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Abstract. This paper addresses the challenge of constructing finite element curl div complexes in
three dimensions. Tangential-normal continuity is introduced in order to develop distributional finite
element curl div complexes. The spaces constructed are applied to discretize the quad curl problem,
demonstrating optimal order of convergence. Furthermore, a hybridization technique is proposed,
demonstrating its equivalence to nonconforming finite elements and weak Galerkin methods.
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1. Introduction. In this work, we will construct distributional finite element
curldiv complexes in three dimensions, and apply it to solve the fourth-order curl
problem —curl Acurlu = f,divu = 0 in a domain  C R? with boundary conditions
u X n = curlu =0 on 0f). Such a problem arises from multiphysics simulation such
as modeling a magnetized plasma in magnetohydrodynamics [9].

We first give a brief literature review on distributional finite elements. The dis-
tributional finite element de Rham complexes are adopted to construct equilibrated
residual error estimators in [6], which are then extended to discrete distributional dif-
ferential forms in [32], discrete distributional elasticity complexes in [18], and discrete
distributional Hessian and divdiv complexes in [26] with applications in cohomology
groups. Recently, in [16], the distributional finite element divdiv element has been
constructed and applied for solving the mixed formulation of the biharmonic equation
in arbitrary dimensions. The distributional finite elements allow the use of piecewise
polynomials with less smoothness, which is especially useful for high-order differential
operators.

Let us use a more familiar 2nd order operator V2 as an example to illustrate the
motivation. The C'-conforming finite element on tetrahedron meshes [25, 13, 15, 43]
requires polynomials of degree 9 and above and possesses extra smoothness at vertices
and edges. Therefore, it is hardly used in practice. Simple finite elements can be
constructed if the differential operators are understood in the distribution sense.

For the discretization of the biharmonic equation in two dimensions, the so-called
Hellan-Herrmann—Johnson (HHJ) mixed method [22, 23, 31] requires only normal-
normal continuous finite elements for symmetric tensors and thus C°-conforming
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Lagrange element, not C'-conforming elements, can be used for displacement. This
normal-normal continuous finite element is then employed to solve linear elasticity
[36] and Reissner—Mindlin plates [37], and used to construct the first two-dimensional
distributional finite element divdiv complexes in [11]. Recently, the distributional
finite element divdiv element for solving the mixed formulation of the biharmonic
equation has been extended to arbitrary dimensions in [16].

Now we move to the curl div operator. Introduce the space H(curl div,Q;T) :=
{r € L2(;T) : curl div T € L*(Q;R?) }, where T is the space of traceless tensors. A
mixed formulation of the quad-curl problem is to find o € H(curldiv,Q;T), u €
L2(;R3), and ¢ € Hi () such that

(o,7) +b(T,1;u) =0, V 1 € H(curldiv,Q; T), v € HL (),
b(O’,d);’U):—<f7’U>, VUELQ(Q;R3)7

where the bilinear form b(7,;v) := (curldivr,v) + (grad ¢, v). The term (grady,u)
is introduced to impose the divergence free condition divu = 0.

Finite element spaces conforming to H(curl div,Q;T) are relatively complicated
due to the smoothness requirement curl divr € L?(Q;R?). In the distributional sense

(curl divT,v) = —(7,grad curlv), wv € H(gradcurl,Q),

the smoothness can be shifted to the test function v, where H(gradcurl,) :={u €
L2(;R3) : curlu € HY(Q;R3)}. Of course, H(gradcurl)-conforming finite elements
are not easy to construct either. For example, the H(gradcurl)-conforming finite
elements are constructed in [42, 27, 40, 14, 15], which requires polynomial of degree
at least 7 and dimension of shape function space at least 315.

The key idea is to strike a balance of the smoothness of the trial function 7
and the test function v. Given a mesh Ty, let H*(T},) be the space of piecewise H*®
function. Introduce the traceless tensor space with tangential-normal continuity

Y= {1 € H (T3;T): [n x Tn]|, =0 for each FeFn),

where [n x 7n] is the jump of n x 7n across all interior faces F'. While for the test
space, we use space

‘/Ocurl = HO(CuI'I,Q) ﬂHl(Curl,ﬂz)v

where H'(curl,7;) := {v € H'(7;;R?) : curlv € H(75,;R?)}. Define a weak operator
(Curl div)w DI LN (Vocurl )/ by

(1.1) ((curl div),,T,v) = Z (div T, curlv)r — Z ([n"tn],nF - curlv)p,
Teﬂ" Feﬁh

which is analog to the weak divdiv operator in HHJ mixed method [22, 23, 31]. Now
the function 7 is tangential-normally continuous and v is tangentially continuous so
that np - curlv = rot g v is continuous on face F'. One can easily show (curl div),, 7 =
curl div T in the distribution sense by taking v € C§°(;R?) in (1.1).

We will use the tangential-normal continuous finite element constructed in [21]
for the discretization of ¥*. For an integer k > 0, take Py (7';T) as the space of shape
functions. The degrees of freedom (DoFs) are given by
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curldlv)h ‘ divy, ‘
—

1
Fic. 1. The simplest elements EO h —VEluro) h— Vl h : the first is a piecewise constant traceless

matriz with tangential-normal continuity, the second is the lowest order edge element, and the third
is the linear Lagrange element.

(1.2a) /tiTandS, geP(F), i=1,2, FeF(),
F

(1.2b) /T:qu, qeP,_1(T;T),
T

where t; and t; denote two mutually perpendicular unit tangential vectors of face F’
and are used to determine the tangential component of the vector 7mn. The global finite
element space ", by requiring single valued (1.2a) is tangential-normally continuous.

> curl
We use Nédélec elements V;ur C Vgul for the tangential continuous vector space,
and use the Riesz representation of the L2-inner product to bring the abstract dual

o curl
to a concrete function. Define (curl div)y, : £ — Vzur such that

o curl

(1.3) ((curl div)p7p,vp) = ((curl div)y,Th,vp), Vor eV,
> curl
and its L2-adjoint operator (gradcurl)y, :V:Lur — X,
By including the tensor version of the Nédélec elements Vi‘y‘{f (M), and the La-
grange elements Vif‘f ,(R?), we are able to construct the distributional finite element
curl div complex:

(grad, mskw x) chrl ( ) dev curl

rad
?x {0} — V%H,h(RB) x R E,h

(14) (curl div)p divy grad

tn curl
Yrlin V(k Hh T Ve+1,h -0,

where (grad, mskwa)(?) = gradv + cmskwa, and £ =k — 1 or £ = k is introduced
to distinguish the first and second kind of Nédélec element. The lowest order, i.e.,
k=1,{=0, of the last three elements are illustrated in Figure 1.

The finite element complex (1.4) is a discretization of the distributional curl div
complex:

35 {0} = H' (R x R {grad mskw @), H (curl, Q; M) 2eved,

H(cwrl div, % T) 229 g-1(div, Q) 2% H-1(Q) — 0,

where H—1(Q) := (H}(£2))’, and Sobolev spaces of negative order are

H™ Y (div,Q):={ue H " (QR?) :divue H'(Q)},
H(curl div, Q;T) := {re L*(Q;T) : curl divr € H™*(div, Q)}.
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As an application, we consider the fourth-order curl problem —curl Acurlu =

f,divu = 0 with boundary conditions u X n = curlu =0 on 8(12. The distributiondal
mixed finite element method is to find o5 € X} |, uy € VEZ}),hv and ¢p, € fol,h

such that

o_grad

(1.5a) (U'h,Th)‘i‘bh(Th,wh;Uh):O, VT}LEE;;:Lh,wh EVZJFL}“
o curl
(1.5b) br(on, n;vn) =—(F,vn), Von €V 0 ns

where by, (1,1;v) := ((curl div),7,v) + (grad¢,v) and (curl div)y, is a discretization
of distributional curl div operator; cf. (1.3).

We prove two discrete inf-sup conditions and thus obtain the well-posedness of
(1.5a)—(1.5b) and optimal order convergence

o= onllon + 175" w — wn || r((grad curyn) S A (lo ]k + [ulk),

Hu - uh”H(curl) + hllu - uh”H((gradcurl)h) 5 hk(|a‘k + |u|k + |Curlu|k)'

By the duality argument, the order of ||curl (/§""u — uy)|| can be improved to h*+1
on convex domains. Both [[I7"w — wp || pr((gradcurl),) and [curl (I5™ w — wuy)|| are
superconvergent. Postprocessing can be applied to improve the approximation to u.

Furthermore, we apply hybridization techniques to (1.5a)—(1.5b), leading to a
stabilization-free weak Galerkin method and extending to the H(gradcurl) noncon-
forming finite elements introduced in [29, 45] for solving the quad-curl problem. Equiv-
alently, we identify the complex that accommodates these nonconforming finite ele-
ments and generalize them to arbitrary orders.

For other discretization of the quad-curl problem, we refer to the macro finite
element method in [28], nonconforming finite element methods in [30, 39, 41], mixed
finite element methods in [38, 10], decoupled finite element methods in [8, 44, 7], and
references cited therein.

The rest of this paper is organized as follows. Section 2 focuses on the distribu-
tional curl div complex. A distributional finite element curl div complex is constructed
in section 3, and applied to solve the quad-curl problem in section 4. The hybridiza-
tion of the distributional mixed finite element method and the equivalence to other
methods are presented in section 5.

2. Distributional curl div complex. In this section, we present the distribu-
tional curl div complex and introduce the weak differential operator (curl div),, which
can be defined on the tangential-normal continuous matrix functions.

2.1. Notation. Let K C R?® be a nondegenerated three-dimensional polyhedron.
Denote by F(K) the set of all two-dimensional faces of K. For F' € F(K), denote by
E(F) the set of all edges of F. For F' € F(K), choose a normal vector np and two
mutually perpendicular unit tangential vectors tz; and £ 2, which will be abbreviated
as t; and t, for simplicity. Let nx be the unit outward normal vector to K, which
will be abbreviated as n. For F'€ F(K) and e € £(F'), denote by ng . the unit vector
being parallel to F' and outward normal to OF. Set tpe :=NK X Npe.

Given a face F € F(K), and a vector v € R?, define

Mpv=(nxv)xn=I—-nnT)v

as the projection of v onto the face F' which is called the tangential component of v.
The vector n x v = (n x IIp)v is called the tangential trace of v, which is a rotation
of IIpv on F (90° counter-clockwise with respect to n).
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Define the surface gradient operator as Vg := IIpV. For a scalar function v,
define the surface curl:

curl pr=n x Vv=n x Vgu.
For a vector function v, the surface rot operator is defined as
rotpv:=(mx V) -v=(nxVg) -Ilpv=n-(curlv),

which represents the normal component of curlwv.

Denote the space of all 3 x 3 matrices by M, and all trace-free/traceless 3 x 3
matrices by T. Define the deviation devr =1 — %(tr 7)I € T. Obviously, for a scalar
function u, dev(ul) =0. For a vector w = (w1, ws, w3)T € R3, let

0 —ws3 wa
mskww := | ws 0 —w1
— W2 w1 0

For a tensor-valued function 7, div7 and curlT mean operators div and curl are
applied row-wisely to 7. By direct calculation, we have the identities

(2.1) divmskwv = —curlv, (mskwo)n=vxmn.

We use {7 }r>0 to denote a shape regular family of simplicial meshes of (2 with
mesh size h = maxre7, hr and hr being the diameter of T. Let Fj, ]-";L, En, Eh,
Vy, and Vi be the set of all faces, interior faces, edges, interior edges, vertices, and
interior vertices of 7T, respectively. Let T' € Tj be a tetrahedron with four vertices
vg,...,v3. Denote by \; the ¢th barycentric coordinate with respect to the simplex T’
for i=0,...,3. Set t;; :=v; — v; as the edge vector from v; to v;.

Given a nonnegative integer k, let P, (T) stand for the set of all polynomials in
T with the total degree no more than k, and let Py (T;X) denote the tensor or vector
version with X =R3, M, and T. When k < 0, set P (T) := {0}.

Given a bounded domain D C R? and a real number s, let H*(D) be the usual
Sobolev space of functions over D, whose norm and seminorm are denoted by || - ||s,p
and | - |s.p, respectively. Let (-,-)p be the standard inner product on L?*(D). If D is
Q, we abbreviate || - ||s,p, | - |s,p, and (-,-)p by || - I|s; | - |s and (-, -), respectively. We
also abbreviate | - ||o,p and || - |lo by || - ||p and || - ||, respectively. The duality pair will
be denoted by (-, ).

Introduce the following Sobolev spaces:

H(curl, D) :={u € L*(D;R?) : curlu € L*(D;R?)},
H(div, D) := {u € L*(D;R?) : divu € L*(D)},
H(grad curl, D) := {u € L*(D; R?’) curlu € H'(D;R?)},
H(curldiv, D;T) := {7 € L*(D;T) : curldiv T € L*(D; R?)},

where H*(D;X) := H*(D) ® X. Define piecewise smooth function space, for s >0,
H*(Th) :={ve L*(Q):v|rc H¥T) for all T € Ty, },

and H*(T,;X) its tensor or vector version with X = R3, M, and T. Let grad 7; and
curl 7, be the elementwise version of grad and curl associated with 7j,, respectively.
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2.2. The curl div complexes. The curl div complex in three dimensions reads
as [3, eq. (47)]

grad, mskw ) H(
_—

R? x {0} = H' (% R?) x R ( curl, Q; M) —Seveut,

(22) . curl div . div. ;2
H(curl div, Q; T) —— H(div,Q) — L*(Q2) — 0.

When Q is topologically trivial, i.e., all co-homology group of § is trivial, then (2.2)
is exact. The smoothness of the potential can be further improved to be in H®.

It is difficult to construct H (curldiv,;T)-conforming finite element with lower
order degree of polynomials. To relax the smoothness, we are going to present a
distributional curl div complex with negative Sobolev spaces involved.

Define

H'(div,Q)={ve H Y (Q;R?) :divv e H1(Q)}.
In [12], we have shown that (Hp(curl,))’ = H~1(div,). Define
H™Y(curldiv, ;T) := {7 € L*(; T) : cwrldivr € H™ ! (div, Q) }
with squared norm
17 curtaiy = 717 + llewrl div 73 1 qiyy = |71 + [leurl div 712,

LEMMA 2.1. The distributional curl div complex in three dimensions is

(grad ,mskw x) dev curl
_—

R? x {0} =H'(Q;R?) x R H{(curl, Q; M) ==
div

(2.3) o
HY(cwl div, 2 T) <29 g—1(div, Q) 2% H-1(Q) — 0.

When Q C R3 is a bounded and topologically trivial Lipschitz domain, (2.3) is exact.

Proof. Apparently (2.3) is a complex. The surjection div H~!(div,Q) = H~1(Q)
follows from div L?(Q;R3) = H~1(Q) and div L?(Q;R3) C div H ~*(div,). We then

verify its exactness.

curl div H=1(curl div, Q; T) = H~(div, Q) N ker(div).

For v € H~1(div,Q) Nker(div), by the exactness of the de Rham complex [19],
there exists T € H'(;M) such that v = curl divr. Notice that curl div(pl) =
curlgradp =0. Then v = curl div(dev ) € curl div H ~!(curl div, Q; T).

dev curl H (curl, ;M) = H~(curl div, Q; T) Nker(curl div).

For 7 € H™!(curl div, Q; T) Nker(curl div), by the de Rham complex, there exists
a function u € L*(Q) s.t. divr = gradu. Then div(7 — uI) = 0, which means 7 =
ul + curloe with o € H'(Q;M). By the traceless of 7, we get 7 = devcurlo €
dev curl H'(Q; M) C dev curl H (curl, ; M).

grad H1(Q;R?) & span{mskw x} = H (curl, Q; M) N ker(dev curl ).

Since curl (mskwz) = 2I, we have grad H'(€;R3) N span{mskwx} = {0}. For
7 € H(curl,Q;M) N ker(deveurl), we have curlT = %tr(curl7)I. Apply div on
both sides to get grad (tr(curlT)) = 0. Then tr(curlT) is constant, and curl T = 2¢I
with ¢ € R. This implies curl (7 — ecmskwx) = 0. Therefore, T € grad H(Q;R3) &
span{mskw xz}. |

Next, we use the framework developed in [12] to present a Helmholtz decomposi-
tion of H~!(curl div,; T). Denote by

K¢ = Hy(curl,Q) Nker(div) = {v € Hy(curl, Q) : v L grad H3 ()}

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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Then curlcurl : K¢ — H~(div, Q) Nker(div) is isomorphic. Indeed, by the Helmholtz
decomposition L?(;R?) = curl K¢ + VH!(2) [2], we have

curl curl K¢ = curl L*(Q; R?*) = H ™ (div, Q) Nker(div).
LEMMA 2.2. It holds the Helmholtz decomposition
H~Y(curl div, Q; T) = dev curl H(curl, Q; M) @ mskw K°.

Proof. With complex (2.3) and identity (2.1), we build up the commutative dia-
gram

H(curl, ;M) 2 =1 (curl div, @ T) 229 7-1(div, Q) N ker(div) — 0

\ Tcurl curl
— mskw

Ke.
Apply the framework in [12] to get the required Helmholtz decomposition. |
We introduce the tensor space with tangential-normal continuity

.= {r e HY(T;;T): [n x mn]|, =0 for each F € F},

where [n x Tn] is the jump of n x Tn across F. Let space V™! := Hy(curl,Q) N
H'(curl,Tp,), where H*(curl,T3) := {v € H(T3; R3) : curlv € HY(Tp,; R?)}. We define
a weak operator (curl div),, : 2% — (V) € (C5°(;R?)) by

(2.4) ((curl div),T,v) := Z (div T, curlv)r — Z ([nTrn],np - curlv)p.
TeTh FeFy,

Notice that only interior faces are included in the second term as ng-curlv =rotpv =
0 for v € Hy(curl, ).

LEMMA 2.3. For T € %, the following identity holds in the distribution sense:
(curl div),, 7 = curl div .

Proof. By the definition of the distributional derivative and employing the inte-
gration by parts elementwise we get for v € C§°(£;R3) that

(curl div T, v) := —(7,grad curlv) = Z (div T, curlv)p — Z (Tn,curlv)sr

TETh TETh
= Z (div T, curlv)r — Z (nTrn,n - curlv)sr
TeTh TETh
- Z (n x Tn,n x curlv)gr.

TeTh

As nx7Tn is continuous and v € C§°(2;R3), the last term is canceled. Then rearrange
the second term facewisely to derive

(curl div 7, v) = ((curl div),,T,v) Vv € C5 (% RY).

Thus, (curl div),, 7= curl div T in the distribution sense. |

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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Similarly, we can define the weak operator (gradcurl),, : V! — (X)) as

((gradcurl),v, ) := Z (T,grad curlv)p — Z (n x ™n,[n x curlv]) .
TeTh FeFy,

By definition, we have the duality
(2.5) ((curl div),,7,v) = —(7, (grad curl ), v), T€X™ ve V.

When 7 € H(curl div,Q;T) N X, ((curl div),,7,v) = (curl div7,v) and when
v € H(gradcurl,Q) N VE¥l (7, (grad curl ), v) = (7,grad curlv). The duality (2.5)
strikes a balance of the smoothness of 7 and v so that the second order differential
operators can be defined for less smooth functions.

3. Distributional finite element curl div complex. We shall construct a
finite element counterpart of the distributional curl div complex (2.3).

3.1. Finite element spaces. We first recall the tangential-normal continuous
finite element for traceless tensors in [21]. Take Py (T;T) as the space of shape func-
tions with £ > 0. The DoFs are given by

(3.1a) /tiTandS, qeP,(F), i=1,2, FeF(T),
F

(3.1b) /T:qu, qeP,_1(T;T).
T

In order to give a geometric decomposition of space Py (T;T), we present two
intrinsic bases of T which are variants of a basis constructed in [24].

LEMMA 3.1. Let (ij€m) be a cyclic permutation of (0123). Then the set

(32) {deV(V)\l ®tig),deV(V)\j ®tjg),£:(),...,3}
s dual to
(3.3) {tmi @ Vi, tm; @ VAo,

Consequently, both are bases of T.

Proof. The duality follows from the identity t;; - VA¢ = ;¢ — d;¢, where d;, is the
Kronecker delta function, and (¢ @ V) : I =t- V), =0 for vector t tangent to Fy. O

As V\; || np,, the basis (3.3) is facewise and each face contributes two while the
basis (3.2) is vertexwise. They are illustrated in Figure 2.
Define

tr}“T =np X TNfr,

and tr* : C(T;T) — L*(0T;R?) as tr'™ | = tr'®. Let the bubble polynomial space of
degree k be

B (T;T) := {1 € Px(T;T) : tr™ 7 =0}.
Notice that for the identity matrix I, tr*™ I =0 but I ¢ B{*(T;T) as trace(I) #0.
LEMMA 3.2. For £,i=0,...,3,i# ¥, we have
Aedev(V; @ typ) € B (T;T).
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(a) Basis {deV(V)\i R tip), deV(VA]' ® t]'f)}?:O' (b) Basis {tmi ® V)\z,tmj ® VAZ}?:U

Fic. 2. Two intrinsic bases of traceless matriz T.

Proof. Let (i7€m) be a cyclic permutation of (0123). The edge v;v; is contained
in faces Fy, and F; and thus t;o - np =0 for F' = F,,,, F;. The vector VA, || np, and
thus ng, x VA; =0 on F;. On the face Fy, A¢|r, =0. Notice that the identity matrix
T satisfies tr'* I =0.

So we have verified tr*®(\;dev(V; @ ti0)) =0. 0

By changing V\; to the parallel vector n;, we present the following geometric
decomposition of Py (T T).

LEMMA 3.3. We have the geometric decomposition
Py(T;T) = @5_ (Pe(Fy) ® span{dev(n; @ t¢),dev(n; @ t;)}) & B (T;T),
where we give a characterization of the bubble space
B, (T T) =Py_1(T) @ span{A¢dev(n; @ i), \pdev(n; @), £=0,...,3}.
Define the global finite element space

S ={rh € L*(T) : 4|7 € Pi(T;T) for cach T € Ty,
and all the DoFs (3.1a)—(3.1b) are single-valued}.

Remark 3.4. The construction can be readily extended to arbitrary dimension
R? for d > 2. There are d + 1 faces for a d-simplex. At each face, we have d — 1
linearly independent traceless matrices {tr; ®np}{=! and, in total, (d+1)(d—1) such
matrices form a basis of T. The basis of bubble functions is constructed verticeswisely
{Aedev(VA; ®ty)} for £=0,...,d and d — 1 different 4 for each /.

Remark 3.5. Since the basis functions are expressed in terms of intrinsic geometric
quantities—tangential and normal vectors along with barycentric coordinates—the de-
fined finite element spaces are affine invariant, meaning the space remains unchanged
under affine transformations. Thus, the traditional method of using a reference tetra-
hedron and transforming to the physical element can be applied, resulting in the
same finite element space. In particular, curved elements can be handled using the
Piola transform, as described in equations (3.76)—(3.77) of [33]. Extending the two-
dimensional work of [4] to a distributional mixed finite element method specifically
tailored for the quad-curl problem on domains with curved boundaries is an interesting
topic for future research.
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As H=1(div,Q) = (Ho(curl,9))’, we can use H(curl )-conforming finite elements,
i.e., Nédélec elements [34, 35] for the pair space. Take

£ o(T) =@ x Pp_y(T;R?) + grad Py 1 (T), (=kork—1

as the space of shape functions. The element N, k‘ 41 is the first kind and N, kc i is the
second kind Nédélec elements [34, 35]. The DoFs Ny ,(T) are given by

(3.4a) (v-t,q)e, q€Ple),ec&(T),
(3.4b) (nxvxn,q)r, qe€curlpPy_1(F)®xPi_o(F),FeF(T),
(3.4c) (v,q)r, q€curlP,_o(T;R3) @ xP,_3(T).

Define global finite element spaces

Ve = {vn € H(curl, Q) :wp|r € N (T) for T €Ty,
and all the DoF's (3.4a)—(3.4c) are single-valued}.

o curl

Let V0.0 = Vi, N Ho(cwl, Q) and Vil :=VEn, .
We use the standard Lagrange element for H!(Q),

VE, = {n € HY(Q) : ¥n|7 € Peyr (T) for T € Ty},

° d
and let iy}, = VES, 0 HE(Q). Let

VETLL(R®) = VERS, OR%,  and VIR (M) =R @ VIR,

The degree of polynomial may be skipped in the notation of finite element spaces
when it is clear from the context.

3.2. Distributional finite element complex. By treating the right-hand side
of (2.4) as a bilinear form defined on =" x V| the weak operators can be naturally
extended to the discrete spaces by restricting the bilinear form to subspaces. Define

(curl div),, = Jp(curl div),, : 35" — (W()/Zurl = @Zurl,
o_curl

(gradcurl)y, = Jy(gradcurl ), : V), — (i) = 540,

where the isomorphism .J;, is the Reisz representation of the L2-inner product and
realized by the inverse of the mass matrix of the corresponding finite element spaces.

o curl
More precisely, for o), € Bi", (curl div),op, € V;ur such that

((curl div) oy, vp) = ((curl div),oh, vp)

(3.5) = Z (divey, curlvy)r — Z ([nTopn],nr - curlvy)p
TeTh FGf-'n
=— Z (on,gradcurlvy)r + Z (n x opn,[n x curlv,])p
T€Th FeFn

= —(op, (grad curl ) vp).

For a fixed triangulation 7, (curl div), is well defined which can be obtained by

inverting the mass matrix of \ofzur . However, {(curl div)y} is not uniformly bounded
when h — 0 as (3.5) is not a bounded linear functional of L?(2).
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o grad

Similarly, define discrete div operator divy, : Ho(curl,Q) =V, by

o grad

(divh v,¢h) = —('v,gradwh), V¢}L (S Vh

Notice that divy is the L?-adjoint of —grad restricted to @irad. Again for a fixed
triangulation 7Ty, divy is well defined which can be obtained by inverting the mass
matrix of Yofira . However, {divj} is not uniformly bounded as h — 0 as (v, grad)
is, in general, not a bounded linear functional of L? unless v € H(div,{2).

THEOREM 3.6. The distributional finite element curl div complex is

(grad, mskw x)

R® x {0} — Vi, (R%) x R v () Sevend,

(3.6)

(curl div)y,

tn (reurl divp  rgrad
Yl Vikon — Vg, — 0.

When Q CR3 is a bounded and topologically trivial Lipschitz domain, (3.6) is ezact.

Proof. As curlgrad =0, it is straightforward to verify divy(curl div), = 0. Take
71, =devcurloy with o, € V‘iburl (M). Since n x Tpn=n X (curloy)n is single-value
across each face F' € ]i'h, we get 7, € 25", In the distribution sense, curl divdev curl =
0 and so is (curl div), devcurl. In summary, we have verified (3.6) is a complex.

Verification of ker(grad, mskwx) = R? x {0} is trivial. For ), € Vil (M) and
devcurl (7) = 0, by the exactness of (2.3), we can find (v,c) € H}(Q;R?) x R s.t.
gradv + cmskwx = 7. As 74 is polynomial of degree k, we conclude that v €
VIR (R?).

From the finite element de Rham complex grad@ffﬁ n= V((:Zrl})h Nker(curl), we
have

o curl o grad

(3.7) divi Vi o)n = Vigpn-

It remains to prove

o_curl

(3.8) (curl div), X3 ), = Vik0),n Nker(divy),
(3.9) dev curl Vi (M) = £, j, Nker((curl div)y).
We will prove (3.8) in Corollary 3.12 and (3.9) in Corollary 3.13. 0

o curl

3.3. Characterization of null spaces. Define Kj =V, ) , Nker(div,) and
(curleurl )y : K — K so that

(3.10) ((curlcurl)pup, vp) = (curluy, curlvy), v, € Kj,.
LEMMA 3.7. We have the discrete Poincaré inequalities

(3.11) lor|l < |lcurlwvg ||, v, € K7,

3.12) lvnll (curty S [[(curlcurl )y, i € K.

Proof. The first Poincaré inequality (3.11) can be found in [20, Lemma 3.4 and
Theorem 3.6] and [33, Lemma 7.20]. Consequently, (curl-, curl-) is an inner product
on K and the operator (curlcurl ), is isomorphic.
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Etn Vocurl
n Jn(curl div)q, Jn(grad curl),,
Ih Icurl
(curl div) (grad curl) .
¢ cur h Creurl rad curl), ¢
Y Viion D V&

Fic. 3. Identities connecting the weak differential operators and interpolation operators.

Taking up = vy, in (3.10) and applying (3.11), we get
||cu1r1'vh||2 < |[(curlcurl)pvp||||vnll < ||(curlcurl) v ||||curl vy

Hence ||curlvy|| < ||(curlcurl ), vy |- The proof is finished by applying (3.11) again to
bound ||vg||. 0

We will introduce interpolation operators satisfying the commutative diagrams in
Figure 3.

Let ;™ : XX — 3" | |, be the interpolation operator using DoF (3.1) and denote
by o1 =1Ij"0.

C

LEMMA 3.8. For 7 € ¥™ and vy, € %O’(Zj),h, it holds that
(3.13) ((curl div)y, (I;*7),vs) = {(curl div),T,vs).
Proof. By definition,

Z —(7 — I;*r, grad curlvy, ) + (n x (7 — [[*T)n,n x curlvy,)sr =0,
TETh

which is true due to DoFs (3.1a)—(3.1b) and the fact that grad curlvy,|r € Pr_o(T;R?)
and n x curlvy,|p € Py_1(F;R?). 1]

o curl
We introduce the interpolation operator I{"! : Vgul — VEZ;),h defined by DoF
(3.4) and denote by v = If" .

LEMMA 3.9. For ve VE™! and 1), € ZZ"_L}L, it holds that
(3.14) ((curl div)y,Tp,v) = ((curl div),7p, If"v).
Proof. By integration by parts and 7, |[r€ Pr_1(T;T), we have

((curl div) T, v)
= Z (curl divT4,v)1 — Z ([n x divry +curl p(nTrpn)], v)F

TeTh FeFy,

- Z ([nTrrnfe,v - te)e
eeéh

= Z (curl div Ty, v5)7 — Z (In x divry, + curl p(nTrpn)],v1)p

TETH FeFy,

- Z ([nTmpn]e,vr - te)e = ((curl div),Th,vr),
GGéh

where [RTTn]e =3 1t Do rerr)ccor (T ThlTn)|e(te  tre). 0
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COROLLARY 3.10. Let T, € N}, satisfy (curl div),T), = 0. Then we have
curl div 7y =0 and 1, € H(curldiv,Q; T).

Proof. Let 1), € 2" satisfy (curl div),7, = 0. By Lemmas 3.9 and 2.3, curl div
7r =0 in the distribution sense. 0

At first glance, the null space X" |, Nker((curl div)y) is larger than the null

space X3 | , Nker(curl div) as the test function space is @Ezjm not C§°. However,
Lemma 3.9 implies that they are the same due to the design of finite element spaces
and weak differential operators. This is in the same spirit of the Hellan—-Herrmann—
Johnson (HHJ) element [22, 23, 31, 11] in two dimensions.

LEMMA 3.11. It holds that
(3.15) (curl div), (I} (mskw uy,)) = —(curleurl )pup,  wy, € Kj.

Proof. Since (mskwup)n = uy x n, it follows that mskwuy, € X*. By the fact
that divmskwuj, = —curluy, we have

((curl div),, (mskw wp, ), vp) = (div mskw wp,, curl vy) = —(curl uy, curlvy,).

Then the result holds from (3.13). |
With complex (3.6) and identity (3.15), we have the commutative diagram

ur dev curl n (curl div)p ¢
Vi,hl (M) —— Zi—m Ky 0
3.16 curl curl )y,
( ) _I}tzn % T( )’
K;.
COROLLARY 3.12. It holds that
o_curl
(3.17) (curl div), 5§, ), = K§ = Vipy) , Nker(divy).
Proof. 1t is straightforward to verify that (curl div), X" C K. On the other side,
take wy, € Kf. Let uy, = (curleurl); *wy, € K§ and set 7j, = —I* (mskw uy,) € X4
By (3.15),

(curl div)p T = (curlcurl ) pup, = wy,
which ends the proof. 0
COROLLARY 3.13. We have
(3.18) dev cueri‘jﬁl (M) = X3, Nker((curl div)p).

Proof. By complex (3.6), devcurl Vil (M) C 25} |, Nker((curl div)s). Then we
prove (3.18) by dimension count. By (3.7) and (3.17),

o curl o grad

dim 33", ;, Nker((curl div)y) = dim S, — dim Vi 5 qyp +dim Vi

L k41 A A
=l =gl +2( 3 )i (F5 ) A i

() ) ()
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Similarly,
dim dev curl Vi (M) = dim V§%! (M) — dim V7] |, (R?) + 2

k+1
= —3|Vu| + 3|&x| +3< 9 ).Fh| — 3| Fn|

o)+ )

Combine the last two identities to get

dim EZH_Lh Nker((curl div)) — dimdev CUI‘IV?’IEI (M)
=|Vp| 4 3|Vh| — €] — 3|En| + | Fn| + 3| Fn| — 4| Tn| — 2

k+1 .
("3 )i 1m - 15D

Finally, we conclude the result from 4(7x| = |Fp| + |Fn|, and the Euler’s formulas
Vhl = |Enl + [Fnl = [Tal = L and [Vy| = |En] + [Fn| = [Tn] = 1. u

Remark 3.14. Here is another proof of (3.18). Take 7, € X* |, Nker((curl div)y).
By Corollary 3.10, we have curl divr), = 0. Therefore, ), = devcurle with o €
HY(Q;M). Let o; € V§"! (M) be the interpolation of o based on DoFs (3.4a)—
(3.4c). The edge moment is not well defined for H' function but may be fixed by
the fact that devcurle = 7 has extra smoothness. It is easy to verify that all the
DoFs (3.1a)—(3.1b) of 7}, — devcurlo; vanish. Therefore, 7, = devcurlo; € devcurl
Vzurl (M)

3.4. Helmholtz decompositions. The right half of the distributional finite
element curl div complex (3.6) is listed below

curl dev curl tn (curl div)n  &eurl divp, rerad
vl () deveurd, wn | (L o dive, gerad 0 g — for k1.

By taking the dual, we have the short exact sequence

rad curl ) & cur c o ora rad rora
0 « (grad curl ), K}, dedeun, Vi, = Ki; @ grad (V%Jrld,h) & V%Jrld,h 0.

By the framework in [12], we get the following Helmholtz decompositions from
the last two complexes, commutative diagram (3.16) and (3.15).
COROLLARY 3.15. We have the discrete Helmholtz decompositions
St =dev curlvz‘f,il (M) o (grad curl ), K7,
S, =dev cuerZ‘f,le (M) @ I;" (mskw KJ).
COROLLARY 3.16. We have the L?-orthogonal Helmholtz decomposition of space

s curl

(k,£),h>
o_curl : o grad o_grad
(3.19) Vieon = Ki o grad Vi), = (curlewrl ), Kf @ grad Vi),
o grad
= (curl div), =4, , @ grad Ve, y ..
LEMMA 3.17. We have the discrete Poincaré inequality

(3.20) H'Uh”H(curl) ,S H(gradcurl)hvhH, vp € K,Cl
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Proof. Set T, = I}™(mskwwv;,) € E?‘_Lh. Then (curl div), 7, = —(curlcurl ), vy,
follows from (3.15). By the scaling argument, the inverse inequality, and the Poincaré
inequality (3.11),

(3.21) I7all S lvnll < llcurl v
It follows that
|lcurlvy, || = ((curlcurl ) vy, v,) = —((curl div),7h, v,) = (Th, (grad curl ) vy ).
Applying Cauchy—Schwarz inequality and (3.21), we obtain
Jeurl oy | S [l(grad curl Jyop

which implies (3.20). O
4. Mixed finite element method of the quad-curl problem. Let 2 C R?
be a bounded polygonal domain. Consider the fourth order problem
—curl Acurlu=f in Q,
(4.1) divu=0 in Q,

uxn=curluxn=0 on 0,

where f € H=1(div,Q) Nker(div) is known. Such a problem arises from multiphysics
simulation such as modeling a magnetized plasma in magnetohydrodynamics [9)].

4.1. Distributional mixed formulation. Introducing o := gradcurlu, we
have tro = trgrad curlu = divcurlu = 0. Then rewrite problem (4.1) as the second-
order system
o —gradcurlu =0 in Q,

curldive =—f in Q,
divu =0 in Q,

uxn=curlu=0 on 0f2.

(4.2)

A mixed formulation of the system (4.2) is to find o € H *(curldiv,;T), u €
Hy(curl, ), and ¢ € H(£2) such that

(4.3a) (o, 7)+b(T,¢;u) =0, Ve H Y (curldiv,Q;T),v € H} (Q),
(43b) b(07¢;v):7<fav>a V’UEH()(CUI“I,Q),

where the bilinear form b(-,-;-) : (H 1 (curldiv,Q; T) x H}(Q)) x Ho(curl, ) is defined
by

b(T,1;v) := (curldivr,v) + (grad ¥, v).

The term (grad,u) is introduced to impose the divergence free condition divu =0.

LEMMA 4.1. For v € Hy(curl,Q), it holds that

b(r, ;v
(44) HvHH(curl) 5 sup ( 1/} ) .
TEH~(curldiv,T),peHJ () HTHHfl(CurldiV) + |’(/J|1

Proof of this lemma is similar to, indeed simpler than, that of the discrete inf-sup
condition (cf. Lemma 4.4), we thus skip the details here.
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LEMMA 4.2. For T € H-(curldiv,;T) and ¢ € HE () satisfying
(4.5) b(T,¢;v)=0 V v € Hy(curl,),
it holds that
(4.6) 71— curtaivy + 11 = [I7I1%.
Proof. By taking v =grad in (4.5), we get ) =0. Then (4.5) becomes
(curldivr,v) =0 V v € Hy(curl, ).

Hence curldivr =0, and (4.6) follows. 0

Combining (4.4), (4.6) and the Babuska—Brezzi theory [5] yields the well-posedness
of the mixed formulation (4.3a)-(4.3b).

THEOREM 4.3. The mized formulation (4.3a)—(4.3b) is well-posed. Namely, for
any f € H~(div,Q) N ker(div), there erists a unique solution (o,u,¢) to (4.3a)—
(4.3b). Furthermore, we have ¢ =0, and the stability

(47) ||U||H*1(curldiv) + ||u||H(Cur1) /S ||f||H*1(div)-

Proof. Combine the inf-sup condition (4.4) and the coercivity (4.6) to get (4.7)
and the well-posedness of the mixed formulation (4.3a)—(4.3b). By choosing v = grad ¢
in (4.3b), we get ¢ =0 from div f =0. d

4.2. Distributional mixed finite element method. For (7,9) € % x H}(Q)
and v € V" introduce the bilinear form
b (T,¢;v) = ((curl div),7,v) + (grad ¢, v).

o orad o curl
By (3.5), we have for (7,9) € X" |, x Viral’h and v € VE:’E)JL that

b (7,¢;v) = ((curl div),7T,v) + (grad ¢, v).

o grad
Then the distributional mixed finite element method finds o, € X", ¢, € Vi ¢ , and

o curl
uyp € V;ur such that

o grad
(4.8&) (O’h,Th)erh(‘l’h,i/)h;’U,h):O, VT},EEZH,’L/)hEVi s

o_curl

(4.8b) brn(Oh; on;vn) = —(f, vn), Vo, eV,

We will derive two discrete inf-sup conditions for the linear form by (-, -;-). To this
end, introduce some mesh dependent norms. For T € X", equip squared norm

HTH%I_l((CurI div)y) = ||T||2 + ||(cur1 div)hTHifh—l(div)a
where [[0] -1 (giy) :=8UP,, _gewn % The continuity of the bilinear form
L h h cur

bh(Tv/(/);’U) < (”T”H—l((curl div)n) + |w|1)”v”H(curl)a

o grad

for all 7 € ™ ¢ € V,
norms.

o curl
,V € Vzur , is straightforward by the definition of these
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o curl
LEMMA 4.4. For v, €V, , it holds that

bi(Th, ¥n; vk
(4.9) lonlienty S sup ( —
Th622"71/)h€§/irad ||ThHH*1((curl div)y) =+ |'¢h|1

o curl
Proof. By Helmholtz decomposition (3.19), given a v, € V;ur , there exists uy, €
o grad
K;, vy, = (curlcurl ), up, and ¢, € ij_al,h s.t.

(4.10) vy, = (curlcurl ), up, a2 grad gy, = v, 2 grad y,.
Then
curlvy, = curl oy, |lva||? = || (curlcurl ) un||® + |53
Set T, = —I}* mskw(uy, +05) € X3 5. By (3.15),
((curl div),7p,vp) = ((curlcurl ), (wp, + 1), v5) = ||(curl curl )y || + [|curl vy, ||2.
Consequently, by, (Th,¥n;vn) = ||vn]|? + [[curl vy,

It remains to control the norms. As the decomposition (4.10) is L2-orthogonal,
[n]1 < ||vp]| and ||(curlcurl)pug || < ||vk||. We control the negative norm by

(curluy, + curl 9, curl wy,)

||(curl diV)hThHH}Tl(div) = sup

wh, eﬁ,;“” ||wh || H(curl)

< |lcurlwp || + ||curl vy ||

S l[(curlewrl)pup || + [leurlop || < [[on]| g eur),

where we have used the discrete Poincaré inequality (3.12).
By the scaling argument, the inverse inequality, and the Poincaré inequality
(3.12),

7ol S llunll + [[on]] S [l (curlcurl) pun | + [lcurlvs || < 2[[vnl| #cun)

as required. 0

Introduce

o127 ((grad curt )y = l1on 1 + | (grad curl ) op 2.

Again the continuity of the bilinear form in these norms

o grad o curl

bh(va;v) S (”T” + W)‘l)”v”H((gradcurl)h)7T S Zﬁnﬂﬁ S Vh ,VE Vh
is straightforward by the definition of these norms.
o curl
LEMMA 4.5. For v, €V, , it holds that

b (Th, Yn;vn)

4.11 (3 rad cur 5 sup Nra L+ b 1y
(4.11) [onla((grad curt)) soa |74l + [¥nls

ThGE;n,wh€®
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Proof. We still use the Helmholtz decomposition (4.10) but choose
7, = —(grad curl ) ,v;, = —(grad curl ), 0p,.
Then

b (T vnivn) = || (grad curl)pvp | + [¢nF-
We end the proof by the estimates |74l + [tn|1 S ||l b((gradeur),) and [|vn] S
|(grad curl ) vp|| 4 |%n]1, in which we use the Poincaré inequality (3.20) for v,. 0O

There are other variants of mesh-dependent norms. For 7 € X', equip a mesh-
dependent squared norm

T35 =11+ Y hrln x|}
FeFy

By the inverse trace inequality, clearly we have ||7hllo,n ~ |71 for 7, € . For
piecewise smooth vector-valued function v, equip a mesh-dependent squared norm

ot =Y lleradollz+ Y At [[0]lf-
TeTh FeFy,

Then
bu(7,%;0) SITllonlcurloyn +[¢hlvll, TeT™ ¢ e Hy(Q),ve V™.

One can prove the norm equivalence

o_curl

(4.12) |(grad curl )pvp || =~ |curlvy|in, vr €V,
and thus obtain the discrete inf-sup condition from (4.11)

b (Th, s vn)

curlvg|[1,n S sup _ s
I w2 gerea | Tnllon + [Ynl’

rheEiL‘“,we

where [[curlvy |3 ), := [[curlvy[|* + [curl v, [T .
The discrete coercivity on the null space is similar to Lemma 4.2.

o_grad
LEMMA 4.6. For T) € " and ¢y, € Vi " satisfying

o curl

bh(Th7'(/)h;vh):07 V’Uh th )
it holds that
(413) ”Th”?{*l((curl div)y) + W}hﬁ = ||Th||2'

Applying the Babuska—Brezzi theory [5], from the discrete inf-sup conditions (4.9)
and (4.11), and the discrete coercivity (4.13), we achieve the well-posedness of the
mixed finite element method (4.8a)—(4.8b).

THEOREM 4.7. The distributional mized finite element method (4.8a)—(4.8b) for
the quad-curl problem is well-posed. We have the discrete stability results
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o nll -1 ((curl div)n) +1Pnl1 + [[un | 2 (curn)
< Ap(Th, OnyUh Thy Yn, V)

(4.14) < sup )
Th€zin7¢h€§/irad 7,0}16{/;““ |Th||H*1((cur1 div)y) + |wh|1 + ||vh||H(Cur1)
lonll + ol + [[unll #((grad curl)n)
A Up; v
(415) 5 sup h(ah)¢ha h7Th?’l/)h7 h)

ecurl

ThEEZ,“ﬂPhE@irad JREV, |Th|| + |7/}h|1 + ”vhHH((gradCUﬂ)h) ’

tn o grad o curl
forany op €3, pn €V, , and up, €V, , where

Ap(Oh, dn, Uhy Thy Yn,O8) = (Th, Th) + bp(Th, Yniun) + br(oh, dn;vn).

By choosing vj, = grad ¢y, in (4.8b), we get ¢, =0 from div f =0.
4.3. Error analysis.

LEMMA 4.8. Let (0,0,u) and (oh,0,un) be the solution of the mized formulation
(4.3a)—(4.3b) and the mized finite element method (4.8a)—(4.8b), respectively. Assume
o €™, and u,curlu € H*(;R3). Then

A1} o = op, 0, 15" w — wp; Th, i, vn)
(4.16) =(I"o — o, 1) + (If" u — u, grad ¥y,)

o curl

- grad
holds for any Tp, € T3, ¢y, € V,glra , and v €V,

Proof. Subtract (4.8a)—(4.8b) from (4.3a)—(4.3b) and use (3.13) and (3.14) to get
error equations

curl

(L' u — u, grad vy, ),
0.

(0 —on,Th) + bp(Th, n; I

bh(I;ELHO' — Uh,O;Uh) =

u— up)

Then subtract (o — If"o,T}) to get (4.16). ad

THEOREM 4.9. Let (0,0,u) and (op,0,up) be the solution of the mized formu-
lation (4.3a)—(4.3b) and the mized finite element method (4.8a)—(4.8b), respectively.
Assume o € H*(Q;T) and u,curlu € H*(;R3). Then

(4.17) lo = onll + 115" v — | ((grad curt ) S B* (ol + [uli),
(4.18) lw — unll g (curt) + hleurl (w —up)|in S RE(|o |k + |ulp + |curlulz).

Proof. Tt follows from the stability results (4.14)—(4.15) and (4.16) that

||I;Lno- - Uh” + ||Iﬁurlu - uh“H(curl) + ||I}CLur1u - uh“H((gradcurl)h)

<o — I + flu — I u).
Hence (4.17)—(4.18) follow from the triangle inequality, the norm equivalence (4.12),
and interpolation error estimates. 0

We perform numerical experiments to support the theoretical results of the dis-
tributional mixed method (4.8a)—(4.8b). Let Q = (0,1)3. Choose the function f in
(4.1) such that the exact solution of (4.1) is
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FI1G. 4. An initial perturbed mesh of the uniform mesh with h =1/2.

TABLE 1

Errors for the distributional mized finite element method (4.8a)—(4.8b) with k=1.

=

h 272 273 2—4 2-5
# DoFs for £ =0 2,332 17,240 132,400 1,037,408
# DoFs for £ =1 2,936 21,424 163,424 1,276,096
[lo—onll 1.51E + 02 8.62E + 01 4.48E + 01 2.26E + 01
order — 0.81 0.95 0.99
lcurl (w — wp)|| 1.48E + 01 5.60E + 00 2.39E + 00 1.13E + 00
order — 1.40 1.23 1.08
llgrad 7;, curl (w — wp)|| 1.46E + 02 1.46E + 02 1.46E + 02 1.46E + 02
order — 0 0 0
[l —upl| for £=0 1.49E + 00 5.23E-01 2.19E-01 1.03E-01
order — 1.51 1.25 1.09
lu —upl| for £=1 1.04E + 00 2.82E-01 7.32E-02 1.85E-02
order — 1.88 1.95 1.98

sin® (7x) sin® (7y) sin®(72)
w=curl [ sin®(7z)sin®(7y)sin®(7z) |,
0

and let o := grad curlu. To break the symmetry, the initial unstructured mesh of €2
is shown in Figure 4, which is a perturbation of the uniform mesh with h =1/2. Then
we take uniform refinement of this initial unstructured triangulation.

We will implement the hybridized version of (4.8a)-(4.8b); see (5.1a)—(5.1b).

Therefore, the number of DoF's is dim @E}:;Lh +dim Ag_q 5, where Ag_1 j is the space
of Lagrange multiplier. Numerical results of || — o], ||lu — up|, ||curl (uw — wp)||,
and |/grad 7, curl (w — wp)|| of the distributional mixed method (4.8a)—(4.8b) with
k=1 and ¢=0,1 are shown in Table 1. It is observed that || — o}| = O(h), and
lcurl (w — up)|| = O(h) numerically, which coincide with the theoretical error esti-
mates in (4.17) and (4.18). The error ||u — uy| = O(h**!) is also observed but not
included in (4.17) and (4.18).

4.4. Postprocessing. We can additionally derive the superconvergence result
of |lcurl (I w — uy,) || < h**+! by using the duality argument [17, section 4.3]. Post-
processing can be also applied to improve the approximation. It follows from the
standard procedure of the stable mixed methods and will be briefly reviewed below.
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TABLE 2
Errors for the postprocessing for k=1.

h 272 273 2—4 275
# DoFs for £=0 2,332 17,240 132,400 1,037,408
# DoFs for £ =1 2,936 21,424 163,424 1,276,096
HCUTlTh (u— ’U'Z)H 9.25E + 00 2.71E + 00 7.18E-01 1.83E-01
order — 1.77 1.92 1.98
||grad7—hcur17—h(u — u;i)” 1.52E + 02 8.62E + 01 4.48E + 01 2.26E + 01
order — 0.81 0.95 0.99

We will construct a new superconvergent approximation to w in virtue of the
optimal result of o in (4.17). Introduce discrete space

Vi = {wv, € L2(Q;R?) s wp |7 € PL(T;R?) 4 x P(T;R?) for T € Ty, }.

Let ff”kH(T) be the subspace of P41 (7") with vanishing funcition values at vertices
of T'. For each T' € T, define the new approximation u; € V; to u piecewisely as a
solution of the following problem:

(4193) (’U,Z 'taQ)ez(uh 'tyq)e v q6P0(6)7665(T)a
(4.19b) (grad curlu}, )7 = (oh, Q)T V q € grad curl P (T;R?),
(4.19¢) (ul,q)r = (un,q)r ¥ qegradP (7).

It is easy to verify that the local problem (4.19a)—(4.19¢) is well-posed. We can prove
lrad 7, curl 7, (u — )| S ¥ (lorle + fuli + [eurluli),
and from ||curl (I{"" w — up)|| < RFF! that
lleurl 7, (w —wp) || S (ol + fulk + |eurlwlery + 0 || £])-

Numerical results of the postprocessing u; for £ =1 and ¢ = 0,1 are listed in
Table 2. We can observe that [[curly, (u — u})|| = O(h?) and ||grad 7, curl 7; (u —
u})|| = O(h) numerically, which are one order higher than ||curl(u — )| and
llgrad 7, curl (w — wp, )|, respectively. Indeed, ||grad 1, curl (u — up)|| = ||l — onl|-

5. Hybridization of distributional mixed finite element method. In this
section we will hybridize the distributional mixed finite element method (4.8a)—(4.8b)
following the framework in [1]. We introduce a Lagrange multiplier for the tangential-
normal continuity of o which can be treated as an approximation of (ng x curlu)|z, .
As o is discontinuous, it can be eliminated elementwise and the size of the result-
ing linear system is reduced, which is easier to solve than the saddle point system
obtained by the mixed method (4.8a)—(4.8b). With the hybridized method, we can
also establish the equivalence of the mixed method (4.8a)-(4.8b) to a weak Galerkin
method without stabilization and nonconforming finite element methods in [29, 45].

To this end, introduce two finite element spaces

Selin i ={Th € LX(T): Thlr € Pe1(T;T) for each T € Ty},
Ag—1p={py, € L2(Fn;R3) : py,|p € Pp_q (F;R?) and py, - n|p =0 for each F € Fi,
and g, =0 on Fp\Fp}.
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The space Ay, is introduced as the Lagrange multiplier to impose the tangential-normal
continuity and is equipped with squared norm

2 - 2

lnlan=>" > b lealf, a==%1/2.
TeTn FEF(T)

5.1. Hybridization. The hybridization of the mixed finite element method

o_curl o grad

(4.82)—(4.8b) is to find (op,un, dn, Ap) € 212—11,h X Vo X Veprn X Ag—1,n such
that

(5.1a)

(@, Th) + bn(Th, Ynsun)+ cn(Th, An) =0, Vrne Sl ne “D’%f{i,h,
(5.1b) br(0h, n;vn)+ crl(on, my) = —(f,vn),Vui € WZ}}),M By € Ng—1,n,
where the bilinear form ci(7h, An) == = rer (N X Thnp, Ap)yp is introduced to

impose the tangential-normal continuity.

LEMMA 5.1. There holds the following inf-sup condition:

(5.2)
||vhHH((gradcurl)h) + [|np x curlvy, — Hh||1/2,h
by (ThyYnivn) 4 cn(Th, 1y,)

e = e 7RIl + [¥nl1

C

o_curl
5 V'Uh EV(k,Z),h’y’h S Ak—l,h~

< sup

~

Proof. Let 7, € E,;_ll , be determined as follows: for T € Ty,

1
(nXThnF)|F:h—(nFxcurlvh—p,h), FeF(T),
F

(Th,q)T = —(grad curl vy, @), qePr_o(T;T).
Clearly, we have
I7all < llgrad 7, curlop|| + [[np X curlvn — pplly /o

b (71,0;08) + cn(Th, ) = |lgrad 7, curlwp > + [np x curlon — |17, -

Then
(5.3) lgrad 7, curlvp || + [|np x curlvp, — py |y o 5
< swp bn (Th,05v5) + Ch(Th»Hh)7
"'hGEE_ll,h ||ThH

which together with (4.12) indicates

[(grad curl) pop[| + e x curlvy, — pgl, o

< sup br (Th, Vi vn) + cn(Th, py,)
ThEX; by eV 1 Tall + [¥n]1

~

Therefore, the inf-sup condition (5.2) holds from (4.11). ad

THEOREM 5.2. The hybridized mized finite element method (5.1a)—(5.1b) is well-

o_curl o gra
posed, and the solution (o, un, ¢p) € T x Vik,0),n X V%—H,h coincides with the mized
finite element method (4.8a)—(4.8b).
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o cgrad
Proof. For 7, € X, " and ¢, €V,  satisfying
o curl
bn(Th, Yn;vn) + cn(Th  my) =0, Vor €V, py € Ay,

we have 7, € X", and by(7h,¢¥p;vp) = 0 for vy, € @Zurl. By (4.13), we obtain
the discrete coercivity || 742 + |¢n|? < ||7h]|?. Then we get the well-posedness of the
hybridized mixed finite element method (5.1a)—(5.1b) by applying the Babuska—Brezzi
theory [5] with the discrete inf-sup condition (5.2).

By (5.1b) with v, =0, o, € 5", thus (o, up, ¢p) satisfies (4.8a)(4.8b). O

THEOREM 5.3. Let (0,0,u) and (op,,0,up, Ap) be the solution of the mized formu-
lation (4.3a)—(4.3b) and the mized finite element method (5.1), respectively. Assume
o€ H*(;T) and u,curlu € H*(Q;R3). Then

(5.4) [np x carlup — Apl|_q /05 S h*(hle |k + hlulg + [curl ul).

Proof. By the proof of the discrete inf-sup condition (5.2),

| x curl (I — ) — ( ’}Zl(np x curlu) — Ah)”l/zh

b (Thy 0; 15w — wp,) + cp (T, Q’};l(np x curlu) — Ap)

< sup .

T rnesil,, [7nll

Thanks to (3.14) and (5.1a), we have

by (71, 0 17w — up) + cn (T4, QY (np x curlu) — Ap) = (0, — 0, 74).
Hence

H"F x curl (I§"y — up,) — (Qkle(np x curlu) — )\h)||1/2,h Sllo— ol

Therefore, we can derive estimate (5.4) from (4.17) and the error estimate of I¢%1. O

5.2. Connection to other methods. The pair (v, ;) can be understood as
> curl
a weak function. Define (gradcurl),, :Vl;ur x Ap, — 51 by

((grad curl ) (vn, py), Th) = —bn (Th, 0;01) — cn(Th 1y,),  YTh €S 4.

By (5.1a), we can eliminate o, elementwise and write o) = (gradcurl), (un, Ap).
Then the hybridized mixed finite element method (5.1a)—(5.1b) can be recast as fol-
o_curl o grad
lows: find (wn, An, dn) € V(g g)n X Ag—1,n X VZM such that
((grad curl), (wp, An), (grad curl )y, (v, @) — (v, grad ¢r) = (f, vh),
(uha grad Q/Jh) =0

o curl - grad
for all (v, pn, ) € sz;)’h X Np_1p X Viﬁ,h- That is, we obtain a stabilization free

weak Galerkin method for solving the quad-curl problem. The stabilization free is
due to the inf-sup condition (5.3). Indeed, the inf-sup condition (5.3) is equivalent to

lgrad 7, curlvg || + [ x curlvy — py |, o < lleradcurl ) (vr, o)

> curl
for vy, € V((:Zf@),h and p;, € Ag_1p. This means ||(gradcurl),(vs, py,)|| is @ norm on
space Kj x Ag_1p-
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For the hybridized mixed finite element method (5.1a)—(5.1b) of the lowest order
k=1and £=0,1, it is also related to a nonconforming finite element method.

We first recall the H(gradcurl) nonconforming finite elements constructed in
[29, 45]. The space of shape functions is gradPe1(T) ® (x — xr) x Py (T;R?) for
¢=0,1. The degrees of freedom are given by

(5.5a) /'v~tqu, q €Py(e) on each e € E(T),
(5.5b) / (curlv) x ndS on each F e F(T).
F

Define the global H (grad curl )-nonconforming element space
W, :={vy, € L*(Q;R®) : vp|r € gradPp 1 (T) & (& — xp) x Py (T;R?) VT €Ty,
all the DoF's (5.5a)—(5.5b) are single-valued, and vanish on boundary}.

The interpolation operator Iﬁurl can be extended to W}, which is well-defined. We
o_curl

have I;"' W), =V, and (3.14) still holds for v € W},
An H(grad curl)-nonconforming finite element method for quad-curl problem

o grad
4.1) is to find wy, € W), and ¢y, € V¥ such that
h

(5.6a) (grad 7, curl 7, wy,, grad 7, curl 7, vy,) — (IE™ vy, grad ép) = (£, IE" vy,
(5.6b) (1 1wy, grad ) = 0

> grad
for all vy, € Wy, and ¢, € V,glm . Nonconforming finite element method (5.6a)—(5.6b)
is a modification of those in [29, 45] by introducing interpolation operator If"!. In
other words, we identify the complex that accommodates the nonconforming finite
elements constructed in [29, 45] and generalize these elements to arbitrary orders.
o grad

LEMMA 5.4. For vy, € Wy, satisfying (I§" vy, grad g,) =0 for all g, € Vim , we
have the discrete Poincaré inequality
(5.7) |vall + |leurl 7, va|| < |lgrad 7, curl 7, vy ||

Proof. By (4.12) in [29], it follows that

lon =I5 o | < hlleurl 7, vp]|.

Thanks to the discrete Poincaré inequality for space @Zurl, we have
15 o] S fleurl (15w,
Combining the last two inequalities gives
[onll < llon = I o | + 115 o | S Rfleurl 7 vp| + [lewr] (15 03) .
By the commutative property of Iflurl, it holds that
Jeurl (75" v,)1| S llgrad 7, curl 7, v |
Hence
Jon )l < lleurl 7, vy | + [lgrad 7, curl 7, v

Finally, apply the discrete Poincaré inequality for H!-nonconforming linear element
to end the proof. ]

Using the discrete Poincaré inequality (5.7), we have the well-posedness.
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LEMMA 5.5. Nonconforming finite element method (5.6a)—(5.6b) is well-posed.

We will show the equivalence between the hybridized mixed finite element method
(5.1a)—(5.1b) with £ =1 and nonconforming finite element method (5.6a)—(5.6b).

o grad
THEOREM 5.6. Let (wp,¢p) € W, X Vi be the solution of the nonconforming
finite element method (5.6a)—~(5.6b). Then (grad ;. curl g, wp, I;" wy, ¢, QF, (np X

o curl o grad

curlwy,)) € E(;,}z x V, x V. x Ay is the solution of the hybridized mized finite
element method (5.1a)—(5.1b) with k=1.

Proof. Choose vy, € Wy, such that DoF (5.5a) vanishes, then I;’Lurl'vh =0. Apply-
ing the integration by parts on the left-hand side of (5.6a), we get

0= Z ((grad curlwp)n, curlvy)sr
TETh
= Z (n x (grad curlwy)n, n x curlvy)gr
TETh

= Z ([n x (grad 7, curl 1, wp)n], np X curl 7, vy) F.
FeFy,

By the arbitrariness of the DoF (5.5b) for v,, we obtain [n x (grad 7, curl 7, wp)n] r =
0 for all F € Fy, that is grad 7, curl 7, wy, € 4. For all vj, € Wy, and p, € Ay, we get
from (3.14), the integration by parts, and (5.6a) that

curl

bn(grad 1, curl 7, wp, dn; I vy) + cp(grad 7, curl 7, wp, py,)

= by (grad 1, curl 1, wp, dp; I,‘i““'uh)

curl

= by (grad 1, curl 75, wp,, 0;vp) + (" vy, grad ép,)

curl

= —(grad 7, curl 1, wy,, grad 7, curl 7, vy) 4+ (15" vy, grad ép) = —(f, [E vy,).

Notice that I§u : W), %%O’Zur] is onto, hence (grad 1, curl 7, wp,, ¢p) satisfies (5.1b).
o grad
On the side hand, for all 7, € ZE}L and Yy, € Vi , apply (3.14), (5.6b), and the
integration by parts to get

(grad 7;, curl 7, wp, 1) + by, (Th, Yns I5 wy) + cn(Th, QF, (np x curlwy,))

= (grad 75, curl 75, wp, Th) + by (Th, 0; wp) + cp(Th, mp X curlwy,)
+ (I awy,, grad ¥y,

= (grad 75, curl 7 wp, Th) + by (T4, 0, wp) — Z (n x Tpn,n x curlwy) 50 =0.

TETh
That is, (grad 7, curl 7, wp, I8 wp, Q 7, (np X curlwy,)) satisfies (5.1a). d
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