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DISTRIBUTIONAL FINITE ELEMENT CURL DIV COMPLEXES
AND APPLICATION TO QUAD CURL PROBLEMS\rightarrow 

LONG CHEN†, XUEHAI HUANG‡, AND CHAO ZHANG§

Abstract. This paper addresses the challenge of constructing finite element curl div complexes in
three dimensions. Tangential-normal continuity is introduced in order to develop distributional finite
element curl div complexes. The spaces constructed are applied to discretize the quad curl problem,
demonstrating optimal order of convergence. Furthermore, a hybridization technique is proposed,
demonstrating its equivalence to nonconforming finite elements and weak Galerkin methods.
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hybridization
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1. Introduction. In this work, we will construct distributional finite element
curl div complexes in three dimensions, and apply it to solve the fourth-order curl
problem \rightarrow curl!curlu = f ,divu = 0 in a domain "" \uparrow R3 with boundary conditions
u\downarrow n = curlu = 0 on \omega "". Such a problem arises from multiphysics simulation such
as modeling a magnetized plasma in magnetohydrodynamics [9].

We first give a brief literature review on distributional finite elements. The dis-
tributional finite element de Rham complexes are adopted to construct equilibrated
residual error estimators in [6], which are then extended to discrete distributional dif-
ferential forms in [32], discrete distributional elasticity complexes in [18], and discrete
distributional Hessian and divdiv complexes in [26] with applications in cohomology
groups. Recently, in [16], the distributional finite element divdiv element has been
constructed and applied for solving the mixed formulation of the biharmonic equation
in arbitrary dimensions. The distributional finite elements allow the use of piecewise
polynomials with less smoothness, which is especially useful for high-order di\#erential
operators.

Let us use a more familiar 2nd order operator \updownarrow 2 as an example to illustrate the
motivation. The C

1-conforming finite element on tetrahedron meshes [25, 13, 15, 43]
requires polynomials of degree 9 and above and possesses extra smoothness at vertices
and edges. Therefore, it is hardly used in practice. Simple finite elements can be
constructed if the di\#erential operators are understood in the distribution sense.

For the discretization of the biharmonic equation in two dimensions, the so-called
Hellan–Herrmann–Johnson (HHJ) mixed method [22, 23, 31] requires only normal-
normal continuous finite elements for symmetric tensors and thus C

0-conforming
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FINITE ELEMENT CURL DIV COMPLEX 1079

Lagrange element, not C
1-conforming elements, can be used for displacement. This

normal-normal continuous finite element is then employed to solve linear elasticity
[36] and Reissner–Mindlin plates [37], and used to construct the first two-dimensional
distributional finite element divdiv complexes in [11]. Recently, the distributional
finite element divdiv element for solving the mixed formulation of the biharmonic
equation has been extended to arbitrary dimensions in [16].

Now we move to the curl div operator. Introduce the space H(curl div,"";T) :=\Biggr) 
\bfitomega \nearrow L

2("";T) : curl div\bfitomega \nearrow L
2("";R3)

\Biggl[ 
, where T is the space of traceless tensors. A

mixed formulation of the quad-curl problem is to find \bfitvarepsilon \nearrow H(curl div,"";T), u \nearrow 

L
2("";R3), and \varepsilon \nearrow H

1
0 ("") such that

(\bfitvarepsilon ,\bfitomega ) + b(\bfitomega ,\vargamma ;u) = 0, \searrow \bfitomega \nearrow H(curl div,"";T),\vargamma \nearrow H
1
0 (""),

b(\bfitvarepsilon ,\varepsilon ;v) =\rightarrow \simeq f ,v\Leftarrow , \searrow v \nearrow L
2("";R3),

where the bilinear form b(\bfitomega ,\vargamma ;v) := (curl div\bfitomega ,v) + (grad\vargamma ,v). The term (grad\vargamma ,u)
is introduced to impose the divergence free condition divu= 0.

Finite element spaces conforming to H(curl div,"";T) are relatively complicated
due to the smoothness requirement curl div\bfitomega \nearrow L

2("";R3). In the distributional sense

\simeq curl div\bfitomega ,v\Leftarrow =\rightarrow (\bfitomega ,gradcurlv), v \nearrow H(gradcurl ,""),

the smoothness can be shifted to the test function v, where H(gradcurl ,"") := {u \nearrow 

L
2("";R3) : curlu \nearrow H

1("";R3)}. Of course, H(gradcurl )-conforming finite elements
are not easy to construct either. For example, the H(gradcurl )-conforming finite
elements are constructed in [42, 27, 40, 14, 15], which requires polynomial of degree
at least 7 and dimension of shape function space at least 315.

The key idea is to strike a balance of the smoothness of the trial function \bfitomega 
and the test function v. Given a mesh Th, let H

s(Th) be the space of piecewise H
s

function. Introduce the traceless tensor space with tangential-normal continuity

\$tn := {\bfitomega \nearrow H
1(Th;T) : Jn\downarrow \bfitomega nK|

F
= 0 for each F \nearrow F̊h},

where Jn\downarrow \bfitomega nK is the jump of n\downarrow \bfitomega n across all interior faces F . While for the test
space, we use space

V
curl
0 :=H0(curl ,"")\Rightarrow H

1(curl ,Th),

where H
1(curl ,Th) := {v \nearrow H

1(Th;R3) : curlv \nearrow H
1(Th;R3)}. Define a weak operator

(curl div)w :\$tn
\Uparrow (V curl

0 )\rightarrow by

\simeq (curl div)w\bfitomega ,v\Leftarrow :=
\Biggr] 

T\uparrow Th

(div\bfitomega , curlv)T \rightarrow 

\Biggr] 

F\uparrow F̊h

(Jn\leftrightsquigarrow \bfitomega nK,nF · curlv)F ,(1.1)

which is analog to the weak divdiv operator in HHJ mixed method [22, 23, 31]. Now
the function \bfitomega is tangential-normally continuous and v is tangentially continuous so
that nF · curlv= rotF v is continuous on face F . One can easily show (curl div)w\bfitomega =
curl div\bfitomega in the distribution sense by taking v \nearrow C

\downarrow 
0 ("";R3) in (1.1).

We will use the tangential-normal continuous finite element constructed in [21]
for the discretization of \$tn. For an integer k\Downarrow 0, take Pk(T ;T) as the space of shape
functions. The degrees of freedom (DoFs) are given by
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1080 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

(curldiv)h divh

Fig. 1. The simplest elements !tn
0,h\uparrow V̊curl

(1,0),h\uparrow V̊grad
1,h : the first is a piecewise constant traceless

matrix with tangential-normal continuity, the second is the lowest order edge element, and the third
is the linear Lagrange element.

\Biggl\lfloor 

F

t\leftrightsquigarrow 
i
\bfitomega n q dS, q \nearrow Pk(F ), i= 1,2, F \nearrow F(T ),(1.2a)

\Biggl\lfloor 

T

\bfitomega : q dx, q \nearrow Pk\updownarrow 1(T ;T),(1.2b)

where t1 and t2 denote two mutually perpendicular unit tangential vectors of face F

and are used to determine the tangential component of the vector \bfitomega n. The global finite
element space \$tn

k,h
by requiring single valued (1.2a) is tangential-normally continuous.

We use Nédélec elements V̊
curl

h
\uparrow V

curl
0 for the tangential continuous vector space,

and use the Riesz representation of the L
2-inner product to bring the abstract dual

to a concrete function. Define (curl div)h :\$tn
h
\Uparrow V̊

curl

h
such that

((curl div)h\bfitomega h,vh) = \simeq (curl div)w\bfitomega h,vh\Leftarrow , \searrow vh \nearrow V̊
curl

h
,(1.3)

and its L2-adjoint operator (gradcurl )h : V̊
curl

h
\Uparrow \$tn

h
.

By including the tensor version of the Nédélec elements Vcurl
k,h

(M), and the La-

grange elements Vgrad
k+1,h(R3), we are able to construct the distributional finite element

curl div complex:

(1.4)
R3 ⇥ {0} ! Vgrad

k+1,h(R
3)⇥ R (grad,mskwx)���������! Vcurl

k,h (M)
dev curl�����!

⌃tn
k�1,h

(curl div)h�������! V̊curl
(k,`),h

divh���! V̊grad
`+1,h ! 0,

where (grad ,mskwx)( vc ) = gradv + cmskwx, and \varpi = k \rightarrow 1 or \varpi = k is introduced
to distinguish the first and second kind of Nédélec element. The lowest order, i.e.,
k= 1, \varpi = 0, of the last three elements are illustrated in Figure 1.

The finite element complex (1.4) is a discretization of the distributional curl div
complex:

R3 ⇥ {0} !H
1(⌦;R3)⇥ R (grad ,mskwx)���������! H(curl,⌦;M)

dev curl�����!

H
�1(curl div,⌦;T) curl div�����! H

�1(div,⌦)
div��! H

�1(⌦) ! 0,

where H
\updownarrow 1("") := (H1

0 (""))
\rightarrow , and Sobolev spaces of negative order are

H
\updownarrow 1(div,"") :=

\Biggr) 
u\nearrow H

\updownarrow 1("";R3) : divu\nearrow H
\updownarrow 1("")

\Biggl[ 
,

H
\updownarrow 1(curl div,"";T) :=

\Biggr) 
\bfitomega \nearrow L

2("";T) : curl div\bfitomega \nearrow H
\updownarrow 1(div,"")

\Biggl[ 
.
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FINITE ELEMENT CURL DIV COMPLEX 1081

As an application, we consider the fourth-order curl problem \rightarrow curl!curlu =
f ,divu = 0 with boundary conditions u\downarrow n = curlu = 0 on \omega "". The distributional

mixed finite element method is to find \bfitvarepsilon h \nearrow \$tn
k\updownarrow 1,h, uh \nearrow V̊

curl

(k,\omega ),h, and \varepsilon h \nearrow V̊
grad

\omega +1,h

such that

(\bfitvarepsilon h,\bfitomega h) + bh(\bfitomega h,\vargamma h;uh) = 0, \searrow \bfitomega h \nearrow \$tn
k\updownarrow 1,h,\vargamma h \nearrow V̊

grad

\omega +1,h,(1.5a)

bh(\bfitvarepsilon h,\varepsilon h;vh) =\rightarrow (f ,vh), \searrow vh \nearrow V̊
curl

(k,\omega ),h,(1.5b)

where bh(\bfitomega ,\vargamma ;v) := ((curl div)h\bfitomega ,v) + (grad\vargamma ,v) and (curl div)h is a discretization
of distributional curl div operator; cf. (1.3).

We prove two discrete inf-sup conditions and thus obtain the well-posedness of
(1.5a)–(1.5b) and optimal order convergence

\leftrightarrow \bfitvarepsilon \rightarrow \bfitvarepsilon h\leftrightarrow 0,h + \leftrightarrow I
curl
h

u\rightarrow uh\leftrightarrow H((grad curl )h) \leftrightsquigarrow h
k(|\bfitvarepsilon |k + |u|k),

\leftrightarrow u\rightarrow uh\leftrightarrow H(curl ) + h\leftrightarrow u\rightarrow uh\leftrightarrow H((grad curl )h) \leftrightsquigarrow h
k(|\bfitvarepsilon |k + |u|k + |curlu|k).

By the duality argument, the order of \leftrightarrow curl (Icurl
h

u\rightarrow uh)\leftrightarrow can be improved to h
k+1

on convex domains. Both \leftrightarrow I
curl
h

u \rightarrow uh\leftrightarrow H((grad curl )h) and \leftrightarrow curl (Icurl
h

u \rightarrow uh)\leftrightarrow are
superconvergent. Postprocessing can be applied to improve the approximation to u.

Furthermore, we apply hybridization techniques to (1.5a)–(1.5b), leading to a
stabilization-free weak Galerkin method and extending to the H(gradcurl ) noncon-
forming finite elements introduced in [29, 45] for solving the quad-curl problem. Equiv-
alently, we identify the complex that accommodates these nonconforming finite ele-
ments and generalize them to arbitrary orders.

For other discretization of the quad-curl problem, we refer to the macro finite
element method in [28], nonconforming finite element methods in [30, 39, 41], mixed
finite element methods in [38, 10], decoupled finite element methods in [8, 44, 7], and
references cited therein.

The rest of this paper is organized as follows. Section 2 focuses on the distribu-
tional curl div complex. A distributional finite element curl div complex is constructed
in section 3, and applied to solve the quad-curl problem in section 4. The hybridiza-
tion of the distributional mixed finite element method and the equivalence to other
methods are presented in section 5.

2. Distributional curl div complex. In this section, we present the distribu-
tional curl div complex and introduce the weak di\#erential operator (curl div)w which
can be defined on the tangential-normal continuous matrix functions.

2.1. Notation. Let K \uparrow R3 be a nondegenerated three-dimensional polyhedron.
Denote by F(K) the set of all two-dimensional faces of K. For F \nearrow F(K), denote by
E(F ) the set of all edges of F . For F \nearrow F(K), choose a normal vector nF and two
mutually perpendicular unit tangential vectors tF,1 and tF,2, which will be abbreviated
as t1 and t2 for simplicity. Let nK be the unit outward normal vector to \omega K, which
will be abbreviated as n. For F \nearrow F(K) and e\nearrow E(F ), denote by nF,e the unit vector
being parallel to F and outward normal to \omega F . Set tF,e :=nK \downarrow nF,e.

Given a face F \nearrow F(K), and a vector v \nearrow R3, define

\%Fv= (n\downarrow v)\downarrow n= (I \rightarrow nn\leftrightsquigarrow )v

as the projection of v onto the face F which is called the tangential component of v.
The vector n\downarrow v= (n\downarrow \%F )v is called the tangential trace of v, which is a rotation
of \%Fv on F (90\nearrow counter-clockwise with respect to n).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1082 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

Define the surface gradient operator as \updownarrow F := \%F\updownarrow . For a scalar function v,
define the surface curl :

curlF v=n\downarrow \updownarrow v=n\downarrow \updownarrow F v.

For a vector function v, the surface rot operator is defined as

rotFv := (n\downarrow \updownarrow ) · v= (n\downarrow \updownarrow F ) ·\%Fv=n · (curlv),

which represents the normal component of curlv.
Denote the space of all 3 \downarrow 3 matrices by M, and all trace-free/traceless 3 \downarrow 3

matrices by T. Define the deviation dev\bfitomega = \bfitomega \rightarrow 
1
3 (tr\bfitomega )I \nearrow T. Obviously, for a scalar

function u, dev(uI) = 0. For a vector w= (w1,w2,w3)\leftrightsquigarrow \nearrow R3, let

mskww :=

\Biggr\rfloor 

\Biggl\lceil 
0 \rightarrow w3 w2

w3 0 \rightarrow w1

\rightarrow w2 w1 0

\Biggr\rceil 

\Biggl\{ .

For a tensor-valued function \bfitomega , div\bfitomega and curl\bfitomega mean operators div and curl are
applied row-wisely to \bfitomega . By direct calculation, we have the identities

divmskwv=\rightarrow curlv, (mskwv)n= v\downarrow n.(2.1)

We use {Th}h>0 to denote a shape regular family of simplicial meshes of "" with
mesh size h = maxT\uparrow Th

hT and hT being the diameter of T . Let Fh, F̊h, Eh, E̊h,
Vh, and V̊h be the set of all faces, interior faces, edges, interior edges, vertices, and
interior vertices of Th, respectively. Let T \nearrow Th be a tetrahedron with four vertices
v0, . . . ,v3. Denote by \varrho i the ith barycentric coordinate with respect to the simplex T

for i= 0, . . . ,3. Set tij := vj \rightarrow vi as the edge vector from vi to vj .
Given a nonnegative integer k, let Pk(T ) stand for the set of all polynomials in

T with the total degree no more than k, and let Pk(T ;X) denote the tensor or vector
version with X=R3, M, and T. When k < 0, set Pk(T ) := {0}.

Given a bounded domain D \uparrow R3 and a real number s, let H
s(D) be the usual

Sobolev space of functions over D, whose norm and seminorm are denoted by \leftrightarrow · \leftrightarrow s,D

and | · |s,D, respectively. Let (·, ·)D be the standard inner product on L
2(D). If D is

"", we abbreviate \leftrightarrow · \leftrightarrow s,D, | · |s,D, and (·, ·)D by \leftrightarrow · \leftrightarrow s, | · |s and (·, ·), respectively. We
also abbreviate \leftrightarrow ·\leftrightarrow 0,D and \leftrightarrow ·\leftrightarrow 0 by \leftrightarrow ·\leftrightarrow D and \leftrightarrow ·\leftrightarrow , respectively. The duality pair will
be denoted by \simeq ·, ·\Leftarrow .

Introduce the following Sobolev spaces:

H(curl ,D) := {u\nearrow L
2(D;R3) : curlu\nearrow L

2(D;R3)},

H(div,D) := {u\nearrow L
2(D;R3) : divu\nearrow L

2(D)},

H(gradcurl ,D) := {u\nearrow L
2(D;R3) : curlu\nearrow H

1(D;R3)},

H(curl div,D;T) :=
\Biggr) 
\bfitomega \nearrow L

2(D;T) : curl div\bfitomega \nearrow L
2(D;R3)

\Biggl[ 
,

where H
s(D;X) :=H

s(D)\nwarrow X. Define piecewise smooth function space, for s > 0,

H
s(Th) := {v \nearrow L

2("") : v |T\nearrow H
s(T ) for all T \nearrow Th},

and H
s(Th;X) its tensor or vector version with X = R3, M, and T. Let grad Th

and
curl Th

be the elementwise version of grad and curl associated with Th, respectively.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FINITE ELEMENT CURL DIV COMPLEX 1083

2.2. The curl div complexes. The curl div complex in three dimensions reads
as [3, eq. (47)]

(2.2)
R3 ⇥ {0} !H

1(⌦;R3)⇥ R (grad,mskwx)���������! H(curl,⌦;M)
dev curl������!

H(curl div,⌦;T) curl div�����! H(div,⌦)
div��! L

2(⌦) ! 0.

When "" is topologically trivial, i.e., all co-homology group of "" is trivial, then (2.2)
is exact. The smoothness of the potential can be further improved to be in H

1.
It is di\&cult to construct H(curl div,"";T)-conforming finite element with lower

order degree of polynomials. To relax the smoothness, we are going to present a
distributional curl div complex with negative Sobolev spaces involved.

Define

H
\updownarrow 1(div,"") = {v \nearrow H

\updownarrow 1("";R3) : divv \nearrow H
\updownarrow 1("")}.

In [12], we have shown that (H0(curl ,""))\rightarrow =H
\updownarrow 1(div,""). Define

H
\updownarrow 1(curl div,"";T) :=

\Biggr) 
\bfitomega \nearrow L

2("";T) : curl div\bfitomega \nearrow H
\updownarrow 1(div,"")

\Biggl[ 

with squared norm

\leftrightarrow \bfitomega \leftrightarrow 2
H(curl div) := \leftrightarrow \bfitomega \leftrightarrow 2 + \leftrightarrow curl div\bfitomega \leftrightarrow 2

H\rightarrow 1(div) = \leftrightarrow \bfitomega \leftrightarrow 2 + \leftrightarrow curl div\bfitomega \leftrightarrow 2\updownarrow 1.

Lemma 2.1. The distributional curl div complex in three dimensions is

(2.3)
R3 ⇥ {0} !H

1(⌦;R3)⇥ R (grad ,mskwx)���������! H(curl,⌦;M)
dev curl�����!

H
�1(curl div,⌦;T) curl div�����! H

�1(div,⌦)
div��! H

�1(⌦) ! 0.

When ""\uparrow R3
is a bounded and topologically trivial Lipschitz domain, (2.3) is exact.

Proof. Apparently (2.3) is a complex. The surjection divH\updownarrow 1(div,"") =H
\updownarrow 1("")

follows from divL2("";R3) = H
\updownarrow 1("") and divL2("";R3) \swarrow divH\updownarrow 1(div,""). We then

verify its exactness.
1 curl divH\updownarrow 1(curl div,"";T) =H

\updownarrow 1(div,"")\Rightarrow ker(div).
For v \nearrow H

\updownarrow 1(div,"") \Rightarrow ker(div), by the exactness of the de Rham complex [19],
there exists \bfitomega \nearrow H

1("";M) such that v = curl div\bfitomega . Notice that curl div(pI) =
curl gradp= 0. Then v= curl div(dev\bfitomega )\nearrow curl divH\updownarrow 1(curl div,"";T).

2 dev curlH(curl,"";M) =H
\updownarrow 1(curl div,"";T)\Rightarrow ker(curl div).

For \bfitomega \nearrow H
\updownarrow 1(curl div,"";T)\Rightarrow ker(curl div), by the de Rham complex, there exists

a function u \nearrow L
2("") s.t. div\bfitomega = gradu. Then div(\bfitomega \rightarrow uI) = 0, which means \bfitomega =

uI + curl\bfitvarepsilon with \bfitvarepsilon \nearrow H
1("";M). By the traceless of \bfitomega , we get \bfitomega = dev curl\bfitvarepsilon \nearrow 

dev curlH1("";M)\swarrow dev curlH(curl,"";M).
3 gradH1("";R3)\propto span{mskwx}=H(curl,"";M)\Rightarrow ker(dev curl ).
Since curl (mskwx) = 2I, we have gradH1("";R3) \Rightarrow span{mskwx} = {0}. For

\bfitomega \nearrow H(curl,"";M) \Rightarrow ker(dev curl ), we have curl\bfitomega = 1
3 tr(curl\bfitomega )I. Apply div on

both sides to get grad (tr(curl\bfitomega )) = 0. Then tr(curl\bfitomega ) is constant, and curl\bfitomega = 2cI
with c \nearrow R. This implies curl (\bfitomega \rightarrow cmskwx) = 0. Therefore, \bfitomega \nearrow gradH1("";R3) \propto 
span{mskwx}.

Next, we use the framework developed in [12] to present a Helmholtz decomposi-
tion of H\updownarrow 1(curl div,"";T). Denote by

K
c =H0(curl ,"")\Rightarrow ker(div) = {v \nearrow H0(curl ,"") : v\prime gradH1

0 ("")}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1084 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

Then curl curl :Kc
\Uparrow H

\updownarrow 1(div,"")\Rightarrow ker(div) is isomorphic. Indeed, by the Helmholtz
decomposition L

2("";R3) = curlKc +\updownarrow H
1("") [2], we have

curl curlKc = curlL2("";R3) =H
\updownarrow 1(div,"")\Rightarrow ker(div).

Lemma 2.2. It holds the Helmholtz decomposition

H
\updownarrow 1(curl div,"";T) = dev curlH(curl ,"";M)\propto mskwK

c
.

Proof. With complex (2.3) and identity (2.1), we build up the commutative dia-
gram

H(curl ,⌦;M)
dev curl

// H
�1(curl div,⌦;T) curl div// H�1(div,⌦) \ ker(div) ! 0

K
c
.

curl curl

OO

�mskw

kk

Apply the framework in [12] to get the required Helmholtz decomposition.

We introduce the tensor space with tangential-normal continuity

\$tn := {\bfitomega \nearrow H
1(Th;T) : Jn\downarrow \bfitomega nK|

F
= 0 for each F \nearrow F̊h},

where Jn \downarrow \bfitomega nK is the jump of n \downarrow \bfitomega n across F . Let space V
curl
0 := H0(curl ,"") \Rightarrow 

H
1(curl ,Th), where H1(curl ,Th) := {v \nearrow H

1(Th;R3) : curlv \nearrow H
1(Th;R3)}. We define

a weak operator (curl div)w :\$tn
\Uparrow (V curl

0 )\rightarrow \uparrow (C\downarrow 
0 ("";R3))\rightarrow by

\simeq (curl div)w\bfitomega ,v\Leftarrow :=
\Biggr] 

T\uparrow Th

(div\bfitomega , curlv)T \rightarrow 

\Biggr] 

F\uparrow F̊h

(Jn\leftrightsquigarrow \bfitomega nK,nF · curlv)F .(2.4)

Notice that only interior faces are included in the second term as nF ·curlv= rotF v=
0 for v \nearrow H0(curl ,"").

Lemma 2.3. For \bfitomega \nearrow \$tn
, the following identity holds in the distribution sense:

(curl div)w\bfitomega = curl div\bfitomega .

Proof. By the definition of the distributional derivative and employing the inte-
gration by parts elementwise we get for v \nearrow C

\downarrow 
0 ("";R3) that

\simeq curl div\bfitomega ,v\Leftarrow :=\rightarrow (\bfitomega ,gradcurlv) =
\Biggr] 

T\uparrow Th

(div\bfitomega , curlv)T \rightarrow 

\Biggr] 

T\uparrow Th

(\bfitomega n, curlv)\varepsilon T

=
\Biggr] 

T\uparrow Th

(div\bfitomega , curlv)T \rightarrow 

\Biggr] 

T\uparrow Th

(n\leftrightsquigarrow \bfitomega n,n · curlv)\varepsilon T

\rightarrow 

\Biggr] 

T\uparrow Th

(n\downarrow \bfitomega n,n\downarrow curlv)\varepsilon T .

As n\downarrow \bfitomega n is continuous and v \nearrow C
\downarrow 
0 ("";R3), the last term is canceled. Then rearrange

the second term facewisely to derive

\simeq curl div\bfitomega ,v\Leftarrow = \simeq (curl div)w\bfitomega ,v\Leftarrow \searrow v \nearrow C
\downarrow 
0 ("";R3).

Thus, (curl div)w\bfitomega = curl div\bfitomega in the distribution sense.
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FINITE ELEMENT CURL DIV COMPLEX 1085

Similarly, we can define the weak operator (gradcurl )w : V curl
0 \Uparrow (\$tn)\rightarrow as

\simeq (gradcurl )wv,\bfitomega \Leftarrow :=
\Biggr] 

T\uparrow Th

(\bfitomega ,gradcurlv)T \rightarrow 

\Biggr] 

F\uparrow Fh

(n\downarrow \bfitomega n, Jn\downarrow curlvK)F .

By definition, we have the duality

\simeq (curl div)w\bfitomega ,v\Leftarrow =\rightarrow \simeq \bfitomega , (gradcurl )wv\Leftarrow , \bfitomega \nearrow \$tn
,v \nearrow V

curl
0 .(2.5)

When \bfitomega \nearrow H(curl div,"";T) \Rightarrow \$tn, \simeq (curl div)w\bfitomega ,v\Leftarrow = (curl div\bfitomega ,v) and when
v \nearrow H(gradcurl ,"") \Rightarrow V

curl
0 , \simeq \bfitomega , (gradcurl )wv\Leftarrow = (\bfitomega ,gradcurlv). The duality (2.5)

strikes a balance of the smoothness of \bfitomega and v so that the second order di\#erential
operators can be defined for less smooth functions.

3. Distributional finite element curl div complex. We shall construct a
finite element counterpart of the distributional curl div complex (2.3).

3.1. Finite element spaces. We first recall the tangential-normal continuous
finite element for traceless tensors in [21]. Take Pk(T ;T) as the space of shape func-
tions with k\Downarrow 0. The DoFs are given by

\Biggl\lfloor 

F

t\leftrightsquigarrow 
i
\bfitomega n q dS, q \nearrow Pk(F ), i= 1,2, F \nearrow F(T ),(3.1a)

\Biggl\lfloor 

T

\bfitomega : q dx, q \nearrow Pk\updownarrow 1(T ;T).(3.1b)

In order to give a geometric decomposition of space Pk(T ;T), we present two
intrinsic bases of T which are variants of a basis constructed in [24].

Lemma 3.1. Let (i j \varpi m) be a cyclic permutation of (0123). Then the set

{dev(\updownarrow \varrho i \nwarrow ti\omega ),dev(\updownarrow \varrho j \nwarrow tj\omega ), \varpi = 0, . . . ,3}(3.2)

is dual to

{tmi \nwarrow \updownarrow \varrho \omega , tmj \nwarrow \updownarrow \varrho \omega }
3
\omega =0.(3.3)

Consequently, both are bases of T.
Proof. The duality follows from the identity tij ·\updownarrow \varrho \omega = \varsigma j\omega \rightarrow \varsigma i\omega , where \varsigma i\omega is the

Kronecker delta function, and (t\nwarrow \updownarrow \varrho \omega ) : I = t ·\updownarrow \varrho \omega = 0 for vector t tangent to F\omega .

As \updownarrow \varrho i \leftrightarrow nFi
, the basis (3.3) is facewise and each face contributes two while the

basis (3.2) is vertexwise. They are illustrated in Figure 2.
Define

trtn
F
\bfitomega =nF \downarrow \bfitomega nF ,

and trtn :C(T ;T)\Uparrow L
2(\omega T ;R2) as trtn |F = trtn

F
. Let the bubble polynomial space of

degree k be

Btn
k
(T ;T) := {\bfitomega \nearrow Pk(T ;T) : trtn \bfitomega = 0}.

Notice that for the identity matrix I, trtn I = 0 but I \infty \nearrow Btn
k
(T ;T) as trace(I) \infty = 0.

Lemma 3.2. For \varpi , i= 0, . . . ,3, i \infty = \varpi , we have

\varrho \omega dev(\updownarrow \varrho i \nwarrow ti\omega )\nearrow Btn
k
(T ;T).
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j`

m

i

ti`

tj`

�r�i

�r�j

(a) Basis {dev(r�i ⌦ ti`), dev(r�j ⌦ tj`)}3`=0.

j`

m

i

F`

tmi

�r�`

(b) Basis {tmi ⌦r�`, tmj ⌦r�`}3`=0.

Fig. 2. Two intrinsic bases of traceless matrix T.

Proof. Let (i j \varpi m) be a cyclic permutation of (0123). The edge viv\omega is contained
in faces Fm and Fj and thus ti\omega · nF = 0 for F = Fm, Fj . The vector \updownarrow \varrho i \leftrightarrow nFi

and
thus nFi

\downarrow \updownarrow \varrho i = 0 on Fi. On the face F\omega , \varrho \omega |F\omega 
= 0. Notice that the identity matrix

I satisfies trtn I = 0.
So we have verified trtn(\varrho \omega dev(\updownarrow \varrho i \nwarrow ti\omega )) = 0.

By changing \updownarrow \varrho i to the parallel vector ni, we present the following geometric
decomposition of Pk(T ;T).

Lemma 3.3. We have the geometric decomposition

Pk(T ;T) =\propto 
3
\omega =0

\Biggr\} 
Pk(F\omega )\nwarrow span{dev(ni \nwarrow ti\omega ),dev(nj \nwarrow tj\omega )}

\Biggl\langle 
\propto Btn

k
(T ;T),

where we give a characterization of the bubble space

Btn
k
(T ;T) = Pk\updownarrow 1(T )\nwarrow span{\varrho \omega dev(ni \nwarrow ti\omega ),\varrho \omega dev(nj \nwarrow tj\omega ), \varpi = 0, . . . ,3}.

Define the global finite element space

\$tn
k,h

:= {\bfitomega h \nearrow L
2("";T) : \bfitomega h|T \nearrow Pk(T ;T) for each T \nearrow Th,

and all the DoFs (3.1a)–(3.1b) are single-valued}.

Remark 3.4. The construction can be readily extended to arbitrary dimension
Rd for d \Downarrow 2. There are d + 1 faces for a d-simplex. At each face, we have d \rightarrow 1
linearly independent traceless matrices {tF,i\nwarrow nF }

d\updownarrow 1
i=1 and, in total, (d+1)(d\rightarrow 1) such

matrices form a basis of T. The basis of bubble functions is constructed verticeswisely
{\varrho \omega dev(\updownarrow \varrho i \nwarrow ti\omega )} for \varpi = 0, . . . , d and d\rightarrow 1 di\#erent i for each \varpi .

Remark 3.5. Since the basis functions are expressed in terms of intrinsic geometric
quantities—tangential and normal vectors along with barycentric coordinates—the de-
fined finite element spaces are a\&ne invariant, meaning the space remains unchanged
under a\&ne transformations. Thus, the traditional method of using a reference tetra-
hedron and transforming to the physical element can be applied, resulting in the
same finite element space. In particular, curved elements can be handled using the
Piola transform, as described in equations (3.76)–(3.77) of [33]. Extending the two-
dimensional work of [4] to a distributional mixed finite element method specifically
tailored for the quad-curl problem on domains with curved boundaries is an interesting
topic for future research.
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FINITE ELEMENT CURL DIV COMPLEX 1087

As H\updownarrow 1(div,"") = (H0(curl ,""))\rightarrow , we can use H(curl )-conforming finite elements,
i.e., Nédélec elements [34, 35] for the pair space. Take

N
c

k,\omega 
(T ) :=x\downarrow Pk\updownarrow 1(T ;R3) + gradP\omega +1(T ), \varpi = k or k\rightarrow 1

as the space of shape functions. The element N c

k,k\updownarrow 1 is the first kind and N
c

k,k
is the

second kind Nédélec elements [34, 35]. The DoFs N c

k,\omega 
(T ) are given by

(v · t, q)e, q \nearrow P\omega (e), e\nearrow E(T ),(3.4a)

(n\downarrow v\downarrow n,q)F , q \nearrow curlFPk\updownarrow 1(F )\propto xP\omega \updownarrow 2(F ), F \nearrow F(T ),(3.4b)

(v,q)T , q \nearrow curlPk\updownarrow 2(T ;R3)\propto xP\omega \updownarrow 3(T ).(3.4c)

Define global finite element spaces

Vcurl
(k,\omega ),h := {vh \nearrow H(curl ,"") : vh|T \nearrow N

c

k,\omega 
(T ) for T \nearrow Th

and all the DoFs (3.4a)–(3.4c) are single-valued}.

Let V̊
curl

(k,\omega ),h :=Vcurl
(k,\omega ),h \Rightarrow H0(curl ,"") and Vcurl

k,h
:=Vcurl

(k,k),h.
We use the standard Lagrange element for H1(""),

Vgrad
\omega +1,h := {\vargamma h \nearrow H

1("") : \vargamma h|T \nearrow P\omega +1(T ) for T \nearrow Th},

and let V̊
grad

\omega +1,h :=Vgrad
\omega +1,h \Rightarrow H

1
0 (""). Let

Vgrad
k+1,h(R

3) :=Vgrad
k+1,h \nwarrow R3

, and Vcurl
k,h

(M) :=R3
\nwarrow Vcurl

k,h
.

The degree of polynomial may be skipped in the notation of finite element spaces
when it is clear from the context.

3.2. Distributional finite element complex. By treating the right-hand side
of (2.4) as a bilinear form defined on !tn

\downarrow V
curl
0 , the weak operators can be naturally

extended to the discrete spaces by restricting the bilinear form to subspaces. Define

(curl div)h = Jh(curl div)w :\$tn
h
\Uparrow (V̊

curl

h
)\rightarrow \in = V̊

curl

h
,

(gradcurl )h = Jh(gradcurl )w : V̊
curl

h
\Uparrow (\$tn

h
)\rightarrow \in =\$tn

h
,

where the isomorphism Jh is the Reisz representation of the L
2-inner product and

realized by the inverse of the mass matrix of the corresponding finite element spaces.

More precisely, for \bfitvarepsilon h \nearrow \$tn
h
, (curl div)h\bfitvarepsilon h \nearrow V̊

curl

h
such that

((curl div)h\bfitvarepsilon h,vh) = \simeq (curl div)w\bfitvarepsilon h,vh\Leftarrow 

=
\Biggr] 

T\uparrow Th

(div\bfitvarepsilon h, curlvh)T \rightarrow 

\Biggr] 

F\uparrow F̊h

(Jn\leftrightsquigarrow \bfitvarepsilon hnK,nF · curlvh)F(3.5)

=\rightarrow 

\Biggr] 

T\uparrow Th

(\bfitvarepsilon h,gradcurlvh)T +
\Biggr] 

F\uparrow Fh

(n\downarrow \bfitvarepsilon hn, Jn\downarrow curlvhK)F

=\rightarrow (\bfitvarepsilon h, (gradcurl )hvh).

For a fixed triangulation Th, (curl div)h is well defined which can be obtained by

inverting the mass matrix of V̊
curl

h
. However, {(curl div)h} is not uniformly bounded

when h\Uparrow 0 as (3.5) is not a bounded linear functional of L2("").
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1088 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

Similarly, define discrete div operator divh :H0(curl ,"")\Uparrow V̊
grad

h
by

(divh v,\vargamma h) =\rightarrow (v,grad\vargamma h), \searrow \vargamma h \nearrow V̊
grad

h
.

Notice that divh is the L
2-adjoint of \rightarrow grad restricted to V̊

grad

h
. Again for a fixed

triangulation Th, divh is well defined which can be obtained by inverting the mass

matrix of V̊
grad

h
. However, {divh} is not uniformly bounded as h \Uparrow 0 as (v,grad\vargamma )

is, in general, not a bounded linear functional of L2 unless v \nearrow H(div,"").

Theorem 3.6. The distributional finite element curl div complex is

(3.6)
R3 ⇥ {0} ! Vgrad

k+1,h(R
3)⇥ R (grad,mskwx)���������! Vcurl

k,h (M)
dev curl�����!

⌃tn
k�1,h

(curl div)h�������! V̊curl
(k,`),h

divh���! V̊grad
`+1,h ! 0.

When ""\uparrow R3
is a bounded and topologically trivial Lipschitz domain, (3.6) is exact.

Proof. As curl grad = 0, it is straightforward to verify divh(curl div)h = 0. Take
\bfitomega h = dev curl\bfitvarepsilon h with \bfitvarepsilon h \nearrow Vcurl

h
(M). Since n\downarrow \bfitomega hn=n\downarrow (curl\bfitvarepsilon h)n is single-value

across each face F \nearrow F̊h, we get \bfitomega h \nearrow \$tn
h
. In the distribution sense, curl div dev curl =

0 and so is (curl div)h dev curl . In summary, we have verified (3.6) is a complex.
Verification of ker(grad ,mskwx) = R3

\downarrow {0} is trivial. For \bfitomega h \nearrow Vcurl
k,h

(M) and
dev curl (\bfitomega h) = 0, by the exactness of (2.3), we can find (v, c) \nearrow H

1("";R3) \downarrow R s.t.
gradv + cmskwx = \bfitomega h. As \bfitomega h is polynomial of degree k, we conclude that v \nearrow 

Vgrad
k+1,h(R3).

From the finite element de Rham complex grad V̊
grad

\omega +1,h = V̊
curl

(k,\omega ),h \Rightarrow ker(curl ), we
have

divh V̊
curl

(k,\omega ),h = V̊
grad

\omega +1,h.(3.7)

It remains to prove

(curl div)h\$
tn
k\updownarrow 1,h = V̊

curl

(k,\omega ),h \Rightarrow ker(divh),(3.8)

dev curlVcurl
k,h

(M) =\$tn
k\updownarrow 1,h \Rightarrow ker((curl div)h).(3.9)

We will prove (3.8) in Corollary 3.12 and (3.9) in Corollary 3.13.

3.3. Characterization of null spaces. Define K
c

h
= V̊

curl

(k,\omega ),h \Rightarrow ker(divh) and
(curl curl )h :Kc

h
\Uparrow K

c

h
so that

((curl curl )huh,vh) = (curluh, curlvh), vh \nearrow K
c

h
.(3.10)

Lemma 3.7. We have the discrete Poincaré inequalities

\leftrightarrow vh\leftrightarrow \leftrightsquigarrow \leftrightarrow curlvh\leftrightarrow , vh \nearrow K
c

h
,(3.11)

\leftrightarrow vh\leftrightarrow H(curl ) \leftrightsquigarrow \leftrightarrow (curl curl )hvh\leftrightarrow , vh \nearrow K
c

h
.(3.12)

Proof. The first Poincaré inequality (3.11) can be found in [20, Lemma 3.4 and
Theorem 3.6] and [33, Lemma 7.20]. Consequently, (curl ·, curl ·) is an inner product
on K

c

h
and the operator (curl curl )h is isomorphic.
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FINITE ELEMENT CURL DIV COMPLEX 1089

⌃tn

Itnh
Jh(curl div)w

⌃tn
k�1,h

(curl div)h V̊curl
(k,`),h

V curl
0

Icurlh

Jh(grad curl)w

⌃tn
k�1,h

(grad curl)h V̊curl
(k,`),h

Fig. 3. Identities connecting the weak di!erential operators and interpolation operators.

Taking uh = vh in (3.10) and applying (3.11), we get

\leftrightarrow curlvh\leftrightarrow 
2
\ni \leftrightarrow (curl curl )hvh\leftrightarrow \leftrightarrow vh\leftrightarrow \leftrightsquigarrow \leftrightarrow (curl curl )hvh\leftrightarrow \leftrightarrow curlvh\leftrightarrow .

Hence \leftrightarrow curlvh\leftrightarrow \leftrightsquigarrow \leftrightarrow (curl curl )hvh\leftrightarrow . The proof is finished by applying (3.11) again to
bound \leftrightarrow vh\leftrightarrow .

We will introduce interpolation operators satisfying the commutative diagrams in
Figure 3.

Let Itn
h

:\$tn
\Uparrow \$tn

k\updownarrow 1,h be the interpolation operator using DoF (3.1) and denote
by \bfitvarepsilon I = I

tn
h
\bfitvarepsilon .

Lemma 3.8. For \bfitomega \nearrow \$tn
and vh \nearrow V̊

curl

(k,\omega ),h, it holds that

((curl div)h(I
tn
h
\bfitomega ),vh) = \simeq (curl div)w\bfitomega ,vh\Leftarrow .(3.13)

Proof. By definition,
\Biggr] 

T\uparrow Th

\rightarrow (\bfitomega \rightarrow I
tn
h
\bfitomega ,gradcurlvh)T + (n\downarrow (\bfitomega \rightarrow I

tn
h
\bfitomega )n,n\downarrow curlvh)\varepsilon T = 0,

which is true due to DoFs (3.1a)–(3.1b) and the fact that gradcurlvh|T \nearrow Pk\updownarrow 2(T ;R3)
and n\downarrow curlvh|F \nearrow Pk\updownarrow 1(F ;R2).

We introduce the interpolation operator I
curl
h

: V curl
0 \Uparrow V̊

curl

(k,\omega ),h defined by DoF
(3.4) and denote by vI = I

curl
h

v.

Lemma 3.9. For v \nearrow V
curl
0 and \bfitomega h \nearrow \$tn

k\updownarrow 1,h, it holds that

\simeq (curl div)w\bfitomega h,v\Leftarrow = ((curl div)h\bfitomega h, I
curl
h

v).(3.14)

Proof. By integration by parts and \bfitomega h |T\nearrow Pk\updownarrow 1(T ;T), we have

\simeq (curl div)w\bfitomega h,v\Leftarrow 

=
\Biggr] 

T\uparrow Th

(curl div\bfitomega h,v)T \rightarrow 

\Biggr] 

F\uparrow F̊h

([n\downarrow div\bfitomega h + curlF (n
\leftrightsquigarrow \bfitomega hn)],v)F

\rightarrow 

\Biggr] 

e\uparrow E̊h

([n\leftrightsquigarrow \bfitomega hn]e,v · te)e

=
\Biggr] 

T\uparrow Th

(curl div\bfitomega h,vI)T \rightarrow 

\Biggr] 

F\uparrow F̊h

([n\downarrow div\bfitomega h + curlF (n
\leftrightsquigarrow \bfitomega hn)],vI)F

\rightarrow 

\Biggr] 

e\uparrow E̊h

([n\leftrightsquigarrow \bfitomega hn]e,vI · te)e = ((curl div)h\bfitomega h,vI),

where [n\leftrightsquigarrow \bfitomega hn]e =
\Biggr\rangle 

T\uparrow Th

\Biggr\rangle 
F\uparrow F(T ),e\searrow \varepsilon F

(n\leftrightsquigarrow \bfitomega h|Tn)|e(te · tF,e).
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1090 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

Corollary 3.10. Let \bfitomega h \nearrow \$tn
k\updownarrow 1,h satisfy (curl div)h\bfitomega h = 0. Then we have

curl div\bfitomega h = 0 and \bfitomega h \nearrow H(curl div,"";T).
Proof. Let \bfitomega h \nearrow \$tn

h
satisfy (curl div)h\bfitomega h = 0. By Lemmas 3.9 and 2.3, curl div

\bfitomega h = 0 in the distribution sense.

At first glance, the null space \$tn
k\updownarrow 1,h \Rightarrow ker((curl div)h) is larger than the null

space \$tn
k\updownarrow 1,h \Rightarrow ker(curl div) as the test function space is V̊

curl

(k,\omega ),h not C
\downarrow 
0 . However,

Lemma 3.9 implies that they are the same due to the design of finite element spaces
and weak di\#erential operators. This is in the same spirit of the Hellan–Herrmann–
Johnson (HHJ) element [22, 23, 31, 11] in two dimensions.

Lemma 3.11. It holds that

(curl div)h(I
tn
h
(mskwuh)) =\rightarrow (curl curl )huh, uh \nearrow K

c

h
.(3.15)

Proof. Since (mskwuh)n = uh \downarrow n, it follows that mskwuh \nearrow \$tn. By the fact
that divmskwuh =\rightarrow curluh, we have

\simeq (curl div)w(mskwuh),vh\Leftarrow = (divmskwuh, curlvh) =\rightarrow (curluh, curlvh).

Then the result holds from (3.13).

With complex (3.6) and identity (3.15), we have the commutative diagram

(3.16)

Vcurl
k,h (M)

dev curl
// ⌃tn

k�1,h

(curl div)h
// K

c
h

// 0

K
c
h.

(curl curl )h

OO

�Itn
h mskw

ee

Corollary 3.12. It holds that

(curl div)h\$
tn
k\updownarrow 1,h =K

c

h
= V̊

curl

(k,\omega ),h \Rightarrow ker(divh).(3.17)

Proof. It is straightforward to verify that (curl div)h\$tn
h
\swarrow K

c

h
. On the other side,

take wh \nearrow K
c

h
. Let uh = (curl curl )\updownarrow 1

h
wh \nearrow K

c

h
and set \bfitomega h = \rightarrow I

tn
h
(mskwuh) \nearrow \$tn

h
.

By (3.15),

(curl div)h\bfitomega h = (curl curl )huh =wh,

which ends the proof.

Corollary 3.13. We have

dev curlVcurl
k,h

(M) =\$tn
k\updownarrow 1,h \Rightarrow ker((curl div)h).(3.18)

Proof. By complex (3.6), dev curlVcurl
k,h

(M)\swarrow \$tn
k\updownarrow 1,h \Rightarrow ker((curl div)h). Then we

prove (3.18) by dimension count. By (3.7) and (3.17),

dim\$tn
k\updownarrow 1,h \Rightarrow ker((curl div)h) = dim\$tn

k\updownarrow 1,h \rightarrow dim V̊
curl

(k,k\updownarrow 1),h +dim V̊
grad

k,h

= |V̊h|\rightarrow |E̊h|+ 2

\Bigg/ 
k+ 1

2

\Bigg\backslash 
|Fh|\rightarrow 

\Bigg/ 
k+ 1

2

\Bigg\backslash 
|F̊h|+ |F̊h|

+ |Th|

\Bigg/ 
8

\Bigg/ 
k+ 1

3

\Bigg\backslash 
\rightarrow 3

\Bigg/ 
k

3

\Bigg\backslash 
+

\Bigg/ 
k\rightarrow 1

3

\Bigg\backslash \Bigg\backslash 
.
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FINITE ELEMENT CURL DIV COMPLEX 1091

Similarly,

dimdev curlVcurl
k,h

(M) = dimVcurl
k,h

(M)\rightarrow dimVgrad
k+1,h(R

3) + 2

=\rightarrow 3|Vh|+ 3|Eh|+ 3

\Bigg/ 
k+ 1

2

\Bigg\backslash 
|Fh|\rightarrow 3|Fh|

+ |Th|

\Bigg/ 
9

\Bigg/ 
k

3

\Bigg\backslash 
\rightarrow 3

\Bigg/ 
k\rightarrow 1

3

\Bigg\backslash \Bigg\backslash 
+ 2.

Combine the last two identities to get

dim\$tn
k\updownarrow 1,h \Rightarrow ker((curl div)h)\rightarrow dimdev curlVcurl

k,h
(M)

= |V̊h|+ 3|Vh|\rightarrow |E̊h|\rightarrow 3|Eh|+ |F̊h|+ 3|Fh|\rightarrow 4|Th|\rightarrow 2

+

\Bigg/ 
k+ 1

2

\Bigg\backslash 
(4|Th|\rightarrow |Fh|\rightarrow |F̊h|).

Finally, we conclude the result from 4|Th| = |Fh| + |F̊h|, and the Euler’s formulas
|Vh|\rightarrow |Eh|+ |Fh|\rightarrow |Th|= 1 and |V̊h|\rightarrow |E̊h|+ |F̊h|\rightarrow |Th|=\rightarrow 1.

Remark 3.14. Here is another proof of (3.18). Take \bfitomega h \nearrow \$tn
k\updownarrow 1,h\Rightarrow ker((curl div)h).

By Corollary 3.10, we have curl div\bfitomega h = 0. Therefore, \bfitomega h = dev curl\bfitvarepsilon with \bfitvarepsilon \nearrow 

H
1("";M). Let \bfitvarepsilon I \nearrow Vcurl

h
(M) be the interpolation of \bfitvarepsilon based on DoFs (3.4a)–

(3.4c). The edge moment is not well defined for H
1 function but may be fixed by

the fact that dev curl\bfitvarepsilon = \bfitomega h has extra smoothness. It is easy to verify that all the
DoFs (3.1a)–(3.1b) of \bfitomega h \rightarrow dev curl\bfitvarepsilon I vanish. Therefore, \bfitomega h = dev curl\bfitvarepsilon I \nearrow dev curl
Vcurl

h
(M).

3.4. Helmholtz decompositions. The right half of the distributional finite
element curl div complex (3.6) is listed below

Vcurl
k,h (M)

dev curl�����! ⌃tn
k�1,h

(curl div)h�������! V̊curl
(k,`),h

divh���! V̊grad
`+1,h ! 0, ` = k or k � 1.

By taking the dual, we have the short exact sequence

0 (grad curl )hK
c
h

(grad curl )h ������� V̊curl
(k,`),h = K

c
h � grad (V̊grad

`+1,h)
grad ��� V̊grad

`+1,h  0.

By the framework in [12], we get the following Helmholtz decompositions from
the last two complexes, commutative diagram (3.16) and (3.15).

Corollary 3.15. We have the discrete Helmholtz decompositions

\$tn
k\updownarrow 1,h =dev curlVcurl

k,h
(M)\propto L

2

(gradcurl )hK
c

h
,

\$tn
k\updownarrow 1,h =dev curlVcurl

k,h
(M)\propto I

tn
h
(mskwK

c

h
).

Corollary 3.16. We have the L
2
-orthogonal Helmholtz decomposition of space

V̊
curl

(k,\omega ),h,

V̊
curl

(k,\omega ),h =K
c

h
\propto 

L
2

grad V̊
grad

\omega +1,h = (curl curl )hK
c

h
\propto 

L
2

grad V̊
grad

\omega +1,h(3.19)

= (curl div)h\$
tn
k\updownarrow 1,h \propto 

L
2

grad V̊
grad

\omega +1,h.

Lemma 3.17. We have the discrete Poincaré inequality

\leftrightarrow vh\leftrightarrow H(curl ) \leftrightsquigarrow \leftrightarrow (gradcurl )hvh\leftrightarrow , vh \nearrow K
c

h
.(3.20)
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1092 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

Proof. Set \bfitomega h = I
tn
h
(mskwvh) \nearrow \$tn

k\updownarrow 1,h. Then (curl div)h\bfitomega h = \rightarrow (curl curl )hvh

follows from (3.15). By the scaling argument, the inverse inequality, and the Poincaré
inequality (3.11),

\leftrightarrow \bfitomega h\leftrightarrow \leftrightsquigarrow \leftrightarrow vh\leftrightarrow \leftrightsquigarrow \leftrightarrow curlvh\leftrightarrow .(3.21)

It follows that

\leftrightarrow curlvh\leftrightarrow 
2 = ((curl curl )hvh,vh) =\rightarrow ((curl div)h\bfitomega h,vh) = (\bfitomega h, (gradcurl )hvh).

Applying Cauchy–Schwarz inequality and (3.21), we obtain

\leftrightarrow curlvh\leftrightarrow \leftrightsquigarrow \leftrightarrow (gradcurl )hvh\leftrightarrow ,

which implies (3.20).

4. Mixed finite element method of the quad-curl problem. Let "" \uparrow R3

be a bounded polygonal domain. Consider the fourth order problem
\Big/ 
\Big\backslash \left( 

\Big\backslash \right) 

\rightarrow curl!curlu= f in "",

divu= 0 in "",

u\downarrow n= curlu\downarrow n= 0 on \omega "",

(4.1)

where f \nearrow H
\updownarrow 1(div,"")\Rightarrow ker(div) is known. Such a problem arises from multiphysics

simulation such as modeling a magnetized plasma in magnetohydrodynamics [9].

4.1. Distributional mixed formulation. Introducing \bfitvarepsilon := gradcurlu, we
have tr\bfitvarepsilon = trgradcurlu= div curlu= 0. Then rewrite problem (4.1) as the second-
order system

\Big/ 
\Big\backslash \Big\backslash \Big\backslash \left( 

\Big\backslash \Big\backslash \Big\backslash \right) 

\bfitvarepsilon \rightarrow gradcurlu= 0 in "",

curl div\bfitvarepsilon =\rightarrow f in "",

divu= 0 in "",

u\downarrow n= curlu= 0 on \omega "".

(4.2)

A mixed formulation of the system (4.2) is to find \bfitvarepsilon \nearrow H
\updownarrow 1(curl div,"";T), u \nearrow 

H0(curl ,""), and \varepsilon \nearrow H
1
0 ("") such that

(\bfitvarepsilon ,\bfitomega ) + b(\bfitomega ,\vargamma ;u) = 0, \searrow \bfitomega \nearrow H
\updownarrow 1(curl div,"";T),\vargamma \nearrow H

1
0 (""),(4.3a)

b(\bfitvarepsilon ,\varepsilon ;v) =\rightarrow \simeq f ,v\Leftarrow , \searrow v \nearrow H0(curl ,""),(4.3b)

where the bilinear form b(·, ·; ·) : (H\updownarrow 1(curl div,"";T)\downarrow H
1
0 (""))\downarrow H0(curl ,"") is defined

by

b(\bfitomega ,\vargamma ;v) := \simeq curl div\bfitomega ,v\Leftarrow + (grad\vargamma ,v).

The term (grad\vargamma ,u) is introduced to impose the divergence free condition divu= 0.

Lemma 4.1. For v \nearrow H0(curl ,""), it holds that

\leftrightarrow v\leftrightarrow H(curl ) \leftrightsquigarrow sup
\bfitomega \uparrow H\rightarrow 1(curl div,!;T),\vargamma \uparrow H

1
0 (!)

b(\bfitomega ,\vargamma ;v)

\leftrightarrow \bfitomega \leftrightarrow H\rightarrow 1(curl div) + |\vargamma |1
.(4.4)

Proof of this lemma is similar to, indeed simpler than, that of the discrete inf-sup
condition (cf. Lemma 4.4), we thus skip the details here.
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FINITE ELEMENT CURL DIV COMPLEX 1093

Lemma 4.2. For \bfitomega \nearrow H
\updownarrow 1(curl div,"";T) and \vargamma \nearrow H

1
0 ("") satisfying

b(\bfitomega ,\vargamma ;v) = 0 \searrow v \nearrow H0(curl ,""),(4.5)

it holds that

\leftrightarrow \bfitomega \leftrightarrow 2
H\rightarrow 1(curl div) + |\vargamma |

2
1 = \leftrightarrow \bfitomega \leftrightarrow 2.(4.6)

Proof. By taking v= grad\vargamma in (4.5), we get \vargamma = 0. Then (4.5) becomes

\simeq curl div\bfitomega ,v\Leftarrow = 0 \searrow v \nearrow H0(curl ,"").

Hence curl div\bfitomega = 0, and (4.6) follows.

Combining (4.4), (4.6) and the Babuška–Brezzi theory [5] yields the well-posedness
of the mixed formulation (4.3a)–(4.3b).

Theorem 4.3. The mixed formulation (4.3a)–(4.3b) is well-posed. Namely, for

any f \nearrow H
\updownarrow 1(div,"") \Rightarrow ker(div), there exists a unique solution (\bfitvarepsilon ,u,\varepsilon ) to (4.3a)–

(4.3b). Furthermore, we have \varepsilon = 0, and the stability

\leftrightarrow \bfitvarepsilon \leftrightarrow H\rightarrow 1(curl div) + \leftrightarrow u\leftrightarrow H(curl ) \leftrightsquigarrow \leftrightarrow f\leftrightarrow H\rightarrow 1(div).(4.7)

Proof. Combine the inf-sup condition (4.4) and the coercivity (4.6) to get (4.7)
and the well-posedness of the mixed formulation (4.3a)–(4.3b). By choosing v= grad\varepsilon 
in (4.3b), we get \varepsilon = 0 from divf = 0.

4.2. Distributional mixed finite element method. For (\bfitomega ,\vargamma )\nearrow \$tn
\downarrow H

1
0 ("")

and v \nearrow V
curl
0 , introduce the bilinear form

bh(\bfitomega ,\vargamma ;v) := \simeq (curl div)w\bfitomega ,v\Leftarrow + (grad\vargamma ,v).

By (3.5), we have for (\bfitomega ,\vargamma )\nearrow \$tn
k\updownarrow 1,h \downarrow V̊

grad

\omega +1,h and v \nearrow V̊
curl

(k,\omega ),h that

bh(\bfitomega ,\vargamma ;v) = ((curl div)h\bfitomega ,v) + (grad\vargamma ,v).

Then the distributional mixed finite element method finds \bfitvarepsilon h \nearrow \$tn
h
, \varepsilon h \nearrow V̊

grad

h
, and

uh \nearrow V̊
curl

h
such that

(\bfitvarepsilon h,\bfitomega h) + bh(\bfitomega h,\vargamma h;uh) = 0, \searrow \bfitomega h \nearrow \$tn
h
,\vargamma h \nearrow V̊

grad

h
,(4.8a)

bh(\bfitvarepsilon h,\varepsilon h;vh) =\rightarrow \simeq f ,vh\Leftarrow , \searrow vh \nearrow V̊
curl

h
.(4.8b)

We will derive two discrete inf-sup conditions for the linear form bh(·, ·; ·). To this
end, introduce some mesh dependent norms. For \bfitomega \nearrow \$tn

h
, equip squared norm

\leftrightarrow \bfitomega \leftrightarrow 2
H\rightarrow 1((curl div)h)

:= \leftrightarrow \bfitomega \leftrightarrow 2 + \leftrightarrow (curl div)h\bfitomega \leftrightarrow 
2
H

\rightarrow 1
h

(div)
,

where \leftrightarrow v\leftrightarrow 
H

\rightarrow 1
h

(div) := sup
wh\uparrow V̊curl

h

(v,wh)
\simeq wh\simeq H(curl )

. The continuity of the bilinear form

bh(\bfitomega ,\vargamma ;v)\ni (\leftrightarrow \bfitomega \leftrightarrow H\rightarrow 1((curl div)h) + |\vargamma |1)\leftrightarrow v\leftrightarrow H(curl ),

for all \bfitomega \nearrow \$tn
,\vargamma \nearrow V̊

grad

h
,v \nearrow V̊

curl

h
, is straightforward by the definition of these

norms.
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1094 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

Lemma 4.4. For vh \nearrow V̊
curl

h
, it holds that

\leftrightarrow vh\leftrightarrow H(curl ) \leftrightsquigarrow sup
\bfitomega h\uparrow ""tn

h
,\vargamma h\uparrow V̊grad

h

bh(\bfitomega h,\vargamma h;vh)

\leftrightarrow \bfitomega h\leftrightarrow H\rightarrow 1((curl div)h) + |\vargamma h|1
.(4.9)

Proof. By Helmholtz decomposition (3.19), given a vh \nearrow V̊
curl

h
, there exists uh \nearrow 

K
c

h
, ṽh = (curl curl )huh, and \vargamma h \nearrow V̊

grad

\omega +1,h s.t.

vh = (curl curl )huh \propto 
L2 grad\vargamma h = ṽh \propto 

L2 grad\vargamma h.(4.10)

Then

curlvh = curl ṽh, \leftrightarrow vh\leftrightarrow 
2 = \leftrightarrow (curl curl )huh\leftrightarrow 

2 + |\vargamma h|
2
1.

Set \bfitomega h =\rightarrow I
tn
h

mskw(uh + ṽh)\nearrow \$tn
k\updownarrow 1,h. By (3.15),

((curl div)h\bfitomega h,vh) = ((curl curl )h(uh + ṽh),vh) = \leftrightarrow (curl curl )huh\leftrightarrow 
2 + \leftrightarrow curlvh\leftrightarrow 

2
.

Consequently, bh(\bfitomega h,\vargamma h;vh) = \leftrightarrow vh\leftrightarrow 
2 + \leftrightarrow curlvh\leftrightarrow 

2.
It remains to control the norms. As the decomposition (4.10) is L

2-orthogonal,
|\vargamma h|1 \ni \leftrightarrow vh\leftrightarrow and \leftrightarrow (curl curl )huh\leftrightarrow \ni \leftrightarrow vh\leftrightarrow . We control the negative norm by

\leftrightarrow (curl div)h\bfitomega h\leftrightarrow H\rightarrow 1
h

(div) = sup
wh\uparrow V̊curl

h

(curluh + curl ṽh, curlwh)

\leftrightarrow wh\leftrightarrow H(curl )

\ni \leftrightarrow curluh\leftrightarrow + \leftrightarrow curlvh\leftrightarrow 

\leftrightsquigarrow \leftrightarrow (curl curl )huh\leftrightarrow + \leftrightarrow curlvh\leftrightarrow \ni \leftrightarrow vh\leftrightarrow H(curl ),

where we have used the discrete Poincaré inequality (3.12).
By the scaling argument, the inverse inequality, and the Poincaré inequality

(3.12),

\leftrightarrow \bfitomega h\leftrightarrow \leftrightsquigarrow \leftrightarrow uh\leftrightarrow + \leftrightarrow ṽh\leftrightarrow \leftrightsquigarrow \leftrightarrow (curl curl )huh\leftrightarrow + \leftrightarrow curlvh\leftrightarrow \ni 2\leftrightarrow vh\leftrightarrow H(curl ),

as required.

Introduce

\leftrightarrow vh\leftrightarrow 
2
H((grad curl )h)

:= \leftrightarrow vh\leftrightarrow 
2 + \leftrightarrow (gradcurl )hvh\leftrightarrow 

2
.

Again the continuity of the bilinear form in these norms

bh(\bfitomega ,\vargamma ;v)\leftrightsquigarrow (\leftrightarrow \bfitomega \leftrightarrow + |\vargamma |1)\leftrightarrow v\leftrightarrow H((grad curl )h),\bfitomega \nearrow \$tn
h
,\vargamma \nearrow V̊

grad

h
,v \nearrow V̊

curl

h

is straightforward by the definition of these norms.

Lemma 4.5. For vh \nearrow V̊
curl

h
, it holds that

\leftrightarrow vh\leftrightarrow H((grad curl )h) \leftrightsquigarrow sup
\bfitomega h\uparrow ""tn

h
,\vargamma h\uparrow V̊grad

h

bh(\bfitomega h,\vargamma h;vh)

\leftrightarrow \bfitomega h\leftrightarrow + |\vargamma h|1
.(4.11)
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FINITE ELEMENT CURL DIV COMPLEX 1095

Proof. We still use the Helmholtz decomposition (4.10) but choose

\bfitomega h =\rightarrow (gradcurl )hvh =\rightarrow (gradcurl )hṽh.

Then

bh(\bfitomega h,\vargamma h;vh) = \leftrightarrow (gradcurl )hvh\leftrightarrow 
2 + |\vargamma h|

2
1.

We end the proof by the estimates \leftrightarrow \bfitomega h\leftrightarrow + |\vargamma h|1 \leftrightsquigarrow \leftrightarrow vh\leftrightarrow H((grad curl )h) and \leftrightarrow vh\leftrightarrow \leftrightsquigarrow 
\leftrightarrow (gradcurl )hvh\leftrightarrow + |\vargamma h|1, in which we use the Poincaré inequality (3.20) for ṽh.

There are other variants of mesh-dependent norms. For \bfitomega \nearrow \$tn, equip a mesh-
dependent squared norm

\leftrightarrow \bfitomega \leftrightarrow 20,h := \leftrightarrow \bfitomega \leftrightarrow 2 +
\Biggr] 

F\uparrow Fh

hF \leftrightarrow n\downarrow \bfitomega n\leftrightarrow 2
F
.

By the inverse trace inequality, clearly we have \leftrightarrow \bfitomega h\leftrightarrow 0,h \varsupsetneq \leftrightarrow \bfitomega h\leftrightarrow for \bfitomega h \nearrow \$tn
h
. For

piecewise smooth vector-valued function v, equip a mesh-dependent squared norm

|v|21,h :=
\Biggr] 

T\uparrow Th

\leftrightarrow gradv\leftrightarrow 2
T
+

\Biggr] 

F\uparrow Fh

h
\updownarrow 1
F

\leftrightarrow JvK\leftrightarrow 2
F
.

Then

bh(\bfitomega ,\vargamma ;v)\leftrightsquigarrow \leftrightarrow \bfitomega \leftrightarrow 0,h|curlv|1,h + |\vargamma |1\leftrightarrow v\leftrightarrow , \bfitomega \nearrow \$tn
,\vargamma \nearrow H

1
0 (""),v \nearrow V

curl
0 .

One can prove the norm equivalence

\leftrightarrow (gradcurl )hvh\leftrightarrow \varsupsetneq |curlvh|1,h, vh \nearrow V̊
curl

h
(4.12)

and thus obtain the discrete inf-sup condition from (4.11)

\leftrightarrow curlvh\leftrightarrow 1,h \leftrightsquigarrow sup
\bfitomega h\uparrow ""tn

h
,\vargamma \uparrow V̊grad

h

bh(\bfitomega h,\vargamma h;vh)

\leftrightarrow \bfitomega h\leftrightarrow 0,h + |\vargamma h|1
,

where \leftrightarrow curlvh\leftrightarrow 
2
1,h := \leftrightarrow curlvh\leftrightarrow 

2 + |curlvh|
2
1,h.

The discrete coercivity on the null space is similar to Lemma 4.2.

Lemma 4.6. For \bfitomega h \nearrow \$tn
h

and \vargamma h \nearrow V̊
grad

h
satisfying

bh(\bfitomega h,\vargamma h;vh) = 0, \searrow vh \nearrow V̊
curl

h
,

it holds that

\leftrightarrow \bfitomega h\leftrightarrow 
2
H\rightarrow 1((curl div)h)

+ |\vargamma h|
2
1 = \leftrightarrow \bfitomega h\leftrightarrow 

2
.(4.13)

Applying the Babuška–Brezzi theory [5], from the discrete inf-sup conditions (4.9)
and (4.11), and the discrete coercivity (4.13), we achieve the well-posedness of the
mixed finite element method (4.8a)–(4.8b).

Theorem 4.7. The distributional mixed finite element method (4.8a)–(4.8b) for

the quad-curl problem is well-posed. We have the discrete stability results
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1096 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

\leftrightarrow \bfitvarepsilon h\leftrightarrow H\rightarrow 1((curl div)h) + |\varepsilon h|1 + \leftrightarrow uh\leftrightarrow H(curl )

\leftrightsquigarrow sup
\bfitomega h\uparrow ""tn

h
,\vargamma h\uparrow V̊grad

h
,vh\uparrow V̊curl

h

Ah(\bfitvarepsilon h,\varepsilon h,uh;\bfitomega h,\vargamma h,vh)

\leftrightarrow \bfitomega h\leftrightarrow H\rightarrow 1((curl div)h) + |\vargamma h|1 + \leftrightarrow vh\leftrightarrow H(curl )
,(4.14)

\leftrightarrow \bfitvarepsilon h\leftrightarrow + |\varepsilon h|1 + \leftrightarrow uh\leftrightarrow H((grad curl )h)

\leftrightsquigarrow sup
\bfitomega h\uparrow ""tn

h
,\vargamma h\uparrow V̊grad

h
,vh\uparrow V̊curl

h

Ah(\bfitvarepsilon h,\varepsilon h,uh;\bfitomega h,\vargamma h,vh)

\leftrightarrow \bfitomega h\leftrightarrow + |\vargamma h|1 + \leftrightarrow vh\leftrightarrow H((grad curl )h)
,(4.15)

for any \bfitvarepsilon h \nearrow \$tn
h
, \varepsilon h \nearrow V̊

grad

h
, and uh \nearrow V̊

curl

h
, where

Ah(\bfitvarepsilon h,\varepsilon h,uh;\bfitomega h,\vargamma h,vh) := (\bfitvarepsilon h,\bfitomega h) + bh(\bfitomega h,\vargamma h;uh) + bh(\bfitvarepsilon h,\varepsilon h;vh).

By choosing vh = grad\varepsilon h in (4.8b), we get \varepsilon h = 0 from divf = 0.

4.3. Error analysis.

Lemma 4.8. Let (\bfitvarepsilon ,0,u) and (\bfitvarepsilon h,0,uh) be the solution of the mixed formulation

(4.3a)–(4.3b) and the mixed finite element method (4.8a)–(4.8b), respectively. Assume

\bfitvarepsilon \nearrow \$tn
, and u, curlu\nearrow H

1("";R3). Then

Ah(I
tn
h
\bfitvarepsilon \rightarrow \bfitvarepsilon h,0, I

curl
h

u\rightarrow uh;\bfitomega h,\vargamma h,vh)

= (Itn
h
\bfitvarepsilon \rightarrow \bfitvarepsilon ,\bfitomega h) + (Icurl

h
u\rightarrow u,grad\vargamma h)(4.16)

holds for any \bfitomega h \nearrow \$tn
h
, \vargamma h \nearrow V̊

grad

h
, and vh \nearrow V̊

curl

h
.

Proof. Subtract (4.8a)–(4.8b) from (4.3a)–(4.3b) and use (3.13) and (3.14) to get
error equations

(\bfitvarepsilon \rightarrow \bfitvarepsilon h,\bfitomega h) + bh(\bfitomega h,\vargamma h; I
curl
h

u\rightarrow uh) = (Icurl
h

u\rightarrow u,grad\vargamma h),

bh(I
tn
h
\bfitvarepsilon \rightarrow \bfitvarepsilon h,0;vh) = 0.

Then subtract (\bfitvarepsilon \rightarrow I
tn
h
\bfitvarepsilon ,\bfitomega h) to get (4.16).

Theorem 4.9. Let (\bfitvarepsilon ,0,u) and (\bfitvarepsilon h,0,uh) be the solution of the mixed formu-

lation (4.3a)–(4.3b) and the mixed finite element method (4.8a)–(4.8b), respectively.
Assume \bfitvarepsilon \nearrow H

k("";T) and u, curlu\nearrow H
k("";R3). Then

\leftrightarrow \bfitvarepsilon \rightarrow \bfitvarepsilon h\leftrightarrow + \leftrightarrow I
curl
h

u\rightarrow uh\leftrightarrow H((grad curl )h) \leftrightsquigarrow h
k(|\bfitvarepsilon |k + |u|k),(4.17)

\leftrightarrow u\rightarrow uh\leftrightarrow H(curl ) + h|curl (u\rightarrow uh)|1,h \leftrightsquigarrow h
k(|\bfitvarepsilon |k + |u|k + |curlu|k).(4.18)

Proof. It follows from the stability results (4.14)–(4.15) and (4.16) that

\leftrightarrow I
tn
h
\bfitvarepsilon \rightarrow \bfitvarepsilon h\leftrightarrow + \leftrightarrow I

curl
h

u\rightarrow uh\leftrightarrow H(curl ) + \leftrightarrow I
curl
h

u\rightarrow uh\leftrightarrow H((grad curl )h)

\leftrightsquigarrow \leftrightarrow \bfitvarepsilon \rightarrow I
tn
h
\bfitvarepsilon \leftrightarrow + \leftrightarrow u\rightarrow I

curl
h

u\leftrightarrow .

Hence (4.17)–(4.18) follow from the triangle inequality, the norm equivalence (4.12),
and interpolation error estimates.

We perform numerical experiments to support the theoretical results of the dis-
tributional mixed method (4.8a)–(4.8b). Let "" = (0,1)3. Choose the function f in
(4.1) such that the exact solution of (4.1) is
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FINITE ELEMENT CURL DIV COMPLEX 1097

Fig. 4. An initial perturbed mesh of the uniform mesh with h= 1/2.

Table 1

Errors for the distributional mixed finite element method (4.8a)–(4.8b) with k= 1.

h 2\uparrow 2 2\uparrow 3 2\uparrow 4 2\uparrow 5

# DoFs for \omega = 0 2,332 17,240 132,400 1,037,408
# DoFs for \omega = 1 2,936 21,424 163,424 1,276,096

\downarrow \bfitomega \uparrow \bfitomega h\downarrow 1.51E + 02 8.62E + 01 4.48E + 01 2.26E + 01
order \uparrow 0.81 0.95 0.99

\downarrow curl (u\uparrow uh)\downarrow 1.48E + 01 5.60E + 00 2.39E + 00 1.13E + 00
order \uparrow 1.40 1.23 1.08

\downarrow gradTh
curl (u\uparrow uh)\downarrow 1.46E + 02 1.46E + 02 1.46E + 02 1.46E + 02
order \uparrow 0 0 0

\downarrow u\uparrow uh\downarrow for \omega = 0 1.49E + 00 5.23E-01 2.19E-01 1.03E-01
order \uparrow 1.51 1.25 1.09

\downarrow u\uparrow uh\downarrow for \omega = 1 1.04E + 00 2.82E-01 7.32E-02 1.85E-02
order \uparrow 1.88 1.95 1.98

u= curl

\Biggr\rfloor 

\Biggl\lceil 
sin3(\varphi x) sin3(\varphi y) sin3(\varphi z)
sin3(\varphi x) sin3(\varphi y) sin3(\varphi z)

0

\Biggr\rceil 

\Biggl\{ ,

and let \bfitvarepsilon := gradcurlu. To break the symmetry, the initial unstructured mesh of ""
is shown in Figure 4, which is a perturbation of the uniform mesh with h= 1/2. Then
we take uniform refinement of this initial unstructured triangulation.

We will implement the hybridized version of (4.8a)–(4.8b); see (5.1a)–(5.1b).

Therefore, the number of DoFs is dim V̊
curl

(k,\omega ),h+dim'k\updownarrow 1,h, where 'k\updownarrow 1,h is the space
of Lagrange multiplier. Numerical results of \leftrightarrow \bfitvarepsilon \rightarrow \bfitvarepsilon h\leftrightarrow , \leftrightarrow u \rightarrow uh\leftrightarrow , \leftrightarrow curl (u \rightarrow uh)\leftrightarrow ,
and \leftrightarrow grad Th

curl (u \rightarrow uh)\leftrightarrow of the distributional mixed method (4.8a)–(4.8b) with
k = 1 and \varpi = 0,1 are shown in Table 1. It is observed that \leftrightarrow \bfitvarepsilon \rightarrow \bfitvarepsilon h\leftrightarrow = O(h), and
\leftrightarrow curl (u \rightarrow uh)\leftrightarrow = O(h) numerically, which coincide with the theoretical error esti-
mates in (4.17) and (4.18). The error \leftrightarrow u\rightarrow uh\leftrightarrow = O(h\omega +1) is also observed but not
included in (4.17) and (4.18).

4.4. Postprocessing. We can additionally derive the superconvergence result
of \leftrightarrow curl (Icurl

h
u\rightarrow uh)\leftrightarrow \leftrightsquigarrow h

k+1 by using the duality argument [17, section 4.3]. Post-
processing can be also applied to improve the approximation. It follows from the
standard procedure of the stable mixed methods and will be briefly reviewed below.
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1098 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

Table 2

Errors for the postprocessing for k= 1.

h 2\uparrow 2 2\uparrow 3 2\uparrow 4 2\uparrow 5

# DoFs for \omega = 0 2,332 17,240 132,400 1,037,408
# DoFs for \omega = 1 2,936 21,424 163,424 1,276,096
\downarrow curlTh

(u\uparrow u\rightarrow 
h)\downarrow 9.25E + 00 2.71E + 00 7.18E-01 1.83E-01

order \uparrow 1.77 1.92 1.98
\downarrow gradTh

curlTh
(u\uparrow u\rightarrow 

h)\downarrow 1.52E + 02 8.62E + 01 4.48E + 01 2.26E + 01
order \uparrow 0.81 0.95 0.99

We will construct a new superconvergent approximation to u in virtue of the
optimal result of \bfitvarepsilon in (4.17). Introduce discrete space

V\Leftarrow 
h
:= {vh \nearrow L

2("";R3) : vh|T \nearrow Pk(T ;R3) +x\downarrow Pk(T ;R3) for T \nearrow Th}.

Let P̊k+1(T ) be the subspace of Pk+1(T ) with vanishing funcition values at vertices
of T . For each T \nearrow Th, define the new approximation u\Leftarrow 

h
\nearrow V\Leftarrow 

h
to u piecewisely as a

solution of the following problem:

(u\Leftarrow 
h
· t, q)e = (uh · t, q)e \searrow q \nearrow P0(e), e\nearrow E(T ),(4.19a)

(gradcurlu\Leftarrow 
h
,q)T = (\bfitvarepsilon h,q)T \searrow q \nearrow gradcurlPk+1(T ;R3),(4.19b)

(u\Leftarrow 
h
,q)T = (uh,q)T \searrow q \nearrow grad P̊k+1(T ).(4.19c)

It is easy to verify that the local problem (4.19a)–(4.19c) is well-posed. We can prove

\leftrightarrow grad Th
curl Th

(u\rightarrow u\Leftarrow 
h
)\leftrightarrow \leftrightsquigarrow h

k(|\bfitvarepsilon |k + |u|k + |curlu|k+1),

and from \leftrightarrow curl (Icurl
h

u\rightarrow uh)\leftrightarrow \leftrightsquigarrow h
k+1 that

\leftrightarrow curl Th
(u\rightarrow u\Leftarrow 

h
)\leftrightarrow \leftrightsquigarrow h

k+1(|\bfitvarepsilon |k + |u|k + |curlu|k+1 + \varsigma k1\leftrightarrow f\leftrightarrow ).

Numerical results of the postprocessing u\Leftarrow 
h
for k = 1 and \varpi = 0,1 are listed in

Table 2. We can observe that \leftrightarrow curl Th
(u \rightarrow u\Leftarrow 

h
)\leftrightarrow = O(h2) and \leftrightarrow grad Th

curl Th
(u \rightarrow 

u\Leftarrow 
h
)\leftrightarrow = O(h) numerically, which are one order higher than \leftrightarrow curl (u \rightarrow uh)\leftrightarrow and

\leftrightarrow grad Th
curl (u\rightarrow uh)\leftrightarrow , respectively. Indeed, \leftrightarrow grad Th

curl (u\rightarrow uh)\leftrightarrow = \leftrightarrow \bfitvarepsilon \rightarrow \bfitvarepsilon h\leftrightarrow .

5. Hybridization of distributional mixed finite element method. In this
section we will hybridize the distributional mixed finite element method (4.8a)–(4.8b)
following the framework in [1]. We introduce a Lagrange multiplier for the tangential-
normal continuity of \bfitvarepsilon which can be treated as an approximation of (nF \downarrow curlu)|Fh

.
As \bfitvarepsilon is discontinuous, it can be eliminated elementwise and the size of the result-
ing linear system is reduced, which is easier to solve than the saddle point system
obtained by the mixed method (4.8a)–(4.8b). With the hybridized method, we can
also establish the equivalence of the mixed method (4.8a)–(4.8b) to a weak Galerkin
method without stabilization and nonconforming finite element methods in [29, 45].

To this end, introduce two finite element spaces

\$\updownarrow 1
k\updownarrow 1,h := {\bfitomega h \nearrow L

2("";T) : \bfitomega h|T \nearrow Pk\updownarrow 1(T ;T) for each T \nearrow Th},

'k\updownarrow 1,h := {µ
h
\nearrow L

2(Fh;R3) :µ
h
|F \nearrow Pk\updownarrow 1(F ;R3) and µ

h
·n|F = 0 for each F \nearrow F̊h,

and µ
h
= 0 on Fh\F̊h}.
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FINITE ELEMENT CURL DIV COMPLEX 1099

The space 'h is introduced as the Lagrange multiplier to impose the tangential-normal
continuity and is equipped with squared norm

\leftrightarrow µ
h
\leftrightarrow 
2
\varpi ,h

:=
\Biggr] 

T\uparrow Th

\Biggr] 

F\uparrow F(T )

h
\updownarrow 2\varpi 
F

\leftrightarrow µ
h
\leftrightarrow 
2
F
, \leftharpoonup =±1/2.

5.1. Hybridization. The hybridization of the mixed finite element method

(4.8a)–(4.8b) is to find (\bfitvarepsilon h,uh,\varepsilon h,\bfitvargamma h) \nearrow \$\updownarrow 1
k\updownarrow 1,h \downarrow V̊

curl

(k,\omega ),h \downarrow V̊
grad

\omega +1,h \downarrow 'k\updownarrow 1,h such
that

(\bfitvarepsilon h,\bfitomega h) + bh(\bfitomega h,\vargamma h;uh)+ ch(\bfitomega h,\bfitvargamma h) = 0, \searrow \bfitomega h \nearrow \$\updownarrow 1
k\updownarrow 1,h,\vargamma h \nearrow V̊

grad

\omega +1,h,

(5.1a)

bh(\bfitvarepsilon h,\varepsilon h;vh)+ ch(\bfitvarepsilon h,µh
) =\rightarrow \simeq f ,vh\Leftarrow ,\searrow vh \nearrow V̊

curl

(k,\omega ),h,µh
\nearrow 'k\updownarrow 1,h,(5.1b)

where the bilinear form ch(\bfitomega h,\bfitvargamma h) := \rightarrow 
\Biggr\rangle 

T\uparrow Th
(n\downarrow \bfitomega hnF ,\bfitvargamma h)\varepsilon T is introduced to

impose the tangential-normal continuity.

Lemma 5.1. There holds the following inf-sup condition:

\leftrightarrow vh\leftrightarrow H((grad curl )h) + \leftrightarrow nF \downarrow curlvh \rightarrow µ
h
\leftrightarrow 1/2,h

\leftrightsquigarrow sup
\bfitomega h\uparrow ""\rightarrow 1

k\rightarrow 1,h,\vargamma h\uparrow V̊grad
\omega +1,h

bh (\bfitomega h,\vargamma h;vh) + ch(\bfitomega h,µh
)

\leftrightarrow \bfitomega h\leftrightarrow + |\vargamma h|1
, \searrow vh \nearrow V̊

curl

(k,\omega ),h,µh
\nearrow 'k\updownarrow 1,h.

(5.2)

Proof. Let \bfitomega h \nearrow \$\updownarrow 1
k\updownarrow 1,h be determined as follows: for T \nearrow Th,

(n\downarrow \bfitomega hnF )|F =
1

hF

(nF \downarrow curlvh \rightarrow µ
h
), F \nearrow F(T ),

(\bfitomega h,q)T =\rightarrow (gradcurlvh,q)T , q \nearrow Pk\updownarrow 2(T ;T).

Clearly, we have

\leftrightarrow \bfitomega h\leftrightarrow \leftrightsquigarrow \leftrightarrow grad Th
curlvh\leftrightarrow + \leftrightarrow nF \downarrow curlvh \rightarrow µ

h
\leftrightarrow 1/2,h ,

bh (\bfitomega h,0;vh) + ch(\bfitomega h,µh
) = \leftrightarrow grad Th

curlvh\leftrightarrow 
2 + \leftrightarrow nF \downarrow curlvh \rightarrow µ

h
\leftrightarrow 
2
1/2,h .

Then

\leftrightarrow grad Th
curlvh\leftrightarrow + \leftrightarrow nF \downarrow curlvh \rightarrow µ

h
\leftrightarrow 1/2,h(5.3)

\leftrightsquigarrow sup
\bfitomega h\uparrow ""\rightarrow 1

k\rightarrow 1,h

bh (\bfitomega h,0;vh) + ch(\bfitomega h,µh
)

\leftrightarrow \bfitomega h\leftrightarrow 
,

which together with (4.12) indicates

\leftrightarrow (gradcurl )hvh\leftrightarrow + \leftrightarrow nF \downarrow curlvh \rightarrow µ
h
\leftrightarrow 1/2,h

\leftrightsquigarrow sup
\bfitomega h\uparrow ""\rightarrow 1

h
,\vargamma h\uparrow V̊grad

h

bh (\bfitomega h,\vargamma h;vh) + ch(\bfitomega h,µh
)

\leftrightarrow \bfitomega h\leftrightarrow + |\vargamma h|1
.

Therefore, the inf-sup condition (5.2) holds from (4.11).

Theorem 5.2. The hybridized mixed finite element method (5.1a)–(5.1b) is well-

posed, and the solution (\bfitvarepsilon h,uh,\varepsilon h)\nearrow \$tn
h
\downarrow V̊

curl

(k,\omega ),h\downarrow V̊
grad

\omega +1,h coincides with the mixed

finite element method (4.8a)–(4.8b).
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1100 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

Proof. For \bfitomega h \nearrow \$\updownarrow 1
h

and \vargamma h \nearrow V̊
grad

h
satisfying

bh(\bfitomega h,\vargamma h;vh) + ch(\bfitomega h,µh
) = 0, \searrow vh \nearrow V̊

curl

h
,µ

h
\nearrow 'h,

we have \bfitomega h \nearrow \$tn
h
, and bh(\bfitomega h,\vargamma h;vh) = 0 for vh \nearrow V̊

curl

h
. By (4.13), we obtain

the discrete coercivity \leftrightarrow \bfitomega h\leftrightarrow 
2 + |\vargamma h|

2
1 \leftrightsquigarrow \leftrightarrow \bfitomega h\leftrightarrow 

2
. Then we get the well-posedness of the

hybridized mixed finite element method (5.1a)–(5.1b) by applying the Babuška–Brezzi
theory [5] with the discrete inf-sup condition (5.2).

By (5.1b) with vh = 0, \bfitvarepsilon h \nearrow \$tn
h
, thus (\bfitvarepsilon h,uh,\varepsilon h) satisfies (4.8a)–(4.8b).

Theorem 5.3. Let (\bfitvarepsilon ,0,u) and (\bfitvarepsilon h,0,uh,\bfitvargamma h) be the solution of the mixed formu-

lation (4.3a)–(4.3b) and the mixed finite element method (5.1), respectively. Assume

\bfitvarepsilon \nearrow H
k("";T) and u, curlu\nearrow H

k("";R3). Then

\leftrightarrow nF \downarrow curluh \rightarrow \bfitvargamma h\leftrightarrow \updownarrow 1/2,h \leftrightsquigarrow h
k(h|\bfitvarepsilon |k + h|u|k + |curlu|k).(5.4)

Proof. By the proof of the discrete inf-sup condition (5.2),
\left[ \left[ nF \downarrow curl (Icurl

h
u\rightarrow uh)\rightarrow (Qk\updownarrow 1

Fh
(nF \downarrow curlu)\rightarrow \bfitvargamma h)

\left[ \left[ 
1/2,h

\leftrightsquigarrow sup
\bfitomega h\uparrow ""\rightarrow 1

k\rightarrow 1,h

bh(\bfitomega h,0; Icurlh
u\rightarrow uh) + ch(\bfitomega h,Q

k\updownarrow 1
Fh

(nF \downarrow curlu)\rightarrow \bfitvargamma h)

\leftrightarrow \bfitomega h\leftrightarrow 
.

Thanks to (3.14) and (5.1a), we have

bh(\bfitomega h,0; I
curl
h

u\rightarrow uh) + ch(\bfitomega h,Q
k\updownarrow 1
Fh

(nF \downarrow curlu)\rightarrow \bfitvargamma h) = (\bfitvarepsilon h \rightarrow \bfitvarepsilon ,\bfitomega h).

Hence
\left[ \left[ nF \downarrow curl (Icurl

h
u\rightarrow uh)\rightarrow (Qk\updownarrow 1

Fh
(nF \downarrow curlu)\rightarrow \bfitvargamma h)

\left[ \left[ 
1/2,h

\leftrightsquigarrow \leftrightarrow \bfitvarepsilon \rightarrow \bfitvarepsilon h\leftrightarrow .

Therefore, we can derive estimate (5.4) from (4.17) and the error estimate of Icurl
h

.

5.2. Connection to other methods. The pair (vh,µh
) can be understood as

a weak function. Define (gradcurl )w : V̊
curl

h
\downarrow 'h \Uparrow \$\updownarrow 1

h
by

((gradcurl )w(vh,µh
),\bfitomega h) =\rightarrow bh (\bfitomega h,0;vh)\rightarrow ch(\bfitomega h,µh

), \searrow \bfitomega h \nearrow \$\updownarrow 1
k\updownarrow 1,h.

By (5.1a), we can eliminate \bfitvarepsilon h elementwise and write \bfitvarepsilon h = (gradcurl )w(uh,\bfitvargamma h).
Then the hybridized mixed finite element method (5.1a)–(5.1b) can be recast as fol-

lows: find (uh,\varrho h,\varepsilon h)\nearrow V̊
curl

(k,\omega ),h \downarrow 'k\updownarrow 1,h \downarrow V̊
grad

\omega +1,h such that

((gradcurl )w(uh,\bfitvargamma h), (gradcurl )w(vh,µh
))\rightarrow (vh,grad\varepsilon h) = \simeq f ,vh\Leftarrow ,

(uh,grad\vargamma h) = 0

for all (vh, µh,\vargamma h)\nearrow V̊
curl

(k,\omega ),h\downarrow 'k\updownarrow 1,h\downarrow V̊
grad

\omega +1,h. That is, we obtain a stabilization free
weak Galerkin method for solving the quad-curl problem. The stabilization free is
due to the inf-sup condition (5.3). Indeed, the inf-sup condition (5.3) is equivalent to

\leftrightarrow grad Th
curlvh\leftrightarrow + \leftrightarrow nF \downarrow curlvh \rightarrow µ

h
\leftrightarrow 1/2,h \leftrightsquigarrow \leftrightarrow (gradcurl )w(vh,µh

)\leftrightarrow 

for vh \nearrow V̊
curl

(k,\omega ),h and µ
h
\nearrow 'k\updownarrow 1,h. This means \leftrightarrow (gradcurl )w(vh,µh

)\leftrightarrow is a norm on
space K

c

h
\downarrow 'k\updownarrow 1,h.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

4/
25

 to
 1

14
.9

4.
33

.4
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



FINITE ELEMENT CURL DIV COMPLEX 1101

For the hybridized mixed finite element method (5.1a)–(5.1b) of the lowest order
k= 1 and \varpi = 0,1, it is also related to a nonconforming finite element method.

We first recall the H(gradcurl ) nonconforming finite elements constructed in
[29, 45]. The space of shape functions is gradP\omega +1(T ) \propto (x \rightarrow xT ) \downarrow P1

\Biggr\} 
T ;R3

\Biggl\langle 
for

\varpi = 0,1. The degrees of freedom are given by
\Biggl\lfloor 

e

v · t q ds, q \nearrow P\omega (e) on each e\nearrow E(T ),(5.5a)
\Biggl\lfloor 

F

(curlv)\downarrow ndS on each F \nearrow F(T ).(5.5b)

Define the global H(gradcurl )-nonconforming element space

Wh :={vh \nearrow L
2("";R3) : vh|T \nearrow gradP\omega +1(T )\propto (x\rightarrow xT )\downarrow P1

\Biggr\} 
T ;R3

\Biggl\langle 
\searrow T \nearrow Th,

all the DoFs (5.5a)–(5.5b) are single-valued, and vanish on boundary}.

The interpolation operator I
curl
h

can be extended to Wh, which is well-defined. We

have I
curl
h

Wh = V̊
curl

h
, and (3.14) still holds for v \nearrow Wh.

An H(gradcurl )-nonconforming finite element method for quad-curl problem

(4.1) is to find wh \nearrow Wh and \varepsilon h \nearrow V̊
grad

h
such that

(grad Th
curl Th

wh,grad Th
curl Th

vh)\rightarrow (Icurl
h

vh,grad\varepsilon h) = \simeq f , Icurl
h

vh\Leftarrow ,(5.6a)

(Icurl
h

wh,grad\vargamma h) = 0(5.6b)

for all vh \nearrow Wh and \vargamma h \nearrow V̊
grad

h
. Nonconforming finite element method (5.6a)–(5.6b)

is a modification of those in [29, 45] by introducing interpolation operator I
curl
h

. In
other words, we identify the complex that accommodates the nonconforming finite
elements constructed in [29, 45] and generalize these elements to arbitrary orders.

Lemma 5.4. For vh \nearrow Wh satisfying (Icurl
h

vh,grad qh) = 0 for all qh \nearrow V̊
grad

h
, we

have the discrete Poincaré inequality

\leftrightarrow vh\leftrightarrow + \leftrightarrow curl Th
vh\leftrightarrow \leftrightsquigarrow \leftrightarrow grad Th

curl Th
vh\leftrightarrow .(5.7)

Proof. By (4.12) in [29], it follows that

\leftrightarrow vh \rightarrow I
curl
h

vh\leftrightarrow \leftrightsquigarrow h\leftrightarrow curl Th
vh\leftrightarrow .

Thanks to the discrete Poincaré inequality for space V̊
curl

h
, we have

\leftrightarrow I
curl
h

vh\leftrightarrow \leftrightsquigarrow \leftrightarrow curl (Icurl
h

vh)\leftrightarrow .

Combining the last two inequalities gives

\leftrightarrow vh\leftrightarrow \ni \leftrightarrow vh \rightarrow I
curl
h

vh\leftrightarrow + \leftrightarrow I
curl
h

vh\leftrightarrow \leftrightsquigarrow h\leftrightarrow curl Th
vh\leftrightarrow + \leftrightarrow curl (Icurl

h
vh)\leftrightarrow .

By the commutative property of Icurl
h

, it holds that

\leftrightarrow curl (Icurl
h

vh)\leftrightarrow \leftrightsquigarrow \leftrightarrow grad Th
curl Th

vh\leftrightarrow .

Hence

\leftrightarrow vh\leftrightarrow \leftrightsquigarrow \leftrightarrow curl Th
vh\leftrightarrow + \leftrightarrow grad Th

curl Th
vh\leftrightarrow .

Finally, apply the discrete Poincaré inequality for H
1-nonconforming linear element

to end the proof.

Using the discrete Poincaré inequality (5.7), we have the well-posedness.
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1102 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

Lemma 5.5. Nonconforming finite element method (5.6a)–(5.6b) is well-posed.

We will show the equivalence between the hybridized mixed finite element method
(5.1a)–(5.1b) with k= 1 and nonconforming finite element method (5.6a)–(5.6b).

Theorem 5.6. Let (wh,\varepsilon h) \nearrow Wh \downarrow V̊
grad

h
be the solution of the nonconforming

finite element method (5.6a)–(5.6b). Then (grad Th
curl Th

wh, I
curl
h

wh,\varepsilon h,QFh
(nF \downarrow 

curlwh)) \nearrow \$\updownarrow 1
0,h \downarrow V̊

curl

h
\downarrow V̊

grad

h
\downarrow 'h is the solution of the hybridized mixed finite

element method (5.1a)–(5.1b) with k= 1.

Proof. Choose vh \nearrow Wh such that DoF (5.5a) vanishes, then I
curl
h

vh = 0. Apply-
ing the integration by parts on the left-hand side of (5.6a), we get

0 =
\Biggr] 

T\uparrow Th

((gradcurlwh)n, curlvh)\varepsilon T

=
\Biggr] 

T\uparrow Th

(n\downarrow (gradcurlwh)n,n\downarrow curlvh)\varepsilon T

=
\Biggr] 

F\uparrow F̊h

(Jn\downarrow (grad Th
curl Th

wh)nK,nF \downarrow curl Th
vh)F .

By the arbitrariness of the DoF (5.5b) for vh, we obtain Jn\downarrow (grad Th
curl Th

wh)nKF =
0 for all F \nearrow F̊h, that is grad Th

curl Th
wh \nearrow \$tn

h
. For all vh \nearrow Wh and µ

h
\nearrow 'h, we get

from (3.14), the integration by parts, and (5.6a) that

bh(grad Th
curl Th

wh,\varepsilon h; I
curl
h

vh) + ch(grad Th
curl Th

wh,µh
)

= bh(grad Th
curl Th

wh,\varepsilon h; I
curl
h

vh)

= bh(grad Th
curl Th

wh,0;vh) + (Icurl
h

vh,grad\varepsilon h)

=\rightarrow (grad Th
curl Th

wh,grad Th
curl Th

vh) + (Icurl
h

vh,grad\varepsilon h) =\rightarrow \simeq f , Icurl
h

vh\Leftarrow .

Notice that Icurl
h

:Wh \Uparrow V̊
curl

h
is onto, hence (grad Th

curl Th
wh,\varepsilon h) satisfies (5.1b).

On the side hand, for all \bfitomega h \nearrow \$\updownarrow 1
0,h and \vargamma h \nearrow V̊

grad

h
, apply (3.14), (5.6b), and the

integration by parts to get

(grad Th
curl Th

wh,\bfitomega h) + bh

\Biggr\} 
\bfitomega h,\vargamma h; I

curl
h

wh

\Biggl\langle 
+ ch(\bfitomega h,QFh

(nF \downarrow curlwh))

= (grad Th
curl Th

wh,\bfitomega h) + bh (\bfitomega h,0;wh) + ch(\bfitomega h,nF \downarrow curlwh)

+ (Icurl
h

wh,grad\vargamma h)

= (grad Th
curl Th

wh,\bfitomega h) + bh (\bfitomega h,0;wh)\rightarrow 
\Biggr] 

T\uparrow Th

(n\downarrow \bfitomega hn,n\downarrow curlwh)\varepsilon T = 0.

That is, (grad Th
curl Th

wh, I
curl
h

wh,QFh
(nF \downarrow curlwh)) satisfies (5.1a).
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tors for de Rham complexes on Lipschitz domains, Math. Z., 265 (2010), pp. 297–320,
https://doi.org/10.1007/s00209-009-0517-8.

[20] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations,
Springer-Verlag, Berlin, 1986.

[21] J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, A mass conserving mixed stress for-
mulation for Stokes flow with weakly imposed stress symmetry, SIAM J. Numer. Anal., 58
(2020), pp. 706–732, https://doi.org/10.1137/19M1248960.

[22] K. Hellan, Analysis of Elastic Plates in Flexure by a Simplified Finite Element Method , Acta
Polytechnica Scandinavica 46, Civil eEngineering and Building Construction Series, Norges
tekniske vitenskapsakademi, Trondheim, 1967.

[23] L. R. Herrmann, Finite element bending analysis for plates, J. Eng. Mech. Div., 93 (1967),
pp. 49–83, https://doi.org/10.1061/JMCEA3.0000891.

[24] J. Hu and Y. Liang, Conforming discrete Gradgrad-complexes in three dimensions, Math.
Comp., 90 (2021), pp. 1637–1662, https://doi.org/10.1090/mcom/3628.

[25] J. Hu, T. Lin, and Q. Wu, A construction of C
r conforming finite element spaces in

any dimension, Found. Comput. Math., 24 (2024), pp. 1941–1977, https://doi.org/
10.1007/s10208-023-09627-6.

[26] K. Hu, T. Lin, and Q. Zhang, Distributional Hessian and Divdiv Complexes on Triangulation
and Cohomology, preprint, https://arxiv.org/abs/2311.15482, 2023.

[27] K. Hu, Q. Zhang, and Z. Zhang, Simple curl-curl-conforming finite elements in two
dimensions, SIAM J. Sci. Comput., 42 (2020), pp. A3859–A3877, https://doi.org/
10.1137/20M1333390.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

4/
25

 to
 1

14
.9

4.
33

.4
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/19M1288723
https://doi.org/10.1137/19M1288723
https://doi.org/10.1090/S0025-5718-07-02080-7
https://doi.org/10.1007/s10915-017-0449-0
https://doi.org/10.1007/s10915-021-01705-7
https://doi.org/10.1007/s10915-021-01705-7
https://doi.org/10.1103/PhysRevLett.99.235001
https://doi.org/10.4208/cicp.OA-2020-0108
https://doi.org/10.1007/s10915-017-0636-z
https://doi.org/10.1137/17M1145872
https://doi.org/10.1137/17M1145872
https://arxiv.org/abs/2111.10712
https://www.sciengine.com/SSM/doi/10.1360/SCM-2023-0169
https://www.sciengine.com/SSM/doi/10.1360/SCM-2023-0169
https://doi.org/10.1090/mcom/3859
https://doi.org/10.1090/mcom/3957
https://arxiv.org/abs/2311.09051v4
https://doi.org/10.1007/s00211-011-0394-z
https://doi.org/10.1007/s00209-009-0517-8
https://doi.org/10.1137/19M1248960
https://doi.org/10.1061/JMCEA3.0000891
https://doi.org/10.1090/mcom/3628
https://doi.org/10.1007/s10208-023-09627-6
https://doi.org/10.1007/s10208-023-09627-6
https://arxiv.org/abs/2311.15482
https://doi.org/10.1137/20M1333390
https://doi.org/10.1137/20M1333390


1104 LONG CHEN, XUEHAI HUANG, AND CHAO ZHANG

[28] K. Hu, Q. Zhang, and Z. Zhang, A family of finite element Stokes complexes in
three dimensions, SIAM J. Numer. Anal., 60 (2022), pp. 222–243, https://doi.org/
10.1137/20M1358700.

[29] X. Huang, Nonconforming finite element Stokes complexes in three dimensions, Sci. China
Math., 66 (2023), pp. 1879–1902, https://doi.org/10.1007/s11425-021-2026-7.

[30] X. Huang and C. Zhang, Robust mixed finite element methods for a quad-curl sin-
gular perturbation problem, J. Comput. Appl. Math., 451 (2024), 116117, https://
doi.org/10.1016/j.cam.2024.116117.

[31] C. Johnson, On the convergence of a mixed finite-element method for plate bending problems,
Numer. Math., 21 (1973), pp. 43–62, https://doi.org/10.1007/BF01436186.

[32] M. W. Licht, Complexes of discrete distributional di!erential forms and their homology theory,
Found. Comput. Math., 17 (2017), pp. 1085–1122, https://doi.org/10.1007/s10208-016-
9315-y.

[33] P. Monk, Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Sci-
entific Computation, Oxford University Press, New York, 2003.
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