lumping ·
Preconditioner

1 Introduction

Fourth order parabolic partial differential equations (PDEs) appear in many applications
including the lubrication approximation for viscous thin films [49], interface morphological
changes in alloy systems during stress corrosion cracking by surface diffusion [1], image
segmentation, noise reduction, inpainting [13,42], and phase separation in binary alloys
[14,22,30], etc. There have been extensive studies on the numerical methods for solving
these fourth order parabolic PDEs, including the finite difference methods [39,56], spectral
methods [44,66], discontinuous Galerkin methods [27,35,65],C1-conforming finite element
methods [31,37], nonconforming finite element methods[32,67], and mixed finite element
methods [11,15,29,33,34,36]. The resulting large sparse linear systems of equations are
typically very ill-conditioned which poses great challenges for designing efficient and robust
iterative solvers. In addition, the linear systems become indefinite when mixed methods
are employed. In this work, we design fast iterative solvers for the fourth order parabolic
equations discretized by mixed finite element methods.

Multigrid (MG) methods are among the most efficient and robust solvers for solving
the linear systems arising from the discretizations of PDEs. There have been a number
of studies on multigrid methods for fourth order parabolic equations [7,45,47,48,63]. It
is known that smoothers play a significant role in multigrid algorithms. In particular, for
saddle point systems, there are two different types of smoothers, i.e., decoupled or coupled
smoothers. For a decoupled point smoother, each sweep consists of relaxation over variables
per grid point as well as relaxation over grid points. On the other hand, for a coupled point
smoother, variables on each grid point are relaxed simultaneously which corresponds to
solving a sequence of local problems. Distributive Gauss–Seidel (DGS) is the first decoupled
smoother proposed byBrandt andDinar [20] for solving Stokes equations. Later,Wittum [64]
introduced transforming smoothers and combined itwith incompleteLU factorization to solve
saddle-point systems with applications in Stokes and Navier–Stokes equations. Gaspar et al.
[40] studied theDGS smoother for solving poroelasticity problems. Recently,Wang andChen
[62] proposed a distributive Gauss–Seidel smoother based on the least squares commutator
for solving Stokes equations and showed multigrid uniform convergence numerically. For
coupled smoother, in [61], Vanka proposed a symmetrically coupled Gauss–Seidel smoother
for the Navier–Stokes equations discretized by finite difference schemes on staggered grids.
Later, in [53], Olshanskii and Reusken introduced an MG solver with collective smothers
for the Navier–Stokes equations in rotation form discretized by conforming finite elements.
They proved that W-cycle MG method with block Richardson smoother is robust for the
discrete problem. Their numerical experiments show that the W-cycle MG method with the
damped Jacobi smoother is robust with respect to the mesh size and problem parameters.
Collective Jacobi and Gauss–Seidel smoothers have also been studied in multigrid method
for elliptic optimal control problems by Lass et al. [50], and Takacs and Zulehner [57]. In
our work, we investigate the performance of both coupled and decouple smoothers for the
discrete fourth order problem in the mixed form.
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In the literature, there are also many studies on the Krylov subspace methods and their
preconditioners for solving fourth order parabolic problems. In [8,9], Bänsch, Morin and
Nochetto solved a discrete fourth order parabolic equation by applying the conjugate gradient
method on the two-by-two block system in Schur complement form. In [10], the same authors
proposed symmetric and nonsymmetric preconditioners based on operator splitting.Axelsson
et al. [2], Axelsson and Neytcheva [3], Boyanova et al. [18] and Boyanova and Neytcheva
[19] proposed a block preconditioner by adding an extra small term to the (2, 2) block and
then followed by a block LU factorization which results in a preconditioned system when
eigenvalues have a uniform bound. Bosch et al. [16] studied block triangular preconditioner
for the mixed finite element discretization of a modified Cahn–Hilliard equation for binary
image inpainting. In their method, the Schur complement is solved by algebraic multigrid
method (AMG) using V-cycle and Chebyshev smoother. Moreover, the convergence rate of
their method is independent of themesh size. Samemethod has been used by Bosch et al. [17]
to solve Cahn–Hilliard variational inequalities. In [41], Gräser and Kornhuber introduced
a preconditioned Uzawa-type iterative method with multigrid solvers for subproblems to
solve Cahn–Hilliard equation with an obstacle potential. Based on the Hermitian and skew-
Hermitian splitting (HSS) iteration introduced in [6], Benzi and Golub [12] proposed a robust
preconditioner for the generalized saddle point problems which exhibit similar two-by-two
block structure as the discrete fourth order parabolic problems in mixed form. Later, Bai et
al. [4] studied preconditioned modified HSS (PMHSS) iteration methods for the block linear
systems. In [5], Bai, Chen, and Wang further simplified PMHSS and proposed an additive
block diagonal preconditioner for a block linear system of equations arising from finite
element discretization of two-phase flowproblems and elliptic PDE-constrained optimization
problems.

In this work, we construct preconditioners for discrete fourth order parabolic problems
based on the mass lumping technique. Mass lumping technique has been widely used in
solving time dependent PDEs by the finite element method [46]. It consists of replacing a
consistent mass matrix by a diagonal lumped mass matrix so that its inversion at each time
step becomes a simple division. The error estimates for lumped mass approximation have
been studied in [23,59,60] which show that the order of accuracy for the discretization is
preserved. On the other hand, the loss of solution accuracy associated with mass lumping has
been studied byGresho et al. [43] for advection equations and byNiclasen andBlackburn [52]
for incompressible Navier–Stokes equations. It is well known that mass lumping may also
induce dispersion errorswhen solvingwave equations, see e.g., [28,51]. These studies suggest
that it is sometimes advantageous to use consistent mass matrix in the discretization schemes.
In the study of fourth order parabolic equations, both consistentmassmatrix and lumpedmass
matrix have been widely used. In this work, we choose consistent mass matrix in the finite
element discretization to keep the solution accuracy and utilize lumpedmass matrix to design
efficient preconditioners so that the cost of inverting consistent mass matrix can be alleviated.
We prove that GMRes method with mass lumping preconditioner converges when τ ≥ Ch2

for some constant C depending on the diffusion coefficients (τ , h corresponds to time and
spatial discretization parameters, respectively). In a special case when the two diffusion
operators A and B only differ by a scaling factor, we are able to prove uniform convergence of
GMRes method for the preconditioned systemwithout the constraint τ ≥ Ch2. Furthermore,
we show that the preconditioner systems can be solved inexactly by geometric multigrid
methods with the two different types of smoother discussed previously. By combining the
optimality of multigrid methods with the computational efficiency of the mass lumping
technique, we obtain very efficient solvers for the discrete fourth order problems.
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The remainder of the paper is organized as follows. In Sect. 2, we describe the model
problem and the corresponding mixed finite element discretization. Next, in Sect. 3, we
describe the multigrid method and the collective Jacobi/Gauss–Seidel smoothers for our
model problem. In Sect. 4, we construct twomass lumping preconditioners.Multigridmethod
with decoupled smoother are also introduced in this section to solve the preconditioner system
approximately. The spectrum bounds of the preconditioned systems and the convergence
property of GMRes method are analyzed in Sect. 5. Finally, in Sect. 6, we present numerical
experiments to demonstrate the efficiency and robustness of the proposed solvers.

2 Model Problem and Discretization

2.1 Model Problem

We are interested in solving the following fourth order problem:

u − τ div(a∇v) = f in Ω, (2.1)

τ div(b∇u)+ v = g in Ω, (2.2)

with boundary conditions

u = v = 0, on ΓD, (2.3)

ν · a∇v = ν · b∇u = 0, on ΓN . (2.4)

where τ = √△t and△t is the time-step size,Ω is a bounded polyhedral domain inRd , d ≥ 1,
ν is the unit outward normal, ΓD , ΓN denote the Dirichlet and Neumann boundary part,
respectively. We mainly study the Dirichlet boundary condition in this paper, i.e., ΓN = ∅.
The diffusion coefficients a(x) and b(x) are measurable functions satisfying the following
continuity and coercivity conditions

λa(x)|ξ |2 ≤ ξ T a(x)ξ ≤ Λa(x)|ξ |2, λb(x)|ξ |2 ≤ ξ T b(x)ξ ≤ Λb(x)|ξ |2, ∀ξ ∈ Rd .

Equations (2.1) and (2.2) may arise from a time semi-discretization of the fourth order
parabolic problem

ut = div(a∇(−div(b∇u))).

In this case, f = uold is the solution at the previous time step, and g = 0.
As an example, consider the following Cahn–Hilliard equations that model the phase

separation and coarsening dynamics in a binary alloy:

ut − div(M(u)∇(−ϵ∆u + F ′(u))) = 0, in Ω × (0, T ), (2.5)

where Ω ⊂ R3 is a bounded domain, u represents the relative concentration of one compo-
nent in a binary mixture, M(u) is the degenerate mobility, which restricts diffusion of both
components to the interfacial region, e.g., M(u) = u(1 − u) [11], F ′(u) is the derivative of
a double well potential F(u), a typical choice is

F(u) = 1
4

(
u2 − 1

)2
.

Introducing v, defined by v = τ (−ϵ∆u + F ′(u)) (the chemical potential multiplied by τ ),
after semi-implicit time discretization, we obtain a splitting of (2.5) into a coupled system of
second order equations [33,34,36]
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u − τdiv(M(u)∇v) = f, in Ω,

τ (−ϵ∆u + F ′(u)) − v = 0, in Ω.

Denote a = M(u), b = ϵ, and assume F ′(u) = 0, we can get (2.1) and (2.2), which
corresponds to the linearization of the nonlinear Cahn–Hilliard equations.

The weak formulation of (2.1)–(2.2) is: find u, v ∈ V such that

(u,φ)+ τ (a∇v,∇φ) = ( f,φ), φ ∈ V
−τ (b∇u,∇ψ)+ (v,ψ) = (g,ψ), ψ ∈ V, (2.6)

where V is the subspace of H1(Ω) associated with the boundary condition (2.3). The well-
posedness of (2.6) follows from the Lax–Milgram lemma [54].

2.2 Finite Element Discretization

Let T be a shape-regular triangulation of Ω , VT be the piecewise linear finite element space
over T satisfying the homogeneous boundary condition (2.3), and Nh = dim(VT ). The
discrete problem for the PDE system (2.1)–(2.2) is: find uh, vh ∈ VT , such that ∀φ,ψ ∈ VT

(uh,φ)+ τ (a∇vh,∇φ) = ( f,φ),
−τ (b∇uh,∇ψ)+ (vh,ψ) = (g,ψ).

In matrix form, we have
(

τ A M
M −τ B

) (
v

ũ˜

)
=

(
f
g̃
˜

)
, or A

(
v

ũ˜

)
=

(
f
g̃
˜

)
, (2.7)

where A is a matrix of size 2Nh × 2Nh , M is the mass matrix, and A, B are the stiffness
matrices defined by

Mi, j = (φi ,φ j ), Ai, j = (a∇φi ,∇φ j ), Bi, j = (b∇φi ,∇φ j ).

Eliminating v
˜
in (2.7), we get the following Schur complement equation

(
M + τ 2AM−1B

)
u
˜
= f

˜
− τ AM−1g

˜
. (2.8)

In this paper, we develop efficient preconditioners for the two-by-two block linear systems
(2.7); however, we will solve the Schur complement for preconditioners. In order to avoid
inverting mass matrix, we employ the mass lumping technique to construct preconditioners.

3 Multigrid with Collective Smoother

A multigrid algorithm typically consists of three major components: the smoother (or
relaxation scheme), the coarse grid operator, and the grid transfer operators (interpola-
tion/restriction operators). It is well known that the efficiency of a multigrid method crucially
depends on the choice of the smoother. In particular, for the block system (2.7), we observe
numerically thatmultigridmethodwith point-wiseGauss–Seidel smoother does not converge
uniformly. We construct a block Jacobi or Gauss–Seidel smoother that collects the degrees
of freedom corresponding to variables u and v for each grid point. In other words, each block
corresponds to a 2 × 2 matrix.
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To describe these collective smoothers, we first consider the following matrix splitting,
i.e.,

A = AL +AD +AT
L , AL =

(
τ L A LM
LM −τ LB

)
, AD =

(
τDA DM
DM −τDB

)
,

where L A, LB , LM are strictly lower triangular parts of A, B, and M , and DA, DB , DM are
their diagonal parts. The collective damped Jacobi relaxation can be represented as

(
v˜
k+1

u˜
k+1

)
=

(
v˜
k

u˜
k

)
+ ϑA−1

D

[(
f
g̃
˜

)
− A

(
v˜
k

u˜
k

)]
(3.1)

The collective Gauss–Seidel relaxation can be represented as

(
v˜
k+1

u˜
k+1

)
=

(
v˜
k

u˜
k

)
+ (AL +AD)

−1
[(

f
g̃
˜

)
− A

(
v˜
k

u˜
k

)]
(3.2)

More practically, one can rearrange variables u
˜
and v

˜
in w

˜
so that AL + AD corresponds

to a lower block triangular matrix. In fact, let w
˜

= (w
˜1, w˜2, . . . , w˜Nh )

T with each entry
w
˜i = (vi , ui ) corresponds to a pair of variables. Then, each relaxation sweep of (3.1) consists
of solving a sequence of small systems

w
˜
k+1
i = w

˜
k
i + ϑA −1

i i

⎛

⎝Fi −
Nh∑

j=1

Ai jw
˜
k
j

⎞

⎠ ,

and each sweep of (3.2) consists of solving

w
˜
k+1
i = w

˜
k
i +A −1

i i

⎛

⎝Fi −
i−1∑

j=1

Ai jw
˜
k+1
j −

Nh∑

j=i

Ai jw
˜
k
j

⎞

⎠ ,

where

Ai j =
(

τ Ai j Mi j
Mi j −τ Bi j

)
, Fi =

(
fi
gi

)
, i, j = 1, 2, . . . , Nh .

Note that Ai i is invertible since det(Ai i ) = −τ 2Aii Bii − M2
i i ̸= 0.

It is clear from the above form that for collective damped Jacobi relaxation, these small
system can be solved in parallel, and for collective Gauss–Seidel relaxation, they are solved
successively. Numerical experiments in Sect. 6 indicate that by relaxing both variables ui , vi
corresponding to the same grid point i collectively, geometric multigrid V-cycle converges
uniformly with respect to both h and τ .

The collective Gauss–Seidel smoother has been studied by Lass et al. [50] for solving
elliptic optimal control problems. It is shown in [50] that the convergence rate of multigrid
method with collective Gauss–Seidel smoother is independent of h. The robustness with
respect to τ is, however, hard to prove theoretically. Takacs and Zulehner [57] also inves-
tigated multigrid algorithm with several collective smoothers for optimal control problems
and proved the convergence of the W-cycle multigrid with collective Richardson smoother.
For convergence proof of multigrid methods using collective smoothers applied to saddle
point systems, we refer to the work by Schöberl [55] and by Chen [25,26].
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4 Mass Lumping Preconditioners

In this section, we study preconditioners for the two-by-two block linear systems (2.7) for
use with GMRes method. When the meshsize and time-step size are small, these systems
are generally very ill-conditioned, especially when the diffusion coefficients a and b degen-
erate. Hence, efficient preconditioners are necessary in order to speed up the convergence
of GMRes method. In [10], Bänsch, Morin, and Nochetto proposed symmetric and non-
symmetric preconditioners that work well for the Schur complement system (2.8). However,
the convergence rates of these methods are not uniform with respect to h or τ . Besides, the
performance of those methods deteriorate for degenerate problems [10].

In the following, we design two preconditioners based on the mass lumping technique
and geometric multigrid method for the system (2.7). The main focus is on the efficiency and
robustness of the proposed solvers. Numerical experiments in Sect. 6 indicate that GMRes
method preconditioned by the mass lumping preconditioners (solved inexactly) converges
uniformly with respect to the discretization parameters and is also robust for problems with
degenerate diffusion coefficients.

4.1 Preconditioner with Two Lumped Mass Matrices

The mass lumping technique has been widely used in the finite element computations, espe-
cially for time-dependent problems as it avoids inverting a full mass matrix M at each time
step. The lumped-massmatrix M̄ is a diagonalmatrix with diagonal elements equal to the row
sums of M . By using the diagonal matrix M̄ , the computational cost for the preconditioner
is reduced significantly.

The mass lumping preconditioner B for the block system A is defined by

B =
(

τ A M̄
M̄ −τ B

)
. (4.1)

GMRes method is then applied to solve the preconditioned linear system
(

τ A M
M −τ B

) (
τ A M̄
M̄ −τ B

)−1 (
p
q̃
˜

)
=

(
f
g̃
˜

)
. (4.2)

4.2 Preconditioner with One Lumped Mass Matrix

We can also use the following preconditioner B̃ with one lumped mass matrix for solving the
block system (2.7), i.e.

B̃ =
(

τ A M
M̄ −τ B

)
. (4.3)

The matrix B̃ is nonsymmetric and is a better approximation to A compared with B. For
B̃, we still have a block factorization which avoids inverting mass matrix M . Numerical
experiments of Sect. 6.2 indicate that the performance of the two preconditioners B̃ and B
used with GMRes method are similar when solved inexactly by geometric multigrid V-cycle
when τ ≥ Ch2. However, when τ is very small, B̃ performs better than B.

4.3 Multigrid for Preconditioners

The preconditioner systems only need to be solved approximately. We can use geometric
multigrid method with the coupled smoothers described in Sect. 3. In the following, we
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construct a decoupled smoother following the idea of the distributiveGauss–Seidel relaxation
(DGS) which is suitable for the model problem.

DGS is a decoupled smoother introduced by Brandt and Dinar [20] for solving Stokes
equations. The main idea of DGS is to apply standard Gauss–Seidel relaxation on decoupled
equations using transformed variables. Let us consider the mass-lumping preconditioner
system B̃ (a similar scheme can be derived for B),

B̃
(
v

ũ˜

)
=

(
p
q̃
˜

)
. (4.4)

We introduce the following change of variables
(
v

ũ˜

)
= P

(
x
ỹ
˜

)
, where P =

(
τ M̄−1B 0

I I

)
(4.5)

is called the distribution matrix. Right preconditioning B̃ by P results in an upper block
triangular matrix

B̃P =
(
M + τ 2AM̄−1B M

0 −τ B

)
.

We construct a decoupled smoother for preconditioner (4.4) by solving
(
v˜
k+1

u˜
k+1

)
=

(
v˜
k

u˜
k

)
+ P(B̃P)−1

[(
p
q̃
˜

)
− B̃

(
v˜
k

u˜
k

)]
(4.6)

More precisely, we have the following algorithm

1. Form the residual:
(
r˜v

r˜u

)
=

[(
p
q̃
˜

)
− B̃

(
v˜
k

u˜
k

)]

2. Apply standard Gauss–Seidel relaxation to solve the error equation

−τ Be
˜y = r

˜u

and use the damped Jacobi relaxation for

(M + τ 2AM̄−1B)e
˜
x = r

˜
v − Me

˜
y . (4.7)

Then, recover e
˜u, e˜v from (4.5), i.e.,

e
˜
v = τ M̄−1Be

˜
x ;

e
˜
u = e

˜
x + e

˜
y

3. Update the solution
v˜
k+1 = v˜

k + e˜v

u˜
k+1 = u˜

k + e˜u

We can use multigrid method with the above decoupled smoother to solve the precondi-
tioner system (4.4).

123



J Sci Comput

Remark 1 By using the damped Jacobi to solve (4.7), we can avoid matrix multiplication.
In fact, we only need to calculate the diagonal part of M + τ 2AM̄−1B. This requiresO(Nh)

operations because M̄ is a diagonal matrix.

5 Convergence Analysis of Preconditioned GMRes Method

In this section, we analyze the convergence of the GMRes method preconditioned by the
two preconditioners introduced in Sect. 4 for the block system (2.7). We show that the
preconditioned GMRes method converges when τ ≥ Ch2 for some constant C depending
on the diffusion coefficients. Numerical results in Sect. 6 indicate that the preconditioned
GMRes method converges uniformly for any h and τ .

Let R = AB−1 (or AB̃−1) with B (or B̃) being a right preconditioner of A. To solve
the preconditioned system Rv = b, the GMRes method starts from an initial iterate v0 and
produces a sequence of iterates vk and residuals rk := b − Rvk , such that rk = pk(R)r0 for
some polynomial pk ∈ Pk , and

∥rk∥2 = min
p∈Pk
p(0)=1

∥p(R)r0∥2, (5.1)

where Pk is the space of polynomials of degree k or less and ∥ · ∥2 is the Euclidean norm.
As a consequence, the convergence rate of the GMRes method can be estimated by

∥rk∥2
∥r0∥2

≤ min
p∈Pk
p(0)=1

∥p(R)∥2. (5.2)

Since R may not be a normal matrix, we follow the approach given in [10] using the
concept of ϵ-pseudospectrum [58]. Given ϵ > 0, denote by σϵ(R) the set of ϵ-eigenvalues
of R, namely those z ∈ C that are eigenvalues of some matrix R+ E with ∥E∥ ≤ ϵ. We first
quote the following two results.

Lemma 1 (Pseudospectrum estimate [58]) Let Σϵ be a union of closed curves enclosing the
ϵ-pseudospectrum σϵ(R) of R. Then for any polynomial pk of degree k with pk(0) = 1 we
have

max
z∈σ (R)

|pk(z)| ≤ ∥pk(R)∥ ≤ Lϵ

2πϵ
max

z∈Σϵ (R)
|pk(z)|, (5.3)

where Lϵ is the arclength of Σϵ .

Lemma 2 (Bound on the ϵ-pseudospectrum [10]) If R is a square matrix of order n and
0 < ϵ ≤ 1, then,

σϵ(R) ⊂ ∪λ∈σ (R)B
(
λ,CRϵ

1
m

)
,

where CR := n(1 + √
n − p)κ(V ), with κ(V ) the condition number of V and V is a

nonsingular matrix transforming R into its Jordan canonical form J , i.e. V−1RV = J , p is
the number of Jordan blocks, and m is the size of the largest Jordan block of R.

In order to estimate the error caused bymass lumping,we introduce the following operators
[23]. Let z j (1 ≤ j ≤ 3) be the vertices of a triangle K ∈ T , consider the following quadrature
formula
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QK ,h( f ) =
3∑

j=1

(1,φ j |K ) f (z j ) =
1
3
|K |

3∑

j=1

f (z j )

(φi ,φ j )h =
∑

K∈T
QK ,h(φiφ j ) =

∫

Ω
πh(φiφ j )dx

where πh : C0(Ω̄) → VT is the standard nodal interpolation operator. Then, the mass
lumping procedure can be interpreted as

(φ j ,φ j )h = QK ,h(φ jφ j ) =
Nh∑

k=1

(φ j ,φk).

The following results are useful for later analysis.

Lemma 3 (Quadrature error [23]) Let u, v ∈ VT ⊂ H1
0 and (u, v)h be the lumped inner

product. Then,

|(u, v) − (u, v)h | ≤ Clh2|u|1|v|1, (5.4)

where Cl is a constant independent of h.

Lemma 4 (Norm equivalence [33]) Let M be the mass matrix and M̄ be its lumped version.
Then, for any u = ∑

j u jφ j ∈ VT we have

C1(M̄u
˜
, u
˜
) ≤ (Mu

˜
, u
˜
) ≤ (M̄u

˜
, u
˜
), (5.5)

where u
˜
= (u1, u2, . . . , uNh )

T and C1 ∈ (0, 1) is a constant independent of h.

Proof We first show that (Mu
˜
, u
˜
) ≤ (M̄u

˜
, u
˜
). Let δM = M − M̄ , then

(δM)i j < 0, i = j; (δM)i j ≥ 0, i ̸= j; and (δM)i i = −
∑

j ̸=i

(δM)i j .

By direct calculations, we have

u
˜
T δMu

˜
=

Nh∑

i=1

Nh∑

j=1

(δM)i j ui u j

=
Nh∑

i=1

⎛

⎝ui
∑

j<i

(δM)i j (u j − ui )+ ui
∑

j>i

(δM)i j (u j − ui )

⎞

⎠

=
Nh∑

i=1

∑

j>i

−(δM)i j (u j − ui )2 ≤ 0.

By Lemma 3 and the inverse inequality, we get

(u, u)h − (u, u) ≤ |(u, u) − (u, u)h | ≤ Clh2|u|21 ≤ C∥u∥20 = C(u, u).

Hence, (u, u)h ≤ (1+ C)(u, u). Equivalently,

1
1+ C

(M̄u
˜
, u
˜
) ≤ (Mu

˜
, u
˜
)

which implies that the left inequality holds with C1 = 1/(1+ C) for some positive constant
C . ⊓2
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We also need the following estimates for the eigenvalues of the stiffness matrices and
mass matrix [21,38].

Lemma 5 (Eigenvalue estimates) Let A, B be the stiffness matrices corresponding to diffu-
sion coefficients a(x) and b(x), respectively, and let M be the mass matrix, then,

λmax(A) ≤ CA, λmax(B) ≤ CB , CMh2 ≤ λmin(M) (5.6)

where CA,CB depend on the continuity assumption of the bilinear forms and the constant
in the inverse inequality.

5.1 Eigenvalue Analysis forAB−1 with Constraint τ ≥ Ch2

Recall

B =
(

τ A M̄
M̄ −τ B

)
, A =

(
τ A M
M −τ B

)
.

We have the following spectrum bound for the preconditioned system B−1A.

Theorem 1 (Spectral bound for B−1A) Let h denote the meshsize and τ denote the square
root of time-step size. Then, the spectral radius of B−1A satisfies

ρ(B−1A) < 2,

if τ ≥ Ch2 for some positive constant C independent of h and τ .

Proof Let λ ∈ C, (v
˜
, u
˜
)T ∈ C2Nh be a pair of eigenvalue and eigenvector of B−1A, i.e.

(
τ A M̄
M̄ −τ B

)−1 (
τ A M
M −τ B

) (
v

ũ˜

)
= λ

(
v

ũ˜

)
.

Equivalently, (
τ A M
M −τ B

)(
v

ũ˜

)
= λ

(
τ A M̄
M̄ −τ B

) (
v

ũ˜

)
. (5.7)

Taking the inner product of the Eq. (5.7) with (v
˜
T ,−u

˜
T ), we obtain

[τ (Av
˜
, v
˜
)+ τ (Bu

˜
, u
˜
)+ 2ıIm(Mv

˜
, u
˜
)] = λ[τ (Av

˜
, v
˜
)+ τ (Bu

˜
, u
˜
)+ 2ıIm(M̄v

˜
, u
˜
)]. (5.8)

Then, we have

2ıIm(δMv
˜
, u
˜
) = (λ − 1)

[
τ (Av

˜
, v
˜
)+ τ (Bu

˜
, u
˜
)+ 2ıIm(M̄v

˜
, u
˜
)
]
. (5.9)

Since A and B are symmetric positive definitematrices,∥v∥̃2A = (Av
˜
, v
˜
) and∥u∥̃2B = (Bu

˜
, u
˜
)

are nonnegative real numbers. By taking the modulus of (5.9) we get

4|Im(δMv
˜
, u
˜
)|2 = |λ − 1|2

(
α2 + 4|Im(M̄v

˜
, u
˜
)|2

)
,

where α = τ (∥v∥̃2A + ∥u∥̃2B). Hence,

|λ − 1|2 = 4|Im(δMv
˜
, u
˜
)|2

α2 + 4|Im(M̄v
˜
, u
˜
)|2 . (5.10)
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Let v = ∑
iviφi , u = ∑

i uiφi , we get

|(δMv
˜
, u
˜
)| ≤ Clh2|v|1|u|1 (by (5.4))

≤ ClCaCbh2∥v∥̃A∥u∥̃B (Ca = min
x

λa(x), Cb = min
x

λb(x))

≤ ClCaCbh2
∥v∥̃2A + ∥u∥̃2B

2
(by Young’s inequality)

= ClCaCbh2

2τ
τ

(
∥v∥̃2A + ∥u∥̃2B

)
,

Hence,

4Im|(δMv
˜
, u
˜
)|2 ≤ (ClCaCb)

2h4

τ 2
τ 2

(
∥v
˜
∥2A + ∥u

˜
∥2B

)2
= (ClCaCb)

2h4

τ 2
α2.

Let C = 2ClCaCb, when τ ≥ Ch2, we get ρ(B−1A) < 2. ⊓2

Using the same proof of Corollary 5.11 in [10] with ϵ0 = 1 − ρ(B−1A)/2, we have

Corollary 1 (Convergence rate of GMRes forAB−1) For the preconditioned systemAB−1,
GMRes method converges with an asymptotic linear convergence rate bounded by

θ = ρ(B−1A)

2
,

if τ ≥ Ch2. Moreover,

∥rk∥2
∥r0∥2

≤ C0θ
k,

with C0 = 2m−1Cm
R (1+ ρ(E))dimVT /(1 − ρ(E))m, CR, m are the parameters defined in

the Lemma 2 and VT is the finite element space.

Similarly, we have the following result.

Corollary 2 (Convergence rate of GMRes forAB̃−1) The spectral radius of B̃−1A satisfies

ρ(B̃−1A) < 2,

if τ ≥ Ch2 for some constant C independent with h and τ . For the preconditioned system
AB̃−1, GMRes method converges with an approximate linear convergence rate bounded by

θ̃ = ρ(B̃−1A)

2
.

5.2 Analysis Without the Constraint τ ≥ Ch2

Aswewill see in Sect. 6, numerical results show uniform convergence rate of GMResmethod
for the preconditioned system irrespective of the relation between h and τ . A proof of this
result appears elusive due to the fact that the Schur complement is nonsymmetric. In this
subsection, we give a proof in this direction for the special case B = αA with α > 0 being
some scaling constant in themass lumping preconditioner B̃. For simplicity, we chooseα = 1
for the remaining part of this paper.
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Notice that
(

τ A M
M̄ −τ B

)−1

=
(
I −(τ A)−1M
0 I

)(
(τ A)−1 0

0 (−τ B − M̄(τ A)−1M)−1

)(
I 0

−M̄(τ A)−1 I

)

B̃−1A =
(

τ A M
M̄ −τ B

)−1 (
τ A M
M −τ B

)
=

(
I + X 0

(−τ B − M̄(τ A)−1M)−1(M − M̄) I

)
,

where

X = (τ A)−1M
(
τ B + M̄(τ A)−1M

)−1
(M − M̄).

Then, any eigenvalue of B̃−1A is either 1 or 1+λ for some λ ∈ σ (X)where σ (X) represents
the spectrum of X .

To derive the bounds of σ (X), we first recall the Sherman-Morrison-Woodbury formula
(
A +UV T

)−1
= A−1 − A−1U

(
I + V T A−1U

)−1
V T A−1,

and the following identity

V T
(
A +UV T

)−1
U =

(
I + (V T A−1U )−1

)−1
. (5.11)

Appying (5.11), we get

X = (τ A)−1M
(
τ B + M̄(τ A)−1M

)−1
M̄

[
M̄−1(M − M̄)

]

=
[
I + ((τ A)−1M(τ B)−1M̄)−1]−1

(M̄−1M − I )

=
(
I + τ 2(A−1MB−1M̄)−1)−1

(M̄−1M − I )

=
(
I + τ 2M̄−1BM−1A

)−1
(M̄−1M − I ).

Lemma 6 (Spectrum of X) If A = B, and C1 < 1 is the constant in (5.5), then

σ (X) ⊂ (C1 − 1, 0].

Proof Let (λ, w
˜
) be an eigenpair of the matrix X , then

Xw
˜

= λw
˜

⇔ (M̄−1M − I )w
˜

= λ
(
I + τ 2M̄−1AM−1A

)
w
˜

⇔ (M − M̄)w
˜

= λ
(
M̄ + τ 2AM−1A

)
w
˜

⇔ λ = ((M − M̄)w
˜
, w
˜
)

((M̄ + τ 2AM−1A)w
˜
, w
˜
)

⇔ 0 ≥ λ > (C1 − 1)
(M̄w

˜
, w
˜
)

(M̄w
˜
, w
˜
)+ (τ 2AM−1Aw

˜
, w
˜
)

⇔ C1 − 1 < λ ≤ 0.

⊓2

By Lemma 6 and the relation between B̃−1A and X , we obtain the following result.

Theorem 2 (Spectrum of B̃−1A) Let A and B̃ be given by (2.7) and (4.3), respectively. If
A = B, we have

σ (B̃−1A) ⊂ (C1, 1].
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The following result can be proved by using the same proof for the Corollary 5.11 in [10]
with ϵ0 = C1/2.

Corollary 3 (Convergence rate of GMRes for AB̃−1) GMRes’s iteration converges for sys-
tem AB̃−1 with an asymptotic linear convergence rate bounded by

θ = 1 − C1/2
1+ C1

,

Moreover,

∥rk∥
∥r0∥

≤ C0θ
k,

with C0 = 22m−1Cm
R dimVT /Cm−1

1 .

Remark 2 (Preconditioning for τ < Ch2) By inverse inequality, we have τ∥u∥2A ≤
τh−2∥u∥2M . So if τ < h2, then M will dominate A. For the case when A ̸= αB and
τ < Ch2, we rewrite the system in the following form

(
M τ A

−τ B M

) (
u
ṽ˜

)
=

(
f
g̃
˜

)
, (5.12)

and consider the diagonal preconditioner

Bd =
(
M 0
0 M

)
. (5.13)

To give an estimate of the spectrum bound for the preconditioned system, we let

(
M 0
0 M

)−1 (
M τ A

−τ B M

)
= I + Ed

where

Ed =
(
M 0
0 M

)−1 (
0 τ A

−τ B 0

)
(5.14)

Let
(
λ, (x

˜
T , y

˜
T )

)
be an eigenpair of Ed , i.e.,

(
0 τ A

−τ B 0

) (
x
ỹ
˜

)
= λ

(
M 0
0 M

) (
x
ỹ
˜

)

Taking the inner product of the above equation with the vector (x
˜
T , y

˜
T ) we obtain

(τ Ay
˜
, x
˜
) − (τ Bx

˜
, y
˜
) = λ

[
(Mx

˜
, x
˜
)+ (My

˜
, y
˜
)
]
.

Denote ∥ · ∥2M = (M ·, ·), we have

|λ| =
τ

∣∣∣(Ay
˜
, x
˜
) − (Bx

˜
, y
˜
)
∣∣∣

∥x ∥̃2M + ∥y
˜
∥2M
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Since M is symmetric positive definite,

|(Ay
˜
, x
˜
)| ≤

∣∣∣
(
M− 1

2 AM− 1
2 M

1
2 y
˜
,M

1
2 x
˜

)∣∣∣

≤
∥∥∥M− 1

2 AM− 1
2

∥∥∥ ∥y
˜
∥M∥x ∥̃M

≤
∥∥∥M− 1

2 AM− 1
2

∥∥∥
∥x ∥̃2M + ∥y

˜
∥2M

2
.

Similarly,

|(Bx
˜
, y
˜
)| ≤

∥∥∥M− 1
2 BM− 1

2

∥∥∥
∥x ∥̃2M + ∥y

˜
∥2M

2

Then, by Lemma 5,

|λ| ≤ τ

2

(∥∥∥M− 1
2 AM− 1

2

∥∥∥ +
∥∥∥M− 1

2 BM− 1
2

∥∥∥
)

≤ τ

2

(
λmax(A)
λmin(M)

+ λmax(B)
λmin(M)

)

≤ τ

2

(
CA

CMh2
+ CB

CMh2

)
= τ (CA + CB)

2CMh2
< 1,

if τ < Ch2, where C = 2CM/(CA + CB). Hence, all the eigenvalues of the preconditioned
system can be bounded in B(1, ρ(Ed)) with ρ(Ed) < 1.

6 Numerical Experiments

In this section, we provide numerical experiments to demonstrate the performance of multi-
grid method and the preconditioned flexible GMRes method (without restart) using mass
lumping preconditioners. The MATLAB adaptive finite element package iFEM [24] is used
for all experiments. We choose the following two test problems from [10].

Consider the L-shaped domain Ω = (−1, 1)2\[0, 1)2, set g = 0, f = 1, and
choose the Dirichlet boundary condition in both examples. For the diffusion coefficients
a(x1, x2), b(x1, x2), we choose

1. Nice problem:

a(x1, x2) = 1, b(x1, x2) =
{
0.6, if x2 < x1,
1.2, otherwise.

2. Degenerate problem:

a(x1, x2) = 0.1|x1| + |x2|, b(x1, x2) = 10+ 3 sin(5πx1) sin(8πx2).

The range of parameter τ ∈ [10−4, 1], which corresponds to the time-step size ∆t ∈
[10−8, 1]. The stopping criterion of the multigrid solver and GMRes iteration is chosen to
be the relative residual error in L2 norm less than 10−7. The initial guess for the iterative
methods are chosen randomly. For time-dependent problems, we can use the approximation
in the previous time step as the initial guess and our solvers can converge in just a few steps.
All computations are done using MATLAB R2015b on a desktop computer with a 3.7GHz
Intel processor and 32GB RAM.
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Table 1 Example 1: iteration counts and CPU time (in seconds) of CGS/CJ-MG

Solver h τ

1e−0 1e−1 1e−2 1e−3 1e−4 1e−5 1e−6 1e−7

CGS-MG 1/64 8 (0.31) 8 (0.31) 8 (0.31) 8 (0.31) 13 (0.49) 8 (0.31) 7 (0.27) 7 (0.27)

1/128 8 (1.5) 8 (1.5) 8 (1.5) 8 (1.5) 11 (2.0) 12 (2.2) 7 (1.3) 7 (1.3)

1/256 8 (6.6) 8 (6.6) 8 (6.6) 8 (6.6) 10 (8.3) 11 (9.1) 9 (7.5) 7 (5.9)

CJ-MG 1/64 15 (0.51) 15 (0.50) 15 (0.51) 15 (0.50) 14 (0.47) 12 (0.40) 13 (0.43) 13 (0.43)

1/128 15 (2.3) 15 (2.2) 15 (2.2) 15 (2.2) 14 (2.0) 12 (1.8) 13 (1.9) 13 (1.9)

1/256 15 (10) 15 (10) 15 (10) 15 (10) 15 (10) 14 (9.6) 12 (8.2) 13 (9.0)

Table 2 Example 2: iteration counts and CPU time (in seconds) of CGS/CJ-MG

Solver h τ

1e−0 1e−1 1e−2 1e−3 1e−4 1e−5 1e−6 1e−7

CGS-MG 1/64 8 (0.31) 8 (0.31) 8 (0.31) 8 (0.31) 10 (0.38) 11 (0.42) 7 (0.27) 7 (0.27)

1/128 8 (1.5) 8 (1.5) 8 (1.5) 8 (1.5) 8 (1.5) 12 (2.2) 9 (1.7) 7 (1.3)

1/256 8 (6.8) 8 (6.7) 8 (6.7) 8 (6.7) 8 (6.8) 10 (8.4) 12 (10) 7 (5.9)

CJ-MG 1/64 15 (0.53) 15 (0.52) 15 (0.51) 15 (0.54) 14 (0.48) 12 (0.41) 14 (0.48) 13 (0.44)

1/128 15 (2.2) 15 (2.2) 15 (2.2) 15 (2.2) 14 (2.1) 13 (1.9) 13 (1.9) 14 (2.1)

1/256 15 (11) 15 (10) 15 (10) 15 (10) 15 (10) 14 (10) 12 (8.3) 14 (8.6)

6.1 Results of Multigrid Solver with Collective Smoothers

We compare the performance of multigrid method with collective Gauss–Seidel and col-
lective Jacobi smoother (with damping parameter ϑ = 0.8) for solving (2.7). We choose
this particular Jacobi damping parameter because it gives the best performance compared
with other values we have tried. We use multigrid V-cycle with one pre-smoothing and one
post-smoothing (i.e., V(1, 1)) which achieves the best efficiency in terms of CPU time. The
number of iterations and CPU time (in parentheses) are summarized in Tables 1 and 2. We
observe that multigrid methods converge uniformly with respect to h. The convergence rate
is close to uniform with respect to τ except for some deterioration when τ is around 10−4 or
10−5 as shown in Table 1. For very small τ , the block system is dominated by the two mass
matrix blocks, and multigrid performs better as shown in Tables 1 and 2. Although it is not
covered by our analysis in Sect. 5, numerical results in Table 2 show that multigrid methods
with collective smoothers are robust for problems with degenerate diffusion coefficient.

6.2 Results of GMRes with Preconditioners Solved Inexactly by CGS-MG

In this subsection, we compare the performance of the preconditioned GMRes method
using three different preconditioners VB(1, 1), VB̃(1, 1), VA(1, 1). Here, we use VB(1, 1),
VB̃(1, 1), VA(1, 1) to represent the inexact preconditioners corresponding to B, B̃ and A
respectively. For example, VB(1, 1) is one CGS-MG V-cycle with one pre-smoothing and
one post-smoothing. As we can see from Tables 3 and 4 that GMRes method converges uni-
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Table 3 Example 1: iteration counts and CPU time (in seconds) of GMRes with one V(1, 1) CGS-MG

Preconditioner h τ

1e−0 1e−1 1e−2 1e−3 1e−4

VB(1, 1) 1/64 8 (0.16) 8 (0.16) 8 (0.16) 7 (0.14) 12 (0.25)

1/128 8 (0.76) 8 (0.72) 8 (0.72) 7 (0.63) 8 (0.72)

1/256 8 (3.5) 8 (3.4) 8 (3.4) 7 (3.0) 7 (3.0)

VB̃(1, 1) 1/64 8 (0.24) 8 (0.21) 8 (0.22) 7 (0.19) 9 (0.24)

1/128 8 (1.0) 8 (1.0) 8 (0.98) 7 (0.87) 7 (0.86)

1/256 8 (4.4) 8 (4.4) 8 (4.4) 7 (3.9) 7 (3.9)

VA(1, 1) 1/64 8 (0.33) 8 (0.33) 8 (0.34) 8 (0.33) 7 (0.29)

1/128 8 (1.5) 8 (1.5) 8 (1.5) 8 (1.5) 8 (1.5)

1/256 8 (6.9) 8 (6.9) 8 (6.9) 7 (6.1) 8 (6.9)

Table 4 Example 2: iteration counts and CPU time (in seconds) of GMRes with one V(1, 1) CGS-MG

Preconditioner h τ

1e−0 1e−1 1e−2 1e−3 1e−4

VB(1, 1) 1/64 8 (0.17) 8 (0.17) 8 (0.17) 8 (0.17) 14 (0.30)

1/128 8 (0.77) 8 (0.73) 8 (0.73) 8 (0.73) 9 (0.82)

1/256 8 (3.5) 8 (3.4) 8 (3.4) 8 (3.4) 7 (3.0)

VB̃(1, 1) 1/64 8 (0.22) 8 (0.21) 8 (0.21) 8 (0.22) 8 (0.24)

1/128 8 (1.0) 8 (0.98) 8 (0.98) 8 (0.98) 7 (0.86)

1/256 8 (4.5) 8 (4.5) 8 (4.5) 8 (4.5) 7 (3.9)

VA(1, 1) 1/64 8 (0.32) 8 (0.33) 8 (0.34) 8 (0.33) 9 (0.37)

1/128 8 (1.5) 8 (1.5) 8 (1.5) 8 (1.5) 8 (1.5)

1/256 8 (6.9) 8 (6.9) 8 (6.9) 8 (6.9) 8 (6.9)

Table 5 Example 1: iteration counts and CPU time (in seconds) of GMRes with one V(1, 1) DGS-MG

Preconditioner h τ

1e−0 1e−1 1e−2 1e−3 1e−4

VB(1, 1) 1/64 22 (0.28) 22 (0.28) 21 (0.26) 19 (0.25) 20 (0.25)

1/128 22 (1.1) 22 (1.1) 21 (1.1) 20 (1.0) 19 (0.98)

1/256 22 (5.4) 22 (5.3) 22 (5.3) 21 (5.1) 19 (4.6)

VB̃(1, 1) 1/64 22 (0.29) 22 (0.30) 21 (0.28) 19 (0.25) 17 (0.40)

1/128 22 (1.2) 22 (1.2) 21 (1.1) 20 (1.1) 19 (1.0)

1/256 22 (5.5) 22 (5.5) 22 (5.5) 21 (5.2) 19 (4.8)

formly with respect to both h and τ . The CPU time for GMRes preconditioned by VB(1, 1) is
approximately half of the time when preconditioned by VA(1, 1) which clearly demonstrate
the efficiency of mass lumping.
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Table 6 Example 2: iteration counts and CPU time (in seconds) of GMRes with one V(1, 1) DGS-MG

Preconditioner h τ

1e−0 1e−1 1e−2 1e−3 1e−4

VB(1, 1) 1/64 23 (0.29) 22 (0.28) 21 (0.27) 19 (0.24) 20 (0.25)

1/128 21 (1.1) 22 (1.1) 22 (1.1) 20 (1.0) 18 (0.92)

1/256 21 (5.0) 21 (5.0) 21 (5.0) 20 (4.8) 18 (4.3)

VB̃(1, 1) 1/64 23 (0.30) 23 (0.30) 22 (0.29) 19 (0.26) 17 (0.23)

1/128 22 (1.2) 23 (1.2) 22 (1.2) 20 (1.1) 17 (0.94)

1/256 21 (5.3) 22 (5.5) 21 (5.3) 20 (5.0) 18 (4.5)

Table 7 Example 1: iteration count, CPU time (in seconds), and convergence factor (italics) of GMRes
preconditioned by one VB(k, k) CGS-MG, k = 1, 2, 3

Precond h τ

1e−0 1e−1 1e−2 1e−3 1e−4

VB(1, 1) 1/64 8 (0.16) 8 (0.16) 8 (0.16) 7 (0.14) 12 (0.25)

0.09 0.09 0.09 0.10 0.23

1/128 8 (0.76) 8 (0.72) 8 (0.72) 7 (0.63) 8 (0.72)

0.09 0.09 0.09 0.10 0.12

1/256 8 (3.5) 8 (3.4) 8 (3.4) 7 (3.0) 7 (3.0)

0.09 0.09 0.09 0.09 0.10

VB(2, 2) 1/64 6 (0.14) 6 (0.14) 5 (0.12) 6 (0.14) 11 (0.26)

0.09 0.09 0.09 0.10 0.23

1/128 6 (0.67) 6 (0.63) 5 (0.53) 5 (0.53) 6 (0.63)

0.09 0.09 0.09 0.10 0.12

1/256 6 (3.1) 6 (3.0) 6 (3.0) 5 (2.5) 5 (2.5)

0.09 0.09 0.09 0.09 0.10

VB(3, 3) 1/64 6 (0.16) 5 (0.14) 5 (0.14) 5 (0.14) 11 (0.30)

0.02 0.02 0.04 0.4 0.24

1/128 6 (0.75) 5 (0.59) 5 (0.59) 4 (0.48) 6 (0.70)

0.02 0.02 0.02 0.03 0.09

1/256 6 (3.5) 5 (2.9) 5 (2.9) 4 (2.3) 5 (2.9)

0.02 0.02 0.02 0.02 0.05

6.3 Results of GMRes with Preconditioners Solved Inexactly by DGS-MG

In this subsection, we present the numerical results for GMRes method using inexact mass
lumping preconditioners VB(1, 1) and VB̃(1, 1). Namely, the preconditioner systems B and
B̃ are solved approximately by onemultigrid V-cycle using the decoupled smoother proposed
in Sect. 4.3 with one pre-smoothing and one post-smoothing. Here, we choose the Jacobi
damping parameter to be 0.5. Our numerical experiments show that the preconditioners have
similar performance when the Jacobi damping parameter varies between 0.4 and 0.6. As we
can see from Tables 5 and 6 that GMRes converges uniformly when varying h and τ .
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Table 8 Example 1: iteration count, CPU time (in seconds), and convergence factor (italics) of GMRes
preconditioned by one WB(k, k) CGS-MG, k = 1, 2, 3

Precond h τ

1e−0 1e−1 1e−2 1e−3 1e−4

WB(1, 1) 1/64 8 (0.32) 8 (0.32) 7 (0.28) 7 (0.28) 12 (0.47)

0.07 0.07 0.07 0.09 0.23

1/128 8 (1.2) 8 (1.1) 7 (1.0) 7 (1.0) 8 (1.1)

0.07 0.07 0.07 0.07 0.12

1/256 8 (5.1) 8 (4.9) 8 (4.9) 7 (4.3) 7 (4.3)

0.07 0.07 0.07 0.07 0.08

WB(2, 2) 1/64 6 (0.28) 6 (0.28) 5 (0.23) 5 (0.24) 11 (0.51)

0.03 0.03 0.03 0.05 0.24

1/128 6 (1.0) 6 (1.0) 5 (0.86) 5 (0.87) 6 (1.0)

0.03 0.03 0.03 0.03 0.08

1/256 6 (4.5) 6 (4.4) 5 (3.7) 5 (3.7) 5 (3.7)

0.03 0.03 0.03 0.03 0.04

WB(3, 3) 1/64 5 (0.27) 5 (0.27) 4 (0.22) 5 (0.27) 11 (0.59)

0.02 0.02 0.02 0.4 0.24

1/128 5 (1.0) 5 (0.98) 5 (0.98) 4 (0.79) 6 (1.2)

0.02 0.02 0.02 0.02 0.08

1/256 5 (4.2) 5 (4.2) 5 (4.2) 4 (3.4) 5 (4.2)

0.02 0.02 0.02 0.02 0.03

6.4 Choice of Multigrid Parameters for Solving Preconditioner Systems

In the following, we compare the performance of the preconditioner B solved by CGS-MG
or DGS-MG with different types of cycles and different number of smoothing steps. From
Tables 7, 8, 9 and 10, we can see that increasing the number of smoothing steps can reduce
the number of GMRes iterations. However, the CPU time is not always decreasing sincemore
smoothing steps may also increase the computational cost. The GMRes iteration numbers
are similar when using W cycle or V cycle. Since W cycle is usually more expensive, its
efficiency in terms of CPU time is not as good as V cycle in our experiment. For practical
purposes, we suggest using V cycle with one pre- and one post-smoothing step for solving
the preconditioner systems discussed in this work.

6.5 Results of GMRes with Preconditioners B̃ and Bd

The theoretical analysis in Remark 2 shows that when τ < Ch2, the block diagonal pre-
conditioner Bd defined by (5.13) is also good for GMRes method. In Tables 11 and 12,
we demonstrate the performance of inexact Bd preconditioner when τ is very small. We use
GSBd (3) to represent three steps of Gauss–Seidel relaxation applied toBd . It can be observed
from the numerical results that GSBd (3) is very efficient when τ is very small. However, we
would like to point out that from the approximation point of view, τ should be of order h2.
Hence, in practice, a reasonable choice of τ may not be too small.
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Table 9 Example 1: iteration count, CPU time (in seconds), and convergence factor (italics) of GMRes
preconditioned by one VB(k, k) DGS-MG, k = 1, 2, 3

Precond h τ

1e−0 1e−1 1e−2 1e−3 1e−4

VB(1, 1) 1/64 22 (0.28) 22 (0.28) 21 (0.26) 19 (0.25) 20 (0.25)

0.48 0.45 0.44 0.44 0.42

1/128 22 (1.1) 22 (1.1) 21 (1.1) 20 (1.0) 19 (0.98)

0.46 0.48 0.44 0.43 0.41

1/256 22 (5.4) 22 (5.3) 22 (5.3) 21 (5.1) 19 (4.6)

0.44 0.44 0.45 0.44 0.43

VB(2, 2) 1/64 16 (0.25) 15 (0.23) 15 (0.23) 14 (0.23) 16 (0.25)

0.35 0.32 0.31 0.29 0.33

1/128 15 (0.97) 15 (0.97) 15 (0.96) 14 (0.91) 13 (0.85)

0.3 0.31 0.33 0.29 0.28

1/256 15 (4.4) 15 (4.4) 15 (4.3) 14 (4.1) 13 (3.8)

0.3 0.3 0.33 0.3 0.29

VB(3, 3) 1/64 13 (0.23) 13 (0.24) 13 (0.24) 12 (0.23) 14 (0.25)

0.26 0.23 0.26 0.24 0.29

1/128 13 (0.98) 13 (0.97) 13 (0.97) 12 (0.91) 11 (0.84)

0.24 0.26 0.28 0.24 0.21

1/256 13 (4.3) 13 (4.3) 13 (4.3) 12 (4.0) 11 (3.7)

0.24 0.24 0.25 0.25 0.24

6.6 Robustness with Respect to Other Boundary Conditions

In previous numerical experiments, homogeneous Dirichlet boundary conditions are pre-
scribed. In Tables 13 and 14, we show that the proposed preconditioners also work well for
problems with other boundary conditions. In particular, we consider example 1 defined at
the beginning of Sect. 6 and choose mixed homogeneous Neumann and Dirichlet boundary
conditions 2.3 and 2.4 where ΓN := {(x, y)|x = 0, y ∈ (0, 1)} ∪ {(x, y)|x ∈ (0, 1), y = 0}
and ΓD := ∂Ω\ΓN . There is a slight increase of GMRes iteration numbers when τ is large
and the preconditioned systems are solved by CGS-MG.

6.7 Spectrum Distribution of the Preconditioned Systems

In Figs. 1 and 2, we show the spectrum distribution of the preconditioned systems, B−1A and
B̃−1A, respectively, when varying h (left) or τ (right) (with diffusion coefficients a(x1, x2) =
b(x1, x2) = 1). We can see that the eigenvalues are more concentrated when h decreases
with fixed τ . They become more scattered when τ gets smaller while h is fixed, but away
from zerowhichmeans the original system is well conditioned.Moreover, the preconditioned
system B̃−1A has more favorable spectral property than B−1A for GMRes method which is
consistent with the numerical results reported in Sects. 6.2 and 6.3.
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Table 10 Example 1: iteration count, CPU time (in seconds), and convergence factor (italics) of GMRes
preconditioned by one WB(k, k) DGS-MG, k = 1, 2, 3

Precond h τ

1e−0 1e−1 1e−2 1e−3 1e−4

WB(1, 1) 1/64 21 (0.56) 21 (0.56) 20 (0.53) 19 (0.51) 19 (0.51)

0.41 0.40 0.42 0.41 0.42

1/128 21 (1.8) 21 (1.9) 21 (1.8) 19 (1.7) 19 (1.7)

0.40 0.40 0.41 0.41 0.41

1/256 21 (7.4) 21 (7.4) 21 (7.4) 20 (7.1) 19 (6.7)

0.40 0.41 0.41 0.42 0.42

WB(2, 2) 1/64 15 (0.49) 15 (0.50) 14 (0.46) 13 (0.43) 15 (0.50)

0.26 0.26 0.27 0.27 0.33

1/128 15 (1.7) 15 (1.6) 14 (1.5) 13(1.4) 13 (1.4)

0.26 0.26 0.27 0.26 0.28

1/256 15 (6.5) 15 (6.5) 14 (6.0) 14 (6.1) 13 (5.7)

0.26 0.26 0.27 0.27 0.26

WB(3, 3) 1/64 12 (0.46) 12 (0.47) 12 (0.46) 11 (0.43) 14 (0.53)

0.19 0.19 0.19 0.20 0.29

1/128 12 (1.6) 12 (1.6) 12 (1.6) 11 (1.4) 11 (1.4)

0.19 0.19 0.19 0.20 0.21

1/256 12 (6.0) 12 (6.0) 12 (6.0) 11 (5.6) 11 (5.6)

0.19 0.19 0.19 0.19 0.19

Table 11 Example 1: iteration counts and CPU time (in seconds) of GMRes with preconditioner B̃ or Bd

Preconditioner h τ

1e−4 1e−5 1e−6 1e−7

VB̃(1, 1) 1/64 9 (0.24) 12 (0.31) 15 (0.39) 15 (0.39)

1/128 7 (0.87) 9 (1.1) 14 (1.7) 15 (1.8)

1/256 7 (3.8) 8 (4.4) 11 (6.0) 15 (8.2)

GSBd (3) 1/64 164 (0.99) 19 (0.1) 6 (0.03) 4 (0.022)

1/128 * 68 (1.3) 10 (0.17) 5 (0.096)

1/256 * * 29 (2.7) 7 (0.62)

∗ No convergence within 200 iterations

7 Conclusions

In this work, we propose mass lumping preconditioners for use with GMRes method to solve
a class of two-by-two block linear systems which correspond to some discrete fourth order
parabolic equations. Using consistent matrix in the discretization has the advantage of better
solution accuracy as compared with applying mass lumping directly in the discretization.
We propose to use lumped-mass matrix M̄ and optimal multigrid algorithm with either
coupled or decoupled smoother to construct practical preconditioners which are shown to be
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Table 12 Example 2: iteration counts and CPU time (in seconds) of GMRes with preconditioner B̃ or Bd

Preconditioner h τ

1e−4 1e−5 1e−6 1e−7

VB̃(1, 1) 1/64 8 (0.21) 13 (0.35) 15 (0.39) 15 (0.39)

1/128 7 (0.88) 12 (1.5) 15 (1.8) 15 (1.8)

1/256 7 (3.9) 8 (4.4) 14 (7.7) 15 (8.2)

GSBd (3) 1/64 * 58 (0.35) 9 (0.043) 5 (0.026)

1/128 * * 25 (0.43) 7 (0.12)

1/256 * * 96 (10) 12 (1.0)

∗ No convergence within 200 iterations

Table 13 Example 1 with mixed boundary conditions: iteration counts and CPU time (in seconds) of GMRes
with one V(1, 1) CGS-MG

Preconditioner h τ

1e−0 1e−1 1e−2 1e−3 1e−4

VB(1, 1) 1/64 10 (0.21) 9 (0.20) 8 (0.17) 7 (0.15) 12 (0.26)

1/128 10 (0.93) 10 (0.91) 9 (0.83) 7 (0.64) 8 (0.73)

1/256 10 (4.4) 10 (4.3) 9 (3.9) 8 (3.4) 7 (3.0)

VB̃(1, 1) 1/64 10 (0.26) 10 (0.26) 8 (0.21) 7 (0.20) 9 (0.24)

1/128 10 (1.3) 10 (1.3) 9 (1.4) 7 (0.87) 7 (0.88)

1/256 10 (5.7) 10 (5.7) 9 (5.1) 8 (4.6) 7 (4.0)

VA(1, 1) 1/64 10 (0.40) 10 (0.40) 8 (0.33) 8 (0.32) 7 (0.28)

1/128 10 (2.0) 10 (2.0) 9 (1.7) 8 (1.6) 8 (1.6)

1/256 10 (8.8) 10 (8.8) 9 (7.9) 8 (7.1) 8 (7.0)

Table 14 Example 1 with mixed boundary conditions: iteration counts and CPU time (in seconds) of GMRes
with one W(2, 2) DGS-MG

Preconditioner h τ

1e−0 1e−1 1e−2 1e−3 1e−4

WB(2, 2) 1/64 15 (0.53) 15 (0.51) 15 (0.50) 13 (0.44) 15 (0.50)

1/128 15 (1.7) 15 (1.7) 15 (1.7) 14 (1.6) 13 (1.5)

1/256 15 (6.6) 15 (6.6) 15 (6.6) 14 (6.2) 13 (5.8)

WB̃(2, 2) 1/64 15 (0.58) 15 (0.56) 15 (0.55) 13 (0.48) 12 (0.45)

1/128 15 (1.9) 15 (1.9) 15 (1.9) 14 (1.7) 13 (1.6)

1/256 15 (7.2) 15 (7.2) 15 (7.2) 14 (6.7) 13 (6.3)

computationally very efficient. Numerical experiments indicate that preconditioned GMRes
method converges uniformly with respect to both h and τ and is robust for problems with
degenerate diffusion coefficient.We provide theoretical analysis about the spectrum bound of
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Fig. 1 Spectrum distribution of B−1A when varying h (left) and τ (right)
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the preconditioned system and estimate the convergence rate of the preconditioned GMRes
method.
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