Kikuchi, F.. {An isomorphic property of two Hilbert spaces appearing in electromagnetism: Analysis by the mixed formulation}. Japan Journal of Industrial and Applied Mathematics, 3(1):53--58, 1986.
Kikuchi, F.. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Eng., 64(1-3):509--521, 1986.
Boffi, D. and Costabel, M. and Dauge, M. and Demkowicz, L. and Hiptmair, R.. {Discrete compactness for the p-version of discrete differential forms}. ArXiv e-prints, ():, 2009.
Monk, P. and Demkowicz, L.. {Discrete compactness and the approximation of Maxwell's equations in R3}. Mathematics of Computation, 70(234):507--523, 2001.
Demkowicz, L. and Monk, P. and Schwab, Ch. and Vardapetyan, L.. Maxwell eigenvalues and discrete compactness in two dimensions. Computers & Mathematics with Applications, 40(4-5):589 - 605, 2000.
Graglia, RD and Wilton, DR and Peterson, AF and Gheorma, I.L. and di Elettronica, D.. {Higher order interpolatory vector bases on prism elements}. IEEE Transactions on Antennas and Propagation, 46(3):442--450, 1998.
Ilic, M.M. and Notaros, B.M.. {Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling}. IEEE Transactions on Microwave Theory and Techniques, 51(3):1026--1033, 2003.
Castillo, P. and Koning, J. and Rieben, R. and White, D.. {A discrete differential forms framework for computational electromagnetism}. Computer Modeling in Engineering and Sciences, 5(4):331--345, 2004.
Bossavit, A.. {A uniform rationale for edge elements on various element shapes (tetrahedra, hexahedra, prisms, pyramids)}. Fourth International Conference on Advanced COmputational Methods in ENgineering, ():, 2008.
Hiptmair, R. and Li, J. and Zou, J.. {Convergence analysis of Finite Element Methods for H (curl%3B Ω)-elliptic interface problems}. Preprint, ():, 2009.
Sifakis, E. and Der, K.G. and Fedkiw, R.. {Arbitrary cutting of deformable tetrahedralized objects}. Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, ():80, 2007.
Sifakis, E. and Shinar, T. and Irving, G. and Fedkiw, R.. {Hybrid simulation of deformable solids}. Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, ():90, 2007.
Bielser, D. and Glardon, P. and Teschner, M. and Gross, M.. {A state machine for real-time cutting of tetrahedral meshes}. Graphical models, 66(6):398--417, 2004.
O'Brien, J.F. and Hodgins, J.K.. {Graphical modeling and animation of brittle fracture}. Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ():146, 1999.
O'Brien, J.F. and Bargteil, A.W. and Hodgins, J.K.. {Graphical modeling and animation of ductile fracture}. ACM Transactions on Graphics (TOG), 21(3):291--294, 2002.
Han, H. and Huang, Z.. {Direct method of lines for the numerical solutions of interface problem}. Computer Methods in Applied Mechanics and Engineering, 171(1):61--75, 1999.
Rui, H. and Tabata, M.. {A Mass-Conservative Characteristic Finite Element Scheme for Convection-Diffusion Problems}. Journal of Scientific Computing, 43():416--432, 2010.
Knobloch, P.. {Numerical Solution of Convection--Diffusion Equations Using a Nonlinear Method of Upwind Type}. Journal of Scientific Computing, 43():454--470, 2010.
Kohn, R. and Onofrei, D. and Vogelius, M. and Weinstein, M.. {Cloaking via change of variables for the Helmholtz equation}. Communications on Pure and Applied Mathematics (New York), ():, 2010.
Kohn, RV and Shen, H. and Vogelius, MS and Weinstein, MI. {Cloaking via change of variables in electric impedance tomography}. Inverse Problems, 24():015016, 2008.
Uhlmann, G.. {Developments in inverse problems since Calderon's foundational paper}. Harmonic Analysis and Partial Differential Equations: Essays in Honor of Alberto P. Calderon, ():295, 2001.
Greenleaf, A. and Kurylev, Y. and Lassas, M. and Uhlmann, G.. {Electromagnetic wormholes via handlebody constructions}. Communications in Mathematical Physics, 281(2):369--385, 2008.
Greenleaf, A. and Kurylev, Y. and Lassas, M. and Uhlmann, G.. {Full-wave invisibility of active devices at all frequencies}. Communications in Mathematical Physics, 275(3):749--789, 2007.
Astala, K. and P\\"aiv\\"arinta, L. and Lassas, M.. {Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane}. Communications in Partial Differential Equations, 30(1):207--224, 2005.
Li, J. and Liu, H. and Zou, J.. {Multilevel linear sampling method for inverse scattering problems}. SIAM Journal on Scientific Computing, 30(3):1228--1250, 2008.
Greenleaf, A. and Kurylev, Y. and Lassas, M. and Uhlmann, G.. {Invisibility and inverse problems}. Bulletin American Mathematical Society, 46(1):55--97, 2009.
Greenleaf, A. and Kurylev, Y. and Lassas, M. and Uhlmann, G.. {Electromagnetic wormholes and virtual magnetic monopoles from metamaterials}. Physical review letters, 99(18):183901, 2007.
Greenleaf, A. and Kurylev, Y. and Lassas, M. and Uhlmann, G.. {Cloaking devices, electromagnetic wormholes, and transformation optics}. SIAM review, 51(1):3--33, 2009.
Chen, R. and Wu, Z.. {Applying multiquadric quasi-interpolation to solve Burgers' equation}. Applied Mathematics and Computation, 172(1):472--484, 2006.
Rao, A.V. and Benson, D.A. and Darby, CL and Francolin, C. and Patterson, MA and Sanders, I. and Huntington, G.T.. {Algorithm 902: GPOPS, a Matlab software for solving multiple-phase optimal control problems using the Gauss pseudospectral method}. ACM Trans. Math. Softw, ():, 2010.
Xu, X. and Huang, W. and Russell, RD and Williams, JF. {Convergence of de Boor's algorithm for the generation of equidistributing meshes}. IMA Journal of Numerical Analysis, ():, 2010.
Li, X. and Huang, W.. {An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems}. ArXiv e-prints, ():, 2010.
Huang, Weizhang and Kamenski, Lennard and Lang, Jens. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates. Journal of Computational Physics, 229(6):2179 - 2198, 2010.
Beale, J.T.. {Smoothing properties of implicit finite difference methods for a diffusion equation in maximum norm}. SIAM Journal on Numerical Analysis, 47(4):2476--2495, 2009.
Allendes, A. and Barrenechea, G.R. and Hernández, E. and Valentin, F.. {A two-level enriched finite element method for a mixed problem}. Mathematics of Computation, ():, 2010.
Ern, Alexandre and Vohral\ik, Martin. A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation. SIAM Journal on Numerical Analysis, 48(1):198-223, 2010.
Atkinson, K. and Chien, D. and Hansen, O.. {A spectral method for elliptic equations: the Dirichlet problem}. Advances in Computational Mathematics, ():1--21, 2009.
Liu, H. and Yan, Jue. {The Direct Discontinuous Galerkin (Ddg) Method For Diffusion With Interface Corrections}. Commun. Comput. Phys., 8(3):541--564, 2010.
Wang, D. and Hassan, O. and Morgan, K. and Weatherill, N.. {Enhanced remeshing from STL files with applications to surface grid generation}. Communications in Numerical Methods in Engineering, 23(3):227--240, 2007.
Thekale, A. and Gradl, T. and Klamroth, K. and R\\"ude, U.. {Optimizing the number of multigrid cycles in the full multigrid algorithm}. Numerical Linear Algebra with Applications, 17():199---210, 2010.
Gaspar, FJ and Lisbona, FJ and Gracia, JL and Rodrigo, C.. {Multigrid finite element methods on semi-structured triangular grids for planar elasticity}. Numerical Linear Algebra with Applications, 17():473---493, 2010.
Baker, AH and Kolev, T.V. and Yang, UM. {Improving algebraic multigrid interpolation operators for linear elasticity problems}. Numerical Linear Algebra with Applications, 17(495---517):, 2010.
Chow, P. and Kubota, T. and Namiki, T.. {A Multilevel-Multigrid Approach to Multiscale Electromagnetic Simulation}. Computational Science--ICCS 2006, ():34--40, 2006.
Pennacchio, Micol and Simoncini, Valeria. Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process. Journal of Computational and Applied Mathematics, 145(1):49 - 70, 2002.
Pennacchio, M. and Simoncini, V.. {Non-symmetric Algebraic Multigrid Preconditioners for the Bidomain Reaction--Diffusion system}. Preprint, ():, 2009.
Pavarino, Luca F. and Scacchi, Simone. Multilevel Additive Schwarz Preconditioners for the Bidomain Reaction-Diffusion System. SIAM J. Sci. Comput., 31(1):420--443, 2008.
Durga, K. Kanaka and Ramakrishna, M.. A new multigrid algorithm for non-linear equations in conjunction with time-marching procedures. International Journal of Non-Linear Mechanics, 39(2):233 - 245, 2004.
Carstensen, C. and Hu, J.. {A unifying theory of a posteriori error control for nonconforming finite element methods}. Numerische Mathematik, 107(3):473--502, 2007.
Eriksson, K.. {An adaptive finite element method with efficient maximum norm error control for elliptic problems}. Math. Models Methods Appl. Sci, 4():313--329, 1994.
Golub, G.H. and Wathen, A.J.. {An Iteration for Indefinite Systems and Its Application to the Navier--Stokes Equations}. SIAM Journal on Scientific Computing, 19():530, 1998.
Loghin, D. and Wathen, AJ. {Schur complement preconditioning for elliptic systems of partial differential equations}. Numerical linear algebra with applications, 10(5-6):423--443, 2003.
Sch\\"oberl, J.. {A multilevel decomposition result in H (curl)}. Proceedings from the 8th European Multigrid, Multilevel, and Multiscale Conference, Scheveningen, The Hague, ():, 2005.
Chen, Long and Nochetto, Ricardo H. and Zhang, Chen-Song. Multigrid Methods For Elliptic Obstacle Problems On 2D Bisection Grids. The Proceedings for 19th Conferences for Domain Decomposition Methods, ():, 2010.
Jiao, X. and Colombi, A. and Ni, X. and Hart, J.. {Anisotropic mesh adaptation for evolving triangulated surfaces}. Engineering with Computers, ():1--14, 2009.
Zhong, L. and Chen, L. and Shu, S. and Wittum, G. and Xu, J.. {Quasi-optimal convergence of adaptive edge finite element methods for three dimensional indefinite time-harmonic Maxwell's equations}. Submitted, ():, 2009.
Dmitrochenko, O. and Mikkola, A.. {Two simple triangular plate elements based on the absolute nodal coordinate formulation}. Journal of Computational and Nonlinear Dynamics, 3():041012, 2008.
Fuchs, F.G. and McMurry, A.D. and Mishra, S. and Risebro, N.H. and Waagan, K.. {Finite Volume Methods for Wave Propagation in Stratified Magneto-Atmospheres}. Commun. Comput. Phys., 7():473--509, 2010.
Bastian, P.. {Locally refined solution of unsymmetric and nonlinear problems}. Incomplete decomposition (ILU): algorithms, theory, and applications: proceedings of the Eighth GAMM-Seminar, Kiel, January 24-26, 1992, ():12, 1993.
Glowinski, Roland and Toivanen, Jari. A multigrid preconditioner and automatic differentiation for non-equilibrium radiation diffusion problems. J. Comput. Phys., 207(1):354--374, 2005.
Bergen, B. and Gradl, T. and Hulsemann, F. and Rude, U.. {A massively parallel multigrid method for finite elements}. Computing in Science \& Engineering, 8(6):56--62, 2006.
Hulsemann, F. and Kowarschik, M. and Mohr, M. and Rude, U.. {Parallel geometric multigrid}. LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING, 51():165, 2005.
Abedi, Reza and Chung, Shuo-Heng and Erickson, Jeff and Fan, Yong and Garland, Michael and Guoy, Damrong and Haber, Robert and Sullivan, John M. and Thite, Shripad and Zhou, Yuan. Spacetime meshing with adaptive refinement and coarsening. SCG '04: Proceedings of the twentieth annual symposium on Computational geometry, ():300--309, 2004.
Cordero, A. and Hueso, J.L. and Martínez, E. and Torregrosa, J.R.. {Efficient three-step iterative methods with sixth order convergence for nonlinear equations}. Numerical Algorithms, 53(4):1--11, 2010.
Persson, P.O.. {Size Functions and Mesh Generation for High-Quality Adaptive Remeshing}. Proc. of the Third MIT Conference on Computational Fluid and Solid Mechanics. Cambridge, MA, ():, 2005.
Strang, G. and Persson, P.O.. {Circuit simulation and moving mesh generation}. Proc. of Int. Symp. on Comm. and Inform. Tech. 2004 (ISCIT 2004), ():, 2005.
Strout, M.M. and Carter, L. and Ferrante, J.. {Rescheduling for locality in sparse matrix computations}. Lecture Notes in Computer Science, ():137--148, 2001.
Chen, Zhiming and Wang, Long and Zheng, Weiying. An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities. SIAM J. Sci. Comput., 29(1):118--138, 2007.
Izsák, F. and van der Vegt, J.J.W.. {A reliable and efficient implicit a posteriori error estimation technique for the time harmonic Maxwell equations}. http://purl. org/utwente/64477, ():, 2007.
Izsak, F. and Harutyunyan, D. and Vegt, J.J.W.. {Implicit a posteriori error estimates for the Maxwell equations}. Mathematics of computation, 77(263):1355--1386, 2008.
Harutyunyan, D. and Izsak, F. and van der Vegt, J.J.W. and Botchev, M.A.. Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates. Computer Methods in Applied Mechanics and Engineering, 197(17-18):1620 - 1638, 2008.
Badia, Santiago and Codina, Ramon. Stabilized continuous and discontinuous Galerkin techniques for Darcy flow. Computer Methods in Applied Mechanics and Engineering, In Press, Accepted Manuscript():-, 2010.
Chen, Zhiming and Xiao, Yuanming and Zhang, Linbo. The adaptive immersed interface finite element method for elliptic and Maxwell interface problems. J. Comput. Phys., 228(14):5000--5019, 2009.
Buffa, A. and Sangalli, G. and Vázquez, R.. {Isogeometric analysis in electromagnetics: B-splines approximation}. Computer Methods in Applied Mechanics and Engineering, ():, 2009.
Buffa, A. and Cho, D. and Sangalli, G.. {Linear independence of the T-spline blending functions associated with some particular T-meshes}. Computer Methods in Applied Mechanics and Engineering, ():, 2009.
D\\"orfel, M.R. and J\\"uttler, B. and Simeon, B.. {Adaptive isogeometric analysis by local h-refinement with T-splines}. Computer methods in applied mechanics and engineering, ():, 2008.
Bazilevs, Y. and Calo, VM and Cottrell, JA and Evans, JA and Hughes, TJR and Lipton, S. and Scott, MA and Sederberg, TW. {Isogeometric analysis using T-splines}. Computer Methods in Applied Mechanics and Engineering, ():, 2009.
Sederberg, T.W. and Cardon, D.L. and Finnigan, G.T. and North, N.S. and Zheng, J. and Lyche, T.. {T-spline simplification and local refinement}. ACM Transactions on Graphics (TOG), 23(3):276--283, 2004.
Floater, M.S. and Rasmussen, A.F. and Reif, U.. {Extrapolation methods for approximating arc length and surface area}. Numerical Algorithms, 44(3):235--248, 2007.
Floater, M.S. and Kosinka, J.. {On the injectivity of Wachspress and mean value mappings between convex polygons}. Advances in Computational Mathematics, 32():163--174, 2010.
Floater, M.S. and Hormann, K.. {Barycentric rational interpolation with no poles and high rates of approximation}. Numerische Mathematik, 107(2):315--331, 2007.
Li, J.. {Numerical convergence and physical fidelity analysis for Maxwell's equations in metamaterials}. Computer Methods in Applied Mechanics and Engineering, 198(37-40):3161--3172, 2009.
Zhang, J.. {Accelerated multigrid high accuracy solution of the convection-diffusion equation with high Reynolds number}. Numerical Methods for Partial Differential Equations, 13(1):77--92, 1997.
Auzinger, W. and Stetter, HJ. {Defect correction and multigrid iterations}. Multigrid Methods, W. Hackbusch and U. Trottenberg, eds, 960():327--351, 1982.
Jimack, Peter K. and Mahmood, Rashid and Walkley, Mark A. and Berzins, Martin. A multilevel approach for obtaining locally optimal finite element meshes. Advances in Engineering Software, 33(7-10):403 - 415, 2002.
Christiansen, S.H.. {Foundations of finite element methods for wave equations of Maxwell type}. Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods, ():335, 2009.
Kirby, R.C.. {Algorithm 839: FIAT, a new paradigm for computing finite element basis functions}. ACM Transactions on Mathematical Software (TOMS), 30(4):502--516, 2004.
Christiansen, S.H.. {A construction of spaces of compatible differential forms on cellular complexes}. Mathematical Models and Methods in Applied Sciences, 18(5):739--758, 2008.
Clemens, M. and Weiland, T.. {Discrete electromagnetics: Maxwell's equations tailored to numerical simulations}. International Compumag Society Newsletter, 8(2):13--20, 2001.
Clemens, M. and Weiland, T.. {Discrete electromagnetism with the finite integration technique}. Progress in Electromagnetics Research, PIER, 32():65--87, 2001.
Kuznetsov, Y. and Repin, S.. {New mixed finite element method on polygonal and polyhedral meshes}. Russian Journal of Numerical Analysis and Mathematical Modelling, 18(3):261--278, 2003.
Sukumar, N. and Wets, RJB. {Deriving the continuity of maximum-entropy basis functions via variational analysis}. SIAM Journal on Optimization, 18(3):914--925, 2008.
Arroyo, M. and Ortiz, M.. {Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods}. Int. J. Numer. Meth. Engng, 65():2167--2202, 2006.
Sukumar, N. and Wright, RW. {Overview and construction of meshfree basis functions: from moving least squares to entropy approximants}. Int. J. Numer. Meth. Engng, 70():181--205, 2007.
Bruvoll, S. and Floater, M.S.. {Transfinite mean value interpolation in general dimension}. Journal of Computational and Applied Mathematics, ():, 2009.
Schaefer, S. and Ju, T. and Warren, J.. {A unified, integral construction for coordinates over closed curves}. Computer Aided Geometric Design, 24(8-9):481--493, 2007.
Joshi, P. and Meyer, M. and DeRose, T. and Green, B. and Sanocki, T.. {Harmonic coordinates for character articulation}. ACM SIGGRAPH 2007 papers, ():71, 2007.
Malsch, E.A. and Dasgupta, G.. {Shape functions for polygonal domains with interior nodes}. International Journal for Numerical Methods in Engineering, 61(8):1153--1172, 2004.
Warren, J. and Schaefer, S. and Hirani, A.N. and Desbrun, M.. {Barycentric coordinates for convex sets}. Advances in Computational Mathematics, 27(3):319--338, 2007.
Malsch, E.A. and Dasgupta, G.. {Algebraic construction of smooth interpolants on polygonal domains}. Challenging the Boundaries of Symbolic Computation: Proceedings of the Fifth International Mathematica Symposium Imperial College, London, July 2003, ():81, 2003.
Malsch, E.A. and Lin, J.J. and Dasgupta, G.. {Smooth Two-Dimensional Interpolations: A Recipe for All Polygons}. Journal of Graphics, GPU, \& Game Tools, 10(2):27--39, 2005.
Ju, T. and Schaefer, S. and Warren, J. and Desbrun, M.. A geometric construction of coordinates for convex polyhedra using polar duals. SGP '05: Proceedings of the third Eurographics symposium on Geometry processing, ():181, 2005.
Dyer, Ramsay and Zhang, Hao and Moller, Torsten. Delaunay mesh construction. SGP '07: Proceedings of the fifth Eurographics symposium on Geometry processing, ():273--282, 2007.
Dyn, N. and Hormann, K. and Kim, S.J. and Levin, D.. {Optimizing 3D triangulations using discrete curvature analysis}. mathematical methods for curves and surfaces: Oslo, 2001():135--46, 2000.
Bobach, T. and Farin, G. and Hansford, D. and Umlauf, G.. {Discrete harmonic functions from local coordinates}. Lecture Notes in Computer Science, 4647():93, 2007.
Martin, S. and Kaufmann, P. and Botsch, M. and Wicke, M. and Gross, M.. {Polyhedral finite elements using harmonic basis functions}. Computer Graphics Forum, 27(5):1521--1529, 2008.
Ju, Tao and Liepa, Peter and Warren, Joe. A general geometric construction of coordinates in a convex simplicial polytope. Comput. Aided Geom. Des., 24(3):161--178, 2007.
Zhao, Q. and Yuan, G.. {Analysis and construction of cell-centered finite volume scheme for diffusion equations on distorted meshes}. Computer Methods in Applied Mechanics and Engineering, 198(37-40):3039--3050, 2009.
Belikov, VV and Ivanov, VD and Kontorovich, VK and Korytnik, SA and Semenov, A.Y.. {The non-Sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points}. Computational Mathematics and Mathematical Physics, 37(1):9--15, 1997.
Shepard, D.. {A two-dimensional interpolation function for irregularly-spaced data}. Proceedings of the 1968 23rd ACM national conference, ():517--524, 1968.
Meyer, M. and Lee, H. and Barr, A. and Desbrun, M.. {Generalized barycentric coordinates on irregular polygons}. Graphics Tools: The Jgt Editors' Choice, ():59, 2005.
Diaz, A.R. and Benard, A.. {Designing materials with prescribed elastic properties using polygonal cells}. International Journal for Numerical Methods in Engineering, 57(3):301--314, 2003.
Dohrmann, CR and Key, SW and Heinstein, MW. {A method for connecting dissimilar finite element meshes in two dimensions}. International Journal for Numerical Methods in Engineering, 48(5):655--678, 2000.
Ghosh, S. and Moorthy, S.. {Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method}. Computer Methods in Applied Mechanics and Engineering, 121(1-4):373--409, 1995.
Alt, H. and Guibas, L.J.. {Discrete geometric shapes: Matching, interpolation, and approximation}. Handbook of computational geometry, ():121--153, 1999.
Bubley, R. and Dyer, M. and Jerrum, M.. {An elementary analysis of a procedure for sampling points in a convex body}. Random Structures and Algorithms, 12(3):213--235, 1998.
Dyer, Martin and Frieze, Alan and Kannan, Ravi. A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM, 38(1):1--17, 1991.
Dabbene, F. and Gay, P. and Polyak, T. B.. {Recursive algorithms for inner ellipsoidal approximation of convex polytopes}. Automatica, 39(10):1773--1781, 2003.
B\\"ansch, E. and Mikula, K.. {A coarsening finite element strategy in image selective smoothing}. Computing and Visualization in Science, 1(1):53--61, 1997.
Thomas, James L. and Diskin, Boris and Brandt, Achi. Textbook multigrid efficiency for the incompressible Navier-Stokes equations: high Reynolds number wakes and boundary layers. Computers & Fluids, 30(7-8):853 - 874, 2001.
Gauss, F. and Center, M. and Brandt, A. and Venner, K. and Brandt, A. and Venner, CH. {Multilevel Evaluation of Integral Transforms on Adaptive Grids}. Relation, 10(1.35):556, 1996.
Du, Q. and Wang, D.. {Recent progress in robust and quality Delaunay mesh generation}. Journal of Computational and Applied Mathematics, 195(1-2):8--23, 2006.
Du, Q. and Wang, D.. {Constrained boundary recovery for three dimensional Delaunay triangulations}. International Journal for Numerical Methods in Engineering, 61(9):1471--1500, 2004.
Avis, D. and Bremner, D. and Seidel, R.. {How good are convex hull algorithms?}. Computational Geometry: Theory and Applications, 7(5-6):265--301, 1997.
Harrison, C. and Angelescu, DE and Trawick, M. and others. {Pattern coarsening in a 2D hexagonal system}. EPL (Europhysics Letters), 67():800--806, 2004.
George, PL and Borouchaki, H. and Laug, P.. {An efficient algorithm for 3D adaptive meshing}. Advances in Engineering Software, 33(7-10):377--387, 2002.
Sastry, S.P. and Shontz, S.M.. {A Comparison of Gradient-and Hessian-Based Optimization Methods for Tetrahedral Mesh Quality Improvement}. Proceedings of the 18th International Meshing Roundtable, ():631--648, 2009.
Erten, H. and \\"Ung\\"or, A. and Zhao, C.. {Mesh Smoothing Algorithms for Complex Geometric Domains}. Proceedings of the 18th International Meshing Roundtable, ():175--193, 2009.
Bourgault, Y. and Picasso, M. and Alauzet, F. and Loseille, A.. {On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows}. International Journal for Numerical Methods in Fluids, 59(1):47--74, 2009.
Sukumar, N. and Malsch, E.A.. {Recent advances in the construction of polygonal finite element interpolants}. Archives of Computational Methods in Engineering, 13(1):129--163, 2006.
Xie, H.. {Extrapolation of the Nédélec element for the Maxwell equations by the mixed finite element method}. Advances in Computational Mathematics, 29(2):135--145, 2008.
Monk, P.. {Superconvergence of finite element approximations to Maxwell's equations}. Numerical Methods for Partial Differential Equations, 10(6):793--812, 1994.
Brandts, J.H.. {Superconvergence of mixed finite element semi-discretizations of two time-dependent problems}. Applications of Mathematics, 44(1):43--53, 1999.
Okabe, A. and Suzuki, A.. {Locational optimization problems solved through Voronoi diagrams}. European Journal of Operational Research, 98(3):445--456, 1997.
Iri, M. and Murota, K. and Ohya, T.. {A fast Voronoi-diagram algorithm with applications to geographical optimization problems}. Proceedings of the 11th IFIP Conference on System Modelling and Optimzation, Lecture Notes in Control and Inform. Sci, 59():273--288, 1984.
Genz, A. and Cools, R.. {An adaptive numerical cubature algorithm for simplices}. ACM Transactions on Mathematical Software (TOMS), 29(3):297--308, 2003.
De Castro, M.M. and Tournois, J. and Alliez, P. and Devillers, O.. {Filtering Relocations on a Delaunay Triangulation}. inria-00413344, version 1, ():, 2009.
Schiftner, A. and H\\"obinger, M. and Wallner, J. and Pottmann, H.. {Packing circles and spheres on surfaces}. ACM Transactions on Graphics (TOG), 28(5):1--8, 2009.
Liu, Y. and Wang, W. and Lévy, B. and Sun, F. and Yan, D.M. and Lu, L. and Yang, C.. {On centroidal voronoi tessellation---energy smoothness and fast computation}. ACM Transactions on Graphics (TOG), 28(4):101, 2009.
Li, J.. {Finite element analysis and application for a nonlinear diffusion model in image denoising}. Numerical Methods for Partial Differential Equations, 18(5):649--662, 2002.
Burger, M. and Carrillo, J.A. and Wolfram, M.T.. {A MIXED FINITE ELEMENT METHOD FOR NONLINEAR DIFFUSION EQUATIONS}. Kinetic and Related Models, 3(1):59--83, 2010.
Brauer, JR and Mayergoyz, ID. {Finite-element computation of nonlinear magnetic diffusion and its effects when coupled to electrical, mechanical, and hydraulic systems}. IEEE Transactions on Magnetics, 40(2 Part 2):537--540, 2004.
Lee, TS and Advani, SH and Lee, JK and Moon, H.. {A fixed grid finite element method for nonlinear diffusion problems with moving boundaries}. Computational Mechanics, 8(2):111--123, 1991.
Guibas, Leonidas J. and Knuth, Donald E. and Sharir, Micha. Randomized incremental construction of Delaunay and Voronoi diagrams. Proceedings of the seventeenth international colloquium on Automata, languages and programming, ():414--431, 1990.
Edelsbrunner, Herbert and Li, Xiang-Yang and Miller, Gary and Stathopoulos, Andreas and Talmor, Dafna and Teng, Shang-Hua and Ungor, Alper and Walkington, Noel. Smoothing and cleaning up slivers. STOC '00: Proceedings of the thirty-second annual ACM symposium on Theory of computing, ():273--277, 2000.
Hudson, B. and Miller, G.L. and Phillips, T. and Sheehy, D.. {Size complexity of volume meshes vs. surface meshes}. Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ():1041--1047, 2009.
Milakis, E. and Silvestre, L.E.. {Regularity for fully nonlinear elliptic equations with Neumann boundary data}. Communications in Partial Differential Equations, 31(7-9):1227--1252, 2006.
Lee, R. and Madsen, N.. {A mixed finite element formulation for Maxwell's equations in the time domain}. Journal of Computational Physics, 88():284--304, 1990.
Costabel, M. and Dauge, M. and Nicaise, S.. {Singularities of Maxwell interface problems}. Mathematical Modelling and Numerical Analysis, 33(3):627--649, 1999.
Bonito, A. and Guermond, J.L.U.C.. {Approximation Of The Eigenvalue Problem For Time Harmonic Maxwell System By Continuous Lagrange Finite Elements}. Math. Comp., ():, 2010.
Pasik, M.F. and Kotulski, J.D. and Turner, C.D.. {Adaptive Mesh Refinement for Time-Domain Electromagnetics Using Vector Finite Elements: A Feasibility Study}. Report, ():, 2005.
Beck, R. and Hiptmair, R.. {Multilevel Solution Of The Time-Harmonic Maxwell's Equations Based On Edgeelement}. International journal for numerical methods in engineering, 45(7):901--920, 1999.
Oden, J.T. and Prudhomme, S. and Demkowicz, L.. {A posteriori error estimation for acoustic wave propagation problems}. Archives of Computational Methods in Engineering, 12(4):343--389, 2005.
Creusé, E. and Nicaise, S.. {A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods}. Preprint, ():, 2009.
Dahlke, Stephan and Novak, Erich and Sickel, Winfried. Optimal approximation of elliptic problems by linear and nonlinear mappings IV: Errors in L2 and other norms. Journal of Complexity, 26(1):102 - 124, 2010.
Dahlke, Stephan and Novak, Erich and Sickel, Winfried. Optimal approximation of elliptic problems by linear and nonlinear mappings III: Frames. Journal of Complexity, 23(4-6):614 -- 648, 2007.
Gie, G.M.I.N. and Temam, R.. {Cell Centered Finite Volume Methods Using Taylor Series Expansion Scheme Without Fictitious Domains}. Int. J. Numer. Anal. Mod., 7():1--29, 2010.
Frazier, J.D. and Jimack, P.K. and Kirby, R.M.. {On the Use of Adjoint-Based Sensitivity Estimates to Control Local Mesh Refinement}. Commun. Comput. Phys., 7(3):631--638, 2010.
Zhao, X.Y. and Hu, J. and Shi, Z.C.. {Convergence analysis of the adaptive finite element method with the red-green refinement}. Science in China Series A: Mathematics, ():1--16, 2009.
Wang, J. and Cai, Q. and Li, Z.L. and Zhao, H.K. and Luo, R.. {Achieving energy conservation in Poisson--Boltzmann molecular dynamics: Accuracy and precision with finite-difference algorithms}. Chemical Physics Letters, 468(4-6):112--118, 2009.
Bajaj, C. and Gillette, A. and Zhang, Q.. {Stable mesh decimation}. 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, ():277--282, 2009.
Yang, Y. and Zhou, A.. {A finite element recovery approach to Green's function approximations with applications to electrostatic potential computation}. Journal of Computational and Applied Mathematics, 225(1):202--212, 2009.
Bond, S.D. and Chaudhry, J.H. and Cyr, E.C. and Olson, L.N.. {A first-order system least-squares finite element method for the Poisson-Boltzmann equation}. Journal of Computational Chemistry, ():, 2009.
Chen, H. and Gong, X. and He, L. and Zhou, A.. {Convergence of Adaptive Finite Element Approximations for Nonlinear Eigenvalue Problems}. ArXiv e-prints, ():, 2010.
Yang, YiDu and Zhang, ZhiMin and Lin, FuBiao. {Eigenvalue approximation from below using non-conforming finite elements}. SCIENCE CHINA Mathematics, 53(1):137--150, 2010.
Sovinec, CR and Glasser, AH and Gianakon, TA and Barnes, DC and Nebel, RA and Kruger, SE and Schnack, DD and Plimpton, SJ and Tarditi, A. and Chu, MS. {Nonlinear magnetohydrodynamics simulation using high-order finite elements}. Journal of Computational Physics, 195(1):355--386, 2004.
Bochev, Pavel B. and Ridzal, Denis. An Optimization-Based Approach for the Design of PDE Solution Algorithms. SIAM Journal on Numerical Analysis, 47(5):3938-3955, 2009.
Chung, Eric T. and Engquist, Bjorn. Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions. SIAM Journal on Numerical Analysis, 47(5):3820-3848, 2009.
Pan, J.. {Global superconvergence for the bilinear-constant scheme for the Stokes problem}. SIAM Journal on Numerical Analysis, 34(6):2424--2430, 1997.
Sheng-Jiang, C.. {Superconvergence of finite element approximation for Navier-Stokes equations}. Bonn Univ. Extrapolation Methods in the Finite Element Method, ():31-45, 1984.
Li, J. and Wang, J. and Ye, Xiu. {Superconvergence By L2-Projections For Stabilized Finite Element Methods For The Stokes Equations}. International Journal of Numerical Analysis and Modeling, 6(4):711--723, 2009.
Lin, Q. and Pan, J.. {Global superconvergence for rectangular elements in Stokes problem}. Proc. Systems Science and Systems Engineering, Great Hall (HK) Culture Publishing Co, ():371--376, 1991.
Chen, Z.. {Superconvergence results for Galerkin methods for wave propagation in various porous media}. Numerical Methods for Partial Differential Equations, 12(1):99--122, 1996.
Benzi, M. and Frommer, A. and Nabben, R. and Szyld, D.B.. {Algebraic theory of multiplicative Schwarz methods}. Numerische Mathematik, 89(4):605--639, 2001.
Benzi, M. and Golub, G.H.. {A preconditioner for generalized saddle point problems}. SIAM Journal on Matrix Analysis and Applications, 26(1):20--41, 2005.
Benzi, M. and Haws, J.C. and Tuma, M.. {Preconditioning highly indefinite and nonsymmetric matrices}. SIAM Journal on Scientific Computing, 22(4):1333--1353, 2001.
Benzi, M. and Szyld, D.B. and Van Duin, A.. {Orderings for incomplete factorization preconditioning of nonsymmetric problems}. SIAM Journal on Scientific Computing, 20(5):1652--1670, 1999.
Alléon, G. and Benzi, M. and Giraud, L.. {Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics}. Numerical Algorithms, 16(1):1--15, 1997.
Benzi, M. and Cullum, J.K. and Tuma, M.. {Robust approximate inverse preconditioning for the conjugate gradient method}. SIAM Journal on Scientific Computing, 22(4):1318--1332, 2001.
Benzi, M. and Tuma, M.. {A sparse approximate inverse preconditioner for nonsymmetric linear systems}. SIAM Journal on Scientific Computing, 19(3):968--994, 1998.
Benzi, M. and Meyer, C.D. and Tuma, M.. {A sparse approximate inverse preconditioner for the conjugate gradient method}. SIAM Journal on Scientific Computing, 17(5):1135--1149, 1996.
Ma, J.. {Convergence analysis of moving Godunov methods for dynamical boundary layers}. Computers and Mathematics with Applications, 59():80--93, 20010.
Gyimóthy, S. and Kiss, I. and Pávó, J.. {Adaptive sampling technique based on moving meshes for building data-equidistant inversion databases for NDT}. International Journal of Applied Electromagnetics and Mechanics, 30(3):309--319, 2009.
Sun, P. and Chen, L. and Xu, J.. {Numerical Studies of Adaptive Finite Element Methods for Two Dimensional Convection-Dominated Problems}. Journal of Scientific Computing, 43(1):24--43, 2010.
Demkowicz, L. and Gopalakrishnan, Jay. {A New Class Of Discontinuous Petrov-Galerkin (DPG) Finite Element (Fe) Methods For Convection-Dominated Diffusion And Compressible Navier-Stokes Equations}. Talk, ():, 2009.
Kevrekidis, Ioannis G. and Nicolaenko, Basil and Scovel, James C.. Back in the Saddle Again: A Computer Assisted Study of the Kuramoto--Sivashinsky Equation. SIAM Journal on Applied Mathematics, 50(3):760-790, 1990.
Babuska, I. and Osborn, J.. {Analysis of finite element methods for second order boundary value problems using mesh dependent norms}. Numerische Mathematik, 34(1):41--62, 1980.
Faure, S. and Laminie, J. and Temam, R.. {Finite volume discretization and multilevel methods in flow problems}. Journal of Scientific Computing, 25(1):231--261, 2005.
Lord, Gabriel James. Attractors and Inertial Manifolds for Finite-Difference Approximations of the Complex Ginzburg--Landau Equation. SIAM J. Numer. Anal., 34(4):1483--1512, 1997.
Uddin, Marjan and Haq, Sirajul and Siraj-ul-Islam. A mesh-free numerical method for solution of the family of Kuramoto-Sivashinsky equations. Applied Mathematics and Computation, 212(2):458 - 469, 2009.
Jolly, M.S. and Kevrekidis, I.G. and Titi, E.S.. Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations. Physica D: Nonlinear Phenomena, 44(1-2):38 - 60, 1990.
Akrivis, G. and Smyrlis, Y.S.. {Implicit--explicit BDF methods for the Kuramoto--Sivashinsky equation}. Applied Numerical Mathematics, 51(2-3):151--169, 2004.
Sell, G.R. and Taboada, M.. {Local dissipativity and attractors for the Kuramoto-Sivashinsky equation in thin 2D domains}. Nonlinear Anal, 18():671--687, 1992.
Akrivis, G. and Crouzeix, M. and Makridakis, C.. {Implicit-explicit multistep finite element methods for nonlinear parabolic problems}. Mathematics of Computation, 67(222):457--477, 1998.
Lopez-Marcos, MA. {Numerical analysis of pseudospectral methods for the Kuramoto-Sivashinsky equation}. IMA Journal of Numerical Analysis, 14():233--233, 1994.
Guo, B. and Xiang, XM. {The large time convergence of spectral method for generalized Kuramoto-Sivashinsky equations}. J. Comput. Math, 15(3):1--1, 1997.
Sirisup, S. and Karniadakis, G. E.. A spectral viscosity method for correcting the long-term behavior of POD models. Journal of Computational Physics, 194(1):92 - 116, 2004.
He, Y. and Huang, W.. {A posteriori error analysis for finite element solution of elliptic differential equations using equidistributing meshes}. ArXiv e-prints, ():, 2009.
Mekchay, K. and Morin, P. and Nochetto, R.H.. {AFEM for the Laplace-Beltrami Operator on Graphs: Design and Conditional Contraction Property}. Math. Comp., ():, 2009.
Nilsson, J. and Gerritsen, M. and Younis, R.. {A novel adaptive anisotropic grid framework for efficient reservoir simulation}. SPE Reservoir Simulation Symposium, ():, 2005.
Jenny, P. and Lee, SH and Tchelepi, HA. {Adaptive multiscale finite-volume method for multiphase flow and transport in porous media}. Multiscale Modeling and Simulation, 3(1):50--64, 2005.
Li, D. and Cullick, AS and Lake, LW. {Global scale-up of reservoir model permeability with local grid refinement}. Journal of Petroleum Science and Engineering, 14(1-2):1--13, 1995.
Branets, L. and Ghai, S. and Lyons, S. and Wu, X.H.. {Efficient and Accurate Reservoir Modeling Using Adaptive Gridding with Global Scale Up}. SPE Reservoir Simulation Symposium, ():, 2009.
Demlow, A. and Stevenson, Rob. {Convergence And Quasi-Optimality Of An Adaptive Finite Element Method For Controlling L2 Errors}. Submitted, ():, 2009.
Demlow, Alan and Lakkis, Omar and Makridakis, Charalambos. A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems. SIAM Journal on Numerical Analysis, 47(3):2157-2176, 2009.
Glimm, J. and Grove, J. and Lindquist, B. and McBryan, O.A. and Tryggvason, G.. {The bifurcation of tracked scalar waves}. SIAM Journal on Scientific and Statistical Computing, 9():61, 1988.
Unverdi, S. and Tryggvason, G.. {A front-tracking method for viscous, incompressible, multi-fluid flows}. Journal of Computational Physics, 100(1):25--37, 1992.
LeVeque, R.J. and Shyue, K.M.. {Two-dimensional front tracking based on high resolution wave propagation methods}. Journal of Computational Physics, 123(2):354--368, 1996.
Liu, Xinfeng and Li, Yuanhua and Glimm, J. and Li, X.L.. A front tracking algorithm for limited mass diffusion. Journal of Computational Physics, 222(2):644 - 653, 2007.
Radovitzky, R. and Ortiz, M.. {Tetrahedral mesh generation based on node insertion in crystal lattice arrangements and advancing-front-Delaunay triangulation}. Computer Methods in Applied Mechanics and Engineering, 187(3-4):543--569, 2000.
Holst, M. and Nagy, G. and Tsogtgerel, G.. {Rough Solutions of the Einstein Constraints on Closed Manifolds without Near-CMC Conditions}. Communications in Mathematical Physics, 288():547-613, 2009.
Zhang, Y.T. and Zhao, H.K. and Qian, J.. {High order fast sweeping methods for static Hamilton--Jacobi equations}. Journal of Scientific Computing, 29(1):25--56, 2006.
Bargteil, A.W. and Goktekin, T.G. and O'brien, J.F. and Strain, J.A.. {A semi-Lagrangian contouring method for fluid simulation}. ACM Transactions on Graphics (TOG), 25(1):38, 2006.
Bornemann, F. and Rasch, C.. {Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle}. Computing and Visualization in Science, 9(2):57--69, 2006.
Lu, C. and Shanker, B.. {Generalized finite element method for vector electromagnetic problems}. IEEE Transactions on Antennas and Propagation, 55(5):1369--1381, 2007.
Vanmaele, M. and Van Keer, R.. {On a variational approximation method for a class of elliptic eigenvalue problems in composite structures}. Mathematics of Computation, 65(215):999--1018, 1996.
Becker, R. and Mao, S. and Shi, Z.C.. {A convergent adaptive finite element method with optimal complexity}. Electronic Transactions on Numerical Analysis, 30():291--304, 2008.
Xu, X. and Chen, H. and Hoppe, R.H.W.. {Optimality of Local Multilevel Methods on Adaptively Refined Meshes for Elliptic Boundary Value Problems}. Preprint, ():, 2009.
Carstensen, C. and Hoppe, RHW. {Unified framework for an a posteriori error analysis of non-standard finite element approximations of H (curl)-elliptic problems}. Journal of Numerical Mathematics, 17(1):27--44, 2009.
Braack, M. and Lube, G.. {Finite elements with local projection stabilization for incompressible flow problems}. Journal of Computational Mathematics, 27(2-3):116--147, 2009.
Feng, X. and Neilan, M. and Prohl, A.. {Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity}. Numerische Mathematik, 108(1):93--119, 2007.
Feng, X. and Neilan, M.. {Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations}. J. Scient. Comp, 38(1):74--98, 2009.
Becker, R. and Feng, X. and Prohl, A.. {Finite Element Approximations of the Ericksen--Leslie Model for Nematic Liquid Crystal Flow}. SIAM Journal on Numerical Analysis, 46():1704, 2008.
Barrett, J.W. and Feng, X. and Prohl, A.. {Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation}. Mathematical Modelling and Numerical Analysis, 40(1):175--199, 2006.
Barrett, J.W. and Feng, X. and Prohl, A.. {On p-harmonic map heat flows for 1≤ p<∞ and their finite element approximations}. SIAM Math. Anal, 40():1471--1498, 2008.
Barrett, J.W. and Bartels, S. and Feng, X. and Prohl, A.. {A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres}. SIAM Journal on Numerical Analysis, 45(3):905--927, 2008.
Gravemeier, V. and Wall, W.A. and Ramm, E.. {A three-level finite element method for the instationary incompressible Navier--Stokes equations}. Computer Methods in Applied Mechanics and Engineering, 193(15-16):1323--1366, 2004.
Dobson, M. and Luskin, M.. {An optimal order error analysis of the one-dimensional quasicontinuum approximation}. SIAM. J. Numer. Anal, 47():2455--2475, 2009.
Wang, Y. and Zhang, J.. {Integrated Fast and High Accuracy Computation of Convection Diffusion Equations Using Multiscale Multigrid Method}. Numerical Methods for Partial Differential Equations, ():, 2009.
Santos, J.E.. {Finite element approximation of coupled seismic and electromagnetic waves in fluid-saturated poroviscoelastic media}. Numerical Methods for Partial Differential Equations, 25():26--27, 2009.
Wang, C.. {Convergence of the interpolated coefficient finite element method for the two-dimensional elliptic sine-Gordon equations}. Numerical Methods for Partial Differential Equations, ():, 2009.
Gudi, T.. {Residual-based a posteriori error estimator for the mixed finite element approximation of the biharmonic equation}. Numerical Methods for Partial Differential Equations, ():, 2009.
Dai, W.. {An improved compact finite difference scheme for solving an N-carrier system with Neumann boundary conditions}. Numerical Methods for Partial Differential Equations, ():, 2009.
Yang, M.. {A posteriori error analysis of nonconforming finite volume elements for general second-order elliptic PDEs}. Numerical Methods for Partial Differential Equations, ():, 2009.
Yusufoglu, E. and Selam, C.. {The homotopy analysis method to solve the modified equal width wave equation}. Numerical Methods for Partial Differential Equations, ():, 2009.
Zheng, H. and Shan, L. and Hou, Y.. {A quadratic equal-order stabilized method for Stokes problem based on two local Gauss integrations}. Numerical Methods for Partial Differential Equations, ():, 2009.
Martin, O.. {On approximation in the fictitious domain method for a bidimensional transport equation}. Numerical Methods for Partial Differential Equations, ():, 2009.
Geiser, J.. {Consistency of iterative operator-splitting methods: Theory and applications}. Numerical Methods for Partial Differential Equations, ():, 2009.
Arrieta, J.M. and Jimenéz-Casas, Á. and Rodriguez-Bernal, A.. {Robin type conditions arising from concentrated potentials}. Proceedings of Equadiff, 11():157--164, 2005.
Bronstein, A.M. and Bronstein, M.M. and Devir, Y.S. and Kimmel, R. and Weber, O.. {Parallel algorithms for approximation of distance maps on parametric surfaces}. Proc. ACM SIGGRAPH, ():, 2007.
Arbogast, T. and Obeyesekere, M. and Wheeler, M.F.. {Numerical methods for the simulation of flow in root-soil systems}. SIAM Journal on Numerical Analysis, 30(6):1677--1702, 1993.
Chen, S. and Merriman, B. and Kang, M. and Caflisch, R.E. and Ratsch, C. and Cheng, L.T. and Gyure, M. and Fedkiw, R.P. and Anderson, C. and Osher, S.. {A level set method for thin film epitaxial growth}. Journal of Computational Physics, 167(2):475--500, 2001.
Peng, D. and Merriman, B. and Osher, S. and Zhao, H. and Kang, M.. {A PDE-based fast local level set method}. Journal of Computational Physics, 155(2):410--438, 1999.
EA, M.G. and Peacock-Lopez, S.N. and DA, V. and Vasquez, P.L.E.. {BIFURCATIONS, AND TEMPORAL AND SPATIAL PATTERNS OF A MODIFIED LOTKA-VOLTERRA MODEL}. International journal of bifurcation and chaos in applied sciences and engineering, 18(8):2223--2248, 2008.
Cai, Yongchang and Zhu, Hehua. A meshless local natural neighbour interpolation method for stress analysis of solids. Engineering analysis with boundary elements, 28(6):607--613, 2004.
Dunavant, DA. {High degree efficient symmetrical Gaussian quadrature rules for the triangle}. International journal for numerical methods in engineering, 21(6):1129--1148, 1985.
Wang, L. and Sontag, E.D.. Singularly perturbed monotone systems and an application to double phosphorylation cycles. Journal of NonLinear Science, 18(5):527--550, 2008.
Arrieta, J.M. and Jiménez-Casas, A. and Rodríguez-Bernal, A.. {Flux terms and Robin boundary conditions as limit of reactions and potentials concentrating at the boundary}. Revista Matemática Iberoamericana, 24(1):183--212, 2008.
ACEVEDO, R. and BEHRENS, E. and MEDDAHI, S. and RODRÍGUEZ, R.. {AN EFFICIENT SOLVER FOR A TIME-DEPENDENT EDDY CURRENT PROBLEM IN 3D}. preprint, ():, 2009.
Nguyen-Thoi, T. and Liu, GR and Nguyen-Xuan, H. and Nguyen-Tran, C.. {Adaptive analysis using the node-based smoothed finite element method (NS-FEM)}. Commun Numer Methods Eng. doi, 10():, 2009.
Franz, S. and Linß, T. and Roos, H.G.. {Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers}. Applied Numerical Mathematics, 58(12):1818--1829, 2008.
Franz, S. and Linß, T.. {Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection-diffusion problem with characteristic layers}. Numer. Methods Partial. Diff. Equations, 24(1):144--164, 2008.
Segal, A.. {A review of some finite element methods to solve the stationary Navier-Stokes equations}. International Journal for Numerical Methods in Fluids, 5():269--280, 1985.
Rui, Hong-xing. Analysis on a Finite Volume Element Method for Stokes Problems. Acta Mathematicae Applicatae Sinica (English Series), 21(3):359--372, 2005.
Li, Jian and He, Yinnian and Chen, Zhangxin. A new stabilized finite element method for the transient Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 197(1-4):22 - 35, 2007.
Li, J. and Chen, Z.. {A new stabilized finite volume method for the stationary Stokes equations}. Advances in Computational Mathematics, 30(2):141--152, 2009.
Chen, T. and Strain, J.. {Piecewise-polynomial discretization and Krylov-accelerated multigrid for elliptic interface problems}. Journal of Computational Physics, 227(16):7503--7542, 2008.
Melenk, JM and Gerdes, K. and Schwab, C.. {Fully discrete hp-finite elements: Fast quadrature}. Computer Methods in Applied Mechanics and Engineering, 190(32-33):4339--4364, 2001.
Andreianov, B. and Bendahmane, M.. {On Discrete Duality Finite Volume discretization of gradient and divergence operators in 3D}. preprint, 1(3.1):3--2, 2009.
Hsu, L.C. and Mavriplis, C.. {Adaptive meshes for the spectral element method}. Computer Methods in Applied Mechanics and Engineering, 116():374--381, 1994.
Deuflhard, P. and Weiser, M.. {Local inexact Newton multilevel FEM for nonlinear elliptic problems}. Computational science for the 21st century, ():129--138, 1997.
Liu, Hailiang and Yan, Jue. The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems. SIAM Journal on Numerical Analysis, 47(1):675-698, 2009.
Kellogg, R.B. and Stynes, M.. {Sharpened bounds for corner singularities and boundary layers in a simple convection--diffusion problem}. Applied Mathematics Letters, 20(5):539--544, 2007.
Poplau, G. and Potts, D.. {Fast Poisson solvers on nonequispaced grids: Multigrid and Fourier Methods compared}. Proceedings of SPIE: Advanced Signal Processing Algorithms, Architectures and Implementations XIII, 5205():, 2003.
Banks, HT and Lybeck, NJ. {A nonlinear Lax-Milgram lemma arising in the modeling of elastomers}. Nonlinear partial differential equations and their applications: Collège de France seminar, ():1, 1998.
Loseille, Adrien and Alauzet, Frédéric. Optimal 3D Highly Anisotropic Mesh Adaptation Based on the Continuous Mesh Framework. Proceedings of the 18th International Meshing Roundtable, ():575--594, 2009.
Escobar, JM and Rodr\iguez, E. and Montenegro, R. and Montero, G. and González-Yuste, JM. {Simultaneous untangling and smoothing of tetrahedral meshes}. Computer Methods in Applied Mechanics and Engineering, 192(25):2775--2787, 2003.
Montenegro, R. and Cascon, J. M. and Escobar, J. M. and Rodr\iguez, E. and Montero, G.. An automatic strategy for adaptive tetrahedral mesh generation. Appl. Numer. Math., 59(9):2203--2217, 2009.
Escobar, JM and Montero, G. and Montenegro, R. and Rodriguez, E.. {An algebraic method for smoothing surface triangulations on a local parametric space}. International Journal for Numerical Methods in Engineering, 66(4):740, 2006.
Bogovski, ME. Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Sov. Math., Dokl., 20():1094-1098, 1979.
Mikhailov, S.E.. {Traces, extensions, co-normal derivatives and solution regularity of elliptic systems with smooth and non-smooth coefficients}. Arxiv preprint arXiv:0906.3875, ():, 2009.
Ancona, Alano. Elliptic operators, conormal derivatives and positive parts of functions (with an appendix by Ha飉 Brezis). Journal of Functional Analysis, 257(7):2124 - 2158, 2009.
Harutyunyan, D. and Izs醟, F. and van der Vegt, J.J.W. and Botchev, M.A.. Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates. Computer Methods in Applied Mechanics and Engineering, 197(17-18):1620 - 1638, 2008.
Nechaev, O.V. and Shurina, E.P. and Botchev, M.A.. Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation. Computers & Mathematics with Applications, 55(10):2346 - 2362, 2008.
He, J.H.. {Variational iteration method: a kind of non-linear analytical technique: some examples}. International Journal of Non-Linear Mechanics, 34(4):699--708, 1999.
Dehghan, Mehdi and Shakeri, Fatemeh. Application of He's variational iteration method for solving the Cauchy reaction-diffusion problem. J. Comput. Appl. Math., 214(2):435--446, 2008.
Momani, S. and Abuasad, S.. {Application of He's variational iteration method to Helmholtz equation}. Chaos, Solitons and Fractals, 27(5):1119--1123, 2006.
Abbasbandy, S. and Babolian, E. and Ashtiani, M.. {Numerical solution of the generalized Zakharov equation by homotopy analysis method}. Communications in Nonlinear Science and Numerical Simulation, ():, 2009.
Wang, Y. and Dai, C. and Wu, L. and Zhang, J.. {Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method}. Chaos, Solitons and Fractals, 32(3):1208--1214, 2007.
Javidi, M. and Golbabai, A.. {Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method}. Chaos, Solitons and Fractals, 36(2):309--313, 2008.
Liang, S. and Jeffrey, D.J.. {Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation}. Communications in Nonlinear Science and Numerical Simulation, ():, 2009.
Sajid, M. and Hayat, T.. {Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations}. Nonlinear Analysis: Real World Applications, 9(5):2296--2301, 2008.
Huang, N.E. and Shen, Z. and Long, S.R. and Wu, M.C. and Shih, H.H. and Zheng, Q. and Yen, N.C. and Tung, C.C. and Liu, H.H.. {The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis}. Proceedings: Mathematical, Physical and Engineering Sciences, 454(1971):903--995, 1998.
Liao, Shijun. Notes on the homotopy analysis method: Some definitions and theorems. Communications in Nonlinear Science and Numerical Simulation, 14(4):983 - 997, 2009.
Liao, S.. {Comparison between the homotopy analysis method and homotopy perturbation method}. Applied Mathematics and Computation, 169(2):1186--1194, 2005.
He, J.H. and Wu, X.H.. {Variational iteration method: new development and applications}. Computers and Mathematics with Applications, 54(7-8):881--894, 2007.
He, J.H.. {A coupling method of a homotopy technique and a perturbation technique for non-linear problems}. International Journal of Non-Linear Mechanics, 35(1):37--43, 2000.
Peitgen, HO and Pr\\"ufer, M. and Schmitt, K.. {Global aspects of the continuous and discrete Newton method: A case study}. Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications, 13(1):123--202, 1988.
Billings, L. and Curry, JH and Robins, V.. {Chaos in Relaxed Newton's Method: The Quadratic Case}. African Americans in mathematics II: fourth Conference for African-American Researchers in the Mathematical Sciences, June 16-19, 1998, Rice University, Houston, Texas, 252():63, 1999.
Mulder, W.A. and Van Leer, B.. {Experiments with implicit upwind methods for the Euler equations}. Journal of Computational Physics, 59(2):232--246, 1985.
Li, C. and Wu, X.. {Numerical solution of differential equations using Sinc method based on the interpolation of the highest derivatives}. Applied Mathematical Modelling, 31(1):1--9, 2007.
Li, X.G. and Chan, CK and Wang, S.. {The finite element method with weighted basis functions for singularly perturbed convection--diffusion problems}. Journal of Computational Physics, 195(2):773--789, 2004.
Gaudioso, M. and Gorgone, E. and Monaco, M.F.. {Piecewise linear approximations in nonconvex nonsmooth optimization}. Numer. Math., 113(1):73--88, 2009.
Beirao da Veiga, L. and Lipnikov, K. and Manzini, G.. {Convergence analysis of the high-order mimetic finite difference method}. Numer. Math., 113(3):325--356, 2009.
Haider, F. and Croisille, J.P. and Courbet, B.. {Stability analysis of the cell centered finite-volume M uscl method on unstructured grids}. Numer. Math., 113(4):555--600, 2009.
Buffa, A. and Ciarlet, P. and Jamelot, E.. {Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements}. Numer. Math., 113(4):497--518, 2009.
Bi, C. and Ginting, V.. {A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem}. Numer. Math., 114():107--132, 2009.
Abboud, H. and Girault, V. and Sayah, T.. {A second order accuracy for a full discretized time-dependent Navier--Stokes equations by a two-grid scheme}. Numer. Math., ():1--43, 2009.
Carstensen, C. and Bolte, J.. Adaptive Finite Element Mesh-Refining Algorithm for L$^2$-error control. Recent Progress in Scientific Computing, ():13--39, 2007.
Katz, Aaron and Jameson, Antony. Multicloud: Multigrid convergence with a meshless operator. Journal of Computational Physics, 228(14):5237 - 5250, 2009.
Liu, C.S. and Atluri, S.N.. {A novel time integration method for solving a large system of non-linear algebraic equations}. CMES: Computer Modeling in Engineering and Sciences, 31():71--83, 2008.
Nochetto, R. H. and von Petersdorff, T. and Zhang, Chen-Song. A posteriori error analysis for a class of integro-differential operators. Numer. Math., ():, 2009.
Braess, D. and Carstensen, C. and Hoppe, R.H.W.. {Convergence analysis of a conforming adaptive finite element method for an obstacle problem}. Numer. Math., 107(3):455--471, 2007.
Rognes, Marie E. and Kirby, Robert C. and Logg, Anders. Efficient Assembly of $H(\mathrm{div})$ and $H(\mathrm{curl})$ Conforming Finite Elements. SIAM J. Sci. Comput., 31(6):4130-4151, 2009.
Calhoun, Donna A. and Helzel, Christiane. A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes. SIAM J. Sci. Comput., 31(6):4066-4099, 2009.
Barrenechea, Gabriel R. and Franca, Leopoldo P. and Valentin, Frederic. A Symmetric Nodal Conservative Finite Element Method for the Darcy Equation. SIAM J. Numer. Anal., 47(5):3652-3677, 2009.
Zhong, Liuqiang and Shu, Shi and Chen, Long and Xu, Jinchao. {Convergence of adaptive edge finite element methods for H(curl)−elliptic problems}. Numerical Linear Algebra with Applications, 17(2--3):415--432, 2010.
Chou, C.S. and Nie, Q. and Yi, T.M.. {Modeling Robustness Tradeoffs in Yeast Cell Polarization Induced by Spatial Gradients}. PLoS ONE, 3(9):3103, 2008.
Prieto, M. and Santiago, R. and Espadas, D. and Llorente, IM and Tirado, F.. {Parallel multigrid for anisotropic elliptic equations}. Journal of Parallel and Distributed Computing, 61(1):96--114, 2001.
Reisinger, C. and Wittum, G.. {On multigrid for anisotropic equations and variational inequalities ``Pricing multi-dimensional European and American options''}. Computing and Visualization in Science, 7(3):189--197, 2004.
Gupta, M.M. and Zhang, J.. {High accuracy multigrid solution of the 3D convection--diffusion equation}. Applied Mathematics and Computation, 113(2-3):249--274, 2000.
Behie, A. and Forsyth, P.. {Multigrid solution of three-dimensional problems with discontinuous coefficients.}. Appl. Math. Comp.., 13(3):229--240, 1983.
Katragadda, P. and Grosset, IR. {A posteriori error estimation and adaptive mesh refinement for combined thermal-stress finite element analysis}. Computers and Structures, 59(6):1149--1163, 1996.
Clemens, M. and Lang, J. and Teleaga, D. and Wimmer, G.. {Adaptivity in space and time for magnetoquasistatics}. JCM Special Issue on Adaptive and Multi-level Methods in Electromagnetics, ():, 2008.
Jagersand, M. and Birkbeck, N. and Cobzas, D.. {A Three-tier Hierarchical Model for Capturing and Rendering of 3D Geometry and Appearance from 2D Images}. Fourth International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), ():, 2008.
Darby, J. and Li, B. and Costen, N. and Fleet, D. and Lawrence, N.. {Backing Off: Hierarchical Decomposition of Activity for 3D Novel Pose Recovery}. , ():, 2009.
Georgiev, I. and Kraus, J. and Margenov, S.. Multilevel preconditioning of rotated bilinear non-conforming FEM problems. Comput. Math. Appl., 55(10):2280--2294, 2008.
Li, R. H.. On the generalized difference method for elliptic and parabolic differential equations. Proc. of the Symposium on the Finite Element Method between China and France, Beijing, China, ():, 1982.
Vogel, Andreas and Xu, Jinchao and Wittum, Gabriel. A generalization of the vertex-centered Finite Volume scheme to arbitrary high order. Preprint, ():, 2009.
Wittum, G.. {Linear iterations as smoothers in multigrid methods: theory with applications to incomplete decompositions}. IMPACT of Computing in Science and Engineering, 1(2):180--215, 1989.
Potapovich, Yury and Cheng, Irene and Basu, Anup. Morphological segmentation and delaunay triangulation for mesh from stereo. SIGGRAPH '06: ACM SIGGRAPH 2006 Research posters, ():74, 2006.
Jung, Chang-Yeol and Temam, Roger. Interaction of boundary layers and corner singularities. Discrete and Continuous Dynamic Systems, 23(1--2):315--339, 2009.
Duster, A. and Rank, E.. The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity. Computer Methods in Applied Mechanics and Engineering, 190(15-17):1925 - 1935, 2001.
Saad, Yousef and van der Vorst, Henk A.. Iterative solution of linear systems in the 20th century. Journal of Computational and Applied Mathematics, 123(1-2):1 - 33, 2000.
Rannacher, R.. {On the convergence of the Newton-Raphson method for strongly nonlinear finite element equations}. Nonlinear Computational Mechanics---State of the Art, Springer, ():, 1991.
Sirovich, L.. {Turbulence and the dynamics of coherent structures. I- Coherent structures. II- Symmetries and transformations. III- Dynamics and scaling}. Quarterly of applied mathematics, 45():561--571, 1987.
de Frutos, J. and Garcia-Archilla, B. and Novo, J.. {Accurate approximations to time-dependent nonlinear convection-diffusion problems}. IMA Journal of Numerical Analysis, ():, 2009.
Liu, Q. and Hou, Y.. {A two-level finite element method for the Navier--Stokes equations based on a new projection}. Applied Mathematical Modelling, ():, 2009.
Liu, Q. and Hou, Y.. {A postprocessing mixed finite element method for the Navier--Stokes equations}. International Journal of Computational Fluid Dynamics, 23(6):461--475, 2009.
de Frutos, J. and García-Archilla, B. and Novo, J.. {A posteriori error estimates for fully discrete nonlinear parabolic problems}. Computer Methods in Applied Mechanics and Engineering, 196(35-36):3462--3474, 2007.
Frutos, Javier de and Novo, Julia. A Spectral Element Method for the Navier--Stokes Equations with Improved Accuracy. SIAM J. Numer. Anal., 38(3):799--819, 2000.
de Frutos, J. and Garcia-Archilla, B. and Novo, J.. {A postprocessed Galerkin method with Chebyshev or Legendre polynomials}. Numer. Math., 86(3):419--442, 2000.
Garc\ia-Archilla, Bosco and Novo, Julia and Titi, Edriss S.. Postprocessing Fourier spectral methods: The case of smooth solutions. Applied Numerical Mathematics, 43(3):191 - 209, 2002.
García-Archilla, B. and Novo, J. and Titi, E.S.. {Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds}. SIAM J. Numer. Anal., 35(3):941--972, 1998.
García-Archilla, B. and Novo, J. and Titi, E.S.. {An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations}. Mathematics of Computation, 68(227):893--912, 1999.
Ayuso, Blanca and Garc\ia-Archilla, Bosco and Novo, Julia. The Postprocessed Mixed Finite-Element Method for the Navier--Stokes Equations. SIAM J. Numer. Anal., 43(3):1091--1111, 2005.
Geller, S. and Krafczyk, M. and T\\"olke, J. and Turek, S. and Hron, J.. {Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows}. Computers and Fluids, 35(8-9):888--897, 2006.
Chen, X. and Navon, IM and Fang, F.. {A dual weighted trust-region adaptive POD 4D-Var applied to a Finite-Element shallow-water Equations Model}. Int. J. Numer. Meth. Fluids, ():, 2004.
Aquino, W. and Brigham, JC and Earls, CJ and Sukumar, N.. {Generalized finite element method using proper orthogonal decomposition}. Int. J. Numer. Meth. Engng, 79():887--906, 2009.
Berkooz, G. and Holmes, P. and Lumley, JL. {The proper orthogonal decomposition in the analysis of turbulent flows}. Annual Review of Fluid Mechanics, 25(1):539--575, 1993.
Liang, YC and Lee, HP and Lim, SP and Lin, WZ and Lee, KH and Wu, CG. {Proper orthogonal decomposition and its applications---Part I: Theory}. Journal of Sound and Vibration, 252(3):527--544, 2002.
Hagstrom, T. and Lau, S.. {Radiation boundary conditions for Maxwell's equations: a review of accurate time-domain formulations}. J. Comput. Math, 25(3):305--336, 2007.
Kunisch, K. and Volkwein, S.. {Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics}. SIAM J. Numer. Anal., ():492--515, 2003.
Andreianov, B. and Boyer, F. and Hubert, F.. {On the finite-volume approximation of regular solutions of the p-Laplacian}. IMA Journal of Numerical Analysis, 26(3):472, 2006.
Hermeline, F.. {A finite volume method for solving Maxwell equations in inhomogeneous media on arbitrary meshes}. Comptes rendus-Mathématique, 339(12):893--898, 2004.
Johnson, G.R. and Stryk, R.A. and Beissel, S.R.. {SPH for high velocity impact computations}. Computer Methods in Applied Mechanics and Engineering, 139(1-4):347--373, 1996.
BELYTSCHKO, T. and LU, YY and GU, L.. {Element-free Galerkin methods}. International journal for numerical methods in engineering, 37(2):229--256, 1994.
Strouboulis, T. and Copps, K. and Babuska, I.. {The generalized finite element method}. Computer methods in applied mechanics and engineering, 190(32-33):4081--4193, 2001.
Braun, J. and Sambridge, M. and others. {A numerical method for solving partial differential equations on highly irregular evolving grids}. Nature, 376(6542):655--660, 1995.
Cangiani, Andrea and Manzini, Gianmarco and Russo, Alessandro. Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems. SIAM J. Numer. Anal., 47(4):2612-2637, 2009.
Karatson, Janos and Korotov, Sergey. An Algebraic Discrete Maximum Principle in Hilbert Space with Applications to Nonlinear Cooperative Elliptic Systems. SIAM J. Numer. Anal., 47(4):2518-2549, 2009.
Fornasier, Massimo and Schonlieb, Carola-Bibiane. Subspace Correction Methods for Total Variation and $\ell_1$-Minimization. SIAM J. Numer. Anal., 47(5):3397-3428, 2009.
Olshanskii, Maxim A. and Reusken, Arnold and Grande, Jorg. A Finite Element Method for Elliptic Equations on Surfaces. SIAM J. Numer. Anal., 47(5):3339-3358, 2009.
Cai, Mingchao and Mu, Mo and Xu, Jinchao. Numerical Solution to a Mixed Navier--Stokes/Darcy Model by the Two-Grid Approach. SIAM J. Numer. Anal., 47(5):3325-3338, 2009.
Kumar, S. and Nataraj, N. and Pani, A.K.. {Discontinuous Galerkin finite volume element methods for second-order linear elliptic problems}. Numer. Methods Partial. Diff. Equations, 25(6):, 2009.
Ye, X.. {Superconvergence of nonconforming finite element method for the Stokes equations}. Numer. Methods Partial. Diff. Equations, 18(2):143--154, 2002.
Matthies, H.G. and Niekamp, R. and Steindorf, J.. {Algorithms for strong coupling procedures}. Computer Methods in Applied Mechanics and Engineering, 195(17-18):2028--2049, 2006.
Matthies, H.G. and Steindorf, J.. {Partitioned but strongly coupled iteration schemes for nonlinear fluid--structure interaction}. Computers and Structures, 80(27-30):1991--1999, 2002.
Liu, Yang and Sen, Mrinal K.. A new time-space domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics, 228(23):8779 - 8806, 2009.
Yeckel, Andrew and Lun, Lisa and Derby, Jeffrey J.. An approximate block Newton method for coupled iterations of nonlinear solvers: Theory and conjugate heat transfer applications. Journal of Computational Physics, 228(23):8566 - 8588, 2009.
Patera, A.T.. {Fast direct Poisson solvers for high-order finite element discretizations in rectangularly decomposable domains}. Journal of Computational Physics, 65(2):474--480, 1986.
Golub, G.H. and Huang, L.C. and Simon, H. and Tang, W.P.. {A fast Poisson solver for the finite difference solution of the incompressible Navier-Stokes equations}. SIAM J. Sci. Comput., 19(5):1606--1624, 1998.
Lai, M.C. and Wang, W.C.. {Fast direct solvers for Poisson equation on 2D polar and spherical geometries}. Numer. Methods Partial. Diff. Equations, 18(1):, 2002.
Braverman, E. and Israeli, M. and Averbuch, A. and Vozovoi, L.. {A fast 3D Poisson solver of arbitrary order accuracy}. Journal of Computational Physics, 144(1):109--136, 1998.
Speyer, G. and Vasileska, D. and Goodnick, SM. {Efficient Poisson Equation Solvers for Large Scale 3D Simulations}. 2001 International Conference on Modeling and Simulation of Microsystems: MSM 2001, March 19-21, 2001, Hilton Head Island, SC, USA: 2001 ACRS Joint Meeting (MSM/ICCN), ():23, 2001.
Speyer, G. and Vasileska, D. and Goodnick, SM. {Efficient Poisson Solver for Semiconductor Device Modeling Using the Multi-Grid Preconditioned BiCGSTAB Method}. Journal of Computational Electronics, 1(3):359--363, 2002.
Mackerle, J.. {Error estimates and adaptive finite element methods: a bibliography (1990-2000)}. Engineering Computations: Int J for Computer-Aided Engineering, 18, 5(6):802--914, 2001.
Fidkowski, K.J. and Darmofal, D.L.. {Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results}. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, ():2009--1303, 2009.
Schr\\"oder, J. and Trottenberg, U. and Witsch, K.. {On fast Poisson solvers and applications}. a Conference on Numerical Treatment of Differential Equations, 4(10):, 1976.
Antonopoulou, D. C. and Dougalis, V. A. and Zouraris, G. E.. Galerkin Methods for Parabolic and Schr[o-umlaut]dinger Equations with Dynamical Boundary Conditions and Applications to Underwater Acoustics. SIAM J. Numer. Anal., 47(4):2752-2781, 2009.
Mitter, J. and Mathur, YD. {Comparison of entropies of power distributions}. ZAMM-Zeitschrift f{\\"u}r Angewandte Mathematik und Mechanik, 52(4):, 1972.
Xie, H. and Ito, K. and Li, Z. and Toivanen, J.. {A finite element method for interface problems with locally modified triangulations}. Moving Interface Problems and Applications in Fluid Dynamics: January 8-March 1, 2007, the Institute for Mathematical Sciences, National University of Singapore, 466():179, 2008.
Shen, J.. {On fast direct Poisson solver, INF-SUP constant and iterative Stokes solver by Legendre-Galerkin method}. Journal of Computational Physics, 116(1):184--188, 1995.
Apel, T. and Flaig, T.G.. {SIMULATION AND MATHEMATICAL OPTIMIZATION OF THE HYDRATION OF CONCRETE FOR AVOIDING THERMAL CRACKS}. 18th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, ():, 2009.
Liu, J.H. and Sun, H.N. and Zhu, Q.D.. {Superconvergence of tricubic block finite elements}. Science in China Series A: Mathematics, 52(5):959--972, 2009.
Huang, Y. and Qin, H. and Wang, D.. {Centroidal Voronoi tessellation-based finite element superconvergence}. International Journal for Numerical Methods in Engineering, 76(12):, 2008.
Xu, K. and Cheng, Z.Q. and Wang, Y. and Xiong, Y. and Zhang, H.. {Quality encoding for tetrahedral mesh optimization}. Computers \& Graphics, 33(3):250--261, 2009.
Knobloch, P. and Tobiska, L.. {On the stability of finite-element discretizations of convection-diffusion-reaction equations}. IMA Journal of Numerical Analysis, ():, 2009.
Stynes, M. and Tobiska, L.. {Using rectangular Qp elements in the SDFEM for a convection--diffusion problem with a boundary layer}. Applied Numerical Mathematics, 58(12):1789--1802, 2008.
Tsamasphyros, G. and Markolefas, S.. An estimate of the Babu\v{s}ka--Brezzi inf-sup discrete stability constant for general linear Petrov--Galerkin finite element formulations (an estimate of the Babu\v{s}ka--Brezzi stability constant). Appl. Math. Comp.., 144(1):107--116, 2003.
Stoyan, G.. {Towards discrete Velte decompositions and narrow bounds for inf-sup constants}. Computers and Mathematics with Applications, 38(7-8):243--261, 1999.
Ol'shanskii, M.A. and Chizhonkov, E.V.. {On the best constant in the inf-sup-condition for elongated rectangular domains}. Mathematical Notes, 67(3):325--332, 2000.
Bramble, J.H.. {A proof of the inf-sup condition for the Stokes equations on Lipschitz domains}. Mathematical Models and Methods in Applied Sciences, 13(3):361--372, 2003.
Dahmen, W. and Rohwedder, T. and Schneider, R. and Zeiser, A.. {Adaptive eigenvalue computation: complexity estimates}. Numer. Math., 110(3):277--312, 2008.
Xu, J. and Chen, L. and Nochetto, R.H.. {Optimal Multilevel Methods for H(grad), H(curl), and H(div) Systems on Adaptive and Unstructured Grids}. Multiscale, Nonlinear and Adaptive Approximation, ():, 2009.
Tournois, Jane and Wormser, Camille and Alliez, Pierre and Desbrun, Mathieu. Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Trans. Graph., 28(3):1--9, 2009.
Balzer, M. and Schl\\"omer, T. and Deussen, O.. {Capacity-constrained point distributions: a variant of Lloyd's method}. ACM SIGGRAPH 2009 papers, ():86, 2009.
Heys, JJ and Manteuffel, TA and McCormick, SF and Olson, LN. {Algebraic multigrid for higher-order finite elements}. Journal of computational Physics, 204(2):520--532, 2005.
Hwang, T. and Parsons, ID. {A multigrid method for the generalized symmetric eigenvalue problem: Part II-performance evaluation}. International Journal for Numerical Methods in Engineering, 35(8):, 1992.
Hwang, T. and Parsons, ID. {A multigrid method for the generalized symmetric eigenvalue problem: Part I-algorithm and implementation}. International Journal for Numerical Methods in Engineering, 35(8):, 1992.
Banjai, L. and B\\"orm, S. and Sauter, S.. {FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study}. Computing and Visualization in Science, 11(4):363--372, 2008.
Kraus, J. and Margenov, S. and Synka, J.. {On the multilevel preconditioning of Crouzeix-Raviart elliptic problems}. Numerical Linear Algebra with Applications, 15(5):, 2008.
Schmidt, F. and Friese, T. and Zschiedrich, L. and Deuflhard, P.. {Adaptive multigrid methods for the vectorial Maxwell eigenvalue problem for optical waveguide design}. Mathematics. Key Technology for the Future, ():279--292, 2003.
Costiner, Sorin and Ta'asan, Shlomo. Adaptive multigrid techniques for large-scale eigenvalue problems: Solutions of the Schr\"odinger problem in two and three dimensions. Phys. Rev. E, 51(4):3704--3717, 1995.
Bossavit, A. and Kettunen, L.. {Yee-like schemes on a tetrahedral mesh, with diagonal lumping}. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 12(1/2):129--142, 1999.
Bonnaillie-Noel, V. and Dauge, M. and Martin, D. and Vial, G.. {Computations of the first eigenpairs for the Schr{\\"o}dinger operator with magnetic field}. Computer Methods in Applied Mechanics and Engineering, 196(37-40):3841--3858, 2007.
Alouges, F. and Bonnaillie-Noel, V.. {Numerical computations of fundamental eigenstates for the Schrodinger operator under constant magnetic field}. Numer. Methods Partial. Diff. Equations, 22(5):1090--1105, 2006.
Yang, YiDu and Fan, XinYue. Generalized Rayleigh quotient and finite element two-grid discretization schemes. Science in China Series A-Mathematics, 52(9):1955--1972, 2009.
Liu, J.. {Open and traction boundary conditions for the incompressible Navier--Stokes equations}. Journal of Computational Physics, 228(19):7250--7267, 2009.
Cai, Qin and Wang, Jun and Zhao, Hong-Kai and Luo, Ray. On removal of charge singularity in Poisson--Boltzmann equation. The Journal of Chemical Physics, 130(14):145101, 2009.
Chen, Long and Holst, Michael and Xu, Jinchao and Zhu, Yunrong. Local Multilevel Preconditioners for Elliptic Equations with Jump Coefficients on Bisection Grids. Submitted, ():, 2010.
de Falco, C. and Gatti, E. and Lacaita, A.L. and Sacco, R.. {Quantum-corrected drift-diffusion models for transport in semiconductor devices}. Journal of Computational Physics, 204(2):533--561, 2005.
Vulanović, R. and Herceg, D. and Petrović, N.. {On the extrapolation for a singularly perturbed boundary value problem}. Computing, 36(1):69--79, 1986.
Vulanovic, R.. {On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh}. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat, 13():187--201, 1983.
de Falco, C. and O'Riordan, E.. {Singularly perturbed reaction-diffusion problem with a boundary turning point}. BAIL 2008-Boundary and Interior Layers: Proceedings of the International Conference on Boundary and Interior Layers-Computational and Asymptotic Methods, Limerick, July 2008, ():129, 2009.
Yu, Zeyun and Holst, Michael J. and McCammon, J. Andrew. High-fidelity geometric modeling for biomedical applications. Finite Elements in Analysis and Design, 44(11):715 - 723, 2008.
Linss, Torsten. Analysis of a System of Singularly Perturbed Convection-Diffusion Equations with Strong Coupling. SIAM J. Numer. Anal., 47(3):1847-1862, 2009.
Hoppe, Ronald H. W. and Neher, Johannes and Sharma, Natascha. A Posteriori Error Analysis of Hybridized Mixed Finite Element Methods for Second Order Elliptic Boundary Value Problems. preprint, ():, 2009.
Feng, Xiaobing and Wu, Haijun. Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number. SIAM J. Numer. Anal., 47(4):2872-2896, 2009.
Schoberl, Joachim and Stenberg, Rolf. Multigrid Methods for a Stabilized Reissner--Mindlin Plate Formulation. SIAM J. Numer. Anal., 47(4):2735-2751, 2009.
Omnes, Pascal and Penel, Yohan and Rosenbaum, Yann. A Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Laplace Equation. SIAM J. Numer. Anal., 47(4):2782-2807, 2009.
Abedi, R. and Haber, R.B. and Thite, S. and Erickson, J.. {An h--adaptive Spacetime--Discontinuous Galerkin Method for Linearized Elastodynamics}. Preprint, ():, 2009.
Xu, Jinchao and Zou, Qingsong. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math., 111(3):469--492, 2009.
Bernardi, C. and Verf\\"urth, R.. {Adaptive finite element methods for elliptic equations with non-smooth coefficients}. Numer. Math., 85(4):579--608, 2000.
Dan, Wei and Wang, Ren-hong. A fourth degree integration formula for the n-dimensional simplex. Applied Numerical Mathematics, 59(12):2990 - 2993, 2009.
Chen, Junqing and Xu, Yifeng and Zou, Jun. Convergence analysis of an adaptive edge element method for Maxwell's equations. Applied Numerical Mathematics, 59(12):2950 - 2969, 2009.
Haber, E. and Ascher, U. M.. Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients. SIAM J. Sci. Comput., 22(6):1943--1961, 2000.
Haber, Eldad and Heldmann, Stefan. An octree multigrid method for quasi-static Maxwell's equations with highly discontinuous coefficients. J. Comput. Phys., 223(2):783--796, 2007.
Alcouffe, R. E. and Brandt, Achi and J. E. Dendy, Jr. and Painter, J. W.. The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients. SIAM J. Sci. Statist. Comput., 2(4):430-454, 1981.
Bieterman, M. and Babuska, I.. The finite element method for parabolic equations. {II}. {A} posteriori error estimation and adaptive approach. Numer. Math., 40(3):373--406, 1982.
Bieterman, M. and Babuska, I.. The finite element method for parabolic equations. {I}. {A} posteriori error estimation. Numer. Math., 40(3):339--371, 1982.
Lakkis, Omar and Makridakis, Charalambos. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comp., 75(256):1627--1658 (electronic), 2006.
Moon, Kyoung-Sook and Nochetto, Ricardo H. and von Petersdorff, Tobias and Zhang, Chen-Song. A posteriori error analysis for parabolic variational inequalities. Mathematical Modelling and Numerical Analysis (M2AN), 41(3):485--511, 2007.
Bochev, Pavel B. and Hu, Jonathan J. and Siefert, Christopher M. and Tuminaro, Raymond S.. {An Algebraic Multigrid Approach Based on a Compatible Gauge Reformulation of Maxwell's Equations}. SIAM J. Sci. Comput., 31(1):557--583, 2008.
Zhang, J. and Chen, R. and Tang, C. and Liang, J.. Origin of scaling behavior of protein packing density: A sequential Monte Carlo study of compact long chain polymers. The Journal of Chemical Physics, 118():6102, 2003.
Nochetto, R.H. and Siebert, K.G. and Veeser, A.. Theory of adaptive finite element methods: an introduction. Multiscale, Nonlinear and Adaptive Approximation, ():, 2009.
Luo, Zhendong and Chen, Jing and Navon, I. M. and Yang, Xiaozhong. Mixed Finite Element Formulation and Error Estimates Based on Proper Orthogonal Decomposition for the Nonstationary Navier--Stokes Equations. SIAM J. Numer. Anal., 47(1):1-19, 2008.
Hu, Qiya and Tai, Xue-Cheng and Winther, Ragnar. A Saddle Point Approach to the Computation of Harmonic Maps. SIAM J. Numer. Anal., 47(2):1500-1523, 2009.
Du, Qiang and Wang, Desheng and Zhu, Liyong. On Mesh Geometry and Stiffness Matrix Conditioning for General Finite Element Spaces. SIAM J. Numer. Anal., 47(2):1421-1444, 2009.
Duan, Huo-Yuan and Jia, Feng and Lin, Ping and Tan, Roger C. E.. The Local $L^2$ Projected $C^0$ Finite Element Method for Maxwell Problem. SIAM J. Numer. Anal., 47(2):1274-1303, 2009.
Feng, Xiaobing and Neilan, Michael. Mixed Finite Element Methods for the Fully Nonlinear Monge--Amp[e-grave]re Equation Based on the Vanishing Moment Method. SIAM J. Numer. Anal., 47(2):1226-1250, 2009.
Aubert, Gilles and Kornprobst, Pierre. Can the Nonlocal Characterization of Sobolev Spaces by Bourgain et al. Be Useful for Solving Variational Problems?. SIAM J. Numer. Anal., 47(2):844-860, 2009.
Demlow, Alan and Lakkis, Omar and Makridakis, Charalambos. A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems. SIAM J. Numer. Anal., 47(3):2157-2176, 2009.
Badia, Santiago and Codina, Ramon. Unified Stabilized Finite Element Formulations for the Stokes and the Darcy Problems. SIAM J. Numer. Anal., 47(3):1971-2000, 2009.
Bochev, Pavel B. and Siefert, Christopher M. and Tuminaro, Raymond S. and Xu, Jinchao and Zhu, Yunrong. {Compatible Gauge Approaches for $H({\rm div})$ Equations}. SNL-CSRI Proceeding, ():, 2007.
Beck, R. and Deuflhard, P. and Hiptmair, R. and Hoppe, R. H. W. and Wohlmuth, B.. Adaptive multilevel methods for edge element discretizations of {M}axwell's equations. Surveys Math. Industry, 8(3--4):271-312, 1999.
Beck, Rudi and Hiptmair, Ralf and Hoppe, Ronald H. W. and Wohlmuth, Barbara. Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal., 34(1):159--182, 2000.
Beck, R. and Hiptmair, R. and Wohlmuth, B.. Hierarchical error estimator for eddy current computation. Numerical mathematics and advanced applications (Jyv\"askyl\"a, 1999), ():110--120, 2000.
Falgout, Robert D. and Yang, Ulrike Meier. {Hypre: A Library of High Performance Preconditioners}. International Conference on Computational Science (3), ():632-641, 2002.
Henson, Van Emden and Yang, Ulrike Meier. BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math., 41(1):155--177, 2002.
Reitzinger, S. and Schoberl, J.. An algebraic multigrid method for finite element discretizations with edge elements. Numerical Linear Algebra with Applications, 9(3):223--238, 2002.
Bochev, P. and Garasi, C. and Hu, J. and Robinson, A. and Tuminaro, R.. An Improved Algebraic Multigrid Method for Solving Maxwell's Equations. SIAM J. Sci. Computing, 25():, 2003.
Falgout, Robert D. and Jones, Jim E. and Yang, Ulrike Meier. Pursuing scalability for hypre's conceptual interfaces. ACM Trans. Math. Softw., 31(3):326--350, 2005.
Falgout, Robert D. and Jones, Jim E. and Yang, Ulrike Meier. The design and implementation of hypre, a library of parallel high performance preconditioners. Numerical solution of partial differential equations on parallel computers, 51():267--294, 2006.
Zheng, Weiying and Chen, Zhiming and Wang, Long. An Adaptive Finite Element Method for the H-$\psi$ Formulation of Time-dependent Eddy Current Problems. Numer. Math., 103(4):667--689, 2006.
Bochev, Pavel B. and Hu, Jonathan J. and Siefert, Christopher M. and Tuminaro, Raymond S.. An algebraic multigrid approach based on a compatible gauge reformulation of Maxwell's equations. , (SAND2007-1633J):, 2007.
Kornhuber, R. and Yserentant, H.. {Multigrid methods for discrete elliptic problems on triangular surfaces}. Computing and Visualization in Science, 11(4):251--257, 2008.
Makridakis, Charalambos and Nochetto, Ricardo H.. Elliptic Reconstruction and a Posteriori Error Estimates for Parabolic Problems. SIAM J. Numer. Anal., 41(4):1585--1594, 2003.
Demlow, A.. {Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems}. Mathematics of Computation, 76(257):19, 2007.
Demlow, Alan. Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces. SIAM J. Numer. Anal., 47(2):805-827, 2009.
Demlow, A. and Guzman, J. and Schatz, A.H.. {Local energy estimates for the finite element method on sharply varying grids}. Arxiv preprint arXiv:0808.2160, ():, 2008.
Rivara, M.C.. {New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations}. International journal for numerical methods in Engineering, 40(18):, 1997.
John, V. and Matthies, G.. {Higher-order finite element discretizations in a benchmark problem for incompressible flows}. International Journal for Numerical Methods in Fluids, 37(8):885--903, 2001.
Hoppe, R. H. W. and Kanschat, G. and Warburton, T.. Convergence Analysis of an Adaptive Interior Penalty Discontinuous Galerkin Method. SIAM J. Numer. Anal., 47(1):534-550, 2008.
Lee, C.O. and Lee, J. and Sheen, D.. {A locking-free nonconforming finite element method for planar linear elasticity}. Advances in Computational Mathematics, 19(1):277--291, 2003.
Jang, G.W. and Jeong, J.H. and Kim, Y.Y. and Sheen, D. and Park, C. and Kim, M.N.. {Checkerboard-free topology optimization using non-conforming finite elements}. International Journal for Numerical Methods in Engineering, 57(12):, 2003.
Hansbo, P. and Larson, M.G.. {Discontinuous Galerkin and the Crouzeix--Raviart element: application to elasticity}. Mathematical Modelling and Numerical Analysis, 37(1):63--72, 2003.
Ming, P. and Shi, Z.. {Nonconforming rotated Q1 element for Mindlin-Reissner plate}. Mathematical Models and Methods in Applied Sciences, 11(8):1311---1342, 2001.
Wheel, MA. {A control volume-based finite element method for plane micropolar elasticity}. International Journal for Numerical Methods in Engineering, 75(8):, 2008.
Xia, G. and Lin, C.L.. {An unstructured finite volume approach for structural dynamics in response to fluid motions}. Computers and Structures, 86(7-8):684--701, 2008.
Xia, G.H. and Zhao, Y. and Yeo, J.H. and Lv, X.. {A 3D implicit unstructured-grid finite volume method for structural dynamics}. Computational Mechanics, 40(2):299--312, 2007.
Taylor, GA and Bailey, C. and Cross, M.. {Computational solid mechanics using a vertex-based finite volume method}. Finite Volumes for Complex Applications II: Problems and Perspectives, ():507--515, 1999.
Wheel, MA. {A finite volume method for analysing the bending deformation of thick and thin plates}. Computer Methods in Applied Mechanics and Engineering, 147(1-2):199--208, 1997.
Fallah, NA and Bailey, C. and Cross, M. and Taylor, GA. {Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis}. Applied Mathematical Modelling, 24(7):439--455, 2000.
Taylor, GA and Bailey, C. and Cross, M.. {A vertex-based finite volume method applied to non-linear material problems in computational solid mechanics}. International Journal for Numerical Methods in Engineering, 56(4):, 2003.
Lo, Wing-Cheong and Chou, Ching-Shan and Gokoffski, Kimberly K and Wan, Frederic Y-M and Lander, Arthur D and Calof, Anne L and Nie, Qing. Feedback regulation in multistage cell lineages.. Math Biosci Eng, 6(1):59--82, 2009.
Kopteva, Natalia. Maximum Norm A Posteriori Error Estimate for a 2D Singularly Perturbed Semilinear Reaction-Diffusion Problem. SIAM J. Numer. Anal., 46(3):1602--1618, 2008.
Melenk, JM and Babuska, I.. {The partition of unity finite element method: basic theory and applications}. Computer methods in applied mechanics and engineering, 139(1-4):289--314, 1996.
Xue, Guangri and Xu, Jinchao and Wang, C. Y. and Falgout, R.. {N}ewton's method for a two phase mixture model with nonlinear discontinuous degenerate diffusion coefficients. , ():, 2006.
Wu, J. and Lee, Y.J. and Xu, J. and Zikatanov, L.. Convergence analysis on iterative methods for semidefinite systems. Journal of Computational Mathematics, ():, 2008.
Braess, D. and Peisker, P.. {On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning}. IMA Journal of Numerical Analysis, 6(4):393--404, 1986.
Cohen, G. and Hauck, A. and Kaltenbacher, M. and Otsuru, T.. {Different Types of Finite Elements}. Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods, ():57, 2008.
Cohen, G. and Duruflé, M.. {Non spurious spectral-like element methods for Maxwell's equations}. JOURNAL OF COMPUTATIONAL MATHEMATICS-INTERNATIONAL EDITION-, 25(3):282, 2007.
Mulder, W. A.. Spurious modes in finite-element discretizations of the wave equation may not be all that bad. Appl. Numer. Math., 30(4):425--445, 1999.
Chin-Joe-Kong, MJS and Mulder, WA and Van Veldhuizen, M.. {Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation}. Journal of Engineering Mathematics, 35(4):405--426, 1999.
Jund, S. and Salmon, S.. {Arbitrary high-order finite element schemes and high-order mass lumping}. International Journal of Applied Mathematics and Computer Science, 17(3):375--393, 2007.
Mulder, WA. {A comparison between higher-order finite elements and finite differences for solving the wave equation}. Numerical Methods in Engineering, ():344--350, 1996.
Charbonneau, A. and Dossou, K. and Pierre, R.. {A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first biharmonic problem}. Numer. Methods Partial. Diff. Equations, 13(1):, 1997.
Zhong, Liuqiang and Shu, Shi and Wittum, Gabriel and Xu, Jinchao. Optimal error estimates for Nedelec edge elements for time-harmonic Maxwell's equations. Journal of Computational Mathematics, 27():563-572, 2009.
Kolev, Tsanio V. and Vassilevski, Panayot S.. {Parallel Auxiliary Space AMG For H(Curl) Problems}. Journal of Computational Mathematics, 27():604-623, 2009.
Bebendorf, Mario and Ostrowski, Joerg. Parallel hierarchical matrix preconditioners for the curl-curl operator. Journal of Computational Mathematics, 27():624-641, 2009.
Clemens, Markus and Lang, Jens and Teleaga, Delia and Wimmer, Georg. Adaptivity in Space and Time for Magnetoquasistatics. Journal of Computational Mathematics, 27():642-656, 2009.
Ye, T. and Mittal, R. and Udaykumar, HS and Shyy, W.. {An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries}. Journal of Computational Physics, 156(2):209--240, 1999.
Du, Q. and Ju, L. and Tian, L.. {Analysis of a mixed finite-volume discretization of fourth-order equations on general surfaces}. IMA Journal of Numerical Analysis, ():, 2008.
Ciarlet, PG and Raviart, PA. {A mixed finite element method for the biharmonic equation}. Mathematical aspects of finite elements in partial differential equations, ():125--145, 1974.
Guermond, JL and Minev, P. and Shen, J.. {An overview of projection methods for incompressible flows}. Computer Methods in Applied Mechanics and Engineering, 195(44-47):6011--6045, 2006.
Taylor, C. and Hood, P.. {A numerical solution of the Navier-Stokes equations using the finite element technique}. Computers and Fluids, 1():73--100, 1973.
Krahl, R. and BANSCH, E.. {Computational Comparison Between The Taylor--Hood And The Conforming Crouzeix--Raviart Element}. Proceedings of ALGORITMY, ():369--379, 2005.
Engelman, MS and Sani, RL and Gresho, PM and Bercovier, M.. {Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements}. International Journal for Numerical Methods in Fluids, 2(1):, 1982.
Ham, F. and Mattsson, K. and Iaccarino, G.. {Accurate and stable finite volume operators for unstructured flow solvers}. Annual Research Briefs, Center for Turbulence Research, Stanford University/NASA Ames, ():, 2006.
Sani, RL and Gresho, PM and Lee, RL and Grifftths, DF. {The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations: Part I}. International Journal for Numerical Methods in Fluids, 1(2):17-43, 1981.
Sani, RL and Gresho, PM and Lee, RL and Grifftths, DF and Engelman, M.. {The cause and cure (!) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations: Part 2}. International Journal for Numerical Methods in Fluids, 1(2):, 1981.
Gresho, P.~M. and Lee, R.~L. and Sani, R.~L.. {On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions}. Recent advances in numerical methods in fluids. Volume 1. (A80-44908 19-34) Swansea, Pineridge Press, Ltd., 1980, p. 27-79., 1():27-79, 1980.
Pelletier, D. and Fortin, A. and Camarero, R.. {Are FEM solutions of incompressible flows really incompressible?(Or how simple flows can cause headaches!)}. International Journal for Numerical Methods in Fluids, 9(1):, 1989.
Thatcher, RW. {Locally mass-conserving Taylor-Hood elements for two-and three-dimensional flow}. International Journal for Numerical Methods in Fluids, 11(3):, 1990.
Tidd, DM and Thatcher, RW and Kaye, A.. {The free surface flow of Newtonian and non-Newtonian fluids trapped by surface tension}. International Journal for Numerical Methods in Fluids, 8(9):, 1988.
Keating, S.M. and Bornstein, B.J. and Finney, A. and Hucka, M.. {SBMLToolbox: an SBML toolbox for MATLAB users}. Bioinformatics, 22(10):1275--1277, 2006.
Darwish, M. and Sraj, I. and Moukalled, F.. A coupled finite volume solver for the solution of incompressible flows on unstructured grids. J. Comput. Phys., 228(1):180--201, 2009.
Mark, William, R. and Glanville, R., Steven and Akeley, Kurt and Kilgard, Mark, J.. Cg: a system for programming graphics hardware in a C-like language. SIGGRAPH '03: ACM SIGGRAPH 2003 Papers, ():896--907, 2003.
Galoppo, Nico and Govindaraju, Naga, K. and Henson, Michael and Manocha, Dinesh. LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware. SC '05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, ():3, 2005.
Papastavrou, A. and Verfürth, R.. {A posteriori error estimators for stationary convection--diffusion problems: A computational comparison}. Computer Methods in Applied Mechanics and Engineering, 189(2):449--462, 2000.
Lee, Y.J. and Wu, J. and Xu, J. and Zikatanov, L.. {Robust subspace correction methods for nearly singular systems}. Mathematical Models and Methods in Applied Sciences, 17(11):1937--1963, 2007.
Riedel, K.S.. {A Sherman-Morrison-Woodbury identity for rank augmenting matrices with application to centering}. SIAM J. Matrix Anal. Appl, 13(2):659--662, 1992.
Demkowicz, Leszek and Gopalakrishnan, Jayadeep and Schoberl, Joachim. Polynomial Extension Operators. Part I. SIAM J. Numer. Anal., 46(6):3006-3031, 2008.
Yan, Ningning and Zhou, Zhaojie. {A priori and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problem governed by convection-dominated diffusion equation}. J. Comput. Appl. Math., 223(1):198--217, 2009.
Hoppe, RHW and Wohlmuth, B.. {Element-oriented and edge-oriented local error estimators for nonconforming finite element methods}. Modélisation mathématique et analyse numérique(Print), 30(2):237--263, 1996.
Scott, LR and Vogelius, M.. {Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials}. Modélisation mathématique et analyse numérique(Print), 19(1):111--143, 1985.
Hansen, Glen and Zardecki, Andrew and Greening, Doran and Bos, Randy. A finite element method for three-dimensional unstructured grid smoothing. Journal of Computational Physics, 202(1):281--297, 2005/1/1.
Berndt, M. and David Moulton, J. and Hansen, G.. {Efficient nonlinear solvers for Laplace--Beltrami smoothing of three-dimensional unstructured grids}. Computers and Mathematics with Applications, 55(12):2791--2806, 2008.
Tatebe, Osamu and Oyanagi, Yoshio. Efficient implementation of the multigrid preconditioned conjugate gradient method on distributed memory machines. Supercomputing '94: Proceedings of the 1994 conference on Supercomputing, ():194--203, 1994.
Xie, H. and Ito, K. and Li, Z. and Toivanen, J.. {A Finite Element Method for Interface Problems with Locally Modified Triangulations}. Moving Interface Problems and Applications in Fluid Dynamics: January 8-March 1, 2007, the Institute for Mathematical Sciences, National University of Singapore, 466():179, 2008.
Bespalov, Alexander and Kuznetsov, Yuri and Pironneau, Olivier and Vallet, Marie-Gabrielle. Fictitious domains with separable preconditioners versus unstructured adapted meshes. IMPACT Comput. Sci. Eng., 4(3):217--249, 1992.
Zhang, Sheng. Analysis of Finite Element Domain Embedding Methods for Curved Domains using Uniform Grids. SIAM J. Numer. Anal., 46(6):2843--2866, 2008.
Adams, Loyce and Chartier, Timothy P.. A Comparison of Algebraic Multigrid and Geometric Immersed Interface Multigrid Methods for Interface Problems. SIAM J. Sci. Comput., 26(3):762-784, 2005.
Huang, J. and Zou, J.. {Some new a priori estimates for second-order elliptic and parabolic interface problems}. Journal of Differential Equations, 184(2):570--586, 2002.
Almgren, Ann, S. and Bell, John, B. and Colella, Phillip and Howell, Louis, H. and Welcome, Michael, L.. A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J. Comput. Phys., 142(1):1--46, 1998.
Roma, Alexandre, M. and Peskin, Charles, S. and Berger, Marsha, J.. An adaptive version of the immersed boundary method. J. Comput. Phys., 153(2):509--534, 1999.
Eyck, Alex Ten and Celiker, Fatih and Lew, Adrian. Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: Motivation, formulation, and numerical examples. Computer Methods in Applied Mechanics and Engineering, 197(45-48):3605--3622, 2008/8/15.
Hackbusch, W. and Sauter, SA. {Composite finite elements for problems containing small geometric details}. Computing and Visualization in Science, 1(1):15--25, 1997.
Douglas, Jr., Jim and Dupont, Todd and Wahlbin, Lars. The stability in {$L\sp{q}$} of the {$L\sp{2}$}-projection into finite element function spaces. Numer. Math., 23():193--197, 1974/75.
Cleary, Andrew, J. and Falgout, Robert, D. and Henson, Van, Emden and Jones, Jim, E. and Manteuffel, Thomas, A. and McCormick, Stephen, F. and Miranda, Gerald, N. and Ruge, John, W.. Robustness and Scalability of Algebraic Multigrid. SIAM J. Sci. Comput., 21(5):1886--1908, 2000.
Meyer, M. and Desbrun, M. and Schroder, P. and Barr, A.H.. {Discrete differential-geometry operators for triangulated 2-manifolds}. Visualization and Mathematics, 3():34--57, 2002.
Dziuk, G.. {Finite elements for the Beltrami operator on arbitrary surfaces}. Partial differential equations and calculus of variations, ():142--155, 1988.
Causin, P. and Sacco, R.. {A Discontinuous Petrov-Galerkin Method with Lagrangian Multipliers for Second Order Elliptic Problems}. SIAM J. Numer. Anal., 43(1):280--302, 2006.
Gunzburger, M.D. and Meir, A.J. and Peterson, J.S.. {On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics}. Mathematics of Computation, ():523--563, 1991.
Liu, Song-Tao and Xu, Yuesheng. Galerkin Methods Based on Hermite Splines for Singular Perturbation Problems. SIAM J. Numer. Anal., 43(6):2607--2623, 2006.
Nicolaides, RA and Porsching, TA and Hall, CA. {Covolume methods in computational fluid dynamics}. Computational Fluid Dynamics Review, ():279--299, 1995.
Bao, W.. {An economical finite element approximation of generalized Newtonian flows}. Computer Methods in Applied Mechanics and Engineering, 191(33):3637--3648, 2002.
Bolten, M.. {Hierarchical grid coarsening for the solution of the Poisson equation in free space}. Electronic Transactions on Numerical Analysis, 29():70--80, 2008.
Hou, L. S.. Error Estimates for Semidiscrete Finite Element Approximations of the Stokes Equations Under Minimal Regularity Assumptions. J. Sci. Comput., 16(3):287--317, 2001.
P. T. Baaijens, Frank. Mixed finite element methods for viscoelastic flow analysis: a review. Journal of Non-Newtonian Fluid Mechanics, 79(2-3):361--385, 1998/11/1.
Picasso, M.. An adaptive algorithm for the Stokes problem using continuous, piecewise linear stabilized finite elements and meshes with high aspect ratio. Appl. Numer. Math., 54(3-4):470--490, 2005.
Surazhsky, V. and Gotsman, C.. {Morphing stick figures using optimized compatible triangulations}. Computer Graphics and Applications, 2001. Proceedings. Ninth Pacific Conference on, ():40--49, 2001.
Di, Yana and Li, Ruo and Tang, Tao and Zhang, Pingwen. {Moving Mesh Finite Element Methods for the Incompressible Navier--Stokes Equations}. SIAM J. Sci. Comput., 26(3):1036--1056, 2005.
Secord, A.. {Weighted voronoi stippling}. Proceedings of the 2nd international symposium on Non-photorealistic animation and rendering, ():37--43, 2002.
Ostromoukhov, Victor and Donohue, Charles and Jodoin, Pierre-Marc. Fast hierarchical importance sampling with blue noise properties. SIGGRAPH '04: ACM SIGGRAPH 2004 Papers, ():488--495, 2004.
BALZER, M. and HECK, D.. {Capacity-Constrained Voronoi Diagrams In Finite Spaces}. Proceeding of the 5th Annual Interanational Symposium on Voronoi Diagrams in Science and Engineering, 2():44--56, 2008.
Cascon, J.M. and Nochetto, R.H. and Siebert, K.G.. {Design and convergence of AFEM in H (div)}. Mathematical Models and Methods in Applied Sciences, 17(11):1849--1882, 2007.
Tournois, Jane and Alliez, Pierre and Devillers, Olivier. Interleaving Delaunay Refinement and Optimization for 2D Triangle Mesh Generation. IMR, ():83-101, 2007.
Brezzi, F. and Douglas Jr, J. and Fortin, M. and Marini, LD. {Efficient rectangular mixed finite elements in two and three space variables, RAIRO Model}. Math. Anal. Numer, 21():581--604, 1987.
Nguyen, H. and Burkardt, J. and Gunzburger, M. and Ju, L. and Saka, Y.. {Constrained CVT meshes and a comparison of triangular mesh generators}. Computational Geometry: Theory and Applications, 42(1):1--19, 2009.
Talaslidis, D. and Panagiotopoulos, PD. {A linear finite element approach to the solution of the variational inequalities arising in contact problems of structural dynamics}. International Journal for Numerical Methods in Engineering, 18(10):, 1982.
Slimane, L. and Bendali, A. and Laborde, P.. {Mixed formulations for a class of variational inequalities}. Mathematical Modelling and Numerical Analysis, 38(1):177--201, 2004.
Ashby, SF and Holst, MJ and Manteuffel, A. and Saylor, PE. {The role of the inner product in stopping criteria for conjugate gradient iterations}. BIT Numerical Mathematics, 41(1):26--52, 2001.
Monneau, R.. {A Brief Overview on the Obstacle Problem}. in Proceedings of the Third European Congress of Mathematics, Barcelona,(2000): Progress in Mathematics, 202():303--312, 2001.
Blanchet, A. and Dolbeault, J. and Monneau, R.. {On the one-dimensional parabolic obstacle problem with variable coefficients}. Progress in Nonlinear Differential equations and their Applications, 63():59, 2005.
Sinclair, A. and Jerrum, M.. {Approximate counting, uniform generation and rapidly mixing Markov chains}. Information and Computation, 82(1):93--133, 1989.
Demkowicz, L. and Buffa, A.. {H1, H (curl) and H (div)-conforming projection-based interpolation in three dimensions Quasi-optimal p-interpolation estimates}. Computer Methods in Applied Mechanics and Engineering, 194(2-5):267--296, 2005.
Gerisch, A. and Lang, J. and Podhaisky, H. and Weiner, R.. {High-order linearly implicit two-step peer--finite element methods for time-dependent PDEs}. Applied Numerical Mathematics, ():, 2008.
Deuflhard, P. and Weiser, M. and Seebass, M.. {A new nonlinear elliptic multilevel FEM in clinical cancer therapy planning}. Computing and Visualization in Science, 3(3):115--120, 2000.
Kumaradas, JC and Sherar, MD. {An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design}. International Journal of Hyperthermia, 18(5):441--453, 2002.
Kumaradas, JC and Sherar, MD. {Edge-element based finite element analysis of microwave hyperthermia treatments for superficial tumours on the chest wall}. International Journal of Hyperthermia, 19(4):414--430, 2003.
Rabin, Y. and Shitzer, A.. Numerical Solution of the Multidimensional Freezing Problem During Cryosurgery. Journal of Biomechanical Engineering, 120(1):32-37, 1998.
Ascher, Uri M. and Ruuth, Steven J. and Wetton, Brian T. R.. Implicit-Explicit Methods for Time-Dependent Partial Differential Equations. SIAM J. Numer. Anal., 32(3):797-823, 1995.
Samaras, T. and Regli, P. and Kuster, N.. {Electromagnetic and heat transfer computations for non-ionizing radiation dosimetry}. PHYSICS IN MEDICINE AND BIOLOGY, 45(8):2233--2246, 2000.
Hochmuth, R. and Deuflhard, P.. {Multiscale Analysis For The Bio-Heat Transfer Equation-The Nonisolated Case}. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 14():1621--1634, 2004.
Elwassif, M.M. and Kong, Q. and Vazquez, M. and Bikson, M.. {Bio-Heat Transfer Model of Deep Brain Stimulation Induced Temperature changes}. Engineering in Medicine and Biology Society, 2006. EMBS'06. 28th Annual International Conference of the IEEE, ():3580--3583, 2006.
Rossi, Michael, R. and Tanaka, Daigo and Shimada, Kenji and Rabin, Yoed. An efficient numerical technique for bioheat simulations and its application to computerized cryosurgery planning. Comput. Methods Prog. Biomed., 85(1):41--50, 2007.
Karaa, Samir and Zhang, Jun and Yang, Fuqian. A numerical study of a 3D bioheat transfer problem with different spatial heating. Math. Comp.. Simul., 68(4):375--388, 2005.
MOUKALLED, F. and ACHARYA, S.. {A local adaptive grid procedure for incompressible flows with multigridding and equidistribution concepts}. International Journal for Numerical Methods in Fluids, 13():1085--1111, 1991.
Chen, Zhimin and Jia, Feng. {An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems}. Math. Comp., 73():1167--1194, 2004.
Díez, P. and Huerta, A.. {A unified approach to remeshing strategies for finite element h-adaptivity}. Computer Methods in Applied Mechanics and Engineering, 176(1-4):215--229, 1999.
Li, Jichun. Error analysis of mixed finite element methods for wave propagation in double negative metamaterials. J. Comput. Appl. Math., 209(1):81--96, 2007.
Engheta, Nader and Ziolkowski, R.W.. A positive future for double-negative metamaterials. Microwave Theory and Techniques, IEEE Transactions on, 53(4):1535-1556, 2005.
Fu, J.H. and Meng, F.Y. and Yang, G.H. and Wu, Q.. {Analysis of the double negative metamaterials using FDTD}. Microwave and Optical Technology Letters, 50(5):1411--1414, 2008.
Arnold, D.N. and Douglas, J. and Thomee, V.. {Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable}. Mathematics of Computation, 36(153):53--63, 1981.
Bakker, M.. {On the Numerical Solution of Parabolic Equations in a Single Space Variable by the Continuous Time Galerkin Method}. SIAM J. Numer. Anal., 17():162, 1980.
Lin, Q. and Zhang, S.. {An immediate analysis for global superconvergence for integrodifferential equations}. Applications of Mathematics, 42(1):1--21, 1997.
Bank, RE and Gutsch, S.. {An Algebraic Approach To The HBMG Method For Unstructured Grids}. Zeitschrift für angewandte Mathematik und Mechanik, 78():, 1998.
Lin, Qun and Huang, Hung-Tsai and Li, Zi-Cai. {New expansions of numerical eigenvalues by Wilson's element}. J. Comput. Appl. Math., 225(1):213--226, 2009.
Zhongci, S. and Xuejun, X.. {V-cycle multigrid methods for Wilson nonconforming element}. Science in China Series A: Mathematics, 43(7):673--684, 2000.
Chatzipantelidis, P. and Lazarov, RD and Thomee, V.. {Error estimates for a finite volume element method for parabolic equations in convex polygonal domains}. Numer. Methods Partial. Diff. Equations, 20(5):650--674, 2004.
Chen, Shaochun and Yin, Li and Mao, Shipeng. An anisotropic, superconvergent nonconforming plate finite element. Journal of Computational and Applied Mathematics, 220(1-2):96--110, 2008.
Chen, S. and Shi, D. and Zhao, Y.. {Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes}. IMA Journal of Numerical Analysis, 24(1):77, 2004.
Svard, Magnus and Nordstrom, Jan. Stability of finite volume approximations for the Laplacian operator on quadrilateral and triangular grids. Appl. Numer. Math., 51(1):101--125, 2004.
Schatz, A.H. and Thomee, V. and Wahlbin, L.B.. {Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations}. Communications on Pure and Applied Mathematics, 51(11-12):1349--1385, 1998.
Mathew, T., P. and Russo, G.. Maximum norm stability of difference schemes for parabolic equations on overset nonmatching space-time grids. Math. Comp.., 72(242):619--656, 2003.
Clavero, C. and Jorge, J. C. and Lisbona, F.. A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems. Journal of Computational and Applied Mathematics, 154(2):415--429, 2003.
Wheeler, M.F.. {\$ L\_$\backslash$ infty\$ Estimates of Optimal Orders for Galerkin Methods for One-Dimensional Second Order Parabolic and Hyperbolic Equations}. SIAM J. Numer. Anal., 10():908, 1973.
Bramble, J.H. and Schatz, A.H. and Wahlbin, L.B. and Thomee, V.. {Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations}. SIAM J. Numer. Anal., 14(2):218--241, 1977.
Lu, Z. and Sun, X.. {WEIL--PETERSSON GEOMETRY ON MODULI SPACE OF POLARIZED CALABI--YAU MANIFOLDS}. Journal of the Institute of Mathematics of Jussieu, 3(02):185--229, 2004.
Lu, Z. and Tian, G. and Coskunuzer, B. and Gilkey, P. and Nikcevic, S. and Liu, X. and Etesi, G. and Xu, B. and Sakovich, A. and Ganchev, G. and others. {Differential Geometry}. , ():, .
di Bernardo, Mario and Budd, Chris J. and Champneys, Alan R. and Kowalczyk, Piotr and Nordmark, Arne B. and Tost, Gerard Olivar and Piiroinen, Petri T.. Bifurcations in Nonsmooth Dynamical Systems. SIAM Rev., 50(4):629-701, 2008.
Coudiere, Y. and Villedieu, P.. {Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes}. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 34(6):1123--1150, 2000.
B\'echet, F. and Millet, O. and Sanchez-Palencia. Adaptive and anisotropic mesh strategy for thin shell problems. Case of inhibited parabolic shells. International Journal of Solids and Structures, 46(3-4):534 - 556, 2009.
Cao, Weiming. An Interpolation Error Estimate on Anisotropic Meshes in ${\mathcalR}^{n}$ and Optimal Metrics for Mesh Refinement. SIAM J. Numer. Anal., 45(6):2368-2391, 2007.
Yang, Min and Yuan, Yirang. A symmetric characteristic FVE method with second order accuracy for nonlinear convection diffusion problems. J. Comput. Appl. Math., 200(2):677--700, 2007.
Bramble, James H. and Pasciak, Joseph E.. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comp., 50(181):1--17, 1988.
Bramble, James H. and Pasciak, Joseph E.. Corrigenda: ``{A} preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems''. Math. Comp., 51(183):387--388, 1988.
Yang, M. and Liu, J. and Chen, C.. {Error estimation of a quadratic finite volume method on right quadrangular prism grids}. Journal of Computational and Applied Mathematics, ():, 2008.
Yang, M.. {A second-order finite volume element method on quadrilateral meshes for elliptic equations}. Mathematical Modelling And Numerical Analysis, 40(6):1053, 2006.
Abdul-Rahman, R. and Kasper, M.. {Higher order triangular basis functions and solution performance of the CG method}. Computer Methods in Applied Mechanics and Engineering, 197(1-4):115--127, 2007.
Adjerid, S. and Aiffa, M. and Flaherty, JE. {Hierarchical finite element bases for triangular and tetrahedral elements}. Computer Methods in Applied Mechanics and Engineering, 190(22-23):2925--2941, 2001.
Biedl, Therese C. and Bose, Prosenjit and Demaine, Erik D. and Lubiw, Anna. {Efficient algorithms for Petersen's matching theorem}. J. Algorithms, 38(1):110--134, 2001.
Johnson, D.S.. A Theoretician's Guide to the Experimental Analysis of Algorithms. Proceedings of the 5th and 6th DIMACS Implementation Challenges, ():, 2002.
Liu, Biyue. On a finite element method for three-dimensional unsteady compressible viscous flows. Numer. Methods Partial Differential Equations, 20(3):432--449, 2004.
Liu, S.T.. {Modified hierarchy basis for solving singular boundary value problems}. Journal of Mathematical Analysis and Applications, 325(2):1240--1256, 2007.
Karakashian, O.A. and Pascal, F.. {A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems}. SIAM JOURNAL ON NUMERICAL ANALYSIS, 41():2374--2399, 2003.
Baker, G.A. and Jureidini, W.N. and Karakashian, O.A.. {Piecewise Solenoidal Vector Fields and the Stokes Problem}. SIAM J. Numer. Anal., 27():1466, 1990.
Perugia, I. and Schotzau, D.. {The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations}. MATHEMATICS OF COMPUTATION, 72(243):1179--1214, 2003.
Perugia, Ilaria and Schotzau, Dominik. An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems. J. Sci. Comput., 17(1-4):561--571, 2002.
Houston, Paul and Suli, Endre and Wihler, Thomas P.. {A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs}. IMA J Numer Anal, 28(2):245-273, 2008.
Houston, P. and Schotzau, D. and Wihler, T.P.. {ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS}. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 17(1):33, 2007.
Douglas, J. and Santos, J.E. and Sheen, D. and Ye, X.. {Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems}. Mathematical Modelling and Numerical Analysis, 33(4):747--770, 1999.
Cai, Z. and Douglas Jr, J. and Santos, JE and Sheen, D. and Ye, X.. {Nonconforming quadrilateral finite elements: a correction}. Calcolo, 37(4):253--254, 2000.
Croisille, J.P. and Greff, I.. {An efficient box-scheme for convection--diffusion equations with sharp contrast in the diffusion coefficients}. Computers and Fluids, 34(4-5):461--489, 2005.
Svard, Magnus and Gong, Jing and Nordstrom, Jan. An accuracy evaluation of unstructured node-centred finite volume methods. Appl. Numer. Math., 58(8):1142--1158, 2008.
Lin, R. and Zhang, Z.. {Derivative Superconvergence of Equilateral Triangular Finite Elements}. Recent Advances in Adaptive Computation: Proceedings of the International Conference on Recent Advances in Adaptive Computation, Hangzhou, China, May 24-28, 2004, 383():, 2005.
Kikuchi, F. and Okabe, M. and Fujio, H.. {Modification of the 8-node serendipity element}. Computer Methods in Applied Mechanics and Engineering, 179(1-2):91--109, 1999.
Lin, R. and Zhang, Z.. {Natural superconvergent points of triangular finite elements}. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 20():864--906, 2004.
Kwak, D.Y. and Lee, J.S.. {Comparison of V-cycle multigrid method for cell-centered finite difference on triangular meshes}. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 22(5):1080, 2006.
Chou, S.H. and He, S. and Lin, W.W.. {Conservative Flux Recovery from the Q1 Conforming Finite Element Method on Quadrilateral Grids}. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 20(1):104--127, 2004.
Chou, So-Hsiang and Kwak, Do Y. and Kim, Kwang Y.. Flux Recovery from Primal Hybrid Finite Element Methods. SIAM J. Numer. Anal., 40(2):403--415, 2002.
Klaij, C. M. and van Raalte, M. H. and van der Ven, H. and van der Vegt, J. J. W.. h-Multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys., 227(2):1024--1045, 2007.
Grajewski, Matthias and Hron, Jaroslav and Turek, Stefan. Numerical analysis for a new non-conforming linear finite element on quadrilaterals. J. Comput. Appl. Math., 193(1):38--50, 2006.
Park, Chunjae and Sheen, Dongwoo. $P_1$-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems. SIAM J. Numer. Anal., 41(2):624-640, 2003.
Frolkov, Peter and Knabner, Peter and Tapp, Christoph and Thiele, Kathrin. {Adaptivity in the finite volume discretization of variable density flows in porous media}. Report, ():, 1995.
Options, A. and Latest, TOC. {Adaptivity in the finite volume discretization of variable density flows in porous media}. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(4):319--324, 2001.
Schafer, Michael and Meynen, Sebastian and Sieber, Rolf and Teschauer, Ilka. Efficiency of multigrid methods for the numerical simulation of coupled fluid-solid problems. , ():257--266, 2001.
Cockburn, B. and Gopalakrishnan, J. and Lazarov, R.. {Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems}. Submitted, ():, 2008.
Hyman, J. and Shashkov, M. and Steinberg, S.. {The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials}. Journal of Computational Physics, 132(1):130--148, 1997.
Berndt, M. and Lipnikov, K. and Moulton, D. and Shashkov, M.. {Convergence of mimetic finite difference discretizations of the diffusion equation}. EAST WEST JOURNAL OF NUMERICAL MATHEMATICS, 9(4):265--284, 2001.
Cai, Z. and Jones, JE and McCormick, SF and Russell, TF. {Control-volume mixed finite element methods}. Computational Geosciences, 1(3):289--315, 1997.
Gastaldi, L. and Nochetto, R.. Optimal $L^{\infty}$-Error Estimates for Nonconforming and Mixed Finite Element Methods of Lowest Order. Numer. Math., 50(5):587--611, 1987.
DOUGLAS, J.J.R. and ROBERTS, JE. {Global estimates for mixed methods for second order elliptic equations}. Mathematics of computation, 44(169):39--52, 1985.
Sigmund, O. and Petersson, J.. {Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima}. Structural and Multidisciplinary Optimization, 16(1):68--75, 1998.
Burda, Pavel and Novotny, Jaroslav and Soused\ik, Bedrich. A posteriori error estimates applied to flow in a channel with corners. Math. Comp.. Simul., 61(3-6):375--383, 2003.
Jiranek, P. and Strakos, Z. and Vohralik, M.. A Posteriori Error Estimates Including Algebraic Error: Computable Upper Bounds And Stopping Criteria For Iterative Solvers. Submitted, ():, 2008.
Wille, S.. {a Non-Linear Adaptive Full Tri-Tree Multigrid Method for the Mixed Finite Element Formulation of the Navier-Stokes Equations}. International Journal for Numerical Methods in Fluids, 24():1037-1047, 1997.
Wang, H. and Liang, D. and Ewing, RE and Lyons, SL and Qin, G.. {An ELLAM Approximation for Highly Compressible Multicomponent Flows in Porous Media}. Computational Geosciences, 6(3):227--251, 2002.
Cavalcante Neto, JB and Wawrzynek, PA and Carvalho, MTM and Martha, LF and Ingraffea, AR. {An Algorithm for Three-Dimensional Mesh Generation for Arbitrary Regions with Cracks}. Engineering with Computers, 17(1):75--91, 2001.
Liu, J. and Chen, H. and Ewing, R. and Qin, G.. An efficient algorithm for characteristic tracking on two-dimensional triangular meshes. Computing, 80(2):121--136, 2007.
Chou, S.H. and Vassilevski, P.S.. {A general mixed covolume framework for constructing conservative schemes for elliptic problems}. MATHEMATICS OF COMPUTATION, 69():991--1012, 1999.
Allan, B.A. and Armstrong, R. and Bernholdt, D.E. and Bertrand, F. and Chiu, K. and Dahlgren, T.L. and Damevski, K. and Elwasif, W.R. and Epperly, T.G.W. and Govindaraju, M. and others. {A Component Architecture for High-Performance Scientific Computing}. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 20(2):163, 2006.
Appelbe, B. and May, D. and Quenette, S. and Tang, S. and Wang, F. and Moresi, L.. {Towards rapid geoscience model development-the snark project}. Proceedings of 3rd ACES (APEC Cooperation for Earthquake Simulation) Workshop, ():, 2002.
Buschelman, K.R. and Gropp, W. and McInnes, L.C. and Smith, B.F.. {PETSc and Overture: Lessons learned developing an interface between components}. The Architecture of Scientific Software, ():57--68, 2000.
Shin, D. and Strikwerda, J.C.. {Inf-sup Conditions for Finite Difference Approximations of the Stokes Equations}. Journal-Australian Mathematical Society Series B, 39():121--134, 1997.
Liu, Jiangguo and Tavener, Simon and Chen, Hongsen. ELLAM for resolving the kinematics of two-dimensional resistive magnetohydrodynamic flows. J. Comput. Phys., 227(2):1372--1386, 2007.
Richardson, WB. {Sobolev preconditioning for the Poisson--Boltzmann equation}. Computer Methods in Applied Mechanics and Engineering, 181(4):425--436, 2000.
Stephan, EP and Maischak, M.. {A posteriori error estimates for fem--bem couplings of three-dimensional electromagnetic problems}. Computer Methods in Applied Mechanics and Engineering, 194(2-5):441--452, 2005.
Beck, R. and Hiptmair, R. and Hoppe, R.H.W. and Wohlmuth, B.. {Residual based a posteriori error estimators for eddy current computation}. Mathematical Modelling and Numerical Analysis, 34(1):159--182, 2000.
Krízek, M. and Neittaanmäki, P.. {Mathematical and numerical modelling in electrical engineering theory and applications}. Mathematical modelling theory and applications, ():, 1996.
Letniowski, F.W.. {Three-Dimensional Delaunay Triangulations for Finite Element Approximations to a Second-Order Diffusion Operator}. SIAM J. Sci. Statist. Comput., 13():765, 1992.
Fortin, M. and Soulie, M.. A Non-Conforming Piecewise Quadratic Finite Element On Triangles. International Journal For Numerical Methods In Engineering, 19():505--520, 1983.
Ainsworth, Mark and Rankin, Richard. Fully Computable Bounds for the Error in Nonconforming Finite Element Approximations of Arbitrary Order on Triangular Elements. SIAM J. Numer. Anal., 46(6):3207-3232, 2008.
Calhoun, Donna A. and Helzel, Christiane and LeVeque, Randall J.. Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains. SIAM Rev., 50(4):723-752, 2008.
Shu, C.W.. {High-order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD}. International Journal of Computational Fluid Dynamics, 17(2):107--118, 2003.
Stein, E. and Rüter, M.. {Finite element methods for elasticity with error-controlled discretization and model adaptivity}. Encyclopedia of Computational Mechanics, 2():5--58, 2004.
Brezzi, F. and Hughes, TJR and Suli, E.. {Variational approximation of flux in conforming finite element methods for elliptic partial differential equations: a model problem}. Rend. Mat. Acc. Lincei, ():12, 2001.
Nicaise, Serge. A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems. SIAM J. Numer. Anal., 44(3):949-978, 2006.
Creuse, Emmanuel and Nicaise, Serge. A posteriori error estimations of a coupled mixed and standard Galerkin method for second order operators. J. Comput. Appl. Math., 213(1):35--55, 2008.
Afif, M. and Bergam, A. and Mghazli, Z. and Verfürth, R.. {A Posteriori Estimators for the Finite Volume Discretization of an Elliptic Problem}. Numerical Algorithms, 34(2):127--136, 2003.
Nicaise, S. and Soualem, N.. {A posteriori error estimates for a nonconforming finite element discretization of the heat equation}. ESAIM: M2AN. v39, ():319--348, .
Sonar, Thomas and Süli, Endre. A dual graph-norm refinement indicator for finite volume approximations of the {E}uler equations. Numer. Math., 78(4):619--658, 1998.
Coudiere, Y. and Vila, J.P. and Villedieu, P.. {Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem}. Mathematical Modelling and Numerical Analysis, 33(3):493--516, 1999.
Lazarov, R. and Tomov, S.. {A Posteriori Error Estimates for Finite Volume Element Approximations of Convection--Diffusion--Reaction Equations}. Computational Geosciences, 6(3):483--503, 2002.
Angermann, L.. {Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems}. Computing, 55(4):305--323, 1995.
Sabetghadam, Feriedoun and Sharafatmandjoor, Shervin and Norouzi, Farhang. Fourier spectral embedded boundary solution of the Poisson's and Laplace equations with Dirichlet boundary conditions. Journal of Computational Physics, 228(1):55--74, 2009.
Chen, Qian-Yong and Wan, Jing and Yang, Yahan and Mifflin, Rick T.. Enriched multi-point flux approximation for general grids. J. Comput. Phys., 227(3):1701--1721, 2008.
Edwards, MG and Lazarov, RD and Yotov, I.. {Introduction Special Issue on Locally Conservative Numerical Methods for Flow in Porous Media}. Computational Geosciences, 6(3-4):225--225, 2002.
Lala, S. and De Labourdonnaye, A.. {A Finite-Element Method for Maxwell System Preserving Gauss Laws and Energy}. RAPPORT DE RECHERCHE-INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE, ():, 1998.
Bader, M. and Zenger, C.. {Efficient Storage and Processing of Adaptive Triangular Grids Using Sierpinski Curves}. LECTURE NOTES IN COMPUTER SCIENCE, 3991():673, 2006.
Bader, M. and Schraufstetter, S. and Behrens, J. and Autor, K. and Behrens, P.D.D.J.. {Memory Efficient Adaptive Mesh Generation and Implementation of Multigrid Algorithms Using Sierpinski Curves}. Simulationstechnique--19th Symposium in Hannover, ():, 2006.
. {Development and evaluation of nine-noded quadratic control volume based finite element for heat conduction modelling}. AIAA, Aerospace Sciences Meeting, ():, 1984.
Klausen, RA and Russell, TF. {Relationships among some locally conservative discretization methods which handle discontinuous coefficients}. Computational Geosciences, 8(4):341--377, 2004.
Grajewski, M. and Koster, M. and Kilian, S. and Turek, S.. Numerical Analysis and Practical Aspects of a Robust and Efficient Grid Deformation Method in the Finite Element Context. , ():, 2005.
Liu, X. and Qin, N. and Xia, H.. {Fast dynamic grid deformation based on Delaunay graph mapping}. Journal of Computational Physics, 211():405-423, 2006.
Liu, F. and Ji, S. and Liao, G.. {Adaptive grid method and its application to steady Euler flow calculations}. SIAM J. SCI. COMPUT, 20(3):811--825, 1998.
Lapenta, Giovanni. Variational grid adaptation based on the minimization of local truncation error: time-independent problems. J. Comput. Phys., 193(1):159--179, 2004.
Delzanno, G. L. and Chacon, L. and Finn, J. M. and Chung, Y. and Lapenta, G.. An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization. J. Comput. Phys., 227(23):9841--9864, 2008.
Burman, Erik and Ern, Alexandre and Giovangigli, Vincent. An adaptive finite element method with crosswind diffusion for low Mach, steady, laminar combustion. J. Comput. Phys., 188(2):472--492, 2003.
Benvenuti, E. and Borino, G. and Tralli, A.. {A thermodynamically consistent nonlocal formulation for damaging materials}. European Journal of Mechanics/A Solids, 21(4):535--553, 2002.
Cinalli, M. and Edelvik, F. and Schuhmann, R. and Weiland, T.. {Consistent material operators for tetrahedral grids based on geometrical principles}. Int. J. Numer. Model, 17():487--507, 2004.
Schuhmann, R. and Schmidt, P. and Weiland, T.. A new Whitney-based material operator for the finite-integration technique on triangular grids. Magnetics, IEEE Transactions on, 38(2):409-412, 2002.
Auchmann, B. and Kurz, S.. {A Geometrically Defined Discrete Hodge Operator on Simplicial Cells}. Magnetics, IEEE Transactions on, 42(4):643--646, 2006.
Schuhmann, R. and Weiland, T.. {A stable interpolation technique for FDTD on non-orthogonal grids}. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING ELECTRONIC NETWORKS DEVICES AND FIELDS, 11():299--306, 1998.
Shoshiashvili, L. and Razmadze, A. and Jejelava, N. and Zaridze, R. and Bit-Babik, LG and Faraone, A.. {Validation of Numerical Bioheat FDTD Model}. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, Proceedings of XIth International Seminar/Workshop on, ():201--204, 2006.
Dai, W. and Wang, H. and Jordan, P.M. and Mickens, R.E. and Bejan, A.. {A mathematical model for skin burn injury induced by radiation heating}. International Journal of Heat and Mass Transfer, ():, 2008.
Lang, J. and Erdmann, B. and Seebass, M.. {Impact of nonlinear heat transfer on temperature control inregional hyperthermia}. Biomedical Engineering, IEEE Transactions on, 46(9):1129--1138, 1999.
Loubenets, A. and Ali, T. and Hanke, M.. Highly accurate finite element method for one-dimensional elliptic interface problems. Applied Numerical Mathematics, In Press, Corrected Proof():--, 2008.
Camp, B. and Lin, T. and Lin, Y. and Sun, W.. {Quadratic immersed finite element spaces and their approximation capabilities}. Advances in Computational Mathematics, 24(1):81--112, 2006.
Vaassen, J. -M. and Vigneron, D. and Essers, J. -A.. An implicit high order finite volume scheme for the solution of 3D Navier-Stokes equations with new discretization of diffusive terms. J. Comput. Appl. Math., 215(2):595--601, 2008.
Feistauer, M. and Felcman, J. and Lukácová-Medvid'ová, M.. {Combined finite element-finite volume solution of compressible flow}. Proceedings of the 1994 international symposium on Mathematical modelling and computational methods table of contents, ():179--199, 1995.
Huang, J. and Li, L.. {Some superconvergence results for the covolume method for elliptic problems}. Communications in Numerical Methods in Engineering, 17(5):291--302, 2001.
Eppstein, David. Linear complexity hexahedral mesh generation. SCG '96: Proceedings of the twelfth annual symposium on Computational geometry, ():58--67, 1996.
Oliker, L. and Biswas, R. and Strawn, R.C.. {Parallel Implementation of an Adaptive Scheme for 3D Unstructured Grids on the SP2}. Proceedings of the Third International Workshop on Parallel Algorithms for Irregularly Structured Problems, ():35--47, 1996.
Oliker, L. and Biswas, R. and Gabow, H.N.. {Parallel tetrahedral mesh adaptation with dynamic load balancing}. Parallel Computing, 26():1583--1608, 2000.
Cai, Zhiqiang and Zhang, Shun. Recovery-Based Error Estimator and Adaptive Finite Element Method: Linear Elements for Interface Problems. SIAM J. Numer. Anal., ():, 2009.
Zielonka, MG and Ortiz, M. and Marsden, JE. {Variational r-adaption in elastodynamics}. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 74(7):1162, 2008.
Boroczky Jr, K. and Wintsche, G.. {Covering the sphere by equal spherical balls}. Discrete and Computational Geometry: The Goodman-Pollack Festschrift, ():237--253, 2003.
van Lint, J.H.. {Recent results on covering problems}. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proceedings of the 6th International Conference, AAECC-6, Rome, Italy, 4(8):, 1988.
Ishizaka, Kanya. A Minimum Energy Condition of 1-Dimensional Periodic Sphere Packing. Journal of Inequalities in Pure and Applied Mathematics, 6(3):, 2005.
Cohen, G. and Karpovsky, M. and Mattson, H. and Schatz, J.. Covering radius---Survey and recent results. Information Theory, IEEE Transactions on, 31(3):328-343, 1985.
Zheng, W. and Zhang, F.. {Adaptive finite element frequency domain method for eddy current problems}. Computer Methods in Applied Mechanics and Engineering, 197(13-16):1233--1241, 2008.
Mordecki, E. and Szepessy, A. and Tempone, R. and Zouraris, G. E.. Adaptive Weak Approximation of Diffusions with Jumps. SIAM J. Numer. Anal., 46(4):1732-1768, 2008.
Ebmeyer, Carsten and Liu, W. B.. Finite Element Approximation of the Fast Diffusion and the Porous Medium Equations. SIAM J. Numer. Anal., 46(5):2393-2410, 2008.
Boman, Erik G. and Hendrickson, Bruce and Vavasis, Stephen. Solving Elliptic Finite Element Systems in Near-Linear Time with Support Preconditioners. SIAM J. Numer. Anal., 46(6):3264-3284, 2008.
Erath, Christoph and Praetorius, Dirk. A Posteriori Error Estimate and Adaptive Mesh Refinement for the Cell-Centered Finite Volume Method for Elliptic Boundary Value Problems. SIAM J. Numer. Anal., 47(1):109-135, 2008.
Lin, Runchang. Discontinuous Discretization for Least-Squares Formulation of Singularly Perturbed Reaction-Diffusion Problems in One and Two Dimensions. SIAM J. Numer. Anal., 47(1):89-108, 2008.
Zhang, S. and Zhang, Z.. {Invalidity Of Decoupling A Biharmonic Equation To Two Poisson Equations On Non-Convex Polygons}. International Journal of Numerical Analysis and Modeling, 5(1):73--76, 2008.
PB, B. and Robinson, AC. {Matching Algorithms with Physics: Exact Sequences of Finite Element Spaces}. Collected Lectures on the Preservation of Stability Under Discretization, ():, 2002.
Miller, Gary L. and Talmor, Dafna and Teng, Shang-Hua and Walkington, Noel. A Delaunay based numerical method for three dimensions: generation, formulation, and partition. STOC '95: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, ():683--692, 1995.
Choudhury, S. and Nicolaides, RA. {Discretization of incompressible vorticity-velocity equations on triangular meshes}. (International Conference on Finite Elements in Flow Problems, 7th, Huntsville, AL, Apr. 3-7, 1989) International Journal for Numerical Methods in Fluids (ISSN 0271-2091), 11():, 1990.
Chou, S. H. and Kwak, D. Y.. {Analysis and Convergence of a MAC-like Scheme for the Generalized Stokes Problem}. Numer. Methods Partial. Diff. Equations, 13():147--162, 1997.
Bernardi, C. and Canuto, C. and Maday, Y.. {Generalized Inf-Sup Conditions for Chebyshev Spectral Approximation of the Stokes Problem}. SIAM J. Numer. Anal., 25():1237, 1988.
Meinhardt, H. and de Boer, P.A.J.. {Pattern formation in Escherichia coli: A model for the pole-to-pole oscillations of Min proteins and the localization of the division site}. Proceedings of the National Academy of Sciences, 98(25):14202, 2001.
Fisher, ES and Lauffenburger, DA. {Mathematical analysis of cell-target encounter rates in two dimensions. The effect of chemotaxis}. Biophysical Journal, 51(5):705--716, 1987.
Yang, Suh-Yuh. Analysis of piecewise linear approximations to the generalized Stokes problem in the velocity-stress-pressure formulation. Journal of Computational and Applied Mathematics, 147(1):53--73, 2002.
Oian, E. and Garrido, I. and Chaib, M. and Fladmark, G.E. and Espedal, M.S.. {Modeling fractured and faulted regions: Local grid refinement methods for implicit solvers}. Computing and Visualization in Science, 6(2):123--129, 2004.
Khattri, SK and Aavatsmark, I.. {Numerical convergence on adaptive grids for control volume methods}. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 24(2):465, 2008.
Edwards, MG. {M-Matrix Flux Splitting for General Full Tensor Discretization Operators on Structured and Unstructured Grids}. Journal of Computational Physics, 160(1):1--28, 2000.
Edwards, M.G. and Rogers, C.F.. {Finite volume discretization with imposed flux continuity for the general tensor pressure equation}. Computational Geosciences, 2(4):259--290, 1998.
Wheeler, M.F. and Yotov, I.. {A cell-centered finite difference method on quadrilaterals}. IMA VOLUMES IN MATHEMATICS AND ITS APPLICATIONS, 142():189, 2006.
Lipnikov, Konstantin and Shashkov, Mikhail and Svyatskiy, Daniil. The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes. Journal of Computational Physics, 211(2):473--491, 2006.
Brezzi, Franco and Lipnikov, Konstantin and Shashkov, Mikhail. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes. SIAM J. Numer. Anal., 43(5):1872--1896, 2005.
Nordbotten, JM and Aavatsmark, I.. {Monotonicity conditions for control volume methods on uniform parallelogram grids in homogeneous media}. Computational Geosciences, 9(1):61--72, 2005.
Aavatsmark, I. and Reiso, E. and Teigland, R.. {Control-Volume Discretization Method for Quadrilateral Grids with Faults and Local Refinements}. Computational Geosciences, 5(1):1--23, 2001.
Aavatsmark, I. and Eigestad, G.T. and Klausen, R.A. and Wheeler, M.F. and Yotov, I.. {Convergence of a symmetric MPFA method on quadrilateral grids}. Computational Geosciences, 11(4):333--345, 2007.
Eigestad, GT and Klausen, RA. {On the Convergence of the Multi-Point Flux Approximation O-method: Numerical Experiments for Discontinuous Permeability}. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 21(6):1079, 2005.
He, X. and Lin, T. and Lin, Y.. {Approximation capability of a bilinear immersed finite element space}. Numer. Methods Partial. Diff. Equations, 24(5):1265--1300, 2008.
TunA, M. and Parmaksizoglu, C. and AfikrikAi, S.. {The bio-heat transfer equation and its applications in hyperthermia treatments}. Engineering Computations: Int J for Computer-Aided Engineering, 23(4):451--463, 2006.
Gersborg-Hansen, A. and Bendsøe, M. and Sigmund, O.. Topology optimization of heat conduction problems using the finite volume method. Structural and Multidisciplinary Optimization, 31(4):251--259, 2006.
Ludwig, M. and Koch, J. and Fischer, B.. {An Application Of The Finite Volume Method To The Bio-Heat-Transfer-Equation In Premature Infants}. Electronic Transactions on Numerical Analysis, 28():136--148, 2008.
Schulze, Tim and Alexiades, Vasilios and Feng, Xiaobing. Multi-scale Modeling and Simulation in Materials Science, Preface. Journal of Scientific Computing, 37(1):1--2, 2008.
Liu, Guoqing and Su, Yucheng. A uniformly convergent difference scheme for the singular perturbation problem of a high order elliptic differential equation. Applied Mathematics and Mechanics, 17(5):413--421, 1996.
Oosterlee, C. W. and Washio, T.. An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems. SIAM J. Sci. Comput., 19(1):87-110, 1998.
Braess, Dietrich and Dahmen, Wolfgang. The Mortar element method revisited - What are the right norms. Thirteen International Conference on Domain Decomposition Methods, Editors, ():, 2001.
Bernardi, C. and Maday, Y. and Patera, A.. {A new nonconforming approach to domain decomposition: the Mortar element method}. Brezis, H.(ed.) et al., Nonlinear partial differential equations and their applications. Collège de France Seminar, volume XI. Lectures presented at the weekly seminar on applied mathematics, Paris, France,, ():, 1994.
Seshaiyer, P.. Stability and convergence of nonconforming hp finite-element methods. Computers \& Mathematics with Applicationsp-FEM2000: p and hp Finite Element Methods - Mathematics and Engineering Practice, 46(1):165--182, 2003.
Feng, Huiyu and Mavriplis, Catherine and Feng, Rob and Biswas, Rupak. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes. J. Sci. Comput., 27(1-3):231--243, 2006.
Su, Yu-cheng and Liu, Guo-qing. {Asymptotic solution of singular perturbation problems for the fourth-order elliptic differential equations}. Applied Mathematics and Mechanics, 11(7):637--650, 1990.
Ming, W. and Xu, J. and Comp, M.. {Nonconforming tetrahedral finite elements for fourth order elliptic equations}. Mathematics Of Computation, 76(257):1, 2007.
da Veiga, L.B. and Niiranen, J. and Stenberg, R.. {A posteriori error estimates for the Morley plate bending element}. Numer. Math., 106(2):165--179, 2007.
Chen, Shaochun and Zhao, Yongcheng and Shi, Dongyang. {Anisotropic interpolation with application to nonconforming elements}. Applied Numerical Mathematics, 49(2):135--152, 2004.
Karasik, Y. B. and Sharir, M.. The power of geometric duality and Minkowski sums in optical computational geometry. SCG '93: Proceedings of the ninth annual symposium on Computational geometry, ():379--388, 1993.
Deparis, S. and Gerbeau, J.F. and Vasseur, X. and Lions, I.L.J.L.. {A Dynamic Preconditioner for Newton-Krylov Algorithms: Application to Fluid-Structure Interaction}. Writing, ():10, 2004.
J.~Li and M.~Melenk and B.~Wohlmuth and J.~Zou. Optimal Convergence of Higher Order Finite Element Methods for Elliptic Interface Problems. , ():, 2008.
Araya, Rodolfo and Behrens, Edwin and Rodr\iguez, Rodolfo. An adaptive stabilized finite element scheme for the advection-reaction-diffusion equation. Appl. Numer. Math., 54(3-4):491--503, 2005.
Li, J. and Chen, Y. and Elander, V.. {Mathematical and numerical study of wave propagation in negative-index materials}. Computer Methods in Applied Mechanics and Engineering, ():, 2008.
Paszynski, M. and Kurtz, J. and Demkowicz, L.. Parallel, fully automatic hp-adaptive 2d finite element package. Computer Methods in Applied Mechanics and Engineering, 195(7-8):711--741, 2006.
Wen, Tong and Su, Jimmy and Colella, Phillip and Yelick, Katherine and Keen, Noel. An adaptive mesh refinement benchmark for modern parallel programming languages. SC '07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, ():1--12, 2007.
Pike, G. and Semenzato, L. and Colella, P. and Hilfinger, P.N.. {Parallel 3D Adaptive Mesh Refinement in Titanium}. Proceedings of the SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, TX, March, ():, 1999.
Miyashita, H. and Yamada, Y.. {Practical improvements of multi-grid iteration for adaptive mesh refinement method}. Fluid Dynamics Research, 36(3):137--152, 2005.
Popinet, S.. {Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries}. Journal of Computational Physics, 190(2):572--600, 2003.
Ditkowski, A. and Fibich, G. and Gavish, N.. {Efficient Solution of $A x (k)= b (k)$ Using $A^{-1}$}. Journal of Scientific Computing, 32(1):29--44, 2007.
GilbeRt, John R. and b. Shah, ViRal and ReinhaRdt, SteVe. {A Unified Framework for Numerical and Combinatorial Computing}. Supercomputing, I., ():, 2008.
Dai, Xiaoying and Xu, Jinchao and Zhou, Aihui. Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math., 110(3):313--355, 2008.
Sundar, Hari and Sampath, Rahul S. and Biros, George. Bottom-Up Construction and 2:1 Balance Refinement of Linear Octrees in Parallel. SIAM J. Sci. Comput., 30(5):2675-2708, 2008.
Pasciak, Joseph E. and Vassilevski, Panayot S.. Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions. SIAM J. Sci. Comput., 30(5):2427-2446, 2008.
Peterseim, Daniel and Sauter, Stefan A.. The Composite Mini Element---Coarse Mesh Computation of Stokes Flows on Complicated Domains. SIAM J. Numer. Anal., 46(6):3181-3206, 2008.
Boyer, Franck and Hubert, Florence. Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities. SIAM J. Numer. Anal., 46(6):3032-3070, 2008.
Luby, M. A simple parallel algorithm for the maximal independent set problem. STOC '85: Proceedings of the seventeenth annual ACM symposium on Theory of computing, ():1--10, 1985.
Chen, Long and Li, Hengguang. Superconvergence of Gradient Recovery Schemes on graded meshes for corner singularities. Journal of Computational Mathematics, 28():11--31, 2010.
Collette, M. and Corey, B. and Johnson, J.. {High Performance Tools \& Technologies}. Lawrence Livermore National Laboratory Tech. Report UCRL-TR-209289, December, ():, 2004.
Asanovic, K. and Bodik, R. and Catanzaro, B.C. and Gebis, J.J. and Husbands, P. and Keutzer, K. and Patterson, D.A. and Plishker, W.L. and Shalf, J. and Williams, S.W. and others. {The Landscape of Parallel Computing Research: A View from Berkeley}. Electrical Engineering and Computer Sciences, University of California at Berkeley, Technical Report No. UCB/EECS-2006-183, December, 18(2006-183):19, 2006.
Raghunathan, S.. {Making a Supercomputer Do What You Want: High-Level Tools for Parallel Programming}. Computing in Science \& Engineering, 8(5):70--80, 2006.
Bliss, N.T. and Kepner, J. and Kim, H. and Reuther, A.. pMATLAB: Parallel MATLAB Library for Signal Processing Applications. Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, 4():IV-1189-IV-1192, 2007.
Travinin Bliss, N. and Kepner, J.. {'pMATLAB Parallel MATLAB Library'}. International Journal of High Performance Computing Applications, 21(3):336, 2007.
Kotakemori, H. and Hasegawa, H. and Kajiyama, T. and Nukada, A. and Suda, R. and Nishida, A.. {Performance Evaluation of Parallel Sparse Matrix-Vector Products on SGI Altix3700}. LECTURE NOTES IN COMPUTER SCIENCE, 4315():153, 2008.
Travinin, N. and Hoffmann, H. and Bond, R. and Chan, H. and Kepner, J. and Wong, E.. {pMapper: Automatic Mapping of Parallel Matlab Programs}. Proceedings of the 2005 Users Group Conference on 2005 Users Group Conference, ():, 2005.
Haney, R. and Kim, H. and Funk, A. and Kepner, J. and Rader, C. and Reuther, A. and Travinin, N. and LAB, MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN. {PMatlab Takes the HPCchallenge}. , ():, 2005.
Gilbert, J.R. and Reinhardt, S. and Shah, V.B.. {High-Performance Graph Algorithms from Parallel Sparse Matrices}. LECTURE NOTES IN COMPUTER SCIENCE, 4699():260, 2007.
Shishkin, G.I.. Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side. Computational Mathematics and Mathematical Physics, 46(3):388--401, 2006.
No\"el, Virginie Bonnaillie. A posteriori error estimator for the eigenvalue problem associated to the Schr\&\#x00f6%3Bdinger operator with magnetic field. Numer. Math., 99(2):325--348, 2004.
Zhang, Linbo. A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using Bisection. NUMERICAL MATHEMATICS: Theory, Methods and Applications, ():, 2008.
Liu, J.G. and Liu, J. and Pego, R.L.. {Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate}. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 60(10):1443, 2007.
DA VEIGA, L.B.A.O. and CHINOSI, C. and LOVADINA, C. and STENBERG, R.. {A-PRIORI AND A-POSTERIORI ERROR ANALYSIS FOR A FAMILY OF REISSNER-MINDLIN PLATE ELEMENTS}. , ():, .
Sandu, A. and Constantinescu, E.M.. Multirate explicit {A}dams methods for time integration of conservation laws. Submitted to Journal of Scientific Computing, ():, 2007.
Ern, A. and Nicaise, S. and Vohralík, M.. {An accurate H (div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems}. Comptes rendus-Mathématique, 345(12):709--712, 2007.
Cheddadi, I. and Fuc\ik, R. and Prieto, M.I. and Vohral\ik, M.. {Guaranteed and robust a posteriori error estimates for singularly perturbed reaction--diffusion problems}. To be submitted to M2AN Math. Model. Numer. Anal, ():, 2008.
Cheddadi, I. and Fučík, R. and Prieto, M. I. and Vohralík, M. Computable a posteriori error estimates in the finite element method based on its local conservativity: improvements using local minimization. , ():, 2008.
Bank, Randolph E. and Hackbusch, Wolfgang and Wittum, Gabriel. Mathematisches Forschungsinstitut Oberwolfach. Fast Solvers for Partial Differential Equations, ():, 2008.
Chu, Moody T. and Lin, Matthew M.. Low-dimensional polytope approximation and its applications to nonnegative matrix factorization. SIAM J. Sci. Comput., 30(3):1131--1155, 2008.
Sun, T. and Filippova, D.. {Long-time error estimation for semi-linear parabolic equations}. Journal of Computational and Applied Mathematics, 185(1):1--18, 2006.
Sun, Tong and Ewing, Richard E.. Long-time error estimation and a stability-smoothing indicator. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 9(1):115--129, 2002.
Kikuchi, Fumio and Saito, Hironobu. Remarks on a posteriori error estimation for finite element solutions. Journal of Computational and Applied MathematicsSpecial Issue on Scientific Computing, Computer Arithmetic, and Validated Numerics (SCAN 2004), Special Issue on Scientific Computing, Computer Arithmetic, and Validated Numerics (SCAN 2004), 199(2):329--336, 2007.
Vejchodsky, T.. {On A Posteriori Error Estimation Strategies For Elliptic Problems}. Proceedings of international conference ICPM'05, ():373--386, 2005.
Laub, AJ and Xia, J.. Applications of statistical condition estimation to the solution of linear systems. Numer. Linear Algebra Appl., 15():489--513, 2008.
John, V. and Knobloch, P.. {On spurious oscillations at layers diminishing (SOLD) methods for convection--diffusion equations: Part II--Analysis for P1 and Q1 finite elements}. Computer Methods in Applied Mechanics and Engineering, ():, 2008.
John, V. and Knobloch, P.. {On spurious oscillations at layers diminishing (SOLD) methods for convection--diffusion equations: Part I--A review}. Computer Methods in Applied Mechanics and Engineering, 196(17-20):2197--2215, 2007.
Ramage, A. and Elman, H.. {Some observations on multigrid convergence for convectiondiffusion equations}. Computing and Visualization in Science, 10(1):43--56, 2007.
Tai, K. and Bond, S.D. and MacMillan, H.R. and Baker, N.A. and Holst, M.J. and McCammon, J.A.. Finite Element Simulations of Acetylcholine Diffusion in Neuromuscular Junctions. Biophysical Journal, 84(4):2234--2241, 2003.
Wolters, C.H. and Anwander, A. and Koch, M.A. and Reitzinger, S. and Kuhn, M. and Svensen, M.. Influence of head tissue conductivity anisotropy on human EEG and meg using fast high resolution finite element modeling, based on a parallel algebraic multigrid solver. Forschung und wissenschaftliches Rechnen, ():111--157, 2001.
Bulgakov, VE and Kuhn, G.. High-performance Multilevel Iterative Aggregation Solver for Large Finite-element Structural Analysis Problems. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 38():3529--3529, 1995.
Babuska, I. and Osborn, JE. Corrigendum:``Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems''[Math. Comp. 52 (1989), no. 186, 275-297%3B MR0962210 (89k: 65132)]. Mathematics of Computation, 63(208):, 1994.
Ladevèze, P. and Moës, N.. {A new a posteriori error estimation for nonlinear time-dependent finite element analysis}. Computer Methods in Applied Mechanics and Engineering, 157(1-2):45--68, 1998.
Repin, S. and Sauter, S. and Smolianski, A.. {A Posteriori Estimation of Dimension Reduction Errors for Elliptic Problems on Thin Domains}. SIAM J. Numer. Anal., 42(4):1435, 2004.
Ern, A. and Stephansen, A.F. and Vohral\ik, M.. {Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods}. Preprint R07050, Laboratoire Jacques-Louis Lions, submitted for publication, ():, 2007.
Cottrell, JA and Reali, A. and Bazilevs, Y. and Hughes, TJR. {Isogeometric analysis of structural vibrations}. Computer Methods in Applied Mechanics and Engineering, 195(41-43):5257--5296, 2006.
Hughes, TJR and Cottrell, JA and Bazilevs, Y.. {Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement}. Computer Methods in Applied Mechanics and Engineering, 194(39-41):4135--4195, 2005.
Hajlasz, P. and Malỳ, J.. {Approximation in Sobolev spaces of nonlinear expressions involving the gradient}. Arkiv für matematik, 40(2):245--274, 2002.
Franchi, B. and Tesi, M.C.. {A finite element approximation for a class of degenerate elliptic equations}. MATHEMATICS OF COMPUTATION, 69(229):41--64, 2000.
Kolyada, VI and Perez, FJ. {Estimates of difference norms for functions in anisotropic Sobolev spaces}. Mathematische Nachrichten, 267(1):46--64, 2004.
Ding, Y. and Lan, S.. {Anisotropic weak Hardy spaces and interpolation theorems}. Chinese), Science in China (A)(Chiese Series), 37, ():1403--1416, 2007.
Menon, Vijay and Trefethen, Anne E.. MultiMATLAB: integrating MATLAB with high-performance parallel computing. Supercomputing '97: Proceedings of the 1997 ACM/IEEE conference on Supercomputing (CDROM), ():1--18, 1997.
De Rose, L. and Gallivan, K. and Gallopoulos, E. and Marsolf, B. and Padua, D.. {FALCON: A MATLAB Interactive Restructuring Compiler}. Languages and Compilers for Parallel Computing: 8th International Workshop, LCPC'95, Columbus, Ohio, USA, August 10-12, 1995: Proceedings, ():, 1996.
Aart, JC and Harry, AG. {Automatic Data Structure Selection and Transformation for Sparse Matrix Computations}. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ():109--126, 1996.
Pothen, A. and Simon, H.D. and Liou, K.P. and others. {Partitioning Sparse Matrices with Eigenvectors of Graphs}. SIAM J. MATRIX ANAL. APPLIC., 11(3):430--452, 1990.
Cascon, J. Manuel and Kreuzer, Christian and Nochetto, Ricardo H. and Siebert, Kunibert G.. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method. SIAM J. Numer. Anal., 46(5):2524-2550, 2008.
Calderon, AP. {Lebesgue Spaces Of Differentiable Functions And Distributions}. Partial Differential Equations: Proc. Symp. Pure Math., 4():33 -- 49, 1961.
Si, Zhiyong and Feng, Xinlong and Abduwali, Abdurishit. The semi-discrete streamline diffusion finite element method for time-dependented convection-diffusion problems. Applied Mathematics and Computation, 202(2):771--779, 2008.
Vohral\ik, M.. {A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization}. Comptes Rendus Mathematique, 346(11--12):687--690, 2008.
Vohral\ik, M.. {Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients}. Preprint R08009, Laboratoire Jacques-Louis Lions, submitted for publication, ():, 2008.
Kleinert, H. and Chervyakov, A.. {Rules for integrals over products of distributions from coordinate independence of path integrals}. Eur. Phys. J. C, 19():743--747, 2001.
Kellogg, RB. {Interpolation between subspaces of a Hilbert space, Technical note BN-719}. Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, ():, 1971.
Doob, JL and Carlitz, L. and Ficken, FA and Paranian, G. and Steenrod, NE. {Manual for authors of mathematical papers}. Bull Amer. Math. Soc, 68():429--444, 1962.
Chern, I.L. and Liu, J.G.U.O. and Wang, W.E.I.C.. {Accurate Evaluation Of Electrostatics For Macromolecules In Solution}. Methods Appl. Anal, 10(2):309--328, 2003.
Codina, R. and Blasco, J. and Buscaglia, G.C. and Huerta, A.. {Implementation of a stabilized finite element formulation for the incompressible Navier-Stokes equations based on a pressure gradient projection}. International Journal for Numerical Methods in Fluids, 37(4):419--444, 2001.
Codina, Ramon and Blasco, Jordi. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection. Computer Methods in Applied Mechanics and Engineering, 182(3-4):277--300, 2000.
Codina, Ramon and Blasco, Jordi. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Computer Methods in Applied Mechanics and Engineering, 143(3-4):373--391, 1997.
Codina, R. and Blasco, J.. {Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations}. Numer. Math., 87(1):59--81, 2000.
George, PL and Borouchaki, H. and Frey, PJ and Laug, P. and Saltel, E.. Mesh Generation and Mesh Adaptivity: Theory and Techniques.. Encyclopedia of computational mechanics, ():, 2004.
Liu, J. and Wang, M. and Chen, S. and Robbins, M.O.. Efficient Molecular Simulations of Nanoscale Eletrokinetic Flows. Submitted to J. Comput. Phys., ():, 2008.
Wang, M. and Chen, S.. Electroosmosis in homogeneously charged micro- and nanoscale random porous media. Journal of Colloid and Interface Science, 314(1):264 -- 273, 2007.
Wang, M. and Pan, N. and Wang, J. and Chen, S.. Lattice {Poisson-Boltzmann} Simulations of Electroosmotic Flows in Charged Anisotropic Porous Media. Commun. Comput. Phys., 2(6):1055 -- 1070, 2007.
Wang, M. and Wang, J. and Chen, S. and Pan, N.. Electrokinetic Pumping Effects of Charged Porous Media in Microchannels using the Lattice {Poisson-Boltzmann} Method. Journal of Colloid and Interface Science, 304(1):246 -- 253, 2006.
Wang, M. and Wang, J. and Chen, S.. Roughness and Cavitations effects on Electro-osmotic Flows in Rough Microchannels using the Lattice {Poisson-Boltzmann} Methods. Journal of Computational Physics, 226(1):838 -- 851, 2007.
Wang, J. and Wang, M. and Li, Z.. Lattice {Poisson-Boltzmann} Simulations of Electro-osmotic Flows in Microchannels. Journal of Colloid and Interface Science, 296(2):729 -- 736, 2006.
Karnik, R. and Fan, R. and Yue, M. and Li, D.Y. and Yang, P.D. and Majumdar, A.. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett., ():, 2005.
Wong, P.K. and Wang, T.H. and Deval, J.H. and Ho, C.M.. Electrokinetics in micro devices for biotechnology applications. IEEE-ASME Trans. Mechatron, 9(2):366 -- 376, 2004.
Stone, H.A. and Stroock, A.D. and Ajdari, A.. Engineering flows in small devices: microfluidics toward a Lab-on-a-Chip. Annu. Rev. Fluid Mech, 36(1):381 -- 411, 2004.
Peter, C. and Hummer, G.. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophysical Journal, 89(4):2222 -- 2234, 2005.
Babuska, I. and Osborn, J.E.. {Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems}. Math. Comp, 52(186):275--297, 1989.
Attene, Marco and Falcidieno, Bianca and Spagnuolo, Michela and Wyvill, Geoff. A mapping-independent primitive for the triangulation of parametric surfaces. Graphical ModelsSpecial Issue on SMI 2002, 65(5):260--273, 2003.
Chen, Long and Nochetto, Ricardo H. and Xu, Jinchao. Local Multilevel methods on graded bisection grids: {$H(curl$ and $H(div)$} systems. Preprint, ():, 2008.
Babenko, V. F. and Ligun, A. A.. The order of the best unilateral approximations by polynomials and splines in the {$L\sb{p}$} metric. Mat. Zametki, 19(3):323--329, 1976.
Nielsen, Frank and Boissonnat, Jean-Daniel and Nock, Richard. Visualizing bregman voronoi diagrams. SCG '07: Proceedings of the twenty-third annual symposium on Computational geometry, ():121--122, 2007.
Hoff III, K.E. and Keyser, J. and Lin, M. and Manocha, D. and Culver, T.. {Fast computation of generalized Voronoi diagrams using graphics hardware}. Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ():277--286, 1999.
Fisher, M. and Springborn, B. and Schröder, P. and Bobenko, A.I.. {An algorithm for the construction of intrinsic delaunay triangulations with applications to digital geometry processing}. Computing, 81(2):199--213, 2007.
Burger, M. and Resmerita, E. and He, L.. {Error estimation for Bregman iterations and inverse scale space methods in image restoration}. Computing, 81(2):109--135, 2007.
Dominguez, Victor and Sayas, Francisco-Javier. Algorithm 884: A Simple {Matlab} Implementation of the {Argyris} Element. ACM Trans. Math. Softw., 35(2):, 2008.
Rojas, Marielba and Santos, Sandra A. and Sorensen, Danny C.. Algorithm 873:: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization. ACM Trans. Math. Softw., 34(2):1--28, 2008.
Blom, J. G. and Trompert, R. A. and Verwer, J. G.. Algorithm 758: VLUGR2: a vectorizable adaptive-grid solver for PDEs in 2D. ACM Trans. Math. Softw., 22(3):302--328, 1996.
Berzins, M. and Fairlie, R. and Pennington, S. V. and Ware, J. M. and Scales, L. E.. SPRINT2D: adaptive software for PDEs. ACM Trans. Math. Softw., 24(4):475--499, 1998.
Sherwin, SJ and Karniadakis, GE. {Tetrahedral hp Finite Elements: Algorithms and Flow Simulations}. Journal of Computational Physics, 124(1):14--45, 1996.
Li, Z. and Pao, C.V. and Qiao, Z.. {A Finite Difference Method and Analysis for 2D Nonlinear Poisson--Boltzmann Equations}. Journal of Scientific Computing, 30(1):61--81, 2007.
Boschitsch, AH and Fenley, MO. {A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation.}. J Comput Chem, 28(5):909--21, 2007.
Bredenberg, Johan H. and Fenley, Marcia O.. Salt dependent association of novel mutants of TATA-binding proteins to DNA: Predictions from theory and experiments. Commun. Comput. Phys., 3():1132-1153, 2008.
Ambia-Garrido, J. and Pettitt, B. Montgomery. Free energy calculations for DNA near surfaces using an ellipsoidal geometry. Commun. Comput. Phys., 3():1117-1131, 2008.
Wang, Moran and Chen, Shiyi. On applicability of Poisson-Boltzmann equation for micro- and nanoscale electroosmotic flows. Commun. Comput. Phys., 3():1087-1099, 2008.
Talley, Kemper and Kundrotas, Petras and Alexov, Emil. Modeling salt dependence of protein-protein association: Linear vs non-linear Poisson-Boltzmann equation. Commun. Comput. Phys., 3():1071-1086, 2008.
Bredenberg, Johan H. and Boschitsch, Alexander H. and Fenley, Marcia O.. The role of anionic protein residues on the salt dependence of the binding of aminoacyl-tRNA synthetases to tRNA: A Poisson-Boltzmann analysis. Commun. Comput. Phys., 3():1051-1070, 2008.
Wang, Jun and Tan, Chunhu and Tan, Yu-Hong and Lu, Qiang and Luo, Ray. Poisson-Boltzmann solvents in molecular dynamics simulations. Commun. Comput. Phys., 3():1010-1031, 2008.
Lu, B. Z. and Zhou, Y. C. and Holst, M. J. and McCammon, J. A.. Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications. Commun. Comput. Phys., 3():973-1009, 2008.
Rong, Guodong and Tan, Tiow-Seng. Jump flooding in GPU with applications to Voronoi diagram and distance transform. I3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, ():109--116, 2006.
Han, H. and Kellogg, R. B.. Differentiability Properties of Solutions of the Equation $ - \varepsilon ^2 \Delta u + ru = f(x,y)$ in a Square. SIAM Journal on Mathematical Analysis, 21(2):394-408, 1990.
E, Weinan and Ming, Pingbing Ming and Zhang., Pingwen. {Analysis Of The Heterogeneous Multiscale Method For Elliptic Homogenization Problems}. AMERICAN MATHEMATICAL SOCIETY, 18(1):121--156, 2004.
Arbogast, Todd and Wheeler, Mary F.. A Family of Rectangular Mixed Elements with a Continuous Flux for Second Order Elliptic Problems. SIAM J. Numer. Anal., 42(5):1914-1931, 2005.
Efendiev, Y. and Hou, T.. Multiscale finite element methods for porous media flows and their applications. Applied Numerical MathematicsSpecial Issue for the International Conference on Scientific Computing, 57(5-7):577--596, 2007.
Jenny, P. and Lee, S. H. and Tchelepi, H. A.. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. Journal of Computational Physics, 187(1):47--67, 2003.
Chen, Z. and Hou, T.Y.. {A mixed multiscale finite element method for elliptic problems with oscillating coefficients}. Math. Comp, 72():541--576, 2003.
Liu, Y. and Vinokur, M.. {Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids}. Journal of Computational Physics, 140(1):122--147, 1998.
Li, Chong-Jun and Wang, Ren-Hong. A new 8-node quadrilateral spline finite element. Journal of Computational and Applied MathematicsThe International Symposium on Computing and Information (ISCI2004), 195(1-2):54--65, 2006.
Simpson, M. J. and Clement, T. P.. Comparison of finite difference and finite element solutions to the variably saturated flow equation. Journal of Hydrology, 270(1-2):49--64, 2003.
Aarnes, J.E. and Gimse, T. and Lie, K.A.. {An introduction to the numerics of flow in porous media using Matlab}. Geometrical Modeling, Numerical Simulation, and Optimization: Industrial Mathematics at SINTEF, ():265--306, 2008.
Kippe, V. and Aarnes, J.E. and Lie, K.A.. {A comparison of multiscale methods for elliptic problems in porous media flow}. Comput. Geosci, To appear, ():, 2008.
Chen, Y. and Durlofsky, L.J.. {Adaptive Local--Global Upscaling for General Flow Scenarios in Heterogeneous Formations}. Transport in Porous Media, 62(2):157--185, 2006.
Wen, Xian-Huan and G\'omez-Hern\'andez, J. Jaime. Upscaling hydraulic conductivities in heterogeneous media: An overview. Journal of Hydrology, 183(1-2):ix--xxxii, 1996.
Borcea, L. and Papanicolaou, GC. {A hybrid numerical method for high contrast conductivity problems}. Journal of Computational and Applied Mathematics, 87(1):61--77, 1997.
Shurina, E.P. and Solonenko, O.P. and Voitovich, T.V.. Technologies of finite volume-finite element method for the solution of convection-diffusion problems on unstructured grids. , 7(3):98--120, 2002.
Turner, I. W. and Ferguson, W. J.. An unstructured mesh cell-centered control volume method for simulating heat and mass transfer in porous media: Application to softwood drying, part I: The isotropic model. Applied Mathematical Modelling, 19(11):654--667, 1995.
Durlofsky, L.J.. {Upscaling of geocellular models for reservoir flow simulation: A review of recent progress}. 7th International Forum on Reservoir Simulation, Buhl/Baden-Baden, Germany, June, ():23--27, 2003.
Reddy, Mahender P. and Deb, Manas K. and Bass, Jon M. and Ning, Hui. Numerical simulation of non-conventional wells using adaptive finite element analysis. Computer Methods in Applied Mechanics and EngineeringSymposium on Advances in Computational Mechanics, 150(1-4):109--124, 1997.
Morton, D. J. and Tyler, J. M. and Bourgoyne, A. T. and Schenewerk, P. A.. An adaptive finite element methodology for 2D simulation of two-phase flow through porous media. SAC '94: Proceedings of the 1994 ACM symposium on Applied computing, ():357--362, 1994.
Cao, Jun and Kitanidis, Peter K.. Adaptive-grid simulation of groundwater flow in heterogeneous aquifers. Advances in Water Resources, 22(7):681--696, 1999.
KNABNER, P. and TAPP, C. and THIELE, K.. {ADAPTIVE FINITE VOLUME DISCRETIZATION OF DENSITY DRIVEN FLOWS IN POROUS MEDIA}. Acta Math. Univ. Comenianae, 67(1):115--136, 1998.
Mehl, Steffen and Hill, Mary C.. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Advances in Water Resources, 25(5):497--511, 2002.
Ollivier-Gooch, C. and Nejat, A. and Michalak, C.. {On obtaining high-order finite-volume solutions to the Euler equations on unstructured meshes}. Proceedings of the Eighteenth AIAA Computational Fluid Dynamics Conference, ():, 2007.
Khattri, S. K. and Fladmark, G. E. and Dahle, H. K.. Control Volume Finite Difference On Adaptive Meshes. The Proceedings for 16th Conferences for Domain Decomposition Methods, ():629--636, 2007.
Guy, Robert D. and Fogelson, Aaron L.. Stability of approximate projection methods on cell-centered grids. Journal of Computational Physics, 203(2):517--538, 2005.
Grosso, R. and Lurig, C. and Ertl, T.. The multilevel finite element method for adaptive mesh optimization and visualization of volume data. vis, 00():387, 1997.
Hall, CA and Cavendish, JC and Frey, WH. {The dual variable method for solving fluid flow difference equations on Delaunay triangulations}. Computers and Fluids, 20(2):145--164, 1991.
Han, Houde and Wu, Xiaonan. A New Mixed Finite Element Formulation and the MAC Method for the Stokes Equations. SIAM J. Numer. Anal., 35(2):560-571, 1998.
Malkus, D. S. and Hughes, T. J. R.. Mixed finite element methods---reduced and selective integration techniques: a unification of concepts. Comput. Methods Appl. Mech. Eng., ():63--81, 1990.
Barrenechea, G.R. and Valentin, F.. {Relationship between multiscale enrichment and stabilized finite element methods for the generalized Stokes problem}. Comptes rendus-Mathématique, 341(10):635--640, 2005.
Araya, R. and Valentin, F.. {A multiscale a posteriori error estimate}. Computer Methods in Applied Mechanics and Engineering, 194(18-20):2077--2094, 2005.
Achdou, Y. and Bernardi, C. and Coquel, F.. {A priori and a posteriori analysis of finite volume discretizations of Darcy's equations}. Numer. Math., 96(1):17--42, 2003.
Clavero, C. and Gracia, JL and Lisbona, F.. {High order methods on Shishkin meshes for singular perturbation problems of convection--diffusion type}. Numerical Algorithms, 22(1):73--97, 1999.
Wen, XH and Durlofsky, LJ and Edwards, MG. {Upscaling of Channel Systems in Two Dimensions Using Flow-Based Grids}. Transport in Porous Media, 51(3):343--366, 2003.
Wang, C. and Tang, H. and Liu, T.. {An adaptive ghost fluid finite volume method for compressible gas--water simulations}. Journal of Computational Physics, ():, 2008.
Matthies, G. and Tobiska, L.. {Mass conservation of finite element methods for coupled flow-transport problems}. International Journal of Computing Science and Mathematics, 1(2):293--307, 2007.
Kim, Y. and Lee, S.. {Stable finite element methods for the Stokes problem}. International Journal of Mathematics and Mathematical Sciences, 24(10):699--714, 2000.
Liska, Richard and Shashkov, Mikhail. Enforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Second-Order Elliptic Problems. Communications in Computational Physics, 3(4):852-877, 2008.
Schatz, A.H.. {A Weak Discrete Maximum Principle and Stability of the Finite Element Method in\$ L\_$\backslash$ infty\$ on Plane Polygonal Domains. I}. Mathematics of Computation, 34(149):77--91, 1980.
Tom, A.S.V.Y. and Solin, P.. {Discrete Maximum Principle For Higher-Order Finite Elements In 1D}. Mathematics Of Computation, 76(260):1833--1846, 2007.
Bochev, Pavel and Gunzburger, Max. An Absolutely Stable Pressure-Poisson Stabilized Finite Element Method for the Stokes Equations. SIAM J. Numer. Anal., 42(3):1189-1207, 2004.
Madureira, Alexandre L. and Valentin, Frederic. Asymptotics of the Poisson Problem in Domains with Curved Rough Boundaries. SIAM Journal on Mathematical Analysis, 38(5):1450-1473, 2007.
Morton, KW and Stynes, M. and Suli, E.. {Analysis of a cell-vertex finite volume method for convection-diffusion problems}. Math. Comp, 66():1389--1406, 1997.
Boivin, S. and Cayré, F. and Hérard, J.M.. {A finite volume method to solve the Navier--Stokes equations for incompressible flows on unstructured meshes}. International Journal of Thermal Sciences, 39(8):806--825, 2000.
Zhang, L. and Gerstenberger, A. and Wang, X. and Liu, W.K.. {Immersed finite element method}. Computer Methods in Applied Mechanics and Engineering, 193(21-22):2051--2067, 2004.
Liu, W.K. and Liu, Y. and Farrell, D. and Zhang, L. and Wang, X.S. and Fukui, Y. and Patankar, N. and Zhang, Y. and Bajaj, C. and Lee, J. and others. {Immersed finite element method and its applications to biological systems}. Computer Methods in Applied Mechanics and Engineering, 195(13-16):1722--1749, 2006.
Oñate, E.. {Multiscale computational analysis in mechanics using finite calculus: an introduction}. Computer Methods in Applied Mechanics and Engineering, 192(28-30):3043--3059, 2003.
Oñate, E. and Zárate, F. and Idelsohn, S.R.. {Finite element formulation for convective--diffusive problems with sharp gradients using finite calculus}. Computer Methods in Applied Mechanics and Engineering, 195(13-16):1793--1825, 2006.
Barbone, P.E. and Harari, I.. {Nearly H1-optimal finite element methods}. Computer Methods in Applied Mechanics and Engineering, 190(43-44):5679--5690, 2001.
Nesliturk, A. and Harari, I.. {The nearly-optimal Petrov--Galerkin method for convection--diffusion problems}. Computer Methods in Applied Mechanics and Engineering, 192(22-24):2501--2519, 2003.
Farhat, C. and Harari, I. and Franca, L.P.. {The discontinuous enrichment method}. Computer Methods in Applied Mechanics and Engineering, 190(48):6455--6479, 2001.
Araya, R. and Barrenechea, G.R. and Poza, A.. {An adaptive stabilized finite element method for the generalized Stokes problem}. Journal of Computational and Applied Mathematics, 214(2):457--479, 2008.
Araya, R. and Barrenechea, G.R. and Valentin, F.. {Stabilized Finite Element Methods Based on Multiscale Enrichment for the Stokes Problem}. SIAM J. Numer. Anal., 44():322, 2006.
Pemantle, Robin and Wilson, Mark C.. Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions. SIAM Rev., 50(2):199-272, 2008.
Barrenechea, G.R. and Franca, L.P. and Valentin, F.. {A Petrov--Galerkin enriched method: A mass conservative finite element method for the Darcy equation}. Computer Methods in Applied Mechanics and Engineering, 196(21-24):2449--2464, 2007.
Hughes, TJR and Engel, G. and Mazzei, L. and Larson, MG. {The Continuous Galerkin Method Is Locally Conservative}. Journal of Computational Physics, 163(2):467--488, 2000.
Hughes, T.J.R. and Wells, G.N.. {Conservation properties for the Galerkin and stabilised forms of the advection--diffusion and incompressible Navier--Stokes equations}. Computer Methods in Applied Mechanics and Engineering, 194(9-11):1141--1159, 2005.
COMINI, G. and DEL GUIDICE, S.. {A Physical Interpretation Of Conventional Finite Element Formulations Of Conduction-Type Problems}. International journal for numerical methods in engineering, 32(3):559--569, 1991.
Del Giudice, S. and Comini, G. and Nonino, C.. {A physical interpretation of conservative and non-conservative finite element formulations of convection-type problems}. Int. j. numer. methods eng, 35():709--727, 1992.
Nonino, C. and Comini, G. and del Giudice, S.. {Comparison of conservative and non-conservative finite element formulations for advection-diffusion problems}. Numerical methods in laminar and turbulent flow%3B Proceedings of the 7th International Conference, Stanford Univ., CA, July 15-19, 1991. Vol. 7, pt. 1 (A93-34301 13-34), p. 534-544., 7():534-544, 1991.
BRISTEAU, MO and GLOWINSKI, R. and MANTEL, B. and PERIAUX, J.. {Finite Element Methods for solving the Navier-Stokes Equations for Compressible Unsteady Flows}. Ninth International Conference on Numerical Methods in Fluid Dynamics, ():115--120, 1985.
Haber, E. and Ascher, U. M.. Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients. SIAM J. Sci. Comput., 22(6):1943-1961, 2001.
Picasso, M.. {Adaptive finite elements with large aspect ratio based on an anisotropic error estimator involving first order derivatives}. Computer Methods in Applied Mechanics and Engineering, 196(1-3):14--23, 2006.
Feng, Xiaobing and Xie, Zhenghui. A priori error estimates for a coupled finite element method and mixed finite element method for a fluid-solid interaction problem. IMA J. Numer. Anal., 24(4):671--698, 2004.
Feng, X. and Oehsen, M. and Prohl, A.. {Rate of convergence of regularization procedures and finite element approximations for the total variation flow}. Numer. Math., 100(3):441--456, 2005.
Feng, X. and Wu, H.. {A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen--Cahn Equation and the Mean Curvature Flow}. Journal of Scientific Computing, 24(2):121--146, 2005.
Charina, Maria and Conti, Costanza and Fornasier, Massimo. Adaptive frame methods for nonlinear variational problems. Numer. Math., 109(1):45--75, 2008.
Yinnian, H. and Jinchao, X. and Aihui, Z. and Li, Jian. {Local and parallel finite element algorithms for the Stokes problem}. Numer. Math., 109(3):415--434, 2008.
Franca, Leopoldo P. and John, Volker and Matthies, Gunar and Tobiska, Lutz. An inf-sup Stable and Residual-Free Bubble Element for the Oseen Equations. SIAM J. Numer. Anal., 45(6):2392-2407, 2007.
de Frutos, Javier and Garc\ia-Archilla, Bosco and Novo, Julia. The Postprocessed Mixed Finite-Element Method for the Navier--Stokes Equations: Refined Error Bounds. SIAM J. Numer. Anal., 46(1):201-230, 2007.
Merlet, Benoit. $L^\infty$- and $L^2$-Error Estimates for a Finite Volume Approximation of Linear Advection. SIAM J. Numer. Anal., 46(1):124-150, 2007.
Drbl\ikova, Olga and Mikula, Karol. Convergence Analysis of Finite Volume Scheme for Nonlinear Tensor Anisotropic Diffusion in Image Processing. SIAM J. Numer. Anal., 46(1):37-60, 2007.
Du, Qiang and Emelianenko, Maria. Uniform Convergence of a Nonlinear Energy-Based Multilevel Quantization Scheme. SIAM J. Numer. Anal., 46(3):1483-1502, 2008.
Duran, Ricardo G. and Lombardi, Ariel L.. Error Estimates for the Raviart--Thomas Interpolation Under the Maximum Angle Condition. SIAM J. Numer. Anal., 46(3):1442-1453, 2008.
Estep, D. and Ginting, V. and Ropp, D. and Shadid, J. N. and Tavener, S.. An A Posteriori--A Priori Analysis of Multiscale Operator Splitting. SIAM J. Numer. Anal., 46(3):1116-1146, 2008.
Wang, Hong. An Optimal-Order Error Estimate for a Family of ELLAM-MFEM Approximations to Porous Medium Flow. SIAM J. Numer. Anal., 46(4):2133-2152, 2008.
Estep, D. and Tavener, S. and Wildey, T.. A Posteriori Analysis and Improved Accuracy for an Operator Decomposition Solution of a Conjugate Heat Transfer Problem. SIAM J. Numer. Anal., 46(4):2068-2089, 2008.
Apel, Thomas and Matthies, Gunar. Nonconforming, Anisotropic, Rectangular Finite Elements of Arbitrary Order for the Stokes Problem. SIAM J. Numer. Anal., 46(4):1867-1891, 2008.
Gervasio, Paola. Convergence Analysis of High Order Algebraic Fractional Step Schemes for Time-Dependent Stokes Equations. SIAM J. Numer. Anal., 46(4):1682-1703, 2008.
Li, Huiyuan and Sun, Jiachang and Xu, Yuan. Discrete Fourier Analysis, Cubature, and Interpolation on a Hexagon and a Triangle. SIAM J. Numer. Anal., 46(4):1653-1681, 2008.
Qiu, Jing-Mei and Shu, Chi-Wang. Convergence of Godunov-Type Schemes for Scalar Conservation Laws under Large Time Steps. SIAM J. Numer. Anal., 46(5):2211-2237, 2008.
Chen, Z. and Deng, W. and Ye, H.. {Upscaling of a class of nonlinear parabolic equations for the flow transport in heterogeneous porous media}. Communications in Mathematical Sciences, 3():493--515, 2005.
Dabrowski, M. and Krotkiewski, M. and Schmid, DW. {MILAMIN: MATLAB-based finite element method solver for large problems}. Geochemistry Geophysics Geosystems, 9(4):, 2008.
George, E. and Glimm, J. and Li, X. and Li, Y. and Liu, X.. {Influence of scale-breaking phenomena on turbulent mixing rates}. Physical Review E, 73(1):16304, 2006.
Lee, JF and Sun, DK and Cendes, ZJ. {Tangential vector finite elements for electromagnetic field computation}. Magnetics, IEEE Transactions on, 27(5):4032--4035, 1991.
Rose, Luiz De and Padua, David. A MATLAB to Fortran 90 translator and its effectiveness. ICS '96: Proceedings of the 10th international conference on Supercomputing, ():309--316, 1996.
Sheu, T.W.H. and Lin, RK. {Newton linearization of the incompressible Navier--Stokes equations}. International Journal for Numerical Methods in Fluids, 44(3):297--312, 2004.
Knoll, DA and Keyes, DE. {Jacobian-free Newton--Krylov methods: a survey of approaches and applications}. Journal of Computational Physics, 193(2):357--397, 2004.
Kopteva, N.. {How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers?}. Computer Methods in Applied Mechanics and Engineering, 193(45-47):4875--4889, 2004.
Spielman, D.A. and Teng, S.H.. {Spectral partitioning works: Planar graphs and finite element meshes}. Linear Algebra and Its Applications, 421(2-3):284--305, 2007.
Pousin, J. and Rappaz, J.. {Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems}. Numer. Math., 69(2):213--231, 1994.
Lipsman, Ronald L. and Osborn, John E. and Rosenberg, Jonathan M.. The {SCHOL} Project at the University of Maryland: Using Mathematical Software in the Teaching of Sophomore Differential Equations. Journal of Numerical Analysis, Industrial and Applied Mathematics, 1(1):1-23, 2007.
Huang, Jingfang and Greengard, Leslie. A Fast Direct Solver for Elliptic Partial Differential Equations on Adaptively Refined Meshes. SIAM J. Sci. Comput., 21(4):1551-1566, 1999.
Tobiska, Lutz. Analysis of a new stabilized higher order finite element method for advection-diffusion equations. Computer Methods in Applied Mechanics and Engineering, 196(1-3):538--550, 2006.
Linss, Torsten and Stynes, Martin. Numerical methods on Shishkin meshes for linear convection-diffusion problems. Computer Methods in Applied Mechanics and Engineering, 190(28):3527--3542, 2001.
HEMKER, P W. {The use of defect correction for the solution of a singularly perturbed ODE}. Seminarber., Humboldt-Univ. Berlin Sekt. Math, 46():91--103, 1982.
John, V.. {A numerical study of a posteriori error estimators for convection--diffusion equations}. Computer Methods in Applied Mechanics and Engineering, 190(5-7):757--781, 2000.
Altas, Irfan and Burrage, Kevin. A High Accuracy Defect-Correction Multigrid Method for the Steady Incompressible Navier-Stokes Equations. Journal of Computational Physics, 114(2):227--233, 1994.
Heinrich, Jc and Zienkiewicz, C.. {Quadratic Finite Element Schemes For Problems}. International Journal For Numerical Methods In Engineering, 11():1831--1844, 1977.
Heinrich, J.~C. and Huyakorn, P.~S. and Zienkiewicz, O.~C. and Mitchell, A.~R.. {An 'upwind' finite element scheme for two-dimensional convective transport equation}. International Journal for Numerical Methods in Engineering, 11():131-143, 1977.
Joly, P. and Poirier, C. and Roberts, J. E. and Trouve, P.. A New Nonconforming Finite Element Method for the Computation of Electromagnetic Guided Waves. I: Mathematical Analysis. SIAM J. Numer. Anal., 33(4):1494-1525, 1996.
Knobloch, Petr and Tobiska, Lutz. The P[sub 1][sup mod] Element: A New Nonconforming Finite Element for Convection-Diffusion Problems. SIAM J. Numer. Anal., 41(2):436-456, 2003.
Luo, H. and Baum, J.D. and Löhner, R.. {An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured grids}. Computers and Fluids, 30(2):137--159, 2001.
Luo, H. and Baum, J.D. and Loehner, R.. {A fast, matrix-free implicit method for compressible flows on unstructured grids}. Journal of Computational Physics, 146(2):664--690, 1998.
Masud, Arif and Hughes, Thomas J. R.. A stabilized mixed finite element method for Darcy flow. Computer Methods in Applied Mechanics and Engineering, 191(39-40):4341--4370, 2002.
Tomlin, A. and Berzins, M. and Ware, J. and Smith, J. and Pilling, MJ. {On the use of adaptive gridding methods for modelling chemical transport from multi-scale sources}. Atmospheric Environment, 31(18):2945--2959, 1997.
Brand, R. and Freeden, W. and Fröhlich, J.. {An adaptive hierarchical approximation method on the sphere using axisymmetric locally supported basis functions}. Computing, 57(3):187--212, 1996.
Randall, DA and Ringler, TD and Heikes, RP and Jones, P. and Baumgardner, J.. {Climate modeling with spherical geodesic grids}. Computing in Science \& Engineering [see also IEEE Computational Science and Engineering], 4(5):32--41, 2002.
Tomita, Hirofumi and Satoh, Masaki and Goto, Koji. An optimization of the Icosahedral grid modified by spring dynamics. J. Comput. Phys., 183(1):307--331, 2002.
Ringler, T.D. and Heikes, R.P. and Randall, D.A.. {Modeling the Atmospheric General Circulation Using a Spherical Geodesic Grid: A New Class of Dynamical Cores}. Monthly Weather Review, 128(7):2471--2490, 2000.
Rasch, P.J. and Williamson, D.L.. {Computational aspects of moisture transport in global models of the atmosphere}. Quarterly Journal of the Royal Meteorological Society, 116(495):1071--1090, 1990.
Hesse, Kerstin and Sloan, Ian H.. Cubature over the sphere S2 in Sobolev spaces of arbitrary order. Journal of Approximation Theory, 141(2):118--133, 2006.
Sloan, I.H. and Womersley, R.S.. {Good approximation on the sphere, with application to geodesy and the scattering of sound}. Journal of Computational and Applied Mathematics, 149(1):227--237, 2002.
Layton, Anita T. and Christara, Christina C. and Jackson, Kenneth R.. Quadratic spline methods for the shallow water equations on the sphere: collocation. Math. Comp.. Simul., 71(3):187--205, 2006.
Xu, G.. {Discrete Laplace-Beltrami operator on sphere and optimal spherical triangulations}. Research Report, Institute of Computational Mathematics and Sciences/Engineering Computation, Chinese Academy of Sciences, No. ICM-04, 11():, 2004.
Xu, Z. and Xu, G. and Sun, J.. {Convergence analysis of discrete differential geometry operators over surfaces}. IMA Conference on the Mathematics of Surfaces, ():448--457, 2005.
Xu, G.. {Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces}. Computer Aided Geometric Design, 23(2):193--207, 2006.
Gallouet, Thierry and Herbin, Raphaele and Vignal, Marie Helene. Error Estimates on the Approximate Finite Volume Solution of Convection Diffusion Equations with General Boundary Conditions. SIAM J. Numer. Anal., 37(6):1935-1972, 2000.
Di, Yana and Li, Ruo and Tang, Tao and Zhang, Pingwen. Moving Mesh Methods for Singular Problems on a Sphere Using Perturbed Harmonic Mappings. SIAM J. Sci. Comput., 28(4):1490--1508, 2006.
Shishkin, G. I.. Limitations of adaptive mesh refinement techniques for singularly perturbed problems with a moving interior layer. J. Comput. Appl. Math., 166(1):267--280, 2004.
Giraldo, Francis X.. High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere. J. Comput. Phys., 214(2):447--465, 2006.
Rui, Hongxing. Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems. J. Comput. Appl. Math., 146(2):373--386, 2002.
Bramble, J.H.. {Fourth-Order Finite Difference Analogues of the Dirichlet Problem for Poisson's Equation in Three and Four Dimensions}. Mathematics of Computation, 17(83):217--222, 1963.
Korotov, S. and K ríek, M.. {Global and local refinement techniques yielding nonobtuse tetrahedral partitions}. Computers and Mathematics with Applications, 50(7):1105--1113, 2005.
Boyer, F. and Hubert, F.. {Finite Volume Method for Nonlinear Transmission Problems}. LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING, 60():443, 2008.
Eymard, Robert and Gallouet, Thierry and Herbin, Raphaele. A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. Comptes Rendus Mathematique, 344(6):403--406, 2007.
Eymard, R. and Gallouet, T. and Herbin, R.. {A cell-centered finite volume approximation for second order partial derivative operators with full matrix on unstructured meshes in any space dimension}. Arxiv preprint math.NA/0505109, ():, 2005.
Andreianov, B. and Boyer, F. and Hubert, F.. {Discrete-duality finite volume schemes for Leray-Lions type elliptic problems on general 2d meshes}. Numerical Methods for PDEs, 23(1):145--195, 2007.
Eymard, R. and Gallouet, T. and Herbin, R.. {A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension}. IMA Journal of Numerical Analysis, 26(2):326--353, 2006.
Domelevo, K. and Omnes, P.. {A finite volume method for the laplace equation on almost arbitrary two-dimensional grids}. Modélisation mathématique et analyse numérique(Print), 39(6):1203--1249, 2005.
Ewing, R. and Lazarov, R. and Lin, Y.. {Finite volume element approximations of nonlocal reactive flows in porous media}. Numer. Methods Partial. Diff. Equations, 16(3):285--311, 2000.
Agouzal, Abdellatif and Oudin, Fabienne. A posteriori error estimator for finite volume methods. Applied Mathematics and Computation, 110(2-3):239--250, 2000.
Agouzal, Abdellatif. A Posteriori Error Estimators for Nonconforming Approximation. International Journal of Numerical Analysis and Modeling, 5(1):77--85, 2008.
Snyder, J.M.. {Interval analysis for computer graphics}. Proceedings of the 19th annual conference on Computer graphics and interactive techniques, ():121--130, 1992.
Bailey, Teresa S. and Adams, Marvin L. and Yang, Brian and Zika, Michael R.. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids. Journal of Computational Physics, 227(8):3738--3757, 2008.
LeFloch, Philippe G. and Mohammadian, Majid. Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models. Journal of Computational Physics, 227(8):4162--4189, 2008.
Bao, Weizhu and Yang, Li. Efficient and accurate numerical methods for the Klein-Gordon-Schr\&\#246%3Bdinger equations. J. Comput. Phys., 225(2):1863--1893, 2007.
Wang, Tingchun and Chen, Juan and Zhang, Luming. Conservative difference methods for the Klein-Gordon-Zakharov equations. J. Comput. Appl. Math., 205(1):430--452, 2007.
Simon, J.C.H. and Taflin, E.. {The cauchy problem for non-linear Klein-Gordon equations}. Communications in Mathematical Physics, 152(3):433--478, 1993.
Swaminathan, CR and Voller, VR. {Streamline Upwind Scheme For Control-Volume Finite Elements, Part I. Formulations}. Numerical Heat Transfer, Part B: Fundamentals, 22(1):95--107, 1992.
Banaszek, J.. {Comparison Of Control Volume And Galerkin Finite Element Methods For Diffusion-Type Problems}. Numerical Heat Transfer, Part B: Fundamentals, 16(1):59--78, 1989.
Perre and Passard, J.. {A Control-Volume procedure compared with the Finite-Element method for calculating Stress and Strain during Wood Drying}. Drying Technology, 13(3):635--660, 1995.
Prakash, C. and Patankar, SV. {A Control Volume-Based Finite-Element Method For Solving The Navier-Stokes Equations Using Equal-Order Velocity-Pressure Interpolation}. Numerical Heat Transfer, Part A: Applications, 8(3):259--280, 1985.
Vasilyev, Oleg V.. High Order Finite Difference Schemes on Non-uniform Meshes with Good Conservation Properties. Journal of Computational Physics, 157(2):746--761, 2000.
Morinishi, Y. and Lund, T. S. and Vasilyev, O. V. and Moin, P.. Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow. Journal of Computational Physics, 143(1):90--124, 1998.
Ham, F. E. and Lien, F. S. and Strong, A. B.. A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grids. Journal of Computational Physics, 177(1):117--133, 2002.
Chatzipantelidis, P. and Lazarov, R. D. and Thomée, V. and Wahlbin, L. B.. Parabolic finite element equations in nonconvex polygonal domains. BIT, 46(suppl.):S113--S143, 2006.
Chatzipantelidis, P. and Makridakis, Ch. and Plexousakis, M.. {A-posteriori error estimates for a finite volume method for the Stokes problem in two dimensions}. Appl. Numer. Math., 46(1):45--58, 2003.
Li, Zhilin and Wang, Deshen and Zou, Jun. Theoretical and numerical analysis on a thermo-elastic system with discontinuities. Journal of Computational and Applied Mathematics, 92(1):37--58, 1998.
Perron, Sebastien and Boivin, Sylvain and Herard, Jean-Marc. A finite volume method to solve the 3D Navier-Stokes equations on unstructured collocated meshes. Computers \& Fluids, 33(10):1305--1333, 2004.
Blanc, Philippe and Eymard, Robert and Herbin, Raphaèle. An error estimate for finite volume methods for the {S}tokes equations on equilateral triangular meshes. Numer. Methods Partial Differential Equations, 20(6):907--918, 2004.
Alami-Idrissi, A. and Atounti, M.. An error estimate for finite volume methods for the {S}tokes equations. JIPAM. J. Inequal. Pure Appl. Math., 3(2):Article 17, 8 pp. (electronic), 2002.
Eymard, Robert and Herbin, Raphaele. A cell-centered finite volume scheme on general meshes for the Stokes equations in two space dimensions. Comptes Rendus Mathematique, 337(2):125--128, 2003.
Almgren, Ann S. and Bell, John B. and Colella, Phillip and Marthaler, Tyler. A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries. SIAM J. Sci. Comput., 18(5):1289--1309, 1997.
Apel, Thomas and Grosman, Sergei and Jimack, Peter K. and Meyer, Arnd. A new methodology for anisotropic mesh refinement based upon error gradients. Appl. Numer. Math., 50(3-4):329--341, 2004.
Monovasilis, Th. and Simos, T. E.. Numerical solution of the two-dimensional time independent Schrodinger equation by third order symplectic schemes. Chemical Physics, 313(1-3):293--298, 2005.
Kalogiratou, Z. and Monovasilis, Th. and Simos, T. E.. Numerical solution of the two-dimensional time independent Schr\&\#x00F6%3Bdinger equation with exponential-fitting methods. ICCMSE '03: Proceedings of the international conference on Computational methods in sciences and engineering, ():262--267, 2003.
Lehtovaara, L. and Toivanen, J. and Eloranta, J.. Solution of time-independent Schr\&\#246%3Bdinger equation by the imaginary time propagation method. J. Comput. Phys., 221(1):148--157, 2007.
Zhou, Y. C. and Zhao, Shan and Feig, Michael and Wei, G. W.. High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. Journal of Computational Physics, 213(1):1--30, 2006.
Zhong, Xiaolin. A new high-order immersed interface method for solving elliptic equations with imbedded interface of discontinuity. Journal of Computational Physics, 225(1):1066--1099, 2007.
Barad, Michael and Colella, Phillip. A fourth-order accurate local refinement method for Poisson's equation,. Journal of Computational Physics, 209(1):1--18, 2005.
Gibou, Frederic and Fedkiw, Ronald. A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. Journal of Computational Physics, 202(2):577--601, 2005.
Ito, Kazufumi and Li, Zhilin and Kyei, Yaw. Higher-Order, Cartesian Grid Based Finite Difference Schemes for Elliptic Equations on Irregular Domains. SIAM J. Sci. Comput., 27(1):346-367, 2005.
Gong, Yan and Li, Bo and Li, Zhilin. Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions. SIAM J. Numer. Anal., 46(1):472-495, 2008.
Johansen, Hans and Colella, Phillip. A Cartesian Grid Embedded Boundary Method for Poisson's Equation on Irregular Domains. Journal of Computational Physics, 147(1):60--85, 1998.
Schwartz, Peter and Barad, Michael and Colella, Phillip and Ligocki, Terry. A Cartesian grid embedded boundary method for the heat equation and Poisson's equation in three dimensions. J. Comput. Phys., 211(2):531--550, 2006.
Hu, X. Y. and Khoo, B. C. and Adams, N. A. and Huang, F. L.. A conservative interface method for compressible flows. J. Comput. Phys., 219(2):553--578, 2006.
Bell, J.~B. and Welcome, M.~L. and Colella, P.. {Conservative front-tracking for inviscid compressible flow}. American Institute of Aeronautics and Astronautics Conference, ():24-26, 1991.
Liu, Xu-Dong and Fedkiw, Ronald P. and Kang, Myungjoo. A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains. Journal of Computational Physics, 160(1):151--178, 2000.
Hou, Thomas Y. and Li, Zhilin and Osher, Stanley and Zhao, Hongkai. A Hybrid Method for Moving Interface Problems with Application to the Hele-Shaw Flow,. Journal of Computational Physics, 134(2):236--252, 1997.
Ma, Xiuling and Shu, Shi and Zhou, Aihui. Symmetric finite volume discretizations for parabolic problems. Computer Methods in Applied Mechanics and Engineering, 192(39-40):4467--4485, 2003.
Andreianov, Boris A. and Gutnic, Michael and Wittbold, Petra. Convergence of Finite Volume Approximations for a Nonlinear Elliptic-Parabolic Problem: A "Continuous" Approach. SIAM J. Numer. Anal., 42(1):228--251, 2004.
Hou, Songming and Liu, Xu-Dong. A numerical method for solving variable coefficient elliptic equation with interfaces. Journal of Computational Physics, 202(2):411--445, 2005.
Liu, Xu-Dong and Sideris, Thomas C.. Convergence of the ghost fluid method for elliptic equations with interfaces. Math. Comp.., 72(244):1731--1746, 2003.
Tornberg, Anna-Karin and Engquist, Bjorn. Numerical approximations of singular source terms in differential equations. Journal of Computational Physics, 200(2):462--488, 2004.
Wiegmann, Andreas and Bube, Kenneth P.. The Immersed Interface Method for Nonlinear Differential Equations with Discontinuous Coefficients and Singular Sources. SIAM J. Numer. Anal., 35(1):177-200, 1998.
LeVeque, Randall J. and Li, Zhilin. The Immersed Interface Method for Elliptic Equations with Discontinuous Coefficients and Singular Sources. SIAM J. Numer. Anal., 31(4):1019-1044, 1994.
Eymard, Robert and Gallouet, Thierry and Herbin, Raphaele. A finite volume scheme for anisotropic diffusion problems. Comptes Rendus Mathematique, 339(4):299--302, 2004.
Bailey, C. and Cross, M.. A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh. International Journal for Numerical Methods in Engineering, 38(10):1757--1776, 1995.
Jia, Rong-Qing and Jiang, Qingtang. Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets. SIAM J. Matrix Anal. Appl., 24(4):1071--1109, 2002.
Chou, S. H. and Kwak, D. Y.. A Covolume Method Based on Rotated Bilinears for the Generalized Stokes Problem. SIAM J. Numer. Anal., 35(2):494-507, 1998.
Kang, Kab Seok and Kwak, Do Young. Error Estimate in {L2} of a Covolume Method for the Generalized Stokes Problem. Numer. Methods Partial. Diff. Equations, 22(1):165 - 179, 2005.
Kang, Kab Seok and Lee, Sung Yun. New intergrid transfer operator in multigrid method for {P1}-nonconforming finite element method. Appl. Math. Comp.., 100(2-3):139--149, 1999.
Roos, Hans-Gorg and Adam, Dirk and Felgenhauer, Andreas. A Novel Nonconforming Uniformly Convergent Finite Element Method in Two Dimensions. Journal of Mathematical Analysis and Applications, 201(3):715--755, 1996.
Adam, D. and Felgenhauer, A. and Roos, H.-G. and Stynes, M.. A nonconforming finite element method for a singularly perturbed boundary value problem. Computing, 54(1):1--25, 1995.
Ni, Ming-Jiu and Munipalli, Ramakanth and Morley, Neil B. and Huang, Peter and Abdou, Mohamed A.. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. Journal of Computational Physics, 227(1):174--204, 2007.
Ni, Ming-Jiu and Munipalli, Ramakanth and Huang, Peter and Morley, Neil B. and Abdou, Mohamed A.. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh. Journal of Computational Physics, 227(1):205--228, 2007.
Aziguli, Wulamu and Goetting, Marc and Zeckzer, Dirk. Approximation of NURBS Curves and Surfaces Using Adaptive Equidistant Parameterizations. Tsinghua Science \& Technology, 10(3):316--322, 2005.
Jasak, H. and Weller, H. G.. Application of the finite volume method and unstructured meshes to linear elasticity. Int. J. Numer. Meth. Engng., 48():267--287, 2000.
Edussuriya, S. S. and Williams, A. J. and Bailey, C.. A cell-centred finite volume method for modelling viscoelastic flow. Journal of Non-Newtonian Fluid Mechanics, 117(1):47--61, 2004.
Lv, X. and Zhao, Y. and Huang, X. Y. and Xia, G. H. and Su, X. H.. A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid-structure interaction. J. Comput. Phys., 225(1):120--144, 2007.
Kloucek, Petr and Toffoletto, Frank R.. The three dimensional non-conforming finite element solution of the Chapman-Ferraro problem. J. Comput. Phys., 150(2):549--560, 1999.
Crouzeix, M. and Raviart, P.-A.. {Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I}. Rev. Fran\c caise Automat. Informat. Recherche Op\'erationnelle S\'er. Rouge, 7(R-3):33--75, 1973.
Lee, Heejeong and Sheen, Dongwoo. Basis for the quadratic nonconforming triangular element of {F}ortin and {S}oulie. Int. J. Numer. Anal. Model., 2(4):409--421, 2005.
Kalinkin, A. and Laevsky, Yu. M.. A nonconforming finite element method for a three-dimensional problem of the elasticity theory. Russian J. Numer. Anal. Math. Modelling, 21(4):273--304, 2006.
Shi, Zhong-ci and Xu, Xue-jun and Man, Hong-ying. Cascadic multigrid for finite volume methods for elliptic problems. J. Comput. Math., 22(6):905--920, 2004.
Man, Hong-ying and Shi, Zhong-ci. {$P\sb 1$}-nonconforming quadrilateral finite volume element method and its cascadic multigrid algorithm for elliptic problems. J. Comput. Math., 24(1):59--80, 2006.
Chou, S. H. and Li, Q.. Convergence of the nonconforming {W}ilson element for a class of nonlinear parabolic problems. Math. Comp., 54(190):509--524, 1990.
SHI, ZHONG-CI and JIANG, BIN. MULTIGRID METHOD FOR WILSON NONCONFORMING FINITE ELEMENT WITH NUMERICAL INTEGRATION(Domain Decomposition Methods and Related Topics). RIMS Kokyuroku, 989():103-121, 1997.
Wu, Dongsheng. High accuracy analysis of elliptic eigenvalue problem for the {W}ilson nonconforming finite element. Acta Math. Appl. Sinica (English Ser.), 17(2):200--206, 2001.
Luo, Shao Ming and Zhang, Xiang Wei and Cai, Yong Chang. The variational principle and application of numerical manifold method. Appl. Math. Mech., 22(6):587--592, 2001.
Arnold, Douglas N. and Falk, Richard S.. The Boundary Layer for the Reissner--Mindlin Plate Model. SIAM Journal on Mathematical Analysis, 21(2):281-312, 1990.
Arnold, Douglas N. and Falk, Richard S.. Asymptotic Analysis of the Boundary Layer for the Reissner--Mindlin Plate Model. SIAM Journal on Mathematical Analysis, 27(2):486-514, 1996.
Shi, Zhong-Ci and Jiang, Bin and Xue, Weimin. A new superconvergence property of {W}ilson nonconforming finite element. Numer. Math., 78(2):259--268, 1997.
Zhang, Zhimin and Zhang, Shangyou. Wilson's element for the Reissner-Mindlin plate. Computer Methods in Applied Mechanics and Engineering, 113(1-2):55--65, 1994.
Lin, Qun and Tobiska, Lutz and Zhou, Aihui. Superconvergence and extrapolation of non-conforming low order finite elements applied to the {P}oisson equation. IMA J. Numer. Anal., 25(1):160--181, 2005.
Chen, Hong Sen and Li, Bo. Superconvergence analysis and error expansion for the {W}ilson nonconforming finite element. Numer. Math., 69(2):125--140, 1994.
Lai, Ming-Jun and Liu, Chun and Wenston, Paul. Bivariate spline method for numerical solution of time evolution {N}avier-{S}tokes equations over polygons in stream function formulation. Numer. Methods Partial Differential Equations, 19(6):776--827, 2003.
Lai, Ming-Jun and Wenston, Paul. Bivariate spline method for numerical solution of steady state {N}avier-{S}tokes equations over polygons in stream function formulation. Numer. Methods Partial Differential Equations, 16(2):147--183, 2000.
Lai, Ming-Jun and Wenston, Paul. Bivariate spline method for numerical solution of {N}avier-{S}tokes equations in stream function formulation. Advances in computational mathematics (Guangzhou, 1997), 202():245--277, 1999.
Kapoor, Sanjiv and Ramesh, H.. Algorithms for Enumerating All Spanning Trees of Undirected and Weighted Graphs. SIAM Journal on Computing, 24(2):247-265, 1995.
Zhang, Xiang Wei and Lin, Yi. The dimension of spline space {$S\sb 3\sp 1(\Delta)$} on a type of triangulation. Appl. Math. Mech., 21(8):783--791, 2000.
Chui, Charles K. and Hong, Dong. Construction of local {$C\sp 1$} quartic spline elements for optimal-order approximation. Math. Comp., 65(213):85--98, 1996.
Liu, Huan-Wen and Hong, Don. An explicit local basis for C1 cubic spline spaces over a triangulated quadrangulation. Journal of Computational and Applied Mathematics, 155(1):187--200, 2003.
Shishkina, Olga and Wagner, Claus. A fourth order accurate finite volume scheme for numerical simulations of turbulent Rayleigh-Benard convection in cylindrical containers. Comptes Rendus Mecanique, 333(1):17--28, 2005.
Celiker, Fatih and Cockburn, Bernardo. Superconvergence of the numerical traces of discontinuous {G}alerkin and hybridized methods for convection-diffusion problems in one space dimension. Math. Comp., 76(257):67--96 (electronic), 2007.
Cockburn, Bernardo and Kanschat, Guido and Perugia, Ilaria and Schotzau, Dominik. Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids. SIAM J. Numer. Anal., 39(1):264-285, 2001.
Han, Houde and Huang, Zhongyi and Kellogg, R. Bruce. A Tailored Finite Point Method for a Singular Perturbation Problem on an Unbounded Domain. Journal of Scientific Computing, DOI 10.1007/s10915-008-9187-7():, 2008.
Xiong, Zhiguang and Chen, Yanping. Finite volume element method with interpolated coefficients for two-point boundary value problem of semilinear differential equations. Comput. Methods Appl. Mech. Engrg., 196(37-40):3798--3804, 2007.
Larsson, Stig and Thomée, Vidar and Zhang, Nai Ying. Interpolation of coefficients and transformation of the dependent variable in finite element methods for the nonlinear heat equation. Math. Methods Appl. Sci., 11(1):105--124, 1989.
Cho, Durkbin and Xu, Jinchao and Zikatanov, Ludmil. New Estimates for the Rate of Convergence of the Method of Subspace Corrections. Numer. Math. Theor. Meth. Appl., 1():44-56, 2008.
Arnold, Douglas N. and Awanou, Gerard and Winther, Ragnar. Finite elements for symmetric tensors in three dimensions. Mathemathics of Computation, ():, 2008.
Hennart, J. P. and del Valle, E.. Mesh-centered finite differences from nodal finite elements for elliptic problems. Numer. Methods Partial Differential Equations, 14(4):439--465, 1998.
Hennart, J. P. and del Valle, E.. On the relationship between nodal schemes and mixed-hybrid finite elements. Numer. Methods Partial Differential Equations, 9(4):411--430, 1993.
Zhu, Pi Qi and Li, Rong Hua. Generalized difference methods for second-order elliptic partial differential equations. {II}. {Q}uadrilateral subdivision. Numer. Math. J. Chinese Univ., 4(4):360--375, 1982.
Li, Rong Hua and Zhu, Pi Qi. Generalized difference methods for second-order elliptic partial differential equations. {I}. {T}he case of a triangular mesh. Numer. Math. J. Chinese Univ., 4(2):140--152, 1982.
Chen, Zhongying and Li, Ronghua and Zhou, Aihui. A note on the optimal {$L\sp 2$}-estimate of the finite volume element method. Adv. Comput. Math., 16(4):291--303, 2002.
Ewing, Richard E. and Iliev, Oleg P. and Lazarov, Raytcho D. and Naumovich, Anna. On convergence of certain finite volume difference discretizations for 1{D} poroelasticity interface problems. Numer. Methods Partial Differential Equations, 23(3):652--671, 2007.
Gaspar, F. and Iliev, O. and Lisbona, F. and Naumovich, A. and Vabishchevich, P.. On numerical solution of 1-D poroelasticity equations in a multilayered domain. , ():, 2004.
Dörfler, Willy and Iliev, Oleg and Stoyanov, Dimitar and Vassileva, Daniela. On a multigrid adaptive refinement solver for saturated non-{N}ewtonian flow in porous media. Numerical methods and applications, 2542():174--181, 2003.
Callahan, J. D. and Tyler, J. M. and Bourgoyne, A. T. and Bassiouni, Z.. A fully 3D adaptive finite simulation and prototype for gas flow in a porous media. Adv. Eng. Softw., 32(2):119--131, 2001.
Trangenstein, John and Bi, Zhuoxin. Multi_Scale Iterative Techniques and Adaptive Mesh Refinement for Miscible Displacement Simulation. preprint, ():, 2002.
Trangenstein, John A. and Kim, Chisup. Operator splitting and adaptive mesh refinement for the Luo-Rudy I model. J. Comput. Phys., 196(2):645--679, 2004.
Gotovac, H. and Andricević, R. and Gotovac, B. and Vranjes, M. and Radelja, T.. Multilevel adaptive modeling of multiphase flow in porous media. Computational methods in multiphase flow III, 50():95--110, 2005.
Hornung, Richard D. and Trangenstein, John A.. Adaptive Mesh Refinement and Multilevel Iteration for Flow in Porous Media,. Journal of Computational Physics, 136(2):522--545, 1997.
Afif, M. and Amaziane, B.. On convergence of finite volume schemes for one-dimensional two-phase flow in porous media. J. Comput. Appl. Math., 145(1):31--48, 2002.
Ohlberger, M.. Convergence of a mixed finite elements--finite volume method for the two phase flow in porous media. East-West J. Numer. Math., 5(3):183--210, 1997.
Dwight, Richard P.. Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation. J. Comput. Phys., 227(5):2845--2863, 2008.
Vohral\ik, Martin. A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations. SIAM J. Numer. Anal., 45(4):1570-1599, 2007.
Cohen, G. and Joly, P.. Fourth order schemes for the heterogeneous acoustics equation. ICOSAHOM '89: Proceedings of the conference on Spectral and high order methods for partial differential equations, ():397--407, 1990.
Manzini, Gianmarco and Ferraris, Stefano. Mass-conservative finite volume methods on 2-D unstructured grids for the Richards' equation. Advances in Water Resources, 27(12):1199--1215, 2004.
Rees, I. and Masters, I. and Malan, A. G. and Lewis, R. W.. An edge-based finite volume scheme for saturated-unsaturated groundwater flow. Computer Methods in Applied Mechanics and Engineering, 193(42-44):4741--4759, 2004.
Manzini, Gianmarco and Putti, Mario. Mesh locking effects in the finite volume solution of 2-D anisotropic diffusion equations. J. Comput. Phys., 220(2):751--771, 2007.
Thomas, Jean-Marie and Trujillo, David. Finite volume methods for elliptic problems: convergence on unstructured meshes. Numerical methods in mechanics (Concepci\'on, 1995), 371():163--174, 1997.
Baranger, Jacques and Maitre, Jean-Francois and Oudin, Fabienne. Connection between finite volume and mixed finite element methods. RAIRO Mod\'el. Math. Anal. Num\'er., 30(4):445--465, 1996.
Agouzal, A. and Baranger, J. and Maitre, J.-F. and Oudin, F.. Connection between finite volume and mixed finite element methods for a diffusion problem with nonconstant coefficients. {A}pplication to a convection diffusion problem. East-West J. Numer. Math., 3(4):237--254, 1995.
Cordes, C. and Kinzelbach, W.. {Comment on ``Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?'' by R. Mosé, P. Siegel, P. Ackerer, and G. Chavent}. Water Resources Research, 32():1905-1910, 1996.
Mosé, R. and Siegel, P. and Ackerer, P. and Chavent, G.. {Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?}. Water Resources Research, 30():3001-3012, 1994.
Hennart, J.-P. and Mund, E. H. and del Valle, E.. Third order nodal finite element methods with transverse and reduced integration for elliptic problems. Appl. Numer. Math., 46(2):209--230, 2003.
Chou, So-Hsiang and Kwak, Do Y. and Kim, Kwang Y.. Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems. Math. Comp., 72(242):525--539 (electronic), 2003.
Szeliski, R.. Fast Surface Interpolation Using Hierarchical Basis Functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(6):513-528, 1990.
Bungartz, Hans-Joachim and Griebel, Michael. A Note on the Complexity of Solving Poisson's Equation for Spaces of Bounded Mixed Derivatives. Journal of Complexity, 15(2):167--199, 1999.
Sherer, Scott E. and Scott, James N.. High-order compact finite-difference methods on general overset grids. Journal of Computational Physics, 210(2):459--496, 2005.
Moler, Cleve and Loan, Charles Van. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later. SIAM Rev., 45(1):3-49, 2003.
Nie, Yi Yong and Thomée, Vidar. A lumped mass finite-element method with quadrature for a nonlinear parabolic problem. IMA J. Numer. Anal., 5(4):371--396, 1985.
Thomee, Vidar and Xu, Jin-Chao and Zhang, Nai-Ying. Superconvergence of the Gradient in Piecewise Linear Finite-Element Approximation to a Parabolic Problem. SIAM J. Numer. Anal., 26(3):553-573, 1989.
Pani, Amiya K. and Peterson, Todd E.. Finite Element Methods with Numerical Quadrature for Parabolic Integrodifferential Equations. SIAM J. Numer. Anal., 33(3):1084-1105, 1996.
Micheletti, Stefano and Sacco, R. and Saleri, F.. On Some Mixed Finite Element Methods with Numerical Integration. SIAM J. Sci. Comput., 23(1):245-270, 2001.
Cohen, G. and Joly, P. and Roberts, J. E. and Tordjman, N.. Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation. SIAM J. Numer. Anal., 38(6):2047-2078, 2001.
Jenny, P. and Lee, S. H. and Tchelepi, H. A.. Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. Journal of Computational Physics, 217(2):627--641, 2006.
Dey, Tamal K. and Levine, Joshua A. and Wenger, Rephael. A Delaunay Simplification Algorithm for Vector Fields. Computer Graphics and Applications, 2007. PG '07. 15th Pacific Conference on, ():281-290, Oct. 29 2007-Nov. 2 2007.
Woodward, Carol S. and Dawson, Clint N.. Analysis of Expanded Mixed Finite Element Methods for a Nonlinear Parabolic Equation Modeling Flow into Variably Saturated Porous Media. SIAM J. Numer. Anal., 37(3):701-724, 2000.
Banerjee, Arindam and Merugu, Srujana and Dhillon, Inderjit S. and Ghosh, Joydeep. Clustering with Bregman Divergences. J. Mach. Learn. Res., 6():1705--1749, 2005.
Nielsen, Frank and Boissonnat, Jean-Daniel and Nock, Richard. On Bregman Voronoi diagrams. SODA '07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, ():746--755, 2007.
Liesen, J\"org and Parlett, Beresford N.. On nonsymmetric saddle point matrices that allow conjugate gradient iterations. Numer. Math., Published online(10.1007/s00211-007-0131-9):, 2008.
Negulescu, Claudia. Numerical analysis of a multiscale finite element scheme for the resolution of the stationary {S}chr\"odinger equation. Numer. Math., ():, 2008.
Montagnat, J. and Delingette, H. and Ayache, N.. A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing, 19(14):1023--1040, 2001.
Barrett, John W. and Garcke, Harald and Nurnberg, Robert. A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys., 222(1):441--467, 2007.
Barrett, John W. and Garcke, Harald and N\"urnberg, Robert. A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math., Published online(10.1007/s00211-007-0135-5):, 2008.
Holst, Stefan. An a priori error estimate for a monotone mixed finite-element discretization of a convection--diffusion problem. Numer. Math., (10.1007/s00211-007-0097-7):, 2008.
Jerome, Joseph W.. A trapping principle and convergence result for finite element approximate solutions of steady reaction/diffusion systems. Numer. Math., Published online(10.1007/s00211-008-0136-z):, 2008.
Bauschke, Heinz H. and Lucet, Yves and Trienis, Michael. How to Transform One Convex Function Continuously into Another. SIAM Rev., 50(1):115-132, 2008.
Graham, I. G. and Grasedyck, L. and Hackbusch, W. and Sauter, S. A.. Optimal Panel-Clustering in the Presence of Anisotropic Mesh Refinement. SIAM J. Numer. Anal., 46(1):517-543, 2008.
Schmich, Michael and Vexler, Boris. Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations. SIAM J. Sci. Comput., 30(1):369-393, 2008.
Pietro, Daniele A. Di and Ern, Alexandre and Guermond, Jean-Luc. Discontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection. SIAM J. Numer. Anal., 46(2):805-831, 2008.
Diening, Lars and Kreuzer, Christian. Linear Convergence of an Adaptive Finite Element Method for the $p$-Laplacian Equation. SIAM J. Numer. Anal., 46(2):614-638, 2008.
Eisinberg, A. and Franzè, G. and Salerno, N.. Asymptotic expansion and estimate of the {L}andau constant. Approx. Theory Appl. (N.S.), 17(4):58--64, 2001.
Mo, Jiaqi and Yao, Jingsun. The singularly perturbed boundary value problems for semilinear elliptic equation. Approx. Theory Appl. (N.S.), 17(4):11--16, 2001.
Chen, Songlin and Mo, Jiaqi. The singularly perturbed boundary value problems for semilinear elliptic equation of higher order. Approx. Theory Appl. (N.S.), 16(3):100--105, 2000.
Marano, M. and Quesada, J. M.. The behavior of best Lp-approximations as p-->1. A counterexample of convergence. Journal of Approximation Theory, 144(2):233--237, 2007.
Kainen, Paul C. and Kurkova, Vera and Vogt, Andrew. A Sobolev-type upper bound for rates of approximation by linear combinations of Heaviside plane waves. Journal of Approximation Theory, 147(1):1--10, 2007.
Koumandos, Stamatis and Ruscheweyh, Stephan. On a conjecture for trigonometric sums and starlike functions. Journal of Approximation Theory, 149(1):42--58, 2007.
Ye, Peixin and Hu, Xiaofei. Optimal integration error on anisotropic classes for restricted Monte Carlo and quantum algorithms. Journal of Approximation Theory, 150(1):24--47, 2008.
de Boor, Carl and Ron, Amos. Box splines revisited: Convergence and acceleration methods for the subdivision and the cascade algorithms. Journal of Approximation Theory, 150(1):1--23, 2008.
Babenko, V. and Babenko, Y. and Skorokhodov, Dmytro. On linear approximation of quadratic functions of two variables in $L_p$-metric and applications. , ():, 2007.
Ganzburg, Michael I.. Best constants of harmonic approximation on classes associated with the Laplace operator. Journal of Approximation Theory, 150(2):199--213, 2008.
Stynes, Martin. Convection-diffusion-reaction problems, {SDFEM}/{SUPG} and a priori meshes. International Journal of Computing Science and Mathematics, 1(2--4):412 -- 431, 2007.
Babenko, Vladislav and Babenko, Yuliya and Ligun, Anatoliy and Shumeiko, Alexander. On asymptotical behavior of the optimal linear spline interpolation error of {$C\sp 2$} functions. East J. Approx., 12(1):71--101, 2006.
Babuska, Ivo and Nistor, Victor. Interior numerical approximation of boundary value problems with a distributional data. Numer. Methods Partial Differential Equations, 22(1):79--113, 2006.
Lin, Qun. Can we compute {Laplace} eigenvalues well, like computing $\pi$?. International Journal of Information and Systems Sciences, 1(2):172--183, 2005.
Jia, Shanghui and Xie, Hehu and Yin, Xiaobo and Gao, Shaoqin. Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods. Numer. Methods Partial. Diff. Equations, 24(2):435--448, 2007.
Hesaaraki, M. and Raessi, B.. Large existence of solutions for a family of polyharmonic and biharmonic eigenvalue problems. Int. J. Math. Anal. (Ruse), 1(5-8):199--212, 2007.
Chen, Wei and Lin, Qun. Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by {C}iarlet-{R}aviart scheme. Adv. Comput. Math., 27(1):95--106, 2007.
Andreev, A. B. and Lazarov, R. D. and Racheva, M. R.. Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math., 182(2):333--349, 2005.
Chen, Wei. Eigenvalue approximation of the biharmonic eigenvalue problem by {C}iarlet-{R}aviart scheme. Numer. Methods Partial Differential Equations, 21(3):512--520, 2005.
Miller, David J. and Ghosh, Avijit. A fully adaptive reaction-diffusion integration scheme with applications to systems biology. Journal of Computational Physics, 226(2):1509--1531, 2007.
Sutmann, Godehard and Steffen, Bernhard. High-order compact solvers for the three-dimensional Poisson equation. Journal of Computational and Applied Mathematics, 187(2):142--170, 2006.
Spotz, W. F. and Carey, G. F.. A high-order compact formulation for the {$3$}{D} {P}oisson equation. Numer. Methods Partial Differential Equations, 12(2):235--243, 1996.
Pfaum, Christoph and Seider, David. Efficient implementation of operators on semi-unstructured grids. Computational science---ICCS 2002, Part III (Amsterdam), 2331():622--631, 2002.
Gupta, Murli M. and Kouatchou, Jules. Symbolic derivation of finite difference approximations for the three-dimensional {P}oisson equation. Numer. Methods Partial Differential Equations, 14(5):593--606, 1998.
Ge, Lixin and Zhang, Jun. Symbolic computation of high order compact difference schemes for three dimensional linear elliptic partial differential equations with variable coefficients. J. Comput. Appl. Math., 143(1):9--27, 2002.
Zhang, Jun. Fast and High Accuracy Multigrid Solution of the Three Dimensional Poisson Equation. Journal of Computational Physics, 143(2):449--461, 1998.
Liu, Jinghong and Zhu, Qiding. Maximum-norm superapproximation of the gradient for the trilinear block finite element. Numer. Methods Partial. Diff. Equations, 23(6):1501 -- 1508, 2007.
Wang, Qisheng and Deng, Kang and Xiong, Zhiguang and Huang, Yunqing. Partition of unity for a class of nonlinear parabolic equation on overlapping non-matching grids. Numer. Math. J. Chin. Univ. (Engl. Ser.), 16(1):1--13, 2007.
Deng, Kang and Xiong, Zhiguang and Huang, Yunqing. The {G}alerkin continuous finite element method for delay-differential equation with a variable term. Appl. Math. Comp.., 186(2):1488--1496, 2007.
Huang, Yun-qing and Shu, Shi and Yu, Xi-jun. Preconditioning higher order finite element systems by algebraic multigrid method of linear elements. J. Comput. Math., 24(5):657--664, 2006.
Liu, Jianzhou and Huang, Yunqing and Liao, Anping. Some inequalities for eigenvalues of {S}chur complements of {H}ermitian matrices. J. Comput. Appl. Math., 196(2):439--451, 2006.
Shu, Shi and Yu, Haiyuan and Huang, Yunqing and Nie, Cunyun. A symmetric finite volume element scheme on quadrilateral grids and superconvergence. Int. J. Numer. Anal. Model., 3(3):348--360, 2006.
Huang, Yun-qing and Li, Wei and Su, Fang. Optimal error estimates of the partition of unity method with local polynomial approximation spaces. J. Comput. Math., 24(3):365--372, 2006.
Li, Wei and Huang, Yunqing. A modified adaptive algebraic multigrid algorithm for elliptic obstacle problems. Frontiers and prospects of contemporary applied mathematics, 6():160--178, 2005.
Bacuta, C. and Chen, J. and Huang, Y. and Xu, J. and Zikatanov, L.. Partition of unity method on nonmatching grids for the {S}tokes problem. J. Numer. Math., 13(3):157--169, 2005.
Zhou, Yong and Zhang, B. G. and Huang, Y. Q.. Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations. Czechoslovak Math. J., 55(130)(1):237--253, 2005.
Tan, Zhijun and Zhang, Zhengru and Huang, Yunqing and Tang, Tao. Moving mesh methods with locally varying time steps. J. Comput. Phys., 200(1):347--367, 2004.
Liu, Jianzhou and Huang, Yunqing. Some properties on {S}chur complements of {$H$}-matrices and diagonally dominant matrices. Linear Algebra Appl., 389():365--380, 2004.
Huang, Yunqing and Shu, Shi and Yu, Haiyuan. Superconvergence and asymptotic expansions for linear finite element approximations on criss-cross mesh. Sci. China Ser. A, 47(suppl.):136--145, 2004.
Hu, Jun and Huang, Yun-qing and Shen, Hongmei. The lower approximation of eigenvalue by lumped mass finite element method. J. Comput. Math., 22(4):545--556, 2004.
Liu, Jianzhou and Huang, Yunqing and Zhang, Fuzhen. The {S}chur complements of generalized doubly diagonally dominant matrices. Linear Algebra Appl., 378():231--244, 2004.
Huang, Yunqing and Shi, Zhongci and Tang, Tao and Xue, Weimin. A multilevel successive iteration method for nonlinear elliptic problems. Math. Comp., 73(246):525--539 (electronic), 2004.
Zhang, B. G. and Zhou, Yong and Huang, Y. Q.. Existence of positive solutions for certain nonlinear partial difference equations. Math. Comp.. Modelling, 38(3-4):331--337, 2003.
Tan, Zhi-jun and Huang, Yun-qing. An adaptive grid method with local time stepping for one-dimensional conservation laws. Natur. Sci. J. Xiangtan Univ., 25(2):110--116, 2003.
Huang, Yunqing and Xu, Jinchao. A conforming finite element method for overlapping and nonmatching grids. Math. Comp., 72(243):1057--1066 (electronic), 2003.
Zhou, Yong and Huang, Y. Q.. Existence for nonoscillatory solutions of higher-order nonlinear neutral difference equations. J. Math. Anal. Appl., 280(1):63--76, 2003.
Chen, Yanping and Huang, Yunqing and Yu, Dehao. A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Internat. J. Numer. Methods Engrg., 57(2):193--209, 2003.
Hu, Jun and Huang, Yunqing and Xue, Weimin. An optimal error estimate for an {$h$}-{$p$} clouds {G}alerkin method. Recent progress in computational and applied PDEs (Zhangjiajie, 2001), ():217--230, 2002.
Gong, Shuguang and Huang, Yunqing and Xie, Guilan and Hong, Bo. The shape optimization of axisymmetric structures based on fictitious loads variable. Recent progress in computational and applied PDEs (Zhangjiajie, 2001), ():195--204, 2002.
. Recent progress in computational and applied {PDE}s. Proceedings of the International Symposium on Computational \& Applied PDEs held in Zhangjiajie, July 1--7, 2001, ():xvi+432, 2002.
Xiao, Jie and Huang, Yun Qing and Liu, Wen Bin. Some multigrid methods for solving the {$p$}-{L}aplace equation. Natur. Sci. J. Xiangtan Univ., 24(3):1--8, 2002.
Huang, Yunqing and Xue, Weimin. Convergence of finite element approximations and multilevel linearization for {G}inzburg-{L}andau model of {$d$}-wave superconductors. Adv. Comput. Math., 17(4):309--330, 2002.
Zhou, Yong and Huang, Y. Q.. Existence of non-oscillatory solutions of second-order neutral delay difference equations. Z. Anal. Anwendungen, 20(4):1065--1074, 2001.
Chen, Yan-ping and Huang, Yun-qing. Improved error estimates for mixed finite element for nonlinear hyperbolic equations: the continuous-time case. J. Comput. Math., 19(4):385--392, 2001.
Chen, Yan Ping and Huang, Yun Qing and Shen, Zu He. Least-squares mixed finite element approximation for a degenerate elliptic problem. Math. Numer. Sin., 23(1):87--94, 2001.
Chen, Yanping and Shen, Zuhe and Huang, Yunqing. Error estimates for the full-discrete mixed {FEM} for nonlinear hyperbolic problems. Numer. Math. J. Chinese Univ. (English Ser.), 9(2):181--192, 2000.
Cheng, Yang Ping and Huang, Yun Qing. Mixed finite element method for nonlinear hyperbolic equations. Numer. Math. J. Chinese Univ., 22(1):63--69, 2000.
Shu, Shi and Huang, Yun Qing and Yu, Hai Yuan. A generalized interpolation function and its application to a generalized finite element method. Math. Numer. Sin., 22(1):113--120, 2000.
Chen, Yanping and Huang, Yunqing. The superconvergence of mixed finite element methods for nonlinear hyperbolic equations. Commun. Nonlinear Sci. Numer. Simul., 3(3):155--158, 1998.
Zhou, Su Hua and Huang, Yun Qing. Higher-order asymptotic expansions of corrected finite element solutions to a class of elliptic equations. Natur. Sci. J. Xiangtan Univ., 20(4):17--21, 1998.
Chen, Yanping and Huang, Yunqing. Superconvergence of a time-discretization procedure for compressible miscible displacement. Natur. Sci. J. Xiangtan Univ., 20(3):41--50, 1998.
Mu, Mo and Huang, Yunqing. An alternating {C}rank-{N}icolson method for decoupling the {G}inzburg-{L}andau equations. SIAM J. Numer. Anal., 35(5):1740--1761 (electronic), 1998.
Shu, Shi and Yu, Hai Yuan and Huang, Yun Qing. Superconvergence and a high accuracy combination formula for bicubic spline elements for plate problems. Math. Numer. Sin., 20(2):167--174, 1998.
Huang, Y. Q. and Li, Y. X.. The convergence of multigrid methods for solving finite element equations in the presence of singularities. J. Comput. Math., 13(4):315--324, 1995.
Huang, Yun Qing and Chen, Yan Ping. Superconvergence and asymptotically exact a posteriori error estimates for finite elements on a {$K$}-mesh. Math. Numer. Sinica, 16(3):278--285, 1994.
Huang, Yun Qing and Lin, Qun. Some estimates of {G}reen functions and their finite element approximations on angular domains. J. Systems Sci. Math. Sci., 14(1):1--8, 1994.
Huang, Yun Qing and Chen, Yan Ping. A multilevel iterative method for finite element solutions of nonlinear singular two-point boundary value problems. Natur. Sci. J. Xiangtan Univ., 16(1):23--26, 1994.
Shu, Shi and Huang, Yun Ging. Asymptotic expansions for a class of elliptic equations using nonstandard linear elements. Natur. Sci. J. Xiangtan Univ., 16(1):11--22, 1994.
Chen, Yan Ping and Huang, Yun Qing. Global high accuracy of finite element solutions to singular nonsymmetric two-point boundary value problems. Numer. Math. J. Chinese Univ., 16(3):271--278, 1994.
Huang, Yun Qing and Chen, Yan Ping. A lower bound estimate for the condition numbers of finite element equations on a class of highly refined meshes. Natur. Sci. J. Xiangtan Univ., 15(suppl.):92--96, 1993.
Jin, Ji Cheng and Huang, Yun Qing. Superconvergence of derivatives of biquadratic finite element solutions. Natur. Sci. J. Xiangtan Univ., 15(2):8--14, 1993.
Huang, Yun Qing and Lin, Qun. Elliptic boundary value problems in polygonal domains and finite element approximations. J. Systems Sci. Math. Sci., 12(3):263--268, 1992.
Huang, Yun Qing. Term by term asymptotic expansions of standard and nonstandard finite element solutions to two-point boundary value problems. Numer. Math. J. Chinese Univ., 13(2):180--190, 1991.
Huang, Yun Qing and Lin, Qun. Asymptotic expansions and superconvergence of finite element solutions to parabolic equations. J. Systems Sci. Math. Sci., 11(4):327--335, 1991.
Huang, Yun Qing and van der Vorst, Henk A.. Some observations on the convergence behavior of {GMRES}. {II}. Natur. Sci. J. Xiangtan Univ., 12(2):135--149, 1990.
Huang, Yun Qing and van der Vorst, Henk A.. Some observations on the convergence behavior of {GMRES}. {I}. Natur. Sci. J. Xiangtan Univ., 11(4):103--116, 1989.
Kr\izek, Michal and Lin, Qun and Huang, Yun Qing. A nodal superconvergence arising from combination of linear and bilinear elements. Systems Sci. Math. Sci., 1(2):191--197, 1988.
Huang, Yun Qing. Higher order expansion and extrapolation of finite element solutions to eigenvalue problems. Natur. Sci. J. Xiangtan Univ., 10(1):19--29, 1988.
Chen, Chuan Miao and Huang, Yun Qing. {$W\sp {1,p}$} stability of finite element approximations of elliptic problems. Hunan Ann. Math., 6(2):81--89, 1986.
Kr\izek, Michal and Lin, Qun and Huang, Yun Qing. A nodal superconvergence arising from combination of linear and bilinear elements. Systems Sci. Math. Sci., 1(2):191--197, 1988.
Huang, Hung-Tsai and Li, Zi-Cai and Yan, Ningning. New error estimates of Adini's elements for Poisson's equation. Applied Numerical Mathematics, 50(1):49--74, 2004.
Huang, Hung-Tsai and Li, Zi-Cai and Zhou, Aihui. New error estimates of biquadratic Lagrange elements for Poisson's equation. Applied Numerical Mathematics, 56(5):712--744, 2006.
Huang, Hung-Tsai and Li, Zi-Cai. Effective condition number and superconvergence of the Trefftz method coupled with high order FEM for singularity problems. Engineering Analysis with Boundary Elements, 30(4):270--283, 2006.
Li, Zi-Cai and Chien, Cheng-Sheng and Huang, Hung-Tsai. Effective condition number for finite difference method. Journal of Computational and Applied Mathematics, 198(1):208--235, 2007.
Lorensen, William E. and Cline, Harvey E.. Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163--169, 1987.
Zhou, Aihui and Liem, C.B. and Shih, T.M. and Tao, L\"u. A multi-parameter splitting extrapolation and a parallel algorithm. Sys. Sci. and Math. Sci., 10(3):251--260, 1997.
Stevenson, Rob. Robustness of multi-grid applied to anisotropic equations on convex domains and on domains with re-entrant corners. Numer. Math., 66(3):373--398, 1993.
Babuska, I. and Strouboulis, T. and Gangaraj, S. K. and Upadhyay, C. S.. Pollution error in the h-version of the finite element method and the local quality of the recovered derivatives. Computer Methods in Applied Mechanics and Engineering, 140(1-2):1--37, 1997.
Babuska, I. and Kellogg, R. B. and Pitkäranta, J.. Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math., 33(4):447--471, 1979.
Raugel, Geneviève. R\'esolution num\'erique par une m\'ethode d'\'el\'ements finis du probl\`eme de {D}irichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris S\'er. A-B, 286(18):A791--A794, 1978.
Huang, Yun-Qing. The superconvergence of finite element methods on domains with reentrant corners. Finite element methods: superconvergence, post-processing, and a posteriori estimates, ():169--182, 1998.
Bacuta, Constantin and Nistor, Victor and Zikatanov, Ludmil T.. Improving the rate of convergence of high-order finite elements on polyhedra. {II}. {M}esh refinements and interpolation. Numer. Funct. Anal. Optim., 28(7-8):775--824, 2007.
Bacuta, C. and Sun, J.. Partition of unity finite element method implementation for {P}oisson equation. Advances in applied and computational mathematics, ():35--46, 2006.
Bacuta, Constantin and Nistor, Victor and Zikatanov, Ludmil T.. Improving the rate of convergence of high-order finite elements on polyhedra. {I}. {A} priori estimates. Numer. Funct. Anal. Optim., 26(6):613--639, 2005.
Bacuta, C. and Chen, J. and Huang, Y. and Xu, J. and Zikatanov, L.. Partition of unity method on nonmatching grids for the {S}tokes problem. J. Numer. Math., 13(3):157--169, 2005.
Bacuta, Constantin and Bramble, James H.. Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains. Z. Angew. Math. Phys., 54(5):874--878, 2003.
Bacuta, C. and Bramble, J. H. and Xu, J.. Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains. J. Numer. Math., 11(2):75--94, 2003.
Bacuta, Constantin and Bramble, James H. and Xu, Jinchao. Regularity estimates for elliptic boundary value problems in {B}esov spaces. Math. Comp., 72(244):1577--1595 (electronic), 2003.
Bacuta, Constantin and Bramble, James H. and Pasciak, Joseph E.. Using finite element tools in proving shift theorems for elliptic boundary value problems. Numer. Linear Algebra Appl., 10(1-2):33--64, 2003.
Bacuta, Constantin and Bramble, James H. and Pasciak, Joseph E.. Shift theorems for the biharmonic {D}irichlet problem. Recent progress in computational and applied PDEs (Zhangjiajie, 2001), ():1--26, 2002.
Bacuta, C. and Bramble, J. H. and Pasciak, J. E.. New interpolation results and applications to finite element methods for elliptic boundary value problems. East-West J. Numer. Math., 9(3):179--198, 2001.
Bacuta, Constantin. About {$\scr M$}-tangent cones in locally convex spaces. An. \c Stiin\c t. Univ. Al. I. Cuza Ia\c si Sec\c t. I a Mat., 41(1):91--99 (1996), 1995.
Bacuta, Constantin and Nistor, Victor and Zikatanov, Ludmil T.. Improving the rate of convergence of `high order finite elements' on polygons and domains with cusps. Numer. Math., 100(2):165--184, 2005.
Li, Z. C. and Huang, H. T.. Global superconvergence of simplified hybrid combinations of the Ritz-Galerkin and FEMs for elliptic equations with singularities II. Lagrange elements and Adini's elements. Applied Numerical Mathematics, 43(3):253--273, 2002.
Li, Z.-C.. Global superconvergence of simplified hybrid combinations for elliptic equations with singularities. {I}. {B}asic theorem. Computing, 65(1):27--44, 2000.
Dai, K. Y. and Liu, G. R. and Nguyen, T. T.. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elements in Analysis and Design, 43(11-12):847--860, 2007.
McCorquodale, Peter and Colella, Phillip and Grote, David P. and Vay, Jean-Luc. A node-centered local refinement algorithm for Poisson's equation in complex geometries. J. Comput. Phys., 201(1):34--60, 2004.
Turek, S. and Becker, Chr. and Kilian, S.. Hardware-oriented numerics and concepts for PDE software. Future Gener. Comput. Syst., 22(1):217--238, 2006.
Wessner, W. and Cervenka, J. and Heitzinger, C. and Hossinger, A. and Selberherr, S.. Anisotropic Mesh Refinement for the Simulation of Three-Dimensional Semiconductor Manufacturing Processes. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 25(10):2129-2139, Oct. 2006.
Bieniasz, L. K.. Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Patch-adaptive simulation of moving fronts in non-linear diffusion models of the switching of conductive polymers. Electrochemistry Communications, 3(3):149--153, 2001.
Achdou, Y. and Guermond, J.-L.. Convergence analysis of a finite element projection/{L}agrange-{G}alerkin method for the incompressible {N}avier-{S}tokes equations. SIAM J. Numer. Anal., 37(3):799--826 (electronic), 2000.
Akrivis, Georgios and Makridakis, Charalambos and Nochetto, Ricardo H.. A posteriori error estimates for the {C}rank-{N}icolson method for parabolic equations. Math. Comp., 75(254):511--531 (electronic), 2006.
Allievi, Alejandro and Bermejo, Rodolfo. Finite element modified method of characteristics for the Navier-Stokes equations. International Journal for Numerical Methods in Fluids, Volume 32, Issue 4():439 - 463, 2000.
Alves, Manuel A. and Oliveira, Paulo J. and Pinho, Fernando T.. On the effect of contraction ratio in viscoelastic flow through abrupt contractions. Journal of Non-Newtonian Fluid Mechanics, 122():117-130, 2004.
Alves, Manuel A. and Oliveira, Paulo J. and Pinho, Fernando T.. Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions. Journal of Non-Newtonian Fluid Mechanics, 110():45-75, 2003.
Alves, Manuel A. and Pinho, Fernando T. and Oliveira, Paulo J.. Study of steady pipe and channel flows of a single-mode Phan-Thien--Tanner fluid. Journal of Non-Newtonian Fluid Mechanics, 101():55-76, 2001.
Alves, M. A. and Pinho, F. T. and Oliveira, P. J.. The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods. Journal of Non-Newtonian Fluid Mechanics, 97():207-232, 2001.
Alves, M. A. and Pinho, F. T. and Oliveira, P. J.. Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 93():287-314, 2000.
Arbogast, Todd and Huang, Chieh-Sen. A fully mass and volume conserving implementation of a characteristic method for transport problems. SIAM J. Sci. Comput., 28(6):2001--2022 (electronic), 2006.
Arbogast, Todd and Wheeler, Mary F.. A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal., 32(2):404--424, 1995.
Baaijens, Frank P.T.. Mixed finite element methods for viscoelastic flow analysis: a review. Journal of Non-Newtonian Fluid Mechanics, 79():361-385, 1998.
Bacuta, C. and Chen, J. and Huang, Y. and Xu, J. and Zikatanov, L.. Partition of unity method on non-matching grids for the Stokes problem. Journal of Numerical Mathematics, 13():157-169, 2005.
Bal, Guillaume. On the convergence and the stability of the parareal algorithm to solve partial differential equations. Domain decomposition methods in science and engineering, 40():425--432, 2005.
Bal, Guillaume and Maday, Yvon. A ``parareal'' time discretization for non-linear {PDE}'s with application to the pricing of an {A}merican put. Recent developments in domain decomposition methods (Z\"urich, 2001), 23():189--202, 2002.
Bangerth, W. and Hartmann, R. and Kanschat, G.. deal.II --- a General Purpose Object Oriented Finite Element Library. ACM Trans. Math. Softw., 33(4):24, 2007.
Bank, Randolph E. and Bürgler, Josef F. and Fichtner, Wolfgang and Smith, R. Kent. Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math., 58(2):185--202, 1990.
Bank, Randolph E. and Gill, Philip E. and Marcia, Roummel F.. Interior methods for a class of elliptic variational inequalities. Large-scale PDE-constrained optimization (Santa Fe, NM, 2001), 30():218--235, 2003.
Bank, R. E. and Welfert, B. D.. A posteriori error estimates for the Stokes equations: a comparison. Comput. Methods Appl. Mech. Eng., 82(1-3):323--340, 1990.
Baptista. spline-characteristic methods for simulation of convective turbulence. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1987., ():, 1987.
Bargteil, Adam W. and Goktekin, Tolga G. and O'Brien, James F. and Strain, John A.. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph., 25(1):, 2006.
Barrett, John W. and Knabner, Peter. An improved error bound for a {L}agrange-{G}alerkin method for contaminant transport with non-{L}ipschitzian adsorption kinetics. SIAM J. Numer. Anal., 35(5):1862--1882 (electronic), 1998.
Bause, Markus and Knabner, Peter. Uniform error analysis for {L}agrange-{G}alerkin approximations of convection-dominated problems. SIAM J. Numer. Anal., 39(6):1954--1984 (electronic), 2002.
Bernardi, C. and Girault, V. and Hecht, F.. A posteriori analysis of a penalty method and application to the {S}tokes problem. Math. Models Methods Appl. Sci., 13(11):1599--1628, 2003.
Bogdan, Krzysztof and Jakubowski, Tomasz. Estimates of heat kernel of fractional {L}aplacian perturbed by gradient operators. Comm. Math. Phys., 271(1):179--198, 2007.
Borchers, W.. On the characteristic method for the incompressible {N}avier-{S}tokes equations. Finite approximations in fluid mechanics, 2, 25():43--50, 1989.
Botchorishvili, Ramaz and Pironneau, Olivier. Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws. J. Comput. Phys., 187(2):391--427, 2003.
Caola, A. E. and Joo, Y. L. and Armstrong, R. C. and Brown, R. A.. Highly parallel time integration of viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 100():191-216, 2001.
Celia, M. A. and Herrera, I. and Ewing, R. E. and Russell, T.. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water Resour., 13():187-206, 1990.
Charbonneau, Alain and Dossou, Kokou and Pierre, Roger. A residual-based a posteriori error estimator for the {C}iarlet-{R}aviart formulation of the first biharmonic problem. Numer. Methods Partial Differential Equations, 13(1):93--111, 1997.
Chorin, Alexandre J. and Hald, Ole H. and Kupferman, Raz. Prediction from partial data, renormalization, and averaging. J. Sci. Comput., 28(2-3):245--261, 2006.
Cotter, C. J. and Frank, J. and Reich, S.. The remapped particle-mesh semi-Lagrangian advection scheme. Quarterly Journal of the Royal Meteorological Society, 133(622):251--260, 2007.
Crandall, Michael G. and Ishii, Hitoshi and Lions, Pierre-Louis. User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27(1):1--67, 1992.
Crouzeix, Michel and Raviart, Pierre-Arnaud. Approximation des \'equations d'\'evolution lin\'eaires par des m\'ethodes \`a pas multiples. C. R. Acad. Sci. Paris S\'er. A-B, 28(6):Aiv, A367--A370, 1976.
Demkowicz, L. and Oden, J. T.. An adaptive characteristic {P}etrov-{G}alerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable. J. Comput. Phys., 67(1):188--213, 1986.
Douglas, Jr., Jim and Huang, Chieh-Sen and Pereira, Felipe. The modified method of characteristics with adjusted advection. Numer. Math., 83(3):353--369, 1999.
Douglas, Jr., Jim and Pereira, Felipe and Yeh, Li Ming. A parallelizable characteristic scheme for two phase flow. {I}. {S}ingle porosity models. Mat. Apl. Comput., 14(1):73--96, 1995.
Douglas, Jr., Jim and Russell, Thomas F.. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal., 19(5):871--885, 1982.
Druskin, Vladimir and Knizhnerman, Leonid. Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic. Numer. Linear Algebra Appl., 2(3):205--217, 1995.
Dörfler, W. and Ainsworth, M.. Reliable a posteriori error control for nonconformal finite element approximation of {S}tokes flow. Math. Comp., 74(252):1599--1619, 2005.
Eiermann, Michael and Ernst, Oliver G.. A restarted {K}rylov subspace method for the evaluation of matrix functions. SIAM J. Numer. Anal., 44(6):2481--2504 (electronic), 2006.
Ervin, Vincent J. and Heuer, Norbert and Roop, John Paul. Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal., 45(2):572--591 (electronic), 2007.
Ervin, Vincent J. and Roop, John Paul. Variational solution of fractional advection dispersion equations on bounded domains in {$\Bbb R\sp d$}. Numer. Methods Partial Differential Equations, 23(2):256--281, 2007.
Etienne, Jocelyn and Hinch, E.J. and Li, Jie. A Lagrangian--Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material. Journal of Non-Newtonian Fluid Mechanics, 136():157-166, 2006.
Falcone, Maurizio and Ferretti, Roberto. Convergence analysis for a class of high-order semi-{L}agrangian advection schemes. SIAM J. Numer. Anal., 35(3):909--940 (electronic), 1998.
Falcone, Maurizio and Ferretti, Roberto and Ferretti, Falcone. Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes. SIAM J. Numer. Anal., 35(3):909-940, 1998.
Fattal, R. and Kupferman, R.. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. Journal of Non-Newtonian Fluid Mechanics, 126():23-37, 2005.
Fattal, R. and Kupferman, R.. Constitutive laws for the matrix-logarithm of the conformation tensor. Journal of Non-Newtonian Fluid Mechanics, 124():281-285, 2004.
Fischer, Paul F. and Hecht, Frédéric and Maday, Yvon. A parareal in time semi-implicit approximation of the {N}avier-{S}tokes equations. Domain decomposition methods in science and engineering, 40():433--440, 2005.
Frank, J. E. and van der Houwen, P. J.. Parallel iteration of the extended backward differentiation formulas. IMA J. Numer. Anal., 21(1):367--385, 2001.
Gander, Martin J. and Vandewalle, Stefan. Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput., 29(2):556--578 (electronic), 2007.
Gander, Martin J. and Vandewalle, Stefan. Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput., 29(2):556--578 (electronic), 2007.
Garrido, Izaskun and Lee, Barry and Fladmark, Gunnar E. and Espedal, Magne S.. Convergent iterative schemes for time parallelization. Math. Comp., 75(255):1403--1428 (electronic), 2006.
Girault, V. and Nochetto, R. H. and Scott, R.. Maximum-norm stability of the finite element {S}tokes projection. J. Math. Pures Appl. (9), 84(3):279--330, 2005.
Girault, Vivette and Nochetto, Ricardo H. and Scott, Ridgway. Stability of the finite element {S}tokes projection in {$W\sp {1,\infty}$}. C. R. Math. Acad. Sci. Paris, 338(12):957--962, 2004.
Guibert, D. and Tromeur-Dervout, D.. Parallel adaptive time domain decomposition for stiff systems of {ODE}s/{DAE}s. Comput. \& Structures, 85(9):553--562, 2007.
Hu, Xiaozhe and Russell, Thomas F. and Xu, Jinchao and Zhang, Chen-Song. Time Adaptivity and Parallelization for the Semi-{L}agrangian Method. , ():, .
Hulsen, M A. and Fattal, R. and Kupferman, R.. Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms. Journal of Non-Newtonian Fluid Mechanics, 127():27-39, 2005.
Johnson, Claes. Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal., 25(4):908--926, 1988.
Keller, Herbert B.. On the solution of singular and semidefinite linear systems by iteration. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2():281--290, 1965.
Keyes, David E. and Reynolds, Daniel R. and Woodward, Carol S.. Implicit solvers for large-scale nonlinear problems. J. Phys. Conf. Ser., 46():433--442, 2006.
Kim, Ju Min and Kim, Chongyoup and Ahn, Kyung Hyun and Lee, Seung Jong. An efficient iterative solver and high-resolution computations of the Oldroyd-B fluid flow past a confined cylinder. Journal of Non-Newtonian Fluid Mechanics, 123():161-173, 2004.
Lions, Jacques-Louis and Maday, Yvon and Turinici, Gabriel. R\'esolution d'{EDP} par un sch\'ema en temps ``parar\'eel''. C. R. Acad. Sci. Paris S\'er. I Math., 332(7):661--668, 2001.
Maday, Yvon and Turinici, Gabriel. A parareal in time procedure for the control of partial differential equations. C. R. Math. Acad. Sci. Paris, 335(4):387--392, 2002.
Maes, Jan and Bultheel, Adhemar. A hierarchical basis preconditioner for the biharmonic equation on the sphere. IMA J. Numer. Anal., 26(3):563--583, 2006.
Maes, Jan and Kunoth, Angela and Bultheel, Adhemar. B{PX}-type preconditioners for second and fourth order elliptic problems on the sphere. SIAM J. Numer. Anal., 45(1):206--222 (electronic), 2007.
Maia, J. M. and Covas, J. A. and Nóbrega, J. M. and Dias, T. F. and Alves, F. E.. Measuring uniaxial extensional viscosity using a modified rotational rheometer. Journal of Non-Newtonian Fluid Mechanics, 80():183-197, 1999.
Makridakis, Charalambos and Nochetto, Ricardo H.. A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math., 104(4):489--514, 2006.
Metzler, Ralf and Klafter, Joseph. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A, 37(31):R161--R208, 2004.
Micu, Sorin and Zuazua, Enrique. On the controllability of a fractional order parabolic equation. SIAM J. Control Optim., 44(6):1950--1972 (electronic), 2006.
Min, Chohong and Gibou, Frédéric. A second order accurate projection method for the incompressible {N}avier-{S}tokes equations on non-graded adaptive grids. J. Comput. Phys., 219(2):912--929, 2006.
Morton, K. W. and Priestley, A. and Süli, E.. Stability of the {L}agrange-{G}alerkin method with nonexact integration. RAIRO Mod\'el. Math. Anal. Num\'er., 22(4):625--653, 1988.
Nachtigal, Noël M. and Reddy, Satish C. and Trefethen, Lloyd N.. How fast are nonsymmetric matrix iterations?. SIAM J. Matrix Anal. Appl., 13(3):778--795, 1992.
Neuman, Shlomo P.. Adaptive Eulerian-Lagrangian finite element method for advection-dispersion. International Journal for Numerical Methods in Engineering, 20(2):321--337, 1984.
Nicaise, S. and Soualem, N.. {\it {A} posteriori} error estimates for a nonconforming finite element discretization of the time-dependent {S}tokes problem. J. Numer. Math., 15(2):137--162, 2007.
Nochetto, Ricardo H. and Schmidt, Alfred and Siebert, Kunibert G. and Veeser, Andreas. Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math., 104(4):515--538, 2006.
Oliveira, Anabela and Baptista, António M.. A comparison of integration and interpolation {E}ulerian-{L}agrangian methods. Internat. J. Numer. Methods Fluids, 21(3):183--204, 1995.
Oliveira, Anabela and Baptista, António M.. A comparison of integration and interpolation {E}ulerian-{L}agrangian methods. Internat. J. Numer. Methods Fluids, 21(3):183--204, 1995.
Oliveira, Mónica S.N. and Oliveira, Paulo J. and Pinho, Fernando T. and Alves, Manuel A.. Effect of contraction ratio upon viscoelastic flow in contractions: The axisymmetric case. Journal of Non-Newtonian Fluid Mechanics, ():, 2007.
Pang, J.-S.. More results on the convergence of iterative methods for the symmetric linear complementarity problem. J. Optim. Theory Appl., 49(1):107--134, 1986.
Pang, J.-S.. Necessary and sufficient conditions for the convergence of iterative methods for the linear complementarity problem. J. Optim. Theory Appl., 42(1):1--17, 1984.
Pasquali, Matteo and Scriven, L. E.. Free surface flows of polymer solutions with models based on the conformation tensor. Journal of Non-Newtonian Fluid Mechanics, 108():363-409, 2002.
Petera, Jerzy. A new finite element scheme using the Lagrangian framework for simulation of viscoelastic fluid flows. Journal of Non-Newtonian Fluid Mechanics, 103():1-43, 2002.
Phillips, T. N. and Williams, A. J.. Conservative semi-{L}agrangian finite volume schemes. Numer. Methods Partial Differential Equations, 17(4):403--425, 2001.
Phillips, T. N. and Williams, A. J.. A semi-{L}agrangian finite volume method for {N}ewtonian contraction flows. SIAM J. Sci. Comput., 22(6):2152--2177 (electronic), 2000.
Phillips, T. N. and Williams, A. J.. Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method. J. Non-Newtonian Fluid Mech., 87():215--246, 1999.
Poole, R.J. and Alves, M.A. and Oliveira, P.J. and Pinho, F.T.. Plane sudden expansion flows of viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 146():79-91, 2007.
R.Fattal and Hald, H. and Katriel, G. and R.Kupferman. Global stability of equilibrium manifolds, and ``peaking'' behavior in quadratic differential systems related to viscoelastic models. Journal of Non-Newtonian Fluid Mechanics, 144():30-41, 2007.
R.Kupferman. On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation. Journal of Non-Newtonian Fluid Mechanics, 127():169-190, 2005.
R.Kupferman and Denn, MM.. Simulation of the evolution of concentrated shear layers in a Maxwell fluid with a fast high-resolution finite-difference scheme. Journal of Non-Newtonian Fluid Mechanics, 84():275-287, 1999.
R.Kupferman and Kawaguchi, M N. and Denn, M M.. Emergence of structure in a model of liquid crystalline polymers with elastic coupling. Journal of Non-Newtonian Fluid Mechanics, 91():255-271, 2000.
Robert, A.. The integratio of a spectral model of the atomsphere by the implicit method. Proc. of the WMO/IUGG Symp. on NWP, Toyko, Japan, ():19--24, 1969.
Robert, A. and Yee, Tai Loy and Ritchie, Harold. A Semi-Lagrangian and Semi-Implicit Numerical Integration Scheme for Multilevel Atmospheric Models. Monthly Weather Review, 113():388---394, 1985.
Roop, John Paul. Computational aspects of {FEM} approximation of fractional advection dispersion equations on bounded domains in {${\Bbb R}\sp 2$}. J. Comput. Appl. Math., 193(1):243--268, 2006.
Roquet, Nicolas and Saramito, Pierre. An adaptive finite element method for {B}ingham fluid flows around a cylinder. Comput. Methods Appl. Mech. Engrg., 192(31-32):3317--3341, 2003.
Schmitt, Bernhard A. and Weiner, Rüdiger and Podhaisky, Helmut. Multi-implicit peer two-step {$W$}-methods for parallel time integration. BIT, 45(1):197--217, 2005.
Smith, M. D. and Joo, Y. L. and Armstrong, R. C. and Brown, R. A.. Linear stability analysis of flow of an Oldroyd-B fluid through a linear array of cylinders. Journal of Non-Newtonian Fluid Mechanics, 109():13-50, 2002.
Smolarkiewicz, Piotr K. and Pudykiewicz, Janusz A.. A Class of Semi-Lagrangian Approximations for Fluids. Journal of the Atmospheric Sciences, 49(22):2082--2096, 1992.
Staff, Gunnar Andreas and Rønquist, Einar M.. Stability of the parareal algorithm. Domain decomposition methods in science and engineering, 40():449--456, 2005.
Stanescu, Dan and Kim, Dongjin and Woyczynski, Wojbor A.. Numerical study of interacting particles approximation for integro-differential equations. J. Comput. Phys., 206(2):706--726, 2005.
Süli, Endre. Convergence and nonlinear stability of the {L}agrange-{G}alerkin method for the {N}avier-{S}tokes equations. Numer. Math., 53(4):459--483, 1988.
Süli, E.. Stability and convergence of the {L}agrange-{G}alerkin method with nonexact integration. The mathematics of finite elements and applications, VI (Uxbridge, 1987), ():435--442, 1988.
Tadjeran, Charles and Meerschaert, Mark M.. A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys., 220(2):813--823, 2007.
Tam, H.-W.. Two-stage parallel methods for the numerical solution of ordinary differential equations. SIAM J. Sci. Statist. Comput., 13(5):1062--1084, 1992.
Tam, H.-W.. One-stage parallel methods for the numerical solution of ordinary differential equations. SIAM J. Sci. Statist. Comput., 13(5):1039--1061, 1992.
Turek, Stefan and Rivkind, Ludmila and Hron, Jaroslav and Glowinski, Roland. Numerical study of a modified time-stepping {$\theta$}-scheme for incompressible flow simulations. J. Sci. Comput., 28(2-3):533--547, 2006.
Turek, S. and Schafer, M.. Benchmark computations of laminar flow around cylinder. Flow Simulation with High--Performance Computers II, 52():547--566, 1996.
Wang, Hong and Al-Lawatia, Mohamed and Sharpley, Robert C.. A Characteristic Domain Decomposition and Space-Time Local Refinement Method for First-Order Linear Hyperbolic Equations with Interfaces. , ():, .
Wang, Hong and Wang, Kaixin. Uniform Estimates for Eulerian--Lagrangian Methods for Singularly Perturbed Time-Dependent Problems. SIAM J. Numer. Anal., 45(3):1305-1329, 2007.
Wheeler, Mary Fanett. A priori {$L\sb{2}$} error estimates for {G}alerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal., 10():723--759, 1973.
Xiu, Dongbin and Karniadakis, George Em. A semi-{L}agrangian high-order method for {N}avier-{S}tokes equations. J. Comput. Phys., 172(2):658--684, 2001.
Xiu, Dongbin and Karniadakis, George Em. A semi-{L}agrangian high-order method for {N}avier-{S}tokes equations. J. Comput. Phys., 172(2):658--684, 2001.
Yeh, Gour-Tsyh and Chang, Jing-Ru and Cheng, Hai-Ping and Sung, Chao-Ho. An adaptive local grid refinement based on the exact peak capture and oscillation free scheme to solve transport equations. Computer \& fluid, 24():293, 1995.
Yue, Pengtao and Zhou, Chunfeng and Feng, James J. and Ollivier-Gooch, Carl F. and Hu, Howard H.. Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys., 219(1):47--67, 2006.
Ewing, R. E. and Russell, T. F.. Efficient time-stepping methods for miscible displacement problems in porous media. SIAM J. Numer. Anal., 19(1):1--67, 1982.
Ewing, R. E. and Russell, T. F. and Wheeler, M. F.. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Engrg., 47(1-2):73--92, 1984.
Jarman, K. D. and Russell, T. F.. Eulerian moment equations for 2-{D} stochastic immiscible flow. Multiscale Model. Simul., 1(4):598--608 (electronic), 2003.
Russell, T. F.. Time stepping along characteristics with incomplete iteration for a {G}alerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal., 22(5):970--1013, 1985.
Mohapatra, S. C. and Marcinkoski, J.. V.C. 1 Complex Coolant Fluid for PEM Fuel Cells. DOE Hydrogren Program, FY 2007 Annual Progress Report, ():732-735, 2007.
wilson, J. R. and Kobsririphat, W. and Mendoza, R. and Chen, H. Y. and Hiller, J. M. and Miller, D. J. and Thornton, K. and Voorhees, P. W. and Adler, S. B. and Barnett, S. A.. Three-dimensional reconstruction of a solide-oxide fuel-cell anode. Nature, 5():541-544, 2006.
Sinha, P. K. and Mukherjee, P. P. and Wang, C-Y. Impact of GDL sturcture and wettability on water management in polymer electrolyte fuel cells. Journal of Materials Chemistry, 17(30):3053-3272, 2007.
Arbogast, T. and Wheeler, M. F. and Zhang, N-Y. A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal., 33(4):1669-1687, 1996.
Arnold, D. N. and Qin, Jinshui. Quadratic velocity/linear pressure Stokes elements. Advances in Computer Methods for Partial Differential Equations-VII, IMACS():28-34, 1992.
Larin, Maxim and Reusken, Arnold. A comparative study of efficient iterative solvers for generalized Stokes equations. Numerical Linear Algebra with Applications, ():, 2007.
Qin, Jinshui and Zhang, Shangyou. Stability and approximability of the P1-P0 element for Stokes equations. International Journal of Numerical Methods in Fluids, 54():497-515, 2007.
Zhang, Shangyou. On the divergence-free finite element method for the Stokes equations and the P1 Powell-Sabin divergence-free element. Preprint, ():, 2007.
Formaggia, Luca and Micheletti, Stefano and Perotto, Simona. Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems. Applied Numerical Mathematics, 51(4):511-533, 2004.
Picasso, M.. An adaptive algorithm for the Stokes problem using continuous, piecewise linear stabilized finite elements and meshes with high aspect ratio. Applied Numerical Mathematics, 54(3-4):470-490, 2005.
Narasimhan, Susheela and Chen, Kuan and Stenger, Frank. The Solution of Incompressible Naiver-Stokes Equations Using the Sine-Collocation Method. IEEE, ():, 2000.
Enchery, G. and Eymard, R. and Michel, A.. Numerical approximation of a two-phose flow problem in a porous medium with discontinuous capillary forces. SIAM J. Numer. Anal., 43(6):2402-2422, 2006.
Coffey, T. S. and Kelley, C. T. and Keyes, D. E.. Pseudotransient continuation and differential-algebraic equations. SIAM J. SCI. COMPUT., 25(2):553-569, 2003.
Luo, Z. and Chen, J. and Zhu, J.. An optimizing reduced MFE formulation based on POD for the non-stationary conduction-convection problems. Preprint, ():, 2007.
Turek, Stefan. Multigrid techniques for a divergence-free finite element discretization. East-West Journal of Numerical Mathematics, 2(3):229-255, 1994.
Turek, Stefan. Tools for simulating non-stationary incompressible flow via discretely divergence-free finite element models. International Journal for numerical methods in fluids, 18():71-105, 1994.
Griffiths, D.F.. The construction of approximately divergence-free finite elements. Mathematics of finite elements and applications, III (Proc. Third MAFELAP Conf., Brunel Univ., Uxbridge, 1978), ():237-245, 1979.
Dryja, Maksymilian and Widlund, Olof B.. Schwarz methods of neumann-neumann type for three-dimensional elliptic finite element problems. Communications on Pure and Applied Mathematics, 48(2):121--155, 1995.
Graham, I. G. and Hagger, M. J.. Unstructured Additive Schwarz-Conjugate Gradient Method for Elliptic Problems with Highly Discontinuous Coefficients. SIAM J. SCI. Comput., 20():2041-2066, 1999.
Graham, I. G. and Lechner, P. and Scheichl, R.. Domain Decomposition for Multiscale PDEs. Bath Institute for Complex Systems, Preprint 11():1-32, 2006.
Nabben, R. and Vuik, C.. A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow. SIAM J. Numer. Anal., 42(4):1631-1647, 2004.
Vuik, C. and Segal, A. and Meijerink, J. A.. An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients. Journal of Computational Physics, 152(1):385--403, 1999.
Vuik, C. and Segal, A. and Meijerink, J. A. and Wijma, G. T.. The Construction of Projection Vectors for a Deflated ICCG Method Applied to Problems with Extreme Contrasts in the Coefficients. Journal of Computational Physics, 172(2):426--450, 2001.
Vuik, C. and Segal, A. and el Yaakoubi, L. and Dufour, E.. A comparison of various deflation vectors applied to elliptic problems with discontinuous coefficients. Applied Numerical Mathematics, 41(1):219--233, 2002.
Zhu, Yunrong. Domain Decomposition Preconditioners for Elliptic Equations with Jump Coefficients. Numerical Linear Algebra with Applications, 15():271--289, 2008.
Caflisch, R. E. and Lee, Y. -J. and Shu, S. and Xiao, Y. -X. and Xu, J.. An application of multigrid methods for a discrete elastic model for epitaxial systems. Journal of Computational Physics, 219(2):697--714, 2006.
Austin, Travis M. and Manteuffel, Thomas A. and McCormick, Steve. A robust multilevel approach for minimizing {$\bold H({\rm div})$}-dominated functionals in an {$\bold H\sp 1$}-conforming finite element space. Numer. Linear Algebra Appl., 11(2-3):115--140, 2004.
Beall, Mark W. and Shephard, Mark S.. A General Topology-Based Mesh Data Structure. International Journal for Numerical Methods in Engineering, 40(9):1573--1596, 1997.
Ferragut, L. and Montenegro, R. and Plaza, A.. Efficient refinement/derefinement algorithm of nested meshes to solve evolution problems. Comm. Numer. Methods Engrg., 10(5):403--412, 1994.
Plaza, Angel and Padron, Miguel A. and Carey, Graham F.. A 3D refinement/derefinement algorithm for solving evolution problems. Applied Numerical Mathematics, 32(4):401--418, 2000.
Suárez, J. P. and Carey, G. F. and Plaza, A.. Graph-based data structures for skeleton-based refinement algorithms. Comm. Numer. Methods Engrg., 17(12):903--910, 2001.
Zienkiewicz, O. C. and Zhu, J. Z. and Gong, N. G.. Effective and practical $h-p$-version adaptive analysis procedures for the finite element method. International Journal for Numerical Methods in Engineering, 28(4):879 -- 891, 1989.
Dahlke, Stephan and Novak, Erich and Sickel, Winfried. Optimal approximation of elliptic problems by linear and nonlinear mappings {I}. Journal of Complexity, 22(1):29--49, 2006.
Dahlke, Stephan and Novak, Erich and Sickel, Winfried. Optimal approximation of elliptic problems by linear and nonlinear mappings {II}. J. Complex., 22(4):549--603, 2006.
Zhu, J. Z. and Hinton, E. and Zienkiewicz, O. C.. Mesh enrichment against mesh regeneration using quadrilateral elements. Communications in Numerical Methods in Engineering, 9(7):547 -- 554, 1993.
Zhu, J. Z. and Zienkiewicz, O. C. and Hinton, E. and Wu, J.. A new approach to the development of automatic quadrilateral mesh generation. International Journal for Numerical Methods in Engineering, 32(4):849 -- 866, 1991.
Schatz, A. H. and Wahlbin, L. B.. Maximum norm estimates in the finite element method on plane polygonal domains. {I}. Math. Comp., 32(141):73--109, 1978.
Schatz, A. H. and Wahlbin, L. B.. Maximum norm estimates in the finite element method on plane polygonal domains. {II}. {R}efinements. Math. Comp., 33(146):465--492, 1979.
Yserentant, Harry. Hierarchical bases give conjugate gradient type methods a multigrid speed of convergence. Applied Mathematics and Computation, 19(1-4):347--358, 1986.
Babuska, I. and Strouboulis, T. and Upadhyay, C. S.. A model study of the quality of a posteriori error estimators for finite element solutions of linear elliptic problems, with particular reference to the behavior near the boundary. Internat. J. Numer. Methods Engrg., 40(14):2521--2577, 1997.
Monk, Peter. A simple proof of convergence for an edge element discretization of {M}axwell's equations. Computational electromagnetics (Kiel, 2001), 28():127--141, 2003.
Gopalakrishnan, Jayadeep and Pasciak, Joseph E.. Overlapping {S}chwarz preconditioners for indefinite time harmonic {M}axwell equations. Math. Comp., 72(241):1--15 (electronic), 2003.
Adams, Marvin L. and Larsen, Edward W.. Fast iterative methods for discrete-ordinates particle transport calculations. Progress in Nuclear Energy, 40(1):3--159, 2002.
Carstensen, Carsten and Schöberl, Joachim. Residual-based a posteriori error estimate for a mixed {R}ei\ss ner-{M}indlin plate finite element method. Numer. Math., 103(2):225--250, 2006.
Bartels, S. and Carstensen, C. and Hecht, A.. P2Q2Iso2D=2D Isoparametric FEM in Matlab. Journal of Computational and Applied Mathematics, 192(2):219--250, 2006.
Li, Jichun. Optimal uniform convergence analysis for a two-dimensional parabolic problem with two small parameters. Int. J. Numer. Anal. Model., 2(1):107--126, 2005.
Cecil, Thomas C. and Osher, Stanley J. and Qian, Jianliang. Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension. Journal of Computational Physics, 213(2):458--473, 2006.
Becker, Roland and Hansbo, Peter and Larson, Mats G.. Energy norm a posteriori error estimation for discontinuous Galerkin methods. Computer Methods in Applied Mechanics and Engineering, 192(5-6):723--733, 2003.
Hartmann, Ralf and Houston, Paul. Adaptive Discontinuous Galerkin Finite Element Methods for the Compressible Euler Equations. Journal of Computational Physics, 183(2):508--532, 2002.
Riviere, B. and Wheeler, M. F.. A Posteriori error estimates for a discontinuous galerkin method applied to elliptic problems. Log number: R74. Computers \& Mathematics with Applications, 46(1):141--163, 2003.
Adjerid, Slimane and Devine, Karen D. and Flaherty, Joseph E. and Krivodonova, Lilia. A posteriori error estimation for discontinuous {G}alerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Engrg., 191(11-12):1097--1112, 2002.
Johnson, Claes and Saranen, Jukka. Streamline Diffusion Methods for the Incompressible Euler and Navier-Stokes Equations. Mathematics of Computation, 47(175):1--18, 1986.
Johnson, Claes and Navert, Uno and Pitkaranta, Juhani. Finite element methods for linear hyperbolic problems. Computer Methods in Applied Mechanics and Engineering, 45(1-3):285--312, 1984.
Lesaint, P. and Raviart, P.A.. On a finite element method for solving the neutron transport equation. Mathematical Aspects of Finite Elements in Partial Differential Equations, ():, 1974.
Arnold, Douglas N.. Robustness of finite element methods for a model parameter dependent problem. Advances in Computer Methods for Partial Differential Equations--IV, ():, 1981.
Heroux, M. and McCormick, S. and McKay, S. and Thomas, J. W.. Applications of the fast adaptive composite grid method. Multigrid methods (Copper Mountain, CO, 1987), 110():251--265, 1988.
McCormick, Steve. Multilevel adaptive schemes and domain decomposition methods. Proceedings of the Fifth International Symposium on Numerical Methods in Engineering, Vol.\ 1, 2 (Lausanne, 1989), ():245--252, 1989.
Mandel, Jan and McCormick, Steve. Iterative solution of elliptic equations with refinement: the two-level case. Domain decomposition methods (Los Angeles, CA, 1988), ():81--92, 1989.
Mandel, Jan and McCormick, Steve. Iterative solution of elliptic equations with refinement: the model multi-level case. Domain decomposition methods (Los Angeles, CA, 1988), ():93--102, 1989.
Becker, Jü%3Brgen and Grü%3Bn, Gü%3Bnther. The thin-film equation: recent advances and some new perspectives. Journal of Physics: Condensed Matter, (9):S291, 2005.
Sun, Pengtao and Russell, Robert D. and Xu, Jinchao. A new adaptive local mesh refinement algorithm and its application on fourth order thin film flow problem. Journal of Computational Physics, 224(2):1021--1048, 2007.
Madzvamuse, Anotida and Maini, Philip K. and Wathen, Andrew J. and Sekimura, Toshio. A predictive model for color pattern formation in the butterfly wing of {\it {P}apilio dardanus}. Hiroshima Math. J., 32(2):325--336, 2002.
Madzvamuse, Anotida. Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. Journal of Computational Physics, 214(1):239--263, 2006.
Madzvamuse, Anotida and Maini, Philip K. and Wathen, Andrew J.. A moving grid finite element method for the simulation of pattern generation by {T}uring models on growing domains. J. Sci. Comput., 24(2):247--262, 2005.
Semper, Bill and Liao, Guojun. A moving grid finite-element method using grid deformation. Numer. Methods Partial Differential Equations, 11(6):603--615, 1995.
Liao, Guojun and Pan, Tsorng-Whay and Su, Jianzhong. Numerical grid generator based on {M}oser's deformation method. Numer. Methods Partial Differential Equations, 10(1):21--31, 1994.
Van den Abeele, Kris and Lacor, Chris and Wang, Z. J.. On the connection between the spectral volume and the spectral difference method. Journal of Computational Physics, 227(2):877--885, 2007.
Feng, W. M. and Yu, P. and Hu, S. Y. and Liu, Z. K. and Du, Q. and Chen, L. Q.. Spectral implementation of an adaptive moving mesh method for phase-field equations. Journal of Computational Physics, 220(1):498--510, 2006.
Leung, C. H. and Berzins, M.. A computational model for organism growth based on surface mesh generation. Journal of Computational Physics, 188(1):75--99, 2003.
Sial, S. and Neuberger, J. and Lookman, T. and Saxena, A.. Energy minimization using Sobolev gradients: application to phase separation and ordering. Journal of Computational Physics, 189(1):88--97, 2003.
Smith, J.~B.. {Shape Instabilities and Pattern Formation in Solidification: A New Method for Numerical Solution of the Moving Boundary Problem}. Journal of Computational Physics, 39():112-+, 1981.
Zhu, W. and Song, Z. and Deng, X. and He, H. and Cheng, X.. {Lattice orientation effect on the nanovoid growth in copper under shock loading}. Phys Rev B, 75(2):024104-+, 2007.
Castets, V. and Dulos, E. and Boissonade, J. and De Kepper, P.. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett., 64(24):2953--2956, 1990.
Sun, Wentao and Tang, Tao and Ward, Michael J. and Wei, Juncheng. Numerical challenges for resolving spike dynamics for two one-dimensional reaction-diffusion systems. Stud. Appl. Math., 111(1):41--84, 2003.
Madzvamuse, Anotida and Wathen, Andrew J. and Maini, Philip K.. A moving grid finite element method applied to a model biological pattern generator. Journal of Computational Physics, 190(2):478--500, 2003.
Brufau, P. and Garcia-Navarro, P.. Unsteady free surface flow simulation over complex topography with a multidimensional upwind technique. Journal of Computational Physics, 186(2):503--526, 2003.
Munteanu, Andreea and Sol\'e, Ricard V.. Pattern formation in noisy self-replicating spots. International Journal of Bifurcations and Chaos, 16(12):3679--3685, 2006.
Warsa, J. S. and Wareing, T. A. and Morel, J. E.. Solution ofthe Discontinuous P[sub 1] Equations in Two-Dimensional Cartesian Geometry with Two-Level Preconditioning. SIAM J. Sci. Comput., 24(6):2093-2124, 2003.
Brown, Peter N.. A Linear Algebraic Development of Diffusion Synthetic Acceleration for Three-Dimensional Transport Equations. SIAM J. Numer. Anal., 32(1):179-214, 1995.
Chaplain, M. A. J. and Ganesh, M. and Graham, I. G.. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol., 42(5):387--423, 2001.
Lesmes, F. and Hochberg, D. and Moran, F. and Perez-Mercader, J.. {Noise-controlled self-replicating patterns}. Physical Review Letters, 91():238 -- 301, 2003.
Lee, K.~J. and McCormick, W.~D. and Swinney, H.~L. and Pearson, J.~E.. {Experimental observation of self-replicating spots in a reaction-diffusion system}. Nature, 369():215, 1994.
Mazin, W. and Rasmussen, K.~E. and Mosekilde, E. and Borckmans, P. and Dewel, G.. {Pattern formation in the bistable Gray-Scott model}. Mathematics and Computers in Simulation, 40():371, 1996.
Wei, Juncheng. Existence, stability and metastability of point condensation patterns generated by the {G}ray-{S}cott system. Nonlinearity, 12(3):593--616, 1999.
Wei, Juncheng. Pattern formations in two-dimensional Gray-Scott model: existence of single-spot solutions and their stability. Physica D: Nonlinear Phenomena, 148(1-2):20--48, 2001.
Bornemann, Folkmar A.. An adaptive multilevel approach to parabolic equations I.: general theory and 1D implementation. IMPACT Comput. Sci. Eng., 2(4):279--317, 1990.
Zienkiewicz, O. C. and Zhu, J. Z.. The three R's of engineering analysis and error estimation and adaptivity. Computer Methods in Applied Mechanics and Engineering, 82(1-3):95--113, 1990.
Li, Ming-Hsu and Cheng, Hwai-Ping and Yeh, Gour-Tsyh. An adaptive multigrid approach for the simulation of contaminant transport in the 3D subsurface. Computers \& Geosciences, 31(8):1028--1041, 2005.
Rieder, A. and Zhou, X.. On the robustness of the damped {$V$}-cycle of the wavelet frequency decomposition multigrid method. Computing, 53(2):155--171, 1994.
Rieder, Andreas. Semi-algebraic multi-level methods based on wavelet decompositions {I}: Application to two-point boundary value problems. , (9304):31, 1993.
McCormick, Steve and Rude, Ulrich. A finite volume convergence theory for the fast adaptive composite grid methods. Applied Numerical Mathematics, 14(1-3):91--103, 1994.
Lee, Barry and McCormick, Stephen F. and Philip, Bobby and Quinlan, Daniel J.. Asynchronous Fast Adaptive Composite-Grid Methods: Numerical Results. SIAM J. Sci. Comput., 25(2):682-700, 2003.
Lee, Barry and McCormick, Stephen F. and Philip, Bobby and Quinlan, Daniel J.. Asynchronous Fast Adaptive Composite-Grid Methods for Elliptic Problems: Theoretical Foundations. SIAM J. Numer. Anal., 42(1):130-152, 2004.
Blaheta, R. and Byczanski, P. and Kohut, R.. Composite grid finite element method: implementation and iterative solution with inexact subproblems. Appl. Math., 47(2):83--100, 2002.
McCormick, Steve F. and McKay, Steven M. and Thomas, J. W.. Computational complexity of the fast adaptive composite grid (FAC) method. Applied Numerical Mathematics, 6(4):315--327, 1990.
Ding, H. and Shu, C.. A stencil adaptive algorithm for finite difference solution of incompressible viscous flows. Journal of Computational Physics, 214(1):397--420, 2006.
Bramble, James H. and Ewing, Richard E. and Pasciak, Joseph E. and Shen, Jian. The analysis of multigrid algorithms for cell centered finite difference methods. Adv. Comput. Math., 5(1):15--29, 1996.
Oberman, Adam M.. Convergent difference schemes for degenerate elliptic and parabolic equations: {H}amilton-{J}acobi equations and free boundary problems. SIAM J. Numer. Anal., 44(2):879--895 (electronic), 2006.
Oberman, Adam M.. A convergent difference scheme for the infinity {L}aplacian: construction of absolutely minimizing {L}ipschitz extensions. Math. Comp., 74(251):1217--1230 (electronic), 2005.
Gomes, Diogo A. and Oberman, Adam M.. Computing the effective {H}amiltonian using a variational approach. SIAM J. Control Optim., 43(3):792--812 (electronic), 2004.
Constantin, Peter and Kiselev, Alexander and Oberman, Adam and Ryzhik, Leonid. Bulk burning rate in passive-reactive diffusion. Arch. Ration. Mech. Anal., 154(1):53--91, 2000.
Neupauer, Roseanna M. and Borchers, Brian. A MATLAB implementation of the minimum relative entropy method for linear inverse problems. Computers \& Geosciences, 27(7):757--762, 2001.
Clarkson, Kenneth L.. Nearest-Neighbor Searching and Metric Space Dimensions. Nearest-Neighbor Methods for Learning and Vision: Theory and Practice, ():15--59, 2006.
Stynes, Martin and Tobiska, Lutz. Error estimates and numerical experiments for streamline-diffusion-type methods on arbitrary and {S}hishkin meshes. CWI Quarterly, 10(3-4):337--352, 1997.
Stynes, M. and Tobiska, L.. Analysis of the streamline-diffusion finite element method on a piecewise uniform mesh for a convection-diffusion problem with exponential layers. East-West J. Numer. Math., 9(1):59--76, 2001.
Yu, Z. and Holst, M. and Cheng, Y. and McCammon, J.A.. Adaptive Mesh Generation for Molecular Shape Modeling and Simulation. Journal of Molecular Graphics and Modeling, ():, 2007.
Cleary, Andrew J. and Falgout, Robert D. and Henson, Van Emden and Jones, Jim E. and Manteuffel, Thomas A. and McCormick, Stephen F. and Miranda, Gerald N. and Ruge, John W.. Robustness and Scalability of Algebraic Multigrid. SIAM J. Sci. Comput., 21(5):1886-1908, 2000.
Phongthanapanich, Sutthisak and Dechaumphai, Pramote. Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design, 40(13-14):1753--1771, 2004.
Knupp, Patrick M. and Robidoux, Nicolas. A Framework for Variational Grid Generation: Conditioning the Jacobian Matrix with Matrix Norms. SIAM J. Sci. Comput., 21(6):2029-2047, 2000.
Cao, Weiming and Carretero-Gonzalez, Ricardo and Huang, Weizhang and Russell, Robert D.. Variational Mesh Adaptation Methods for Axisymmetrical Problems. SIAM J. Numer. Anal., 41(1):235--257, 2003.
Edelsbrunner, Herbert and Li, Xiang-Yang and Miller, Gary and Stathopoulos, Andreas and Talmor, Dafna and Teng, Shang-Hua and Ungor, Alper and Walkington, Noel. Smoothing and cleaning up slivers. STOC '00: Proceedings of the thirty-second annual ACM symposium on Theory of computing, ():273--277, 2000.
Chew, L. Paul. Guaranteed-quality Delaunay meshing in 3D (short version). SCG '97: Proceedings of the thirteenth annual symposium on Computational geometry, ():391--393, 1997.
Yuen, M. M. F. and Tan, S. T. and Hung, K. Y.. A hierarchical approach to automatic finite element mesh generation. International Journal for Numerical Methods in Engineering, 32(3):, 1991.
Caendish, James C. and Field, David A. and Frey, William H.. An apporach to automatic three-dimensional finite element mesh generation. International Journal for Numerical Methods in Engineering, 21(2):329 -- 347, 1985.
Cheng, Siu-Wing and Dey, Tamal K. and Edelsbrunner, Herbert and Facello, Michael A. and Teng, Shang-Hua. Sliver Exudation. Symposium on Computational Geometry, ():1-13, 1999.
Mulholland, L. S. and Huang, W.-Z. and Sloan, D. M.. Pseudospectral Solution of Near-Singular Problems using Numerical Coordinate Transformations Based on Adaptivity. SIAM J. Sci. Comput., 19(4):1261--1289, 1998.
Fiedler, Brian H. and Trapp, R. Jeffrey. A Fast Dynamic Grid Adaption Scheme for Meteorological Flows. Monthly Weather Review, 121(10):2879--2888, 1993.
Zhang, Zhimin. Polynomial preserving gradient recovery and a posteriori estimate for bilinear element on irregular quadrilaterals. Int. J. Numer. Anal. Model., 1(1):1--24, 2004.
Brandts, Jan and Chen, Yanping and Yang, Julie. {A note on least-squares mixed finite elements in relation to standard and mixed finite elements}. IMA J Numer Anal, 26(4):779-789, 2006.
Duran, Ricardo and Liberman, Elsa. On Mixed Finite Element Methods for the Reissner-Mindlin Plate Model. Mathematics of Computation, 58(198):561--573, 1992.
Melissaratos, Elefterios A.. Lp Optimal d Dimensional Triangulations for Piecewise Linear Interpolation: A New Result on data Dependent Triangulations. , (RUU-CS-93-13):, 1993.
Cao, Weiming. Anisotropic measures of third order derivatives and the quadratic interpolation error on triangular elements. SIAM J. Sci. Comput., 29(2):756--781 (electronic), 2007.
Lai, Ming-Jun and Wenston, Paul. Trivariate {$C\sp 1$} cubic splines for numerical solution of biharmonic equations. Trends in approximation theory (Nashville, TN, 2000), ():225--234, 2001.
Lai, Ming Jun. Approximation order from bivariate {$C\sp 1$}-cubics on a four-directional mesh is full. Comput. Aided Geom. Design, 11(2):215--223, 1994.
Gmelig Meyling, R. H. J. and Pfluger, P. R.. On the dimension of the space of quadratic {$C\sp 1$}-splines in two variables. Approx. Theory Appl., 4(1):37--54, 1988.
Gmelig Meyling, R. H. J.. On interpolation by bivariate quintic splines of class {$C\sp 2$}. Constructive theory of functions (Varna, 1987), ():152--161, 1988.
Alfeld, Peter and Piper, Bruuce and Schumaker, L. L.. An Explicit Basis for $C^1 $ Quartic Bivariate Splines. SIAM J. Numer. Anal., 24(4):891-911, 1987.
Sander, G.. Bornes sup\'erieures et inf\'erieures dans l'analyse matricielle des plaques en flexion-torsion. Bull. Soc. Roy. Sci. Li\`ege, 33():456--494, 1964.
Ciavaldini, J. F. and Nédélec, J. C.. Sur l'\'el\'ement de {F}raeijs de {V}eubeke et {S}ander. Rev. Fran\c caise Automat. Informat. Recherche Op\'erationnelle S\'er. Rouge, 8(R-2):29--46, 1974.
Lai, Ming-Jun and Schumaker, Larry L.. On the Approximation Power of Splines on Triangulated Quadrangulations. SIAM J. Numer. Anal., 36(1):143-159, 1998.
Lai, Ming-Jun and Liu, Chun and Wenston, Paul. On two nonlinear biharmonic evolution equations: existence, uniqueness and stability. Appl. Anal., 83(6):541--562, 2004.
Lai, Ming-Jun and Liu, Chun and Wenston, Paul. Numerical simulations on two nonlinear biharmonic evolution equations. Appl. Anal., 83(6):563--577, 2004.
Carstensen, Carsten and Hoppe, R. H. W.. Error reduction and convergence for an adaptive mixed finite element method. Math. Comp., 75(255):1033--1042 (electronic), 2006.
Bao, Gang and Wu, Haijun. Convergence analysis of the perfectly matched layer problems for time-harmonic {M}axwell's equations. SIAM J. Numer. Anal., 43(5):2121--2143 (electronic), 2005.
Barth, Teri and Bochev, Pavel and Gunzburger, Max and Shadid, John. A taxonomy of consistently stablized finite element mehtods for the Stokes problem. SIAM J. Sci. Comput., 25(5):1585-1607, 2004.
Beuchler, Sven and Nepomnyaschikh, Sergev V.. Overlapping additive schwartz preconditioners for degenerated elliptic problems: Part II locally anisotropic problems. , ():, 2006.
Bramble, James H. and Lazarov, Raytho D. and Pasciak, Joseph E.. Least-squares methods for linear elasticity based on a discrete minus one inner product.. Comput. Methods Appl. Mech. Engrg., 191(8-10):727--744, 2001.
Bramble, James H. and Pasciak, Joseph E.. Analysis of a finite element PML approximation for the three dimensional time-harmonic maxwell problem. Preprint, ():, 2006.
Brezian, M. and Falgout, R. and MacLachlan, S. and Manteuffel, T. and McCormick, S. and Ruge, I.. Adaptive Smoothed Aggregation ($\alpha$SA) Multigrid. SIAM Rev., 47(2):317-346, 2005.
Brezzi, F. and Douglas, J. and Duran, R. and Fortin, M.. Mixed finite elements for second order elliptic problems in three variables. Numer. Math., 51():237-250, 1987.
Chandestris, M. and Jamet, D.. Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Internation Journal of Heat and Mass Transfer, 49():2137-2150, 2006.
Chartier, T. and Falgout, R. and Henson, V. E. and Jones, J. E. and Vassilevski, P. S. and Manteuffel, T. A. and McCormick, S. F. and Ruge, J. W.. Spectral element agglomerate AMGe. , ():, 2006.
Chen, Zhiming and Wu, Haijun. An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal., 41(3):799--826 (electronic), 2003.
Elman, Howard C. and Howle, Victoria E. and Shadid, John N. and Tuminaro, Ray S.. a parallel block multi-level preconditioner for the 3D incompressible Navier-Stokes equations. Journal of Computational Physics, 187():504-523, 2003.
Ewing, R. E. and Iliev, O. P. and Lazarov, R. D.. Numerical Simulation of Contamination Transport Due to Flow in Liquid and Porous Media. Technical report 1992-10, Enhanced Oil Recovery Institute, University of Wyoming, ():, 1992.
Geiser, Jurgen and Klein, Olaf. Numerical simulation of heat transfer in materials with anisotropic thermal conductivity: a finite volume scheme to handle complex geometries. IMA Preprint Series #2046, ():, 2005.
Gilbert, R. P.. A combined variational monotone iterative method for elliptic boundary value problems with discontinuous nonlinearity. Applicable Analysis, 43():21-45, 1992.
Girault, Vivette and Riviere, Beatrice. DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. , ():, 2007.
Hughes, Thomas J. R. and Franca, Leopoldo P. and Hulbert, Gregory M.. A new finite element formulation for computational fluid dynamics: VII. The Galerkin/Lease-Squares method for advective-diffusive equations. Comp. Meth. Appl. Mech. Eng., 73():173-189, 1989.
Li, Chungguang and Vuik, Kees. The GCR-SIMPLE solver and the simple-type preconditioning for incompressible Navier-Stokes equations. European Congress on Computational Methods in Applied Sciences and Engineering, ():, 2004.
Mifune, T. and Iwashita, T. and Shimasaki, M.. Algebraic multigrid method for nonsymmetric matrices arising in electromagnetic finite-element analyses. IEEEE Transactions on Magnetics, 39(3):1670-1673, 2003.
Neale, Graham and Nader, Walter. Practical significance of Brinkman's extension of Darcy's law. Canadian Journal of Chemical Engineering, 52():475-478, 1974.
Pawlowski, Roger P. and Shadid, John N. and Simonis, Joseph P. and Walker, Homer F.. Globalization techniques for Newton-Krylov methods and applications to the fully coupled solution of the Navier-Stokes equations. SIAM Rev., 48(4):700-721, 2006.
Raymond, Christopher and Bikowski, Jutta and Chakrabortty, Aranya and Hazaveh, Kamyar and Jeglova, Polina and Mavi, Rajinder and Phillips, Joel and Respress, Veronica. Mathematical Modeling for a PEM Fuel Cell. , ():, 2007.
Santos, Felix C. G.. The linearization method for the numerical analysis of finite element solutions to quasi-linear elliptic partial differential equations. SIAM J. NUMER. ANAL., 38(1):227-266, 2000.
Secanell, M. and Carnes, B. and Suleman, A. and Djilali, N.. Numerical optimization of proton exchange membrane fuel cell cathodes. Electrochimica Acta, 52():2668-2682, 2007.
Shadid, J. N. and Salinger, A. G. and Pawlowski, R. P. and Lin, P. T.. Large-scale stabilized FE computational analysis of nonlinear steady-state transport/reaction systems. Comput. Methods Appl. Mech. Engrg., 195():1846-1871, 2006.
Shadid, J. N. and Tuminaro, R. S. and Devine, K. D. and Hennigan, G. L. and Lin, P. T.. Performance of fully coupled domain decomposition preconditioners for finite element transport/reaction simulations. Journal of Computational Physics, 205():24-47, 2005.
Shadid, John N. and Tuminaro, Ray S. and Walker, Homer F.. An inexact Newton method for fully coupled solution of the Navier-Stokes equations with heat and mass transport. Journal of Computational Physics, 137():155-185, 1997.
Shen, Tony W. H. and Chen, C. F. and Huang, W. S. and Hsieh, L. W.. A novel two-dimensional convection-diffusion finite-difference scheme. Numerical Heat Transfer, Part B, 38():369-387, 2000.
Sun, Pengtao and Wang, Chaoyang and Xu, Jinchao and Xue, Guangri. New numerical techniques for the coupled equation on GDL and gas channel in fuel cells. , ():, 2007.
Tsuchiya, Takuya and Babuska, Ivo. A priori error estimates of finite element solutions of parametrized strongly nonlinear boundary value problems. Journal of Computational and Applied Mathematics, 79():41-46, 1997.
Vafai, K. and Thiyagaraja, R.. Analysis of flow and heat transfer at the interface region of a porous medium. Internation Journal of Heat and Mass Transfer, 30():1391-1405, 1987.
Vanek, P. and Mandel, J. and Brezina, M.. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing, 56(3):179--196, 1996.
Xu, Xuejun. On the accuracy of nonconforming quadrilateral Q1 element approximation for the Navier-Stokes problem. SIAM J. Numer. Anal., 38(1):17-39, 2000.
Tourigny, Yves and Hulsemann, Frank. A New Moving Mesh Algorithm for the Finite Element Solution of Variational Problems. SIAM J. Numer. Anal., 35(4):1416-1438, 1998.
Li, Shengtai and Petzold, Linda and Ren, Yuhe. Stability of Moving Mesh Systems of Partial Differential Equations. SIAM J. Sci. Comput., 20(2):719-738, 1998.
Doelman, Arjen and Kaper, Tasso J. and Zegeling, Paul A.. Pattern formation in the one-dimensional {G}ray-{S}cott model. Nonlinearity, 10(2):523--563, 1997.
van Dam, A. and Zegeling, P. A.. A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics. Journal of Computational Physics, 216(2):526--546, 2006.
Huang, Weizhang and Russell, Robert D.. Analysis of Moving Mesh Partial Differential Equations with Spatial Smoothing. SIAM J. Numer. Anal., 34(3):1106-1126, 1997.
Edwards, Michael G. and Oden, J. Tinsley and Demkowicz, Leszek. An $h$-$r$-Adaptive Approximate Riemann Solver for the Euler Equations in Two Dimensions. SIAM J. Sci. Comput., 14(1):185-217, 1993.
Farrell, Kevin and Drury, Luke O'C.. An explicit, adaptive grid algorithm for one-dimensional initial value problems. Appl. Numer. Math.Proceedings of the International Centre for Mathematical Sciences Conference on Grid Adaptation in Computational PDEs: Theory and Applications (Edinburgh, 1996), 26(1-2):3--12, 1998.
Larson, M. G. and Niklasson, A. J.. A conservative flux for the continuous {G}alerkin method based on discontinuous enrichment. Calcolo, 41(2):65--76, 2004.
Vohral\ik, M.. Equivalence between Lowest-Order Mixed Finite Element and Multi-Point Finite Volume Methods. Derivation, Properties and Numerical Experiments. ALGORITMY 2005, 17th Conference on Scientific Computing Vysoké Tatry - Podbanské, Slovakia, ():, 2005.
He, Guoliang and He, Yinnian. The finite volume method based on stabilized finite element for the stationary Navier-Stokes problem. Journal of Computational and Applied Mathematics, 205(1):651--665, 2007.
Efendiev, Y. and Ginting, V. and Hou, T. and Ewing, R.. Accurate multiscale finite element methods for two-phase flow simulations. Journal of Computational Physics, 220(1):155--174, 2006.
Holm, E. and Langtangen, H. P.. A unified mesh refinement method with applications to porous media flow. International Journal for Numerical Methods in Fluids, 28():679-702,, 1998.
Edussuriya, S. S. and Williams, A. J. and Bailey, C.. A cell-centred finite volume method for modelling viscoelastic flow. Journal of Non-Newtonian Fluid Mechanics, 117(1):47--61, 2004.
Bottasso, Carlo L. and Micheletti, Stefano and Sacco, Riccardo. The discontinuous Petrov-Galerkin method for elliptic problems. Computer Methods in Applied Mechanics and Engineering, 191(31):3391--3409, 2002.
Bottasso, Carlo L. and Micheletti, Stefano and Sacco, Riccardo. A multiscale formulation of the Discontinuous Petrov-Galerkin method for advective-diffusive problems. Computer Methods in Applied Mechanics and Engineering, 194(25-26):2819--2838, 2005.
Brezzi, F. and Marini, L. D. and Micheletti, S. and Pietra, P. and Sacco, R.. Stability and error analysis of mixed finite-volume methods for advection dominated problems. Computers \& Mathematics with Applications, 51(5):681--696, 2006.
Maisano, G. and Micheletti, S. and Perotto, S. and Bottasso, C. L.. On some new recovery-based a posteriori error estimators. Computer Methods in Applied Mechanics and Engineering, 195(37-40):4794--4815, 2006.
Micheletti, S. and Perotto, S.. Anisotropic Mesh Adaptivity Via a Dual-Based A Posteriori Error Estimation for Semiconductors. Scientific Computing in Electrical Engineering, 9():369--375, 2007.
Belhachmi, Zakaria and Bernardi, Christine and Deparis, Simone. Weighted {C}l\'ement operator and application to the finite element discretization of the axisymmetric {S}tokes problem. Numer. Math., 105(2):217--247, 2006.
Araya, Rodolfo and Behrens, Edwin and Rodr\iguez, Rodolfo. A posteriori error estimates for elliptic problems with {D}irac delta source terms. Numer. Math., 105(2):193--216, 2006.
Casado-D\iaz, J. and Chacón Rebollo, T. and Girault, V. and Gómez Mármol, M. and Murat, F.. Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in {$L\sp 1$}. Numer. Math., 105(3):337--374, 2007.
Wang, Ming and Shi, Zhong-ci and Xu, Jinchao. A new class of {Zienkiewicz}-type non-conforming element in any dimensionss. Numer. Math., 106(2):335--347, 2007.
da Veiga, L. Beirao and Niiranen, J. and Stenberg, R.. A posteriori error estimates for the {Morley} plate bending element. Numer. Math., 106(2):165--179, 2007.
Bujanda, B. and Clavero, C. and Gracia, J. L. and Jorge, J. C.. A high order uniformly convergent alternating direction scheme for time dependent reaction--diffusion singularly perturbed problems. Numer. Math., 107(1):1--25, 2007.
Dur\an, Mario and Hein, Ricardo and N\'ed\'elec, Jean-Claude. Computing numerically the Green's function of the half-plane Helmholtz operator with impedance boundary conditions. Numer. Math., 107(2):295-314, 2007.
Lunati, Ivan and Jenny, Patrick. Multiscale finite-volume method for compressible multiphase flow in porous media. Journal of Computational Physics, 216(2):616--636, 2006.
Guevara-Jordan, J. M. and Rojas, S. and Freites-Villegas, M. and Castillo, J. E.. A new second order finite difference conservative scheme. Divulg. Mat., 13(2):107--122, 2005.
Castillo, J. E. and Hyman, J. M. and Shashkov, M. and Steinberg, S.. Fourth- and sixth-order conservative finite difference approximations of the divergence and gradient. Applied Numerical Mathematics: Transactions of IMACS, 37(1--2):171--187, 2001.
Droniou, Jerome and Gallouet, Thierry and Herbin, Raphaele. A Finite Volume Scheme for a Noncoercive Elliptic Equation with Measure Data. SIAM J. Numer. Anal., 41(6):1997-2031, 2003.
Hermeline, F.. A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes. Journal of Computational Physics, 160(2):481--499, 2000.
Ewing, R. and Iliev, O. and Lazarov, R.. A Modified Finite Volume Approximation of Second-Order Elliptic Equations with Discontinuous Coefficients. SIAM J. Sci. Comput., 23(4):1335-1351, 2001.
Hermeline, Francois. Une methode de volumes finis pour les equations elliptiques du second ordre. Comptes Rendus de l'Academie des Sciences - Series I - Mathematics, 326(12):1433--1436, 1998.
Garc\ia-Archilla, B. and Mackenzie, J. A.. Analysis of a supraconvergent cell vertex finite-volume method for one-dimensional convection-diffusion problems. IMA J. Numer. Anal., 15(1):101--115, 1995.
Cordero, E. and De Biase, L. and Pennati, V.. A new finite volume method for the solution of convection-diffusion equations: analysis of stability and convergence. Comm. Numer. Methods Engrg., 13(12):923--940, 1997.
Cueto-Felgueroso, L. and Colominas, I. and Fe, J. and Navarrina, F. and Casteleiro, M.. High-order finite volume schemes on unstructured grids using moving least-squares reconstruction. {A}pplication to shallow water dynamics. Internat. J. Numer. Methods Engrg., 65(3):295--331, 2006.
Wang, Z.J.. A New High Order Finite Volume Method for the {Euler} Equations on Unstructured Grids. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 90():, 2005.
Cangiani, Andrea and Suli, Endre. The Residual-Free-Bubble Finite Element Method on Anisotropic Partitions. SIAM J. Numer. Anal., 45(4):1654-1678, 2007.
Cockburn, Bernardo and Gopalakrishnan, Jayadeep and Wang, Haiying. Locally Conservative Fluxes for the Continuous Galerkin Method. SIAM J. Numer. Anal., 45(4):1742-1776, 2007.
Ye, Xiu. On the relationship between finite volume and finite element methods applied to the {S}tokes equations. Numer. Methods Partial Differential Equations, 17(5):440--453, 2001.
Chou, So-Hsiang and Ye, Xiu. Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems. SIAM J. Numer. Anal., 45(4):1639-1653, 2007.
Day, Sarah and Lessard, Jean-Philippe and Mischaikow, Konstantin. Validated Continuation for Equilibria of PDEs. SIAM J. Numer. Anal., 45(4):1398-1424, 2007.
van der Vegt, Jaap J. W. and Izsak, Ferenc and Bokhove, Onno. Error Analysis of a Continuous-Discontinuous Galerkin Finite Element Method for Generalized 2D Vorticity Dynamics. SIAM J. Numer. Anal., 45(4):1349-1369, 2007.
Chainais-Hillairet, Claire and Droniou, Jerome. Convergence Analysis of a Mixed Finite Volume Scheme for an Elliptic-Parabolic System Modeling Miscible Fluid Flows in Porous Media. SIAM J. Numer. Anal., 45(5):2228-2258, 2007.
Cavalli, Fausto and Naldi, Giovanni and Puppo, Gabriella and Semplice, Matteo. High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems. SIAM J. Numer. Anal., 45(5):2098-2119, 2007.
da Veiga, L. Beirao and Niiranen, J. and Stenberg, R.. A Family of ${C}^0$ Finite Elements For Kirchhoff Plates I: Error Analysis. SIAM J. Numer. Anal., 45(5):2047-2071, 2007.
Bank, Randolph E. and Xu, Jinchao and Zheng, Bin. Superconvergent Derivative Recovery for Lagrange Triangular Elements of Degree p on Unstructured Grids. SIAM J. Numer. Anal., 45(5):2032-2046, 2007.
Cristiani, Emiliano and Falcone, Maurizio. Fast Semi-Lagrangian Schemes for the Eikonal Equation and Applications. SIAM J. Numer. Anal., 45(5):1979-2011, 2007.
Deckelnick, Klaus and Hinze, Michael. Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem. SIAM J. Numer. Anal., 45(5):1937-1953, 2007.
Mu, Mo and Xu, Jinchao. A Two-Grid Method of a Mixed Stokes--Darcy Model for Coupling Fluid Flow with Porous Media Flow. SIAM J. Numer. Anal., 45(5):1801-1813, 2007.
Buffa, A. and Ciarlet, Jr., P.. On traces for functional spaces related to {M}axwell's equations. {II}. {H}odge decompositions on the boundary of {L}ipschitz polyhedra and applications. Math. Methods Appl. Sci., 24(1):31--48, 2001.
Buffa, A. and Ciarlet, Jr., P.. On traces for functional spaces related to {M}axwell's equations. {I}. {A}n integration by parts formula in {L}ipschitz polyhedra. Math. Methods Appl. Sci., 24(1):9--30, 2001.
Buffa, Annalisa and Geymonat, Giuseppe. On traces of functions in W2,p({$[$}Omega{$]$}) for Lipschitz domains in. Comptes Rendus de l'Academie des Sciences - Series I - Mathematics, 332(8):699--704, 2001.
Buffa, A. and Costabel, M. and Sheen, D.. On traces for H(curl,{$[$}Omega{$]$}) in Lipschitz domains. Journal of Mathematical Analysis and Applications, 276(2):845--867, 2002.
Buffa, Annalisa. Trace theorems on non-smooth boundaries for functional spaces related to {M}axwell equations: an overview. Computational electromagnetics (Kiel, 2001), 28():23--34, 2003.
Chou, So-Hsiang and Kwak, Do Y. and Vassilevski, Panayot S.. Mixed Covolume Methods for Elliptic Problems on Triangular Grids. SIAM J. Numer. Anal., 35(5):1850--1861, 1998.
Acosta, Gabriel and Durán, Ricardo G.. An optimal {P}oincar\'e inequality in {$L\sp 1$} for convex domains. Proc. Amer. Math. Soc., 132(1):195--202 (electronic), 2004.
Banaszek, Jerzy. A conservative finite element method for hear conduction problems. International Journal for Numerical Methods in Engineering, 20():2033--2050, 1984.
Emmrich, E.. Supraconvergence and supercloseness of a discretisation for elliptic third-kind boundary-value problems on polygonal domains. Computational Methods in Applied Mathematics, 7(2):135--162, 2007.
Ferreira, J. A. and Grigorieff, R. D.. Supraconvergence and supercloseness of a scheme for elliptic equations on nonuniform grids. Numer. Funct. Anal. Optim., 27(5-6):539--564, 2006.
Sun, Yuzhi and Wang, Z. J. and Liu, Yen. Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow. Journal of Computational Physics, 215(1):41--58, 2006.
Liu, Yen and Vinokur, Marcel and Wang, Z. J.. Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems. Journal of Computational Physics, 212(2):454--472, 2006.
Wang, Z. J. and Zhang, Laiping and Liu, Yen. Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems. Journal of Computational Physics, 194(2):716--741, 2004.
Wang, Z. J. and Liu, Y.. Spectral (finite) volume method for conservation laws on unstructured grids. {III}. {O}ne dimensional systems and partition optimization. J. Sci. Comput., 20(1):137--157, 2004.
Wang, Z. J. and Liu, Yen. Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids: II. Extension to Two-Dimensional Scalar Equation. Journal of Computational Physics, 179(2):665--697, 2002.
Vidovic, D. and Segal, A. and Wesseling, P.. A superlinearly convergent finite volume method for the incompressible Navier-Stokes equations on staggered unstructured grids. Journal of Computational Physics, 198(1):159--177, 2004.
Xin, Jianguo and Pinchedez, Katia and Flaherty, Joseph E.. Implementation of hierarchical bases in FEMLAB for simplicial elements. ACM Trans. Math. Softw., 31(2):187--200, 2005.
Zenger, C. and Gietl, H.. Improved difference schemes for the {D}irichlet problem of {P}oisson's equation in the neighbourhood of corners. Numer. Math., 30(3):315--332, 1978.
Nishikawa, Hiroaki and van Leer, Bram. Optimal multigrid convergence by elliptic/hyperbolic splitting. Journal of Computational Physics, 190(1):52--63, 2003.
Gortler, Steven J. and Gotsman, Craig and Thurston, Dylan. Discrete one-forms on meshes and applications to 3D mesh parameterization. Computer Aided Geometric Design, 23(2):83--112, 2006.
Floater, Michael S. and Hormann, Kai and K\'os, G\'eza. A general construction of barycentric coordinates over convex polygons. Advances in Computational Mathematics, 24(1--4):311-331, 2007.
Floater, Michael S. and Hormann, Kai and Reimers, Martin. Parameterization of manifold triangulations. Approximation theory, X (St. Louis, MO, 2001), ():197--209, 2002.
Floater, Michael S. and Hormann, Kai. Surface parameterization: a tutorial and survey. Advances in multiresolution for geometric modelling, ():157--186, 2005.
Floater, Michael S. and Rasmussen, Atgeirr F.. Point-based methods for estimating the length of a parametric curve. J. Comput. Appl. Math., 196(2):512--522, 2006.
Floater, Michael S. and Lyche, Tom. Two chain rules for divided differences and {F}a\`a di {B}runo's formula. Math. Comp., 76(258):867--877 (electronic), 2007.
Floater, Michael S. and Pham-Trong, Valérie. Convex combination maps over triangulations, tilings, and tetrahedral meshes. Adv. Comput. Math., 25(4):347--356, 2006.
Sohn, J. L. and Heinrich, J. C.. A {Poisson} equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows. International Journal for Numerical Methods in Engineering, 30(2):349--361, 2005.
Tsukerman, I. and Plaks, A.. Refinement strategies and approximation errors for tetrahedral elements. Magnetics, IEEE Transactions on, 35(3):1342--1345, 1999.
Fedorov, A. and Chrisochoides, N. and Kikinis, R. and Warfield, S. K.. An evaluation of three approaches to tetrahedral mesh generation for deformable registration of brain MR images. Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, ():658--661, 2006.
Dorica, M. and Giannacopoulos, D. D.. Impact of mesh quality improvement systems on the accuracy of adaptive finite-element electromagnetics with tetrahedra. Magnetics, IEEE Transactions on, 41(5):1692--1695, 2005.
Liu, Ligang and Tai, Chiew-Lan and Ji, Zhongping and Wang, Guojin. Non-iterative approach for global mesh optimization. Comput. Aided Des., 39(9):772--782, 2007.
Ji, Zhongping and Liu, Ligang and Wang, Guojin. A Global Laplacian Smoothing Approach with Feature Preservation. CAD-CG '05: Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG'05), ():269--274, 2005.
Nealen, Andrew and Igarashi, Takeo and Sorkine, Olga and Alexa, Marc. Laplacian mesh optimization. GRAPHITE '06: Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia, ():381--389, 2006.
Havik, E. D. and Hemker, P. W. and Hoffmann, W.. Application of the over-set grid technique to a model singular perturbation problem. Computing, 65(4):339--356, 2000.
Noordmans, J. and Hemker, P. W.. Application of an adaptive sparse-grid technique to a model singular perturbation problem. Computing, 65(4):357--378, 2000.
Hemker, P. W.. A singularly perturbed model problem for numerical computation. Journal of Computational and Applied Mathematics, 76(1-2):277--285, 1996.
Debye, P. and H\"uckel, E.. Zur Theorie der Elektrolyte. {I}. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift, 24(9):185--206, 1923.
Axelsson, O. and Margenov, S.. On multilevel preconditioners which are optimal with respect to both problem and discretization parameters. Comput. Methods Appl. Math., 3(1):6--22 (electronic), 2003.
Achchab, B. and Axelsson, O. and Laayouni, L. and Souissi, A.. {Strengthened Cauchy-Bunyakowski-Schwarz inequality for a three-dimensional elasticity system}. Numerical Linear Algebra with Applications, 8():191--205, 2001.
Axelsson, Owe and Blaheta, Radim. Two simple derivations of Universal bounds for the {C.B.S.} inequality constant. Applications of Mathematics, 49(1):57--72, 2004.
Swart, Arno and Sleijpen, Gerard L. G. and Maas, Leo R. M. and Brandts, Jan. Numerical solution of the two-dimensional Poincare equation. Journal of Computational and Applied Mathematics, 200(1):317--341, 2007.
Manteuffel, Thomas A. and White, Jr., Andrew B.. The numerical solution of second-order boundary value problems on nonuniform meshes. Math. Comp., 47(176):511--535, S53--S55, 1986.
Kreiss, H.-O. and Manteuffel, T. A. and Swartz, B. and Wendroff, B. and White, Jr., A. B.. Supra-convergent schemes on irregular grids. Math. Comp., 47(176):537--554, 1986.
Bank, Randolph E. and Dupont, Todd F.. Analysis of a two-level scheme for solving finite element equations. Report CNA-159, Center for Numerical Analysis, University of Texas at Austin, ():, 1980.
Maitre, J.-F. and Musy, F.. The contraction number of a class of two-level methods%3B\ an exact evaluation for some finite element subspaces and model problems. Multigrid methods (Cologne, 1981), 960():535--544, 1982.
Coelho, P. J.. A hybrid finite volume/finite element discretization method for the solution of the radiative heat transfer equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 93(1-3):89--101, 2005.
Feistauer, Miloslav and Felcman, Jir\i and Lukacova-Medvid'ova, Maria and Warnecke, Gerald. Error Estimates for a Combined Finite Volume--Finite Element Method for Nonlinear Convection--Diffusion Problems. SIAM J. Numer. Anal., 36(5):1528-1548, 1999.
Cockburn, Bernardo and Kanschat, Guido and Perugia, Ilaria and Schotzau, Dominik. Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids. SIAM J. Numer. Anal., 39(1):264-285, 2001.
Dolejs\i, V. and Feistauer, M. and Schwab, C.. A finite volume discontinuous {G}alerkin scheme for nonlinear convection-diffusion problems. Calcolo, 39(1):1--40, 2002.
Schwartzkopff, T. and Lorcher, F. and Munz, C. -D. and Schneider, R.. Arbitrary high order finite-volume methods for electromagnetic wave propagation. Computer Physics Communications, 174(9):689--703, 2006.
Aboubacar, M. and Phillips, T. N. and Tamaddon-Jahromi, H. R. and Snigerev, B. A. and Webster, M. F.. High-order finite volume methods for viscoelastic flow problems. Journal of Computational Physics, 199(1):16--40, 2004.
Wise, Steven and Kim, Junseok and Lowengrub, John. Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method. Journal of Computational Physics, 226(1):414--446, 2007.
Hugger, Jens. Recovery of the optimal mesh density function and near-optimal meshes with rectangular elements in the mapped domain. Numer. Methods Partial Differential Equations, 11(5):479--499, 1995.
Hugger, Jens. A theory for local, a posteriori, pointwise, residual-based estimation of the finite element error. Journal of Computational and Applied Mathematics, 135(2):241--292, 2001.
Hugger, Jens. Recovery and few parameter representation of the optimal mesh density function for near optimal finite element meshes. Computer Methods in Applied Mechanics and Engineering, 109(1-2):41--71, 1993.
Hugger, Jens. The theory of density representation of finite element meshes. Examples of density operators with quadrilateral elements in the mapped domain. Computer Methods in Applied Mechanics and Engineering, 109(1-2):17--39, 1993.
Hugger, Jens. Adaptive recovery of near optimal meshes in the finite element method for parameter dependent problems. Computer Methods in Applied Mechanics and Engineering, 101(1-3):127--141, 1992.
Ito, Yasushi and Shih, Alan M. and Soni, Bharat K.. Reliable Isotropic Tetrahedral Mesh Generation Based on an Advancing Front Method. 13th International Meshing Roundtable, ():19-22, 2004.
Bader, Michael and Zenger, Christoph. A Fast Solver for Convection Diffusion Equations Based on Nested Dissection with Incomplete Elimination. Euro-Par 2000 - Parallel Processing: 6th International Euro-Par Conference, ():, 2000.
Bhat, M. V. and Habashi, W. G. and Liu, J. W. H. and Nguyen, V. N. and Peeters, M. F.. A Note on Nested Dissection for Rectangular Grids. SIAM Journal on Matrix Analysis and Applications, 14(1):253-258, 1993.
Lazarov, R. D. and Mishev, Ilya D. and Vassilevski, P. S.. Finite Volume Methods for Convection-Diffusion Problems. SIAM J. Numer. Anal., 33(1):31--55, 1996.
Calhoun, Donna and LeVeque, Randall J.. A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in Irregular Geometries. Journal of Computational Physics, 157(1):143--180, 2000.
Li, Zhilin and Ito, Kazufumi. Maximum Principle Preserving Schemes for Interface Problems with Discontinuous Coefficients. SIAM J. Sci. Comput., 23(1):339-361, 2001.
Oevermann, M. and Klein, R.. A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. Journal of Computational Physics, 219(2):749--769, 2006.
Xiong, Zhiguang and Chen, Chuanmiao. Superconvergence of triangular quadratic finite element with interpolated coefficients for semilinear parabolic equation. Applied Mathematics and Computation, 184(2):901--907, 2007.
Eymard, Robert and Gallouët, Thierry and Herbin, Raphaèle. Convergence of finite volume schemes for semilinear convection diffusion equations. Numer. Math., 82(1):91--116, 1999.
Ollivier-Gooch, Carl and Altena, Michael Van. A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation. J. Comput. Phys., 181(2):729--752, 2002.
Barbeiro, S. and Ferreira, J. A.. A superconvergent linear FE approximation for the solution of an elliptic system of PDEs. Journal of Computational and Applied Mathematics, 177(2):287--300, 2005.
Ewing, Richard E. and Lin, Tao and Lin, Yanping. On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials. SIAM J. Numer. Anal., 39(6):1865-1888, 2002.
Chou, So-Hsiang and Kwak, Do Y. and Li, Qian. {$L\sp p$} error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differential Equations, 19(4):463--486, 2003.
van der Ven, H. and van der Vegt, J. J. W.. Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: II. Efficient flux quadrature. Computer Methods in Applied Mechanics and Engineering, 191(41-42):4747--4780, 2002.
van der Vegt, J. J. W. and van der Ven, H.. Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation. J. Comput. Phys., 182(2):546--585, 2002.
Flad, Heinz-Jürgen and Hackbusch, Wolfgang and Schneider, Reinhold. Best {$N$}-term approximation in electronic structure calculations. {I}. {O}ne-electron reduced density matrix. M2AN Math. Model. Numer. Anal., 40(1):49--61, 2006.
Hackbusch, W. and Sauter, S. A.. Composite finite elements for the approximation of {PDE}s on domains with complicated micro-structures. Numer. Math., 75(4):447--472, 1997.
Hackbusch, W. and Sauter, S. A.. Adaptive composite finite elements for the solution of {PDE}s containing non-uniformly distributed micro-scales. Mat. Model.Proceedings of the International Conference on the Optimization of the Finite Element Approximations (St.\ Petersburg, 1995), 8(9):31--43, 1996.
Sauter, A. and Warnke, R.. Composite Finite Elements for Elliptic Boundary Value Problems with Discontinuous Coefficients. Computing, 77(1):29--55, 2006.
Feuchter, D. and Heppner, I. and Sauter, S. A. and Wittum, G.. Bridging the gap between geometric and algebraic multi-grid methods. Comput. Vis. Sci., 6(1):1--13, 2003.
Foucart, Simon. On the value of the max-norm of the orthogonal projector onto splines with multiple knots. Journal of Approximation Theory, 140(2):154--177, 2006.
Scherer, K. and Shadrin, A. Yu.. New Upper Bound for the B-Spline Basis Condition Number: II. A Proof of de Boor's 2k-Conjecture. Journal of Approximation Theory, 99(2):217--229, 1999.
Shadrin, A. Yu.. The {$L\sb \infty$}-norm of the {$L\sb 2$}-spline projector is bounded independently of the knot sequence: a proof of de {B}oor's conjecture. Acta Math., 187(1):59--137, 2001.
Griebel, Michael and Scherer, Karl and Schweitzer, Marc Alexander. Robust norm equivalencies for diffusion problems. Mathemathics of Computation, 76():1141--1161, 2007.
Safro, Ilya and Ron, Dorit and Brandt, Achi. Graph minimum linear arrangement by multilevel weighted edge contractions. Journal of Algorithms, 60(1):24--41, 2006.
Elman, Howard C. and Ramage, Alison. Fourier analysis of multigrid for a model two-dimensional convection-diffusion equation. BIT, 46(2):283--306, 2006.
Wu, Chin-Tien and Elman, Howard C.. Analysis and Comparison of Geometric and Algebraic Multigrid for Convection-Diffusion Equations. SIAM J. Sci. Comput., 28(6):2208-2228, 2006.
Elman, Howard C. and Silvester, David J. and Wathen, Andrew J.. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. , ():xiv+400, 2005.
Golub, Gene H. and Ye, Qiang. Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration. SIAM J. Sci. Comput., 21(4):1305-1320, 1999.
Adams, Mark and Brezina, Marian and Hu, Jonathan and Tuminaro, Ray. Parallel multigrid smoothing: polynomial versus {G}auss-{S}eidel. J. Comput. Phys., 188(2):593--610, 2003.
Brezina, M. and Falgout, R. and MacLachlan, S. and Manteuffel, T. and McCormick, S. and Ruge, J.. Adaptive algebraic multigrid ($\alpha$AMG). SIAM J. Sci. Comp., 27():1261-1286, 2006.
Christiansen, Snorre H.. A characterization of second-order differential operators on finite element spaces. Math. Models Methods Appl. Sci., 14(12):1881--1892, 2004.
Siebert, Kunibert G. and Veeser, Andreas. A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements. SIAM Journal on Optimization, 18(1):260-289, 2007.
Zhou, Shuzi and Hu, Hexing. On the convergence of a cascadic multigrid method for semilinear elliptic problem. Appl. Math. Comp.., 159(2):407--417, 2004.
Bornemann, Folkmar A. and Deuflhard, Peter. Cascadic multigrid methods. Domain decomposition methods in sciences and engineering (Beijing, 1995), ():205--212, 1997.
Smereka, Peter. The numerical approximation of a delta function with application to level set methods. Journal of Computational Physics, 211(1):77--90, 2006.
Elman, Howard C. and Ramage, Alison and Silvester, David J.. Algorithm 866: {IFISS}, a {Matlab} Toolbox for Modelling Incompressible Flow. ACM Trans. Math. Softw., 33(2):14, 2007.
Berland, Håvard and Skaflestad, Bård and Wright, Will M.. {EXPINT} --- A {MATLAB} Package for Exponential Integrators. ACM Trans. Math. Softw., 33(1):4, 2007.
Gould, Nicholas I. M. and Scott, Jennifer A. and Hu, Yifan. A Numerical Evaluation of Sparse Solvers for Symmetric Systems. ACM Trans. Math. Softw., 33(2):10, 2007.
Gilbert, John R. and Moler, Cleve and Schreiber, Robert. Sparse matrices in {MATLAB}: design and implementation. SIAM J. Matrix Anal. Appl., 13(1):333--356, 1992.
Dolejs\i, V\it and Feistauer, Miloslav and Felcman, Jir\i. On the discrete {F}riedrichs inequality for nonconforming finite elements. Numer. Funct. Anal. Optim., 20(5-6):437--447, 1999.
Knobloch, Petr. Uniform validity of discrete {F}riedrichs' inequality for general nonconforming finite element spaces. Numer. Funct. Anal. Optim., 22(1-2):107--126, 2001.
Tang, H. -Z. and Tang, Tao and Zhang, Pingwen. An adaptive mesh redistribution method for nonlinear Hamilton-Jacobi equations in two- and three-dimensions. Journal of Computational Physics, 188(2):543--572, 2003.
Hu, Changqing and Shu, Chi-Wang. A Discontinuous Galerkin Finite Element Method for Hamilton--Jacobi Equations. SIAM J. Sci. Comput., 21(2):666-690, 1999.
Brenner, Susanne C. and Wang, Kening and Zhao, Jie. Poincar\'e-{F}riedrichs inequalities for piecewise {$H\sp 2$} functions. Numer. Funct. Anal. Optim., 25(5-6):463--478, 2004.
Jiang, J. and Shu, S. and Huang, Y. and Chen, L.. A Mesh Adaptive Method for Two-Dimensional Three-Tempeature Heat Conduction Equations. Chinese Journal of Computational Physics, 24(1):19--28, 2007.
Bochev, Pavel B. and Hughes, Thomas J.R. and Scovazzi, Guglielmo. A Multiscale Discontinuous {Galerkin} Method. Proceedings of LSSC 2005, Springer Lecture Notes in Computer Science 3743, ():84--93, 2006.
Cangiani, A. and Georgoulis, E. H. and Jensen, M.. Continuous and Discontinuous Finite Element Methods for Convection-Diffusion Problems: A Comparison. Proceedings of the International Conference on Boundary and Interior Layers (BAIL) - Computational and Asymptotic Methods, ():, 2006.
Hughes, Thomas J. R. and Engel, Gerald and Mazzei, Luca and Larson, Mats G.. A comparison of discontinuous and continuous {G}alerkin methods based on error estimates, conservation, robustness and efficiency. Discontinuous Galerkin methods (Newport, RI, 1999), 11():135--146, 2000.
Shahbazi, Khosro and Fischer, Paul F. and Ethier, C. Ross. A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations. Journal of Computational Physics, 222(1):391--407, 2007.
Ungor, Alper and Sheffer, Alla and Haber, Robert B. and Teng, Shang-Hua. Layer based solutions for constrained space-time meshing. Appl. Numer. Math., 46(3-4):425--443, 2003.
Hughes, Thomas J. R. and Scovazzi, Guglielmo and Bochev, Pavel B. and Buffa, Annalisa. A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method. Computer Methods in Applied Mechanics and Engineering, 195(19-22):2761--2787, 2006.
Padron, Miguel A. and Suarez, Jose P. and Plaza, Angel. A comparative study between some bisection based partitions in 3D. Applied Numerical Mathematics, 55(3):357--367, 2005.
D'Azevedo, E. F. and Forsyth, P. A. and Tang, Wei-Pai. Ordering methods for preconditioned conjugate gradient methods applied to unstructured grid problems. SIAM J. Matrix Anal. Appl., 13(3):944--961, 1992.
Atalay, F. Betul and Mount, David M.. The Cost of Compatible Refinement of Simplex Decomposition Trees. Proceedings of the 15th International Meshing Roundtable, Birmingham, AL, September 2006, ():57--70, 2006.
Zhang, Jun and Sun, Haiwei and Zhao, Jennifer J.. High order compact scheme with multigrid local mesh refinement procedure for convection diffusion problems. Computer Methods in Applied Mechanics and Engineering, 191(41-42):4661--4674, 2002.
Vallet, M.-G. and Manole, C.-M. and Dompierre, J. and Dufour, S. and Guibault, F.. {Numerical comparison of some Hessian recovery techniques}. International Journal for Numerical Methods in Engineering, Published Online: 28 Mar 2007():, 2007.
Tautges, Timothy J., David R. White and Leland, Robert W.. Twelve Ways to Fool the Masses When Describing Mesh Generation Performance. Proceedings of the 15th International Meshing Roundtable, Birmingham, AL, September 2006, ():181-190, 2004.
Rivara, Maria-Cecilia. A Study on {Delaunay} Terminal Edge Method. Proceedings of the 15th International Meshing Roundtable, Birmingham, AL, September 2006, ():215--237, 2006.
Simpson, Bruce. How Efficient are Delaunay Refined Meshes? An Empirical Study. Proceedings of the 15th International Meshing Roundtable, Birmingham, AL, September 2006, ():215--237, 2006.
Sirois, Yannick and Dompierre, Julien and Vallet, Marie-Gabrielle and Guibault, Francois. Mesh Smoothing Based on Riemannian Metric Non-Conformity Minimization. Proceedings of the 15th International Meshing Roundtable, Birmingham, AL, September 2006, ():272--288, 2006.
Montenegro, R. and Cascon, J.M. and Escobar, J.M. and Rodriguez, E. and Montero1, G.. Implementation in {ALBERTA} of an Automatic Tetrahedral Mesh Generator. Proceedings of the 15th International Meshing Roundtable, Birmingham, AL, September 2006, ():163-171, 2006.
Lipnikov, Konstantin and Vasilevski, Yuri. {Analysis of Hessian recovery methods for generating adaptive meshes}. Proceedings of the 15th International Meshing Roundtable, Birmingham, AL, September 2006, ():163-171, 2006.
Durskin, Vladimir. Krylov Subspace Approximation of Eigenpairs and Matrix Functions in Exact and Computer Arithmetic. Numerical Linear Algebra with Applications, 2(3):205--217, 1995.
Simnocini, Valeria and Szyld, Daniel B.. Recent computational developments in Krylov subspace methods for linear systems. Numerical linear algebra with applications, 14():1--59, 2007.
Lopez, L. and Simoncini, V.. Preserving geometric properties of the exponential matrix by block {Krylov} subspace methods. BIT Numerical Mathematics, 46(4):813--830, 2006.
Durán, Ricardo G. and Muschietti, Maria Amelia. On the traces of {$W\sp {2,p}(\Omega)$} for a {L}ipschitz domain. Rev. Mat. Complut., 14(2):371--377, 2001.
Armentano, Mar\ia G. and Durán, Ricardo G.. Mass-lumping or not mass-lumping for eigenvalue problems. Numer. Methods Partial Differential Equations, 19(5):653--664, 2003.
Durán, Ricardo G. and Padra, Claudio and Rodr\iguez, Rodolfo. A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci., 13(8):1219--1229, 2003.
Acosta, Gabriel and Durán, Ricardo G.. An optimal {P}oincar\'e inequality in {$L\sp 1$} for convex domains. Proc. Amer. Math. Soc., 132(1):195--202 (electronic), 2004.
Acosta, Gabriel and Durán, Ricardo G. and Lombardi, Ariel L.. Weighted {P}oincar\'e and {K}orn inequalities for {H}\"older {$\alpha$} domains. Math. Methods Appl. Sci., 29(4):387--400, 2006.
Durán, Ricardo G. and Lombardi, Ariel L.. Finite element approximation of convection diffusion problems using graded meshes. Appl. Numer. Math., 56(10-11):1314--1325, 2006.
Durán, Ricardo G.. Error estimates for anisotropic finite elements and applications. International Congress of Mathematicians. Vol. III, ():1181--1200, 2006.
Durán, Ricardo G. and Lombardi, Ariel L.. Error estimates on anisotropic {$\scr Q\sb 1$} elements for functions in weighted {S}obolev spaces. Math. Comp., 74(252):1679--1706 (electronic), 2005.
Younes, Anis and Mose, Robert and Ackerer, Philippe and Chavent, Guy. A new formulation of the mixed finite element method for solving elliptic and parabolic {PDE} with triangular elements. J. Comput. Phys., 149(1):148--167, 1999.
Chavent, Guy and Younes, Anis and Ackerer, Philippe. On the finite volume reformulation of the mixed finite element method for elliptic and parabolic {PDE} on triangles. Comput. Methods Appl. Mech. Engrg., 192(5-6):655--682, 2003.
Plexousakis, Michael and Zouraris, Georgios E.. On the construction and analysis of high order locally conservative finite volume-type methods for one-dimensional elliptic problems. SIAM J. Numer. Anal., 42(3):1226--1260, 2004.
Chou, So-Hsiang and Li, Q.. Error estimates in {$L\sp 2,\ H\sp 1$} and {$L\sp \infty$} in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comp., 69(229):103--120, 2000.
Chen, Zhangxin and Chou, So-Hsiang and Kwak, Do Young. Characteristic-mixed covolume methods for advection-dominated diffusion problems. Numer. Linear Algebra Appl., 13(9):677--697, 2006.
Vohral\ik, Martin. On the Discrete Poincaré--Friedrichs Inequalities for Nonconforming Approximations of the Sobolev Space H 1. Numerical Functional Analysis and Optimization, 26(7):925 - 952, 2005.
Vohral\ik, M. and Maryska, J. and Severyn, O.. Mixed and nonconforming finite element methods on a system of polygons. Applied Numerical Mathematics, 57(2):176--193, 2007.
Younes, Anis and Ackerer, Philippe and Lehmann, Francois. A new mass lumping scheme for the mixed hybrid finite element method. Internat. J. Numer. Methods Engrg., 67(1):89--107, 2006.
Younes, Anis and Ackerer, Philippe and Chavent, Guy. From mixed finite elements to finite volumes for elliptic {PDE}s in two and three dimensions. Internat. J. Numer. Methods Engrg., 59(3):365--388, 2004.
Wang, Song and Li, Zi-Cai. A nonconforming combination of the finite element and volume methods with an anisotropic mesh refinement for a singularly perturbed convection-diffusion equation. Math. Comp., 72(244):1689--1709 (electronic), 2003.
Chatzipantelidis, Panagiotis. A finite volume method based on the {C}rouzeix-{R}aviart element for elliptic {PDE}'s in two dimensions. Numer. Math., 82(3):409--432, 1999.
Arbogast, Todd and Wheeler, Mary F. and Yotov, Ivan. Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences. SIAM J. Numer. Anal., 34(2):828-852, 1997.
Arbogast, Todd and Dawson, Clint N. and Keenan, Philip T. and Wheeler, Mary F. and Yotov, Ivan. Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry. SIAM J. Sci. Comput., 19(2):404-425, 1998.
McCormick, S.. Fast adaptive composite grid ({FAC}) methods: theory for the variational case. Defect correction methods (Oberwolfach, 1983), 5():115--121, 1984.
Liu, C. and Liu, Z. and McCormick, S.. An efficient multigrid scheme for elliptic equations with discontinuous coefficients. Comm. Appl. Numer. Methods, 8(9):621--631, 1992.
Cai, Zhiqiang and Mandel, Jan and McCormick, Steve. Multigrid methods for nearly singular linear equations and eigenvalue problems. SIAM J. Numer. Anal., 34(1):178--200, 1997.
Tong, Yiying and Lombeyda, Santiago and Hirani, Anil N. and Desbrun, Mathieu. Discrete multiscale vector field decomposition. ACM Trans. Graph., 22(3):445--452, 2003.
Kopteva, Natalia and Stynes, Martin. Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions. Appl. Numer. Math., 51(2-3):273--288, 2004.
Stynes, M. and Kopteva, N.. Numerical analysis of singularly perturbed nonlinear reaction-diffusion problems with multiple solutions. Computers \& Mathematics with Applications, 51(5):857--864, 2006.
Arvanitis, Ch. and Delis, A. I.. Behavior of Finite Volume Schemes for Hyperbolic Conservation Laws on Adaptive Redistributed Spatial Grids. SIAM J. Sci. Comput., 28(5):1927-1956, 2006.
Koch, A.~J. and Meinhardt, H.. {Biological pattern formation: from basic mechanisms to complex structures}. Reviews of Modern Physics, 66():1481-1507, 1994.
Hairer, Ernst and Lubich, Christian and Wanner, Gerhard. Geometric numerical integration illustrated by the St\"ormer--Verlet method. Acta Numer., 12():399--450, 2003.
Deckelnick, Klaus and Dziuk, Gerhard and Elliott, Charles M.. Computation of geometric partial differential equations and mean curvature flow. Acta Numer., 14():139--232, 2005.
Elman, Howard C. and Zhang, Xuejun. Algebraic Analysis of the Hierarchical Basis Preconditioner. SIAM Journal on Matrix Analysis and Applications, 16(1):192-206, 1995.
Thatcher, R. W.. The order of numerical quadrature in two dimensions. International Journal for Numerical Methods in Engineering, 14(7):1085--1089, 1979.
Mao, Dong and Shen, Lihua and Zhou, Aihui. Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Advances in Computational Mathematics, 25():135--160, 2006.
Zhu, J. Z. and Zienkiewicz, O. C.. A posteriori error estimation and three-dimensional automatic mesh generation. Finite Elements in Analysis and Design, 25(1--2):167--184, 1997.
Taylor, Robert L. and Zienkiewicz, O. C. and Onate, E.. A hierarchical finite element method based on the partition of unity. Comput. Methods Appl. Mech. Engrg, 152():73--84, 1998.
Zienkiewicz, O. C. and Boroomand, B. and Zhu, J. Z.. Recovery procedures in error estimation and adaptivity {Part I}: Adaptivity in linear problems. Computer Methods in Applied Mechanics and Engineering, 176(1--4):111--125, 1999.
Zienkiewicz, O. C. and Taylor, R. L. and Sherwin, S. J. and Peiro, J.. On discontinuous Galerkin methods. International Journal for Numerical Methods In Engineering, 58():1119--1148, 2003.
Sherwin, S. J. and Kirby, R. M. and Peiro, J. and Taylor, R. L. and Zienkiewicz, O. C.. On 2D elliptic discontinuous {Galerkin} methods. International Journal for Numerical Methods in Engineering, 65():752--784, 2006.
Zienkiewicz, O. C.. Achievements and some unsolved problems of the nite element method. International Journal for Numerical Methods In Engineering, 47():9--28, 2000.
Zienkiewicz, Olgierd C.. The background of error estimation and adaptivity in finite element computations. Comput. Methods Appl. Mech. Engrg, ():207--213, 2006.
Samuelsson, A. and Zienkiewicz, O. C.. History of the stiffness method. International Journal for Numerical Methods in Engineering, 67():149--157, 2006.
Ewing, R. E. and Lazarov, R. D. and Vassilevski, P. S.. Local refinement techniques for elliptic problems on cell-centered grids. Numer. Math., 59(1):431--452, 1991.
Lin$[$ss$]$, Torsten. On a set of singularly perturbed convection-diffusion equations. Journal of Computational and Applied Mathematics, 180(1):173--179, 2005.
Linß, Torsten. Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems. Communications in Numerical Methods in Engineering, 21(10):515--525, 2005.
O'Riordan, E. and Stynes, M.. Numerical analysis of a strongly coupled system of two singularly perturbed convection-diffusion problems. Dublin City University, Preprint MS-07-02, ():, 2007.
Ohlberger, Mario. Higher order finite volume methods on selfadaptive grids for convection dominated reactive transport problems in porous media. Computing and Visualization in Science, 7(1):41--51, 2004.
Hyman, J.~M. and Knapp, R.~J. and Scovel, J.~C.. {High order finite volume approximations of differential operators on nonuniform grids}. Physica D Nonlinear Phenomena, 60():112-138, 1992.
Arbogast, Todd and Dawson, Clint N. and Keenan, Philip T. and Wheeler, Mary F. and Yotov, Ivan. Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry. SIAM J. Sci. Comput., 19(2):404--425, 1998.
Liang, Shengde and Ma, Xiuling and Zhou, Aihui. A symmetric finite volume scheme for selfadjoint elliptic problems. J. Comput. Appl. Math., 147(1):121--136, 2002.
bin Zubair, H. and Oosterlee, C. W. and Wienands, R.. Multigrid for High-Dimensional Elliptic Partial Differential Equations on Non-equidistant Grids. SIAM J. Sci. Comput., 29(4):1613-1636, 2007.
Carpentieri, B. and Giraud, L. and Gratton, S.. Additive and Multiplicative Two-Level Spectral Preconditioning for General Linear Systems. SIAM J. Sci. Comput., 29(4):1593-1612, 2007.
Wang, Hong and Wang, Kaixin. Uniform Estimates for Eulerian--Lagrangian Methods for Singularly Perturbed Time-Dependent Problems. SIAM J. Numer. Anal., 45(3):1305-1329, 2007.
Delcourte, Sarah and Domelevo, Komla and Omnes, Pascal. A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes. SIAM J. Numer. Anal., 45(3):1142-1174, 2007.
Barrett, John W. and Bartels, Soren and Feng, Xiaobing and Prohl, Andreas. A Convergent and Constraint-Preserving Finite Element Method for the $p$-Harmonic Flow into Spheres. SIAM J. Numer. Anal., 45(3):905-927, 2007.
Guo, Benqi and Sun, Weiwei. The Optimal Convergence of the $h$-$p$ Version of the Finite Element Method with Quasi-Uniform Meshes. SIAM J. Numer. Anal., 45(2):698-730, 2007.
Karakashian, Ohannes A. and Pascal, Frederic. Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems. SIAM J. Numer. Anal., 45(2):641-665, 2007.
Demlow, Alan and Dziuk, Gerhard. An Adaptive Finite Element Method for the Laplace--Beltrami Operator on Implicitly Defined Surfaces. SIAM J. Numer. Anal., 45(1):421-442, 2007.
Russell, Thomas F. and Wheeler, Mary F. and Yotov, Ivan. Superconvergence for Control-Volume Mixed Finite Element Methods on Rectangular Grids. SIAM J. Numer. Anal., 45(1):223-235, 2007.
Maes, Jan and Kunoth, Angela and Bultheel, Adhemar. BPX-type Preconditioners for Second and Fourth Order Elliptic Problems on the Sphere. SIAM J. Numer. Anal., 45(1):206-222, 2007.
Christiansen, Snorre. Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension. Numer. Math., 107(1):87--106, 2007.
Cai, Zhiqiang and Douglas, Jr., Jim and Park, Moongyu. Development and Analysis of Higher Order Finite Volume Methods over Rectangles for Elliptic Equations. Advances in Computational Mathematics, 19(1):3--33, 2003.
Jiang, J. and Huang, Y. and Shu, S. and Zeng, S.. {Some new discretization and adaptation and multigrid methods for 2-D 3-T diffusion equations}. Journal of Computational Physics, 224():168-181, 2007.
Huang, Jianguo and Xi, Shitong. On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal., 35(5):1762--1774, 1998.
Morin, Pedro and Siebert, Kunibert G. and Veeser, Andreas. A Basic Convergence Result for Conforming Adaptive Finite Elements. Preprint, University of Augsburg, ():, 2007.
Morin, Pedro and Siebert, Kunibert G. and Veeser, Andreas. Convergence of Finite Elements Adapted for Weak Norms. Preprint, University of Augsburg, ():, 2007.
Diening, Lars and Kreuzer, Christian. Linear convergence of an adaptive finite element method for the p-Laplacian equation. Preprint 24, University of Augsburg, ():, 2007.
Arminjon, P. and Touma, R.. Central finite volume methods with constrained transport divergence treatment for ideal MHD. Journal of Computational Physics, 204(2):737--759, 2005.
Touma, R. and Arminjon, P.. Central finite volume schemes with constrained transport divergence treatment for three-dimensional ideal MHD. Journal of Computational Physics, 212(2):617--636, 2006.
Arminjon, P. and St-Cyr, A.. {Nessyahu-Tadmor}-type central finite volume methods without predictor for 3D Cartesian and unstructured tetrahedral grids. Appl. Numer. Math., 46(2):135--155, 2003.
Liu, Yingjie and Shu, Chi-Wang and Tadmor, Eitan and Zhang, Mengping. Non-Oscillatory hierarchical reconstruction for central and finite volume schemes. Communications in Computational Physics, 2(5):933--963, 2007.
Li, Xin and Guo, Xiaohu and Wang, Hongyu and He, Ying and Gu, Xianfeng and Qin, Hong. Harmonic Volumetric Mapping for Solid Modeling Applications. ACM Symposium on Solid and Physical Modeling, to appear():, 2007.
Dai, Junfei and Luo, Wei and Jin, Miao and Zeng, Wei and He, Ying and Yau, Shing-Tung and Gu, Xianfeng. Geometric Accuracy Analysis for Discrete Surface Approximation. Computer-Aided Geometric Design, in press():, 2007.
Shen, Lihua and Zhou, Aihui. A Defect Correction Scheme for Finite Element Eigenvalues with Applications to Quantum Chemistry. SIAM J. Sci. Comput., 28(1):321-338, 2006.
Margenov, Svetozar D. and Vassilevski, Panayot S.. Algebraic multilevel preconditioning of anisotropic elliptic problems. SIAM J. Sci. Comput., 15(5):1026--1037, 1994.
Margenov, S. and Maubach, J.. Optimal algebraic multilevel preconditioning for local refinement along a line. Numer. Linear Algebra Appl., 2(4):347--361, 1995.
Cawood, M. E. and Ervin, V. J. and Layton, W. J. and Maubach, J. M.. Adaptive defect correction methods for convection dominated, convection diffusion problems. J. Comput. Appl. Math., 116(1):1--21, 2000.
Liu, Anwei and Joe, Barry. Quality local refinement of tetrahedral meshes based on {$8$}-subtetrahedron subdivision. Math. Comp., 65(215):1183--1200, 1996.
Mitchell, William F.. A refinement-tree based partitioning method for dynamic load balancing with adaptively refined grids. Journal of Parallel and Distributed Computing, 67(4):417--429, 2007.
Suarez, J. P. and Abad, P. and Plaza, A. and Padron, M. A.. Computational aspects of the refinement of {3D} complex meshes. ICCMSE '03: Proceedings of the international conference on Computational methods in sciences and engineering, ():615--618, 2003.
Suárez, José P. and Plaza, Ángel and Carey, Graham F.. The propagation problem in longest-edge refinement. Finite Elem. Anal. Des., 42(2):130--151, 2005.
Plaza, Angel and Padrón, Miguel A. and Suárez, José P.. Non-degeneracy study of the 8-tetrahedra longest-edge partition. Appl. Numer. Math., 55(4):458--472, 2005.
Bornemann, Folkmar A.. An adaptive multilevel approach to parabolic equations. {II}. {V}ariable-order time discretization based on a multiplicative error correction. Impact Comput. Sci. Engrg., 3(2):93--122, 1991.
Yang, Dao-qi and Zhao, Jennifer. An iterative hybridized mixed finite element method for elliptic interface problems with strongly discontinuous coefficients. J. Comput. Math., 21(3):257--276, 2003.
Hansbo, Peter and Lovadina, Carlo and Perugia, Ilaria and Sangalli, Giancarlo. A {L}agrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numer. Math., 100(1):91--115, 2005.
Sinha, Rajen Kumar and Deka, Bhupen. On the convergence of finite element method for second order elliptic interface problems. Numer. Funct. Anal. Optim., 27(1):99--115, 2006.
Brandts, Jan and Korotov, Sergey and Kr\izek, Michal. Dissection of the path-simplex in {$\Bbb R\sp n$} into {$n$} path-subsimplices. Linear Algebra Appl., 421(2-3):382--393, 2007.
Jüngel, Ansgar and Unterreiter, Andreas. Discrete minimum and maximum principles for finite element approximations of non-monotone elliptic equations. Numer. Math., 99(3):485--508, 2005.
Karatson, J. and Korotov, S.. {Discrete maximum principles for finite element solutions of some mixed nonlinear elliptic problems using quadratures}. Journal of Computational and Applied Mathematics, 192():75-88, 2006.
Eymard, R. and Herbin, R. and Latche, J. C.. Convergence Analysis of a Colocated Finite Volume Scheme for the Incompressible Navier--Stokes Equations on General 2D or 3D Meshes. SIAM J. Numer. Anal., 45(1):1-36, 2007.
Delcourte, Sarah and Domelevo, Komla and Omnes, Pascal. A Discrete Duality Finite Volume Approach to Hodge Decomposition and div-curl Problems on Almost Arbitrary Two-Dimensional Meshes. SIAM J. Numer. Anal., 45(3):1142-1174, 2007.
Repin, Sergey and Sauter, Stefan and Smolianski, Anton. Two-Sided A Posteriori Error Estimates for Mixed Formulations of Elliptic Problems. SIAM J. Numer. Anal., 45(3):928-945, 2007.
Beckermann, Bernhard and Serra-Capizzano, Stefano. On the Asymptotic Spectrum of Finite Element Matrix Sequences. SIAM J. Numer. Anal., 45(2):746-769, 2007.
Xie, D. and Zhou, S.. A new minimization protocol for solving nonlinear {Poisson-Boltzmann} mortar finite element equation. accepted, BIT Numerical Mathematics, ():, 2007.
Borukhov, I. and Andelman, D. and Orland, H.. Steric effects in electrolytes: A modified {Poisson-Boltzmann} equation. Physical Review Letters, 79(3):435--438, 1997.
Bonnet-Ben Dhia, Anne-Sophie and Hazard, Christophe and Lohrengel, Stephanie. {A singular field method for the solution of Maxwell's equations in polyhedral domains}. SIAM J. Appl. Math., 59(6):2028--2044 (electronic), 1999.
Durán, Ricardo G. and Muschietti, Maria Amelia. An explicit right inverse of the divergence operator which is continuous in weighted norms. Studia Math., 148(3):207--219, 2001.
Arnold, Douglas N. and Scott, L. Ridgway and Vogelius, Michael. Regular inversion of the divergence operator with {D}irichlet boundary conditions on a polygon. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15(2):169--192 (1989), 1988.
Angot, P. and Bruneau, C. H. and Fabrie, P.. A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math., 811():497-520, 1998.
Apel, Thomas. A non-conforming finite element with anisotropic mesh grading for the Stokes problem in domain with edges. IMA J. Numer. Anal., 21():843-856, 2001.
Badea, Lori and Tai, Xue-Cheng and Wang, Junping. Convergence Rate Analysis of a Multiplicative Schwarz Method for Variational Inequalities. SIAM J. Numer. Anal., 41(3):1052-1073, 2003.
Bank, R. and Coughran, W. and Cowsar, L. C.. The finite volume Scharfetter-Gummel method for steady convection diffusion equations. Computing and Visualization in Science, 1():123-136, 1998.
Bercovier, M. and Pironneau, O.. {Error estimates for finite element method solution of the Stokes problem in the primitive variables}. Numer. Math., 33():211-224, 1979.
Bochev, P. B. and Dhormann, C. R.. A computational study of stabilized, low-order $C^0$ finite element approximations of Darcy equations. Comput. Mech., 38():323-333, 2006.
Bochev, Pavel B. and Gunzburger, Max D.. Analysis of least squares finite element methods for the Stokes equations. Math. Comp., 63(208):479-506, 1994.
Bochev, Parvel B. and Gunzburger, Max D.. Least squares methods for the velocity-pressure-stress formulation of the Stokes equations.. Comput. Methods Apl. Mech. Engrg., 126():267-287, 1995.
Braack, M. and Richter, T.. Solutions of 3d Navier-Stokes benchmark problems with adaptive finite elements. To appear in Computer and Fluids, ():, 2005.
Brezzi, F. and Rappaz, J. and Raviart, P. A.. Finite dimensional approximation of nonlinear problems Part I: Branches of nonsingular solutions. Numer. Math., 36():1-25, 1980.
Brezzi, F. and Rappaz, J. and Raviart, P. A.. Finite dimensional approximation of nonlinear problems Part II: Limit points. Numer. Math., 37():1-28, 1981.
Brezzi, F. and Rappaz, J. and Raviart, P. A.. Finite dimensional approximation of nonlinear problems Part III: Simple bifurcation points. Numer. Math., 38():1-30, 1981.
Cai, Zhiqiang and Douglas, Jim and Ye, Xie. A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo, 36():215-232, 1999.
Chen, Zhangxin and Ewing, Richard E. and Lazarov, Raytcho D. and Maliassov, Serguei and Kuznetsov, Yuri A.. Multilevel preconditioners for mixed methods for second order elliptic problems. Numerical linear algebra with applications, 3(5):427--453, 1996.
Crouzeix, Par M. and Raviart, P. A.. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. R.A.I.R.O, 76():3-33, 1973.
Dari, Enzo and Duran, Ricardo and Padra, Claudio. Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp., 64(211):1017-1033, 1995.
Douglas, J., Jr. and Leme, P. J. Paes and Roberts, J. E. and Wang, Junping. A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. Numer. Math., 65():95--108, 1993.
Douglas, Jr., Jim and Wang, Jun Ping. An absolutely stabilized finite element method for the {Stokes} problem. Mathematics of Computation, 52(186):495--508, 1989.
Ewing, Richard E. and Lin, Yanping and Luo, Ping and Wang, Junping and Zhang, Shuhua. $L^\infty$-Error Estimates And Superconvergence In Maximum Norm Of Mixed Finite Element Methods For Nonfickian Flows In Porous Media. , ():, 2000.
Ewing, Richard E. and Lin., Yanping and Sun., Tong and Wang., Junping and Zhang, Shuhua. Sharp $L^ 2$-Error Estimates and Superconvergence of Mixed Finite Element Methods for Non-Fickian Flows in Porous Media. SIAM J. Numer. Anal., 40(4):1538-1560, 2002.
Ewing, Richard E. and Shen, Jian and Wang, Junping. Point-Distributed Algorithms on Locally Refined Grids for Second Order Elliptic Equations. , ():, .
Fairweather, Graeme and Lin, Qun and Lin, Yanping and Wang, Junping and Zhang, Shuhua. Asymptotic Expansions and Richardson Extrapolation of Approximate Solutions for Second Order Elliptic Problems on Rectangular Domains by Mixed Finite Element Methods. SIAM J. Numer. Anal., 44(3):1122-1149, 2006.
Feistauer, M. and Felcman, J. and Medvidova, M.. On the convergence of combined finite volume-finite element method for nonlinear convection-diffusion problems. Numer. Methods Partial. Diff. Equations, 13():163-190, 1997.
Fortin, M. and Pierre, R.. On the convergence of the mixed method of crochet and marchal for viscoelastic flows. Computer Methods in Applied Mechanics and Engineering, 73():341-350, 1989.
Giuffre, S.. Global Holder regularity for discontinuous eliipitc equations in the plane. Proceddings of The American Mathematical Society, 132(5):1333-1344, 2003.
Glowinski, R. and Pan, T. W. and Hesla, T. I. and Joseph, D. D. and Periaux, J.. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. Journal of Computational Physics, 169():363-426, 2001.
Groger, Konrad. A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann., 283():679-687, 1989.
Khadra, K. and Angot, P. and Parneix, S. and Caltagirone, J. P.. Fictitious domain approach for numerical modelling of Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 34(651-684):, 2000.
Nicaise, S.. Convergence of a finite volume method for the Stokes system using non-conforming arguments. IMA Journal of Numerical Analysis, 25():523-548, 2005.
Olshanskii, M. A. and Peters, J. and Reusken, A.. Uniform preconditioners for a parameter dependent saddle point problem with application to generalized stokes interface equations. , ():, 2006.
Olshanskii, M. A. and Reusken, A.. A stokes interface problem: stability, finite element analysis and a robust solver. European congress on computational methods in applied sciences and engineering, ():, 2004.
Prudhomme, S. and Oden, J. T.. Numerical stability and error analysis for the incompressible Navier-Stokes equations. Commun. Numer. Meth. Engng, 18():779-787, 2002.
Ramiere, I. and Angot, P. and Belliard, M.. Finite element and finite volume schemes to solve convection-diffusion problems with a fictitious domain approach. , ():, 2006.
Rees, D. A. S.. The onset of Darcy-Brinkman convection in a porous layer: an asymptotic analysis. International Journal of Heat and Mass Transfter, 45():2213-2220, 2002.
Riviere, B.. Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. Journal of Scientific Computing, 22 and 23():479-500, 2005.
Sardella, M.. On a coupled finite element-finite volume method for convection-diffusion problems. IMA Journal of Numerical Analysis, 20():281-301, 2000.
Vassilevski, Panayot S. and Wang, Junping. An Application of the Abstract Multilevel Theory to Nonconforming Finite Element Methods. SIAM J. Numer. Anal., 32(1):235-248, 1995.
Verfürth, R.. Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II. Numer. Math., 59():615-636, 1991.
Wang, J. and Xie, R.. Domain Decomposition for Elliptic Problems with Large Jumps in Coefficients. the Proceedings of Conference on Scientific and Engineering Computing, ():74--86, 1994.
Wang, Junping. New convergence estimates for multilevel algorithms for finite-element approximations. Journal of Computational and Applied Mathematics, 50():593-604, 1994.
Zhu, Jiang and Loula, Abimael F. D.. Mixed finite element analysis of a thermally nonlinear coupled problem. Numer. Meth. for PDE, 22(1):180-196, 2006.
Gander, Martin J. and Zhao, Hongkai. Overlapping Schwarz Waveform Relaxation for the Heat Equation in N Dimensions. BIT Numerical Mathematics, V42(4):779--795, 2002.
Tsai, Yen-Hsi Richard and Cheng, Li-Tien and Osher, Stanley and Zhao, Hong-Kai. Fast Sweeping Algorithms for a Class of Hamilton--Jacobi Equations. SIAM J. Numer. Anal., 41(2):673-694, 2003.
Zhou, Tian-xiao and Xie, Xiao-ping. A unified analysis for stress/strain hybrid methods of high performance. Computer Methods in Applied Mechanics and Engineering, 191(41-42):4619--4640, 2002.
Hoppe, Ronald H. W. and Wohlmuth, Barbara. Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems. SIAM J. Numer. Anal., 34(4):1658--1681, 1997.
Bansch, Eberhard and Morin, Pedro and Nochetto, Ricardo H.. A finite element method for surface diffusion: the parametric case. Journal of Computational Physics, 203(1):321--343, 2005.
Blum, H. and Braess, D. and Suttmeier, F. T.. A cascadic multigrid algorithm for variational inequalities. Computing and Visualization in Science, V7(3):153--157, 2004.
Liu, Wenbin and Ma, Heping and Tang, Tao. On Mixed Error Estimates for Elliptic Obstacle Problems. Advances in Computational Mathematics, V15(1):261--283, 2001.
Chen, Zhiming and Nochetto, Ricardo H.. Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math., V84(4):527--548, 2000.
Sterz, O. and Hausery, A. and Wittum, G.. Adaptive Local Multigrid Methods for the Solution of Time Harmonic Eddy Current Problems. Preprint, ():, 2005.
Chen, Long and Zhang, Chen-Song. A coarsening algorithm on adaptive grids by newest vertex bisection and its applications. To appear in J. Comp. Math., ():, 2009.
Kuznetsov, Yu. A. and Neittaanmäki, P. and Tarvainen, P.. Schwarz methods for obstacle problems with convection-- diffusion operators. Domain Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International Conference on Domain Decomposition, 180():251--256, 1994.
Dahlke, Stephan and Hochmuth, Reinhard and Urban, Karsten. Adaptive wavelet methods for saddle point problems. M2AN Math. Model. Numer. Anal., 34(5):1003--1022, 2000.
Dahlke, Stephan and Dahmen, Wolfgang and Urban, Karsten. Adaptive Wavelet Methods for Saddle Point Problems---Optimal Convergence Rates. SIAM J. Numer. Anal., 40(4):1230--1262, 2002.
Parashar, M. and Browne, J. C.. On partitioning dynamic adaptive grid hierarchies. System Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii International Conference on ,, 1():604--613 vol.1, 1996.
Globisch, Gerhard. The hierarchical preconditioning on unstructured three-dimensional grids with locally refined regions. J. Comput. Appl. Math., 150(2):265--282, 2003.
Cho, D. and Xu, J. and Zikatanov, L.. New estimates for the rate of convergence of the method of subspace corrections. Technique Report, Penn State, ():, 2007.
Nepomnyaschikh, S. V.. Decomposition and fictitious domains methods for elliptic boundary value problems. Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Norfolk, VA, 1991), ():62--72, 1992.
Ju, L. and Gunzburger, M. and Zhao, W.D.. Adaptive finite element methods for elliptic {PDE}s based on conforming centroidal {Voronoi Delaunay} triangulations. SIAM J. Sci. Comput., To appear():, 2007.
Ju, Lili. Conforming centroidal Voronoi Delaunay triangulation for quality mesh generation. International Journal of Numerical Analysis and Modeling, To appear():, 2007.
Chen, Long and Holst, Michael and Xu, Jinchao. The Finite Element Approximation of the Nonlinear Poisson-Boltzmann Equation. SIAM J. Numer. Anal., 45(6):2298--2320, 2007.
Nochetto, Ricardo H. and Schmidt, Alfred and Siebert, Kunibert G. and Veeser, Andreas. Pointwise a posteriori error estimates for monotone semi-linear equations. Numer. Math., V104(4):515--538, 2006.
Arnold, Douglas N. and Falk, Richard S. and Winther, Ragnar. Finite element exterior calculus, homological techniques, and applications. Acta Numer., ():1-155, 2006.
Barrett, R. and Berry, M. and Chan, T. F. and Demmel, J. and Donato, J. and Dongarra, J. and Eijkhout, V. and Pozo, R. and Romine, C. and der Vorst, H. Van. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. , ():, 1994.
Brezzi, F. and Fortin, M. and Marini, L. D.. Error analysis of piecewise constant approximations of Darcy's law. Comput. Methods Appl. Mech. Engrg., 195(13--16):1547--1599, 2006.
Brezzi, F. and Cockburn, B. and Marini, L. D. and Suli, E.. Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Engrg., 195(25--28):3293 -- 3310, 2006.
Chatzipantelidis, P. and Lazarov, R. D.. Error Estimates for a Finite Volume Element Method for Elliptic PDEs in Nonconvex Polygonal Domains. SIAM J. Numer. Anal., 42(5):1932-1958, 2005.
Ainsworth, Mark and McLean, William. Multilevel diagonal scaling preconditioners for boundary element equations on locally refined meshes. Numer. Math., V93(3):387--413, 2003.
Aksoylu, B. and Bond, S. and Holst, M.. An Adyssey into Local Refinement and Multilevel Preconditioning {III}: Implementation and Numerical Experiments. SIAM J. Sci. Comput., 25(2):478--498, 2003.
Cahouet, J. and Chabard, J.-P.. {Some fast 3D finite element solvers for the generalized Stokes problem}. International Journal for Numerical Methods in Fluids, 8():869-895, 1988.
Awanou, G. M. and Lai, M. J.. On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems. Appl. Numer. Math., 54(2):122--134, 2005.
Stenberg, Rolf. On some three-dimensional finite elements for incompressible media. Computer Methods in Applied Mechanics and Engineering, 63(3):261--269, 1987.
Pitkaranta, J. and Stenberg, R.. Analysis of Some Mixed Finite Element Methods for Plane Elasticity Equations. Mathematics of Computation, 41(164):399--423, 1983.
Akrivis, Georgios and Makridakis, Charalambos and Nochetto, Ricardo H.. A posteriori error estimates for the {C}rank-{N}icolson method for parabolic equations. Math. Comp., 75(254):511--531 (electronic), 2006.
Nochetto, Ricardo H. and Pyo, Jae-Hong. The {Gauge}-{Uzawa} finite element method. {I}. {T}he {N}avier-{S}tokes equations. SIAM J. Numer. Anal., 43(3):1043--1068 (electronic), 2005.
Nochetto, Ricardo H. and Savaré, Giuseppe and Verdi, Claudio. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math., 53(5):525--589, 2000.
G.T.Yeh and J.R.Chang and T.E.Short. An exact peak capturing and oscillation-free scheme to solve advection-dispersion transport. Adv. Water Resour., 28():2937-2951, 1992.
Deuflhard, P.. Cascadic Conjugate Gradient Methods for Elliptic Partial Differential Equations. Algorithm and Numerical Results. Domain Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International Conference on Domain Decomposition, 180():29-42, 1994.
Brezina, M. and Falgout, R. and MacLachlan, S. and Manteuffel, T. and McCormick, S. and Ruge, J.. Adaptive Smoothed Aggregation ($\alpha$SA) Multigrid. SIAM Rev., 47(2):317--346, 2005.
Brandt, A. and McCormick, S. and Ruge, J.. Algebraic Multigrid ({AMG}) for automatic multigrid solution with application to geodetic computations. , ():, 1982.
J. Douglas, Jr. and Russell, T. F.. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal., 19():871--885, 1982.
Bennethum, L.S. and Giorgi, T.. Generalized forchheimer equation for two-phase flow based on hybrid mixture theory. Transport in Porous Media, 26(3):261--275, 1997.
Payne, L.E. and Song, J.C. and Straughan, B.. Continuous dependence and conver- gence results for brinkman and forchheimer models with variable viscosity. Proc. R. Soc. Lond. A, 455():2173--2190, 1999.
Brannick, J. and Brezina, M. and MacLachlan, S. and Manteuffel, T. and McCormick, S. and Ruge, J.. An energy-based {AMG} coarsening strategy. Numer. Linear Algebra and Apps., ():, 2005.
Brannick, J. and Zikatanov, L.. Algebraic multigrid methods based on compatible relaxation and energy minimization. Proceedings of the 16th International Conference on Domain Decomposition Methods, ():, 2005.
Bacuta, C. and Chen, J. and Huang, Y. and Xu, J. and Zikatanov, L.. Partition of unity method on non-matching grids for the Stokes problem. Journal of Numerical Mathematics, 13(3):157-169, 2005.
Bramble, James H. and Pasciak, Joseph E.. Least-squares methods for {S}tokes equations based on a discrete minus one inner product. J. Comput. Appl. Math., 74(1-2):155--173, 1996.
Bramble, James H. and Lazarov, Raytcho D. and Pasciak, Joseph E.. A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comp., 66(219):935--955, 1997.
Franca, Leopoldo P. and Hauke, Guillermo and Masud, Arif. Revisiting stabilized finite element methods for the advective-diffusive equation. Computer Methods in Applied Mechanics and Engineering, 195(13-16):1560--1572, 2006.
Franca, Leopoldo P. and Madureira, Alexandre L. and Tobiska, Lutz and Valentin, Frederic. Convergence Analysis of a Multiscale Finite Element Method for Singularly Perturbed Problems. Multiscale Modeling & Simulation, 4(3):839-866, 2005.
Franca, Leopoldo P. and Madureira, Alexandre L. and Valentin, Frederic. Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions. Computer Methods in Applied Mechanics and Engineering, 194(27-29):3006--3021, 2005.
Yin, S. and Zhang, X. and Zhan, C. and Wu, J. and Cheung, J. and Xu, J.. Measuring single cardiac myocyte contractile force via moving a magnetic bead. Biophysical Journal, ():1489-1495, 2005.
Wang, M. and Xu, J.. Minimal finite element spaces for $2m$-th order partial differential equations Minimal finite element spaces for $2m$-th order partial differential equations in R$^n$. Journal of The American Mathematical Society, ():, 2006.
He, Y. and Xu, J. and Zhou, A.. Local And Parallel Finite Element Algorithms For The Navier-Stokes Problem. Journal of Computational Mathematics, 24(3):227-238, 2006.
Xue, G. and Xu, J. and Wang, C. and Falgout, R.. Newton's method for a two phase mixture model with nonlinear discontinuous degenerate diffusion coefficient. Copper Mountain Special Issue of SISC, ():, 2006.
Xu, J. and Zhu, Y. and Zou, Q.. Convergence Analysis of Adaptive Finite Volume Element Methods for General Elliptic Equations. Numer. Math., ():, 2006.
Caflisch, R. and Lee, Y. and Shu, S. and Xiao, Y. and Xu, J.. An application of multigrid methods for a discrete elastic model for epitaxial systems. Journal of Computational Physics, ():, 2006.
Wu, J. and Xu, J. and Zou, H.. On the well posedness of mathematical model for Lithium-Ion battery systems. Methods and Applications of Analysis, ():, 2006.
Lee, Y. and Wu, J. and Xu, J. and Zikatanov, L.. On the convergence of iterative methods for semidefinite linear systems. SIAM J. on Matrix Analysis, ():, 2006.
Shu, S. and Babuska, I. and Xian, Y. and Xu, J. and Zikatanov, L.. Algebraic Multigrid Methods and Preconditioned Conjugate Gradient Algorithm for Lattice Block Materials Models. , ():, 2006.
Wang, M. and Shi, Z. and Xu, J.. Some n-Rectangle Nonconforming Elements for Fourth Order Elliptic Equations. Journal of Computational Mathematics, 25(4):408--420, 2007.
Wang, M. and Xu, J. and Hu, Y.. Modified Morley element method for a fourth elliptic singular perturbation problem. J. Comp. Math, 24(2):113-120, 2006.
Shu, S. and Xu, J. and Yang, Y. and Yu, H.. An algebraic multigrid method for finite element systems on criss-cross grids. Advances in Comp. Math., ():, 2006.
Jin, J. and Shu, S. and Xu, J.. A two-grid discretization method for decoupling systems of partial differential equations. Mathemathics of Computation, ():, 2006.
Sopuerta, C. F. and Sun, P. and Laguna, P. and Xu, J.. A toy model for testing finite element methods to simulate extreme-mass-ration binary systems. Class. Quantum Gravity, 23():251-285, 2006.
Chen, Long and Sun, Pengtao and Xu, Jinchao. Optimal anisotropic simplicial meshes for minimizing interpolation errors in ${L}^p$-norm. Mathematics of Computation, 76(257):179--204, 2007.
Chen, Long and Holst, Michael and Xu, Jinchao. Convergence and Optimality of Adaptive Mixed Finite Element Methods. Mathematics of Computation, 78(265):35--53, 2009.
Alonso, A. and Trotta, R. L. and Valli, A.. Coercive domain decomposition algorithms for advection-diffusion equations and systems. Journal of Computational and Applied Mathematics, 96():51-76, 1998.
Angot, P.. Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows. Mathematical Methods in the applied sciences, 22():1395-1412, 1999.
Backgren, C. and Hummer, G. and Wikstrom, M. and Puustinen, A.. Proton Translocation by Cytochrome c Oxidase Can Take Place without the Conserved Glutamic Acid in Subunit I. Biochemistry, 39():7863-7867, 2000.
Bernert, K. and Frank, T. and Schneider, H. and Pachler, K.. Multi-grid acceleration of a SIMPLE-based CFD-code and aspects of parallelization. IEEEE, ():, 2000.
Dutta, S. and Shimpalee, S. and Zee, J. W. Van. Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell.. International Journal of Heat and Mass Transfer, 44():2029-2042, 2001.
Eikerling, M. and Paddison, S. J. and Pratt, L. R. and Jr., T. A. Zawodzinski. Defect structure for proton transport in a triflic acid monohydrate solid. Chemical Physics Letters, 368():108-114, 2003.
Hummber, G. and Rasalah, J. C. and Noworyta, J. P.. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414(8):188-189, 2001.
Hummer, G. and Garde, S. and Garica, A. E. and Paulaitis, M. E.. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc. Natl. Acad. Sci. USA Biophysics, 95():1552-1555, 1998.
Ju, H. and Meng, H. and Wang, C.. A single-phase, non-isothermal model for PEM fuel cells. International Journal of heat and mass transfer, 48():1303-1315, 2005.
Ju, H. and Wang, C. and Cleghorn, S. and Beuscher, U.. Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation. Journal of Electrochemical Society, 152(8):A1645-A1653, 2005.
Ju, H. and Wang, C. and Cleghorn, S. and Beuscher, U.. Nonisothermal Modeling of Polymer Electrolyte Fuel Cells II. Parametric Study of Low-Humidity Operation. Journal of the Electrochemical Society, 153(2):A249-A254, 2006.
Ju, H. and Wang, C.. Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data. Journal of the Electrochemical Society, 151(11):A1954-A1960, 2004.
Lee, W. and Ho, C. H. and Zee, J. W. Van and Murthy, M.. The effects of compression and gas diffusion layers on the performance of a PEM fuel cells. Journal of Power Sources, 84():45-51, 1999.
Murthy, M and Esayian, M. and Hobson, A. and MacKenzie, S. and Lee, W. K. and Zee, J. W. Van. Performance of a Polymer Electrolyte Membrane Fuel Cell exposed to transient CO Concentrations. Journal of Electrochemical Society, 148(10):A1141-A1147, 2001.
Murthy, M and Esayian, M. and Lee, W. K. and Zee, J. W. Van. The effect of temperature and pressure on the performance of a PEMFC exposed to transient CO concentrations. Journal of Electrochemical Society, 150(1):A29-A34, 2003.
Paddison, S. J. and Paul, R. and Jr., T. A. Zawodzinski. A Statistical Mechanical Model of Proton and Water Transport in a Proton Exchange Membrane. Journal of The Electrochemical Society, 147(2):617-626, 2000.
Paddison, S. J. and Paul, R. and Jr., T. A. Zawodzinski. Proton friction and diffusion coefficients in hydrated polymer electrolyte membranes: Computations with a non-equilibrium statistical mechanical model. JOURNAL OF CHEMICAL PHYSICS, 115(16):7753-7761, 2001.
Paddison, S. J. and Paul, R. and Kaler, K. V. I. S.. Low-frequency micromotion of DEP-levitated plant protoplasts III. Rationalization of higher harmonics. Journal of Colloid and Interface Science, 183():78-90, 1996.
Paddison, S. J. and Paul, R. and Kreuer, K. D.. Theoretically computed proton diffusion coe .cients in hydrated PEEKK membranes. Phys. Chem. Chem. Phys., 4():1151-1157, 2002.
Paddison, S. J. and Pratt, L. R. and Zawodzinski, T. and Reagor, D. W.. Molecular modeling of trifluoromethanesulfonic acid for solvation theory. Fluid Phase Equilibria, ():235-243, 1998.
Paddison, S. J. and Reagor, D. W. and Jr., T. A. Zawodzinski. High frequency dielectric studies of hydrated Nafion. Journal of Electroanalytical Chemistry, 459():91-97, 1998.
Paul, R. and Paddison, S. J.. A statistical mechanical model for the calculation of the permittivity of water in hydrated polymer electrolyte membrane pores. JOURNAL OF CHEMICAL PHYSICS, 115(16):7762-7771, 2001.
Um, S. and Wang, C. Y. and Chen, K. S.. computational fluid dynamics modeling of proton exchange membrane fuel cells. Journal The Electrochemical Society, 147(12):4485-4493, 2000.
Um, S. and Wang, C.. Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. Journal of Power Sources, 125():40-51, 2004.
Vuik, C. and Saghir, A. and Boerstoel, G. P.. The Krylov acclerated SIMPLE(R) method for flow problems in industrial furnaces. International Journal for Numerical Methods in Fluids, 33():1027-1040, 2000.
Wang, Y. and Wang, C.. Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation. Journal of Power Sources, 147():148-161, 2005.
Wang, Y. and Wang, C.. Modeling polymer electrolyte fuel cells with large density and velocity changes. Journal of The Electrochemical Society, 152(2):A445-A453, 2005.
Wang, Y. and Wang, C.. A nonisothermal, two-phase model for polymer electrolyte fuel cells. Journal of The Electrochemical Society, 153(6):A1193-A1200, 2006.
Wang, Z. and Wang, C.. Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 150(4):A508-A519, 2003.
Bank, Randolph E. and Gill, Philip E. and Marcia, Roummel F.. Interior methods for a class of elliptic variational inequalities. Large-scale PDE-constrained optimization (Santa Fe, NM, 2001), 30():218--235, 2003.
Bartels, S. and Carstensen, C.. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math., 99(2):225--249, 2004.
Berger, Alan E. and Falk, Richard S.. An error estimate for the truncation method for the solution of parabolic obstacle variational inequalities. Math. Comp., 31(139):619--628, 1977.
Brandt, Achi and Cryer, Colin W.. Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems. SIAM J. Sci. Statist. Comput., 4(4):655--684, 1983.
Carstensen, C. and Klose, R. and Orlando, A.. Reliable and efficient equilibrated a posteriori finite element error control in elastoplasticity and elastoviscoplasticity with hardening. Comput. Methods Appl. Mech. Engrg., 195(19-22):2574--2598, 2006.
Cryer, C. W.. Successive overrelaxation methods for solving linear complementarity problems arising from free boundary problems. Free boundary problems, Vol. I (Pavia, 1979), ():109--131, 1980.
Davis, Mark H. A. and Panas, Vassilios G. and Zariphopoulou, Thaleia. European option pricing with transaction costs. SIAM J. Control Optim., 31(2):470--493, 1993.
Fierro, Francesca and Veeser, Andreas. A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal., 41(6):2032--2055 (electronic), 2003.
He, Bingsheng and Yang, Hai and Zhang, Chen-song. A modified augmented Lagrangian method for a class of monotone variational inequalities. European Journal of Operations Research, 159():, 2004.
Nochetto, Ricardo H. and Siebert, Kunibert G. and Veeser, Andreas. Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal., 42(5):2118--2135 (electronic), 2005.
Nochetto, Ricardo H. and Zhang, Chen-Song. Optimal convergence rate of first order finite element method for a class of parabolic variational inequalities. , ():, in preparation.
Nochetto, Ricardo H. and Siebert, Kunibert G. and Veeser, Andreas. Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math., 95(1):163--195, 2003.
Schwab, Christoph and von Petersdorff, Tobias. Existence Proof for Parabolic Variational Inequalities. A new book on financial mathematics, ():, to appear.
Tai, X.-C. and Heimsund, B. and Xu, J.. Rate of convergence for parallel subspace correction methods for nonlinear variational inequalities. Domain decomposition methods in science and engineering (Lyon, 2000), ():127--138, 2002.
Tai, Xue-Cheng. Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities. Numer. Math., 93(4):755--786, 2003.
Veeser, Andreas. Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal., 39(1):146--167 (electronic), 2001.
Yan, Ningning. A posteriori error estimators of gradient recovery type for elliptic obstacle problems. Adv. Comput. Math., 15(1-4):333--362 (2002), 2001.
Yuan, Xiaoming and Zhang, Chen-Song. Two kinds of projection methods for monotone variational inequalities and their comparison. Journal of Optimization Theory and Applications, ():, submitted.
He, Bing-sheng and Yang, Hai and Zhang, Chen-song. A modified augmented {L}agrangian method for a class of monotone variational inequalities. European J. Oper. Res., 159(1):35--51, 2004.
Zhou, Z. and Payne, P. and Vasquez, M. and Kuhn, N. and Levitt, M.. Finite-difference solution of the Poisson-Boltzmann equation: Complete elimination of self-energy. J. Comput. Chem., 11(11):1344--1351, 1996.
Cho, Sungmin and Nepomnyaschikh, S. V. and Park, Eun-Jae. Domain decomposition preconditioning for elliptic problems with jumps in coefficients. Report, ():, 2005.
Petzoldt, Martin. A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients. Advances in Computational Mathematics, 16(1):47--75, 2002.
Chan, Tony F. and Wan, W. L.. Robust multigrid methods for nonsmooth coefficient elliptic linear systems. Journal of Computational and Applied Mathematics, 123(1-2):323--352, 2000.
Martins, M. S.. Schwarz Preconditioners for Elliptic Problems with Discontinuous Coefficients Using Conforming and Non-Conforming Elements. , (TR1994-671):, 1994.
Dryja, Maksymilian and Sarkis, Marcus V. and Widlund, Olof B.. Multilevel {Schwarz} methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math., 72(3):313--348, 1996.
Iserles, Arieh and Norsett, Syvert P.. Quadrature methods for multivariate highly oscillatory integrals using derivatives. Mathematics of Computation, 75():1233--1258, 2006.
Wiley, David F. and Childs, Henry R. and Hamann, Bernd and Joy, Kenneth I. and Max, Nelson. Best Quadratic Spline Approximation for Hierarchical Visualization. Data Visualization 2002, Proceedings of VisSym 2002, ():, 2002.
Wiley, David F. and Childs, Henry R. and Hamann, Bernd and Joy, Kenneth I. and Max, Nelson. Using Quadratic Simplicial Elements for Hierarchical Approximation and Visualization. Visualization and Data Analysis 2002, Proceedings, 4665():32--43, 2002.
Forsgen, Anders and Gill, Philip E. and Griffin, Joshua. Iterative Solution of Augmented Systems Arising in Interior Methods. Optimization Online, ():, 2006.
Gill, Philip E. and Murray, Walter and Saunders, Michael A.. {SNOPT}: An SQP Algorithm for Large-Scale Constrained Optimization. SIAM Rev., 47(1):99--131, 2005.
Gill, Philip E. and Murray, Walter and Saunders, Michael A. and Tomlin, J. A. and Wright, Margaret H.. On projected Newton barrier methods for linear programming and an equivalence to Karmarkar's projective method. Math. Program., 36(2):183--209, 1986.
Boschitsch, Alexander H. and Fenley, Marcia O.. Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation.. Journal of Computational Chemistry, 25(7):935-955, 2004.
Gatica, Gabriel N. and Meddahi, Salim. A dual-dual mixed formulation for nonlinear exterior transmission problems. Mathemathics of Computation, 70():1461--1480, 2001.
Prudhomme, Serge and Oden, J. Tinsley. Simple techniques to improve the reliability of a posteriori error estimates for finite element approximations. Conference Proceedings ECCM 2001, ():, 2001.
Hadjidimos, A. and Stylianopoulos, N.. Optimal Semi-Iterative Methods for Complex SOR with Results from Potential Theory. Numer. Math., 103(4):591--610, 2006.
Ekeland, Ivar and Ghoussoub, Nassif. Selected new aspects of the calculus of variations in the large. Bull. Amer. Math. Soc. (N.S.), 39():207--265, 2002.
Verfurth, R.. A Posteriori Error Estimates for Nonlinear Problems. Finite Element Discretizations of Elliptic Equations. Mathematics of Computation, 62(206):445-475, 1994.
Niijima, Koichi. A Posteriori Error Bounds For Piecewise Linear Approximate Solutions of Elliptic Equations of Monotone Type. Mathematics of Computation, 58(198):549-560, 1992.
Repin, Sergey I.. A Posteriori Error Estimation for Variational Problems with Uniformly Convex Functionals. Mathematics of Computation, 69(230):481-500, 2000.
Baker, N. and Holst, M. and Wang, F.. Adaptive multilevel finite element solution of the {Poisson-Boltzmann} Equations {II}: Refinement at Solvent-Accessible Surfaces in Biomolecular Systems. J. Comput. Chem., 21():1343-1352, 2000.
Sharp, K.A. and Honig, B.. Electrostatic interactions in macromolecules: theory and applications. Annu. Kev. Biophys. Biophys. Chem., 19():301--332, 1990.
Carstensen, C. and Jochimsen, K.. Adaptive Finite Element Methods for Microstructures? Numerical Experiments for a 2-Well Benchmark. Computing, 71(2):175--204, 2003.
Duan, Hou-Yuan and Gao, Shao-Qin and Tan, Roger C. E. and Zhang, Shangyou. A generalized BPX multrigrid framework covering nonnested V-cycle methods. Mathemathics of Computation, to appear():, 2006.
Feng, Xiaobing. Fully Discrete Finite Element Approximations Of The Navier--Stokes--Cahn-Hilliard Diffuse Interface Model For Two-Phase Fluid Flows. SIAM J. Numer. Anal., 44(3):1049--1072, 2006.
Chen, Zhiming and Zou, Jun. Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math., 79(2):175--202, 1998.
Hansbo, Anita. Strong Stability and Non-smooth Data Error Estimates for Discretizations of Linear Parabolic Problems. BIT Numerical Mathematics, 42(2):351--379, 2002.
Lubich, Ch. and Sloan, I. H. and Thome, V.. Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp.., 65(213):1--17, 1996.
Denk, Robert and Hieber, Matthias and Pruss, Jan. Optimal Lp-Lq-regularity for parabolic problems with inhomogeneous boundary data. preprint, ():, 2005.
Danielli, Donatella and Petrosyan, A. and Shahgholian, H.. A singular perturbation problem for the p-Laplace operator. Indiana Univ. Math. J., 52(2):455--474, 2003.
Chen, Zhiming and Du, Qiang and Zou, Jun. Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients. SIAM J. Numer. Anal., 37(5):1542--1570, 2000.
Andreianov, Boris and Boyer, Franck and Hubert, Florence. Besov regularity and new error estimates for finite volume approximations of the p-laplacian. Numer. Math., 100(4):565--592, 2005.
Chatzipantelidis, P. and Ginting, V. and Lazarov, R. D.. A finite volume element method for a non-linear elliptic problem. Numerical Linear Algebra with Applications, 12(5-6):515--546, 2005.
Matejas, J. and Hari, V.. Quadratic convergence estimate of scaled iterates by J-symmetric Jacobi method. Linear Algebra and its Applications, 417(2-3):434--465, 2006.
Demmel, James and Koev, Plamen. Accurate SVDs of polynomial Vandermonde matrices involving orthonormal polynomials. Linear Algebra and its Applications, 417(2-3):382--396, 2006.
Grubisic, Luka and Veselic, Kresimir. On Ritz approximations for positive definite operators I (theory). Linear Algebra and its Applications, 417(2-3):397--422, 2006.
Bramble, James and King, J.. A finite element method for interface problems in domains with smooth boundaries and interfaces. Advances in Computational Mathematics, 6(1):109--138, 1996.
Gruttmann, F. and Wagner, W. and Wriggers, P.. A nonlinear quadrilateral shell element with drilling degrees of freedom. Archive of Applied Mechanics (Ingenieur Archiv), 62(7):474--486, 1992.
Bose, Prosenjit and Czyzowicz, Jurek and Gao, Zhicheng and Morin, Pat and Wood, David R.. Simultaneous diagonal flips in plane triangulations. SODA '06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, ():212--221, 2006.
Biedl, Therese and Demaine, Erik D. and Duncan, Christian A. and Fleischer, Rudolf and Kobourov, Stephen G.. Tight Bounds on Maximal and Maximum Matchings. Lecture Notes in Computer Science, 2223():, 2001.
Gabow, Harold N. and Kaplan, Haim and Tarjan, Robert E.. Unique maximum matching algorithms. STOC '99: Proceedings of the thirty-first annual ACM symposium on Theory of computing, ():70--78, 1999.
Gabow, Harold N. and Tarjan, Robert Endre. A linear-time algorithm for a special case of disjoint set union. STOC '83: Proceedings of the fifteenth annual ACM symposium on Theory of computing, ():246--251, 1983.
Fleishmann, P. and Kosik, R. and Selberherr, S.. Simple Mesh Examples to Illustrate Specific Finite Element Mesh Requirements. 8th meshing roundtable, ():, 1989.
Emmrich, E. and Grigorieff, R. D.. Supraconvergence of a finite difference scheme for elliptic boundary value problems of the third kind in fractional order Sobolev spaces. Computational Methods in Applied Mathematics, 6(2):154--177, 2006.
Koster, M. and Turek, S.. The infulence of higher order {FEM} discretisations on multigrid convergence. Computational Methods in Applied Mathematics, 6(2):221--232, 2006.
Jerome, Joseph W.. Numerical approximation of PDE system fixed-point maps via Newton's method. Journal of Computational and Applied Mathematics, 38(1-3):211--230, 1991.
Jerome, Joseph W. and Rose, Michael E.. Error Estimates for the Multidimensional Two-Phase Stefan Problem. Mathematics of Computation, 39(160):377-414, 1982.
Jerome, Joseph W.. Convection-Dominated Nonlinear Systems: Analysis of the Douglas-Russell Transport-Diffusion Algorithm Based on Approximate Characteristics and Invariant Regions. SIAM J. Numer. Anal., 25(4):815-836, 1988.
Jerome, Joseph. Newton's method for gradient equations based upon the fixed point map: Convergence and complexity study. Numer. Math., 55(6):619--632, 1989.
Jerome, Joseph W.. An operator Newton method for the Stefan problem based on smoothing: A local perspective. Journal of Approximation Theory, 62(3):282--296, 1990.
Fasshauer, Gregory E. and Gartland, Eugene C. and Jerome, Joseph W.. Newton iteration for partial differential equations and the approximation of the identity. Numerical Algorithms, 25(1 - 4):181--195, 2000.
Fasshauer, Gregory E. and Jerome, Joseph W.. Multistep Approximation Algorithms: Improved Convergence Rates through Postconditioning with Smoothing Kernels. Advances in Comp. Math., ():1--27, 1999.
Jerome, Joseph W.. An asymptotically linear fixed point extension of the inf-sup theory of {Galerkin} approximation. Numer. Funct. Anal. Optim., 16():345--361, 1995.
Jerome, Joseph W.. The Mathematical Study and Approximation of Semiconductor Models. Large Scale Matrix Problems and the Numerical Solution of Partial Differential Equations, 157--204():, 2004.
Carl, Siegfried and Jerome, Joseph W.. Drift-Diffusion in Electrochemistry: Thresholds for Boundary Flux and Discontinuous Optical Generation. Applicable Analysis, 83():915--931, 2004.
Carstensen, Carsten. Convergence of adaptive {FEM} for a class of degenerate convex minimization problem. accepted for publ. in IMA Journal of Numerical Analysis, ():, 2007.
Jerome, Joseph W.. Consistency of Semiconductor Modeling: An Existence/Stability Analysis for the Stationary van Roosbroeck System. SIAM Journal on Applied Mathematics, 45(4):565-590, 1985.
Karatson, J. and Korotov, S.. Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions. Numer. Math., 99():669--698, 2005.
Fortin, M. and Serghini Mounim, A.. Mixed and hybrid finite element methods for convection-diffusion equations and their relationships with finite volume. Calcolo, 42():1--30, 2005.
Holst, Michael and Xu, Jinchao. The {Poisson-Boltzmann} equation: approximation theory, regularization by singular functions, and adaptive techniques. preprint, ():, 2006.
Chen, Long and Wang, Yonggang and Wu, Jinbiao. Stability of A Streamline diffusion finite element method for Turning Point Problems. Journal of Computational and Applied Mathematics, 220():712--724, 2008.
Chen, Long. Short implementation of bisection in {MATLAB}. Recent Advances in Computational Sciences -- Selected Papers from the International Workship on Computational Sciences and Its Education, ():318 -- 332, 2007.
Liu, Song-Tao and Xu, Yuesheng. Galerkin Methods Based on Hermite Splines for Singular Perturbation Problems. SIAM J. Numer. Anal., 43(6):2607--2623, 2006.
Shestakov, A. I. and Milovich, J. L. and Noy, A.. Solution of the Nonlinear Poisson-Boltzmann Equation Using Pseudo-transient Continuation and the Finite Element Method. Journal of Colloid and Interface Science, 247():62--79, 2002.
Im, Wonpil and Beglov, Dmitrii and Roux, Benoit. Continuum Solvation Model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Computer Physics Communications, 111():59--75, 1998.
Aksoylu, Burak and Holst, Michael. Optimality of Multilevel Preconditioners for Local Mesh Refinement in Three Dimensions. SIAM J. Numer. Anal., 44(3):1005--1025, 2006.
Chou, Ching-Shan and Shu, Chi-Wang. High order residual distribution conservative finite difference WENO schemes for steady state problem on non-smooth meshes. Journal compuational physics, ():, 2005.
Johnson, C. and Thomee, Vidar. Error estimates for a finite element approximation of a minimal surface. Mathematics of Computation, 29(130):343-349, 1975.
Stampacchia, Guido. Problemi al contorno ellitici, con dati discontinui, dotati di soluzionie h ?olderiane. (Italian). Ann. Mat. Pura. Appl., 51(4):1-37, 1960.
Mazya, V. G.. The behavior near the boundary of the solution of the Dirichlet problem for an elliptic equation of the second order in divergence form. Mat. Zametki, (2):209-220, 1967.
Holst, M. and Baker, N. and Wang, F.. Adaptive multilevel finite element solution of the Poisson-Boltzmann Equations I: Algorithms and Examples. J. Comput. Chem., 21():1319-1342, 2000.
Baker, N. and Sept, D. and Holst, M. and McCammon, J. A.. The adaptive multilevel finite element solution of the {Poisson-Boltzmann} equations on massively parallel computers. IBM Journal of Research and Development, ():427-438, 2001.
Holst, Michael J. and Said, Faisal. Numerical solution of the nonlinear Poisson-Boltzmann equation: Developing more robust and efficient methods. Journal computational chemistry, 16(3):337-364, 1995.
Boccardo, L. and Murat, F. and Ruel, J. P.. $L^{\infty}$ estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal, 23(2):326-333, 1992.
Liang, J. and Rodrigues, J. F.. Quasilinear elliptic problems with nonmonone discontinuities and mesure data. Portugaliae MathematicaQuasilinear elliptic problems with nonmonone discontinuities and mesure data, 53(2):, 1996.
Deparis, S. and Discacciati, M. and Fourestey, G. and Quarteroni, A.. Heterogeneous domain decomposition methods for fluid-structure interaction problems. , ():, 2005.
Chun, L. and Shen, J.. A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-Spectral method. Physica. D., 179(4):211-228, 2003.
Bandle, C. and Pozio, M. A. and TeseI, A.. The asymptotic behavior of the solutions of degenerate parabolic equations. Transactions of the American Mathematical Society, 303(2):, 1987.
Amadori, A. L. and Natalini, R.. Entropy solutions to a strongly degenerate anisotropic convection-diffusion euqation with application to utility theory. J. Math. Anal. Appl., 284():511-531, 2003.
Evje, S. and Karlsen, K. H. and Lie, K. A. and Risebro, N. H.. Front tracking and operator splitting for nonlinear degenerate convection-diffusion equations. , ():, 1000.
Evje, S. and Karlsen, K. H.. Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal., 37(6):1838-1860, 2000.
Nochetto, R. H. and Schmidt, A. and Verdi, C.. A posteriori error estimation and adaptivity for degenerate parabolic problems. Mathematics of Computation, 229(220):1-24, 1999.
Sukumar, N. and Tabarraei, A.. Conforming polygonal finite elements. International Journal for Numerical Methods In Engineering, 61(12):2045--2066, 2004.
Burman, Erik. A Unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal., 43(5):2012--2033, 2005.
Arbogast, Todd and Chen, Zhangxin. On the Implementation of Mixed Methods as Nonconforming Methods for Second- Order Elliptic Problems. Mathematics of Computation, 64(211):943-972, 1995.
Lv, Tao and Shi, Jimin and Lin, Zhenbao. Domain Decomposition Algorithms -- New techniques for the numerial solution of paritial differential equations. , ():, 1997.
Hildebrandt, Klaus and Polthier, Konrad and Wardetzky, Max. On the convergence of metric and Geometric Properties of Polyhedral surfaces. Geom. Dedicata, 123():89--112, 2006.
Du, Qiang and Emelianenko, Maria. Acceleration schemes for computing centroidal Voronoi tessellations. Numerical Linear Algebra with Applications, 13(2-3):173--192, 2006.
Bimonte, G. and Ercolessi, E. and Teotonio-Sobrinho, P.. Discretized Laplacians on an interval and their renormalization group. arXiv:hep-lat/9310017 v1, ():, 1993.
Dodziuk, Jozef and Mathai, Varghese. Kato's inequality and asymptotic spectral properties for discrete magnetic Laplacians. arXiv:math.SP/0312450, ():, 2003.
Vachal, P. and Garimella, R. V. and Shashkov, M. J.. Untangling of 2D meshes in ALE simulations. Journal of Computational Physics, 196(2):627-644, 2004.
Babuska, Ivo and Duran, Ricardo and Rodriguez, Rodolfo. Analysis of the Efficiency of an a Posteriori Error Estimator for Linear Triangular Finite Elements. SIAM J. Numer. Anal., 29(4):947-964, 1992.
Maday, Yvon. $L^{\infty}$-Stable Approximation of a Solution to $Div(Y) = f$ for $f\in L^2$ in Two Dimensions. Journal of Scientific Computing, ():1--8, 2006.
Nielsen, Michael and Museth, Ken. Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets. Journal of Scientific Computing, 26():261--299, 2006.
Wang, Desheng and Wang, Xiao-Ping. A three-dimensional adaptive method based on the iterative grid redistribution. Journal of Computational Physics, 199():423--436, 2004.
Chandrasekaran, S. and Gu, M.. A divide-and-conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semiseparable matrices. Numer. Math., 96():723--731, 2004.
Chandrasekaran, S. and Gu, M.. Fast and Stable Algorithms for Banded Plus Semiseparable Systems of Linear Equations. SIAM Journal on Matrix Analysis and Application, 25(2):373--384, 2003.
Vulanovic, Relja and Lin, Ping. Numerical solution of quasilinear attractive turning point problems. Computers \& Mathematics with Applications, 23():75--82, 1992.
Bertoluzza, S. and Canuto, C. and Tabacco, A.. Negative norm stabilization of convection-diffusion problems. Applied Mathematics Letters, 13():121--127, 2000.
Bertoluzza, Silvia and Canuto, Claudio and Tabacco, Anita. Stable Discretizations of Convection-Diffusion Problems via Computable Negative-Order Inner Products. SIAM J. Numer. Anal., 38(3):1034--1055, 2001.
Haglund, J and Haiman, M and Loehr, N. Combinatorial theory of Macdonald polynomials I: proof of Haglund's formula.. Proc Natl Acad Sci U S A, 102(0027-8424 (Print)):2690-6, 2005.
Garsia, Adriano and Remmel, Jeffrey B. Breakthroughs in the theory of Macdonald polynomials.. Proc Natl Acad Sci U S A, 102(0027-8424 (Print)):3891-4, 2005.
Estep, Donald and Holst, Michael and Larson, Mats. Generalized Green's Functions and the Effective Domain of Influence. SIAM J. Sci. Comput., 26(4):1314--1339, 2005.
Jerome, Joseph W. and Kerkhoven, Thomas. A Finite Element Approximation Theory for the Drift Diffusion Semiconductor Model. SIAM J. Numer. Anal., 28(2):403-422, 1991.
Markowich, Peter A. and Zlamal, Milos A.. Inverse-Average-Type Finite Element Discretizations of Selfadjoint Second-Order Elliptic Problems. Mathematics of Computation, 51(184):431-449, 1988.
Wouwer, A. Vande and Saucez, P. and Schiesser, W. E. and Thompson, S.. A {MATLAB} implementation of upwind finite differences and adaptive grids in the method of lines. Journal of Computational and Applied Mathematics, 183(2):245--258, 2005.
Nooyen, R. R. P. Van. A {Petrov-Galerkin} mixed finite element method with exponential fitting. Numer. Methods Partial. Diff. Equations, 11(5):501--524, 1995.
Wang, Song and Angermann, Lutz. On covergence of the exponentially fitted finite volume method with an anisotropic mesh refinement for a singularly perturbed convection-diffusion. Computational Methods In Applied Mathematics, 3():1--20, 2003.
Hansen, Glen and Zardecki, Andrew and Greening, Doran and Bos, Randy. A finite element method for unstructured grid smoothing. J. Comput. Phys., 194(2):611--631, 2004.
Spielman, Daniel A. and Teng, Shang-Hua. Nearly-Linear Time Algorithms for Graph Partitioning, Graph Sparsification, and Solving Linear Systems. Preliminary draft, ():, 2006.
Eymard, R. and Gallouet, T. and Herbin, R.. {A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension}. IMA J Numer Anal, 26(2):326-353, 2006.
Fierro, Francesca and Veeser, Andreas. A posteriori error estimators, gradient recovery by averaging, and superconvergence. Numer. Math., 103(2):267--298, 2006.
Rosenberg, I. G. and Stenger, F.. A lower bound on the angles of triangles constructed by bisecting the longest side. Mathemathics of Computation, 29():390--395, 1975.
Douglas, Jim Jr. and Dupont, Todd. $H\sp{-{}1}$ Galerkin methods for problems involving several space variables. Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976), ():125--141, 1977.
Fairweather, Graeme and Keast, Patrick and Diaz, Julio Cesar. On the {\$}H\^{}{\{}-1{\}}{\$}-Galerkin Method for Second-Order Linear Two-Point Boundary Value Problems. SIAM J. Numer. Anal., 21(2):314-326, 1984.
Kafafy, R. and Lin, T. and Lin, Y. and Wang, J.. Three-dimensional immersed finite element methods for electric field simulation in composite materials. International Journal for Numerical Methods in Engineering, 64(7):940--972, 2005.
Lin, Tao and Lin, Yanping and Rogers, Robert and Ryan, M. Lynne. A rectangular immersed finite element space for interface problems. Scientific computing and applications, ():107--114, 2001.
Li, Zhilin and Lin, Tao and Wu, Xiaohui. New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math., 96(1):61--98, 2003.
Chen, Wenbin and Shen, Yifan and Xia, Qing. A mortar finite element approximation for the linear {Poisson-Boltzmann} equation. Applied Mathematics and Computation, 164(1):11--23, 2005.
Sloboda, Fridrich and Stoer, Josef. On piecewise linear approximation of planar Jordan curves. Journal of Computational and Applied Mathematics, 55(3):369--383, 1994.
Dahmen, W. and Faermann, B. and Graham, I. G. and Hackbusch, W. and Sauter, S. A.. Inverse inequalities on non-quasi-uniform meshes and application to the {Mortar} element method. Mathematics of Computation, 73(247):1107--1138, 2003.
Alberty, J. and Carstensen, C. and Funken, S. A. and Klose, R.. Matlab implementation of the Finite Element Method in elasticity. Computing, 69(3):239--263, 2002.
Kondratyuk, Yaroslav. Adaptive finite element algorithms for the {Stokes} problem: convergence rates and optimal computational complexity. Technical Report 1346, Utrecht University, The Netherlands, ():, 2006.
Thompson, Lonny L.. A review of finite-element methods for time-harmonic acoustics. The Journal of the Acoustical Society of America, 119(3):1315--1330, 2006.
Chesshire, G. and Henshaw, W. D.. Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys., 90(1):1--64, 1990.
Biedl, Therese C. and Bose, Prosenjit and Demaine, Erik D. and Lubiw, Anna. Efficient Algorithms for {Petersen}'s Matching Theorem. Symposium on Discrete Algorithms, ():130-139, 1999.
Bahriawati, C. and Carstensen, C.. Three Matlab implementations of the lowest-order {Raviart}-{Thomas} {MFEM} with a posteriori error control. Computational Methods In Applied Mathematics, 5(4):333-361, 2005.
Carstensen, C. and Hoppe, R.H.W.. Convergence analysis of an adaptive edge finite element method for the 2D eddy current equations. Journal of Numerical Mathematics, 13(1):19--32, 2005.
Holst, Michael. {MCLite}: An adaptive multilevel finite element {MATLAB} package for scalar nonlinear elliptic equations in the plane. UCSD Technical report and guide to the MCLite software package, ():, 2000.
Gonzalez, Luis. Orthogonal Projections of the Identity: Spectral Analysis and Applications to Approximate Inverse Preconditioning. SIAM Rev., 48(1):66--75, 2006.
Remacle, Jean-Franis and Flaherty, Joseph E. and Shephard, Mark S.. An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems. SIAM Rev., 45(1):53--72, 2003.
Cao, Li-Qun. Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains. Numer. Math., 103(1):11--45, 2006.
Braess, Dietrich and Dahmen, Wolfgang and Wieners, Christian. A Multigrid Algorithm for the Mortar Finite Element Method. SIAM J. Numer. Anal., 37(1):48--69, 1999.
Seshaiyer, Padmanabhan and Suri, Manil. Uniform $hp$ convergence results for the mortar finite element method. Mathemathics of Computation, 69():521--546, 2000.
Wieners, Christian and Wohlmuth, Barbara I.. Duality Estimates and Multigrid Analysis for Saddle Point Problems Arising from Mortar Discretizations. SIAM J. Sci. Comput., 24(6):2163--2184, 2003.
Wohlmuth, Barbara I. and Toselli, Andrea and Widlund, Olof B.. An Iterative Substructuring Method for {Raviart--Thomas} Vector Fields in Three Dimensions. SIAM J. Numer. Anal., 37(5):1657--1676, 2000.
Koren, Yair and Yavneh, Irad and Spira, Alon. A Multigrid Approach to the Scalar Quantization Problem. IEEE Transactions on Information Theory, 51(8):2993--2998, 2005.
Belhachmi, Zakaria and Tahir, Souad. Mixed Finite Element Discretization Of Some Variational Inequalities Arising In Elasticity Problems In Domains With Cracks. 2004-Fez conference on Differential Equations and Mechanics, ():33-40, 2004.
Aarnes, J. E. and Efendiev, Yalchin. An Adaptive Multiscale Method For Simulation Of Fluid Flow In Heterogeneous Porous Media. Technique Report, ():, 2000.
Li, Jichun and Wheeler, MARY F.. Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids. SIAM J. Numer. Anal., 38(3):770--798, 2000.
Prohl, Andreas. An adaptive finite element method for solving a double well problem describing crystalling microstructure. Technique Report, ():, 2000.
Anderson, Anthony and Zheng, Xiaoming and Cristini, Vittorio. Adaptive unstructured volume remeshing - I: The method. Journal of Computational Physics, 208(2):616--625, 2005.
Zheng, Xiaoming and Lowengrub, John and Anderson, Anthony and Cristini, Vittorio. Adaptive unstructured volume remeshing - II: Application to two- and three-dimensional level-set simulations of multiphase flow. Journal of Computational Physics, 208(2):626--650, 2005.
D\"orfler, W.. Uniform A Priori Estimates for Singularly Perturbed Elliptic Equations in Multidimensions. SIAM J. Numer. Anal., 36(6):1878--1900, 1999.
D\"orfler, W.. Uniform Error Estimates for an Exponentially Fitted Finite Element Method for Singularly Perturbed Elliptic Equations. SIAM J. Numer. Anal., 36(6):1709--1738, 1999.
D\"orfler, W. and Wilderotter, O.. An Adaptive Finite Element Method for a Linear Elliptic Equation with Variable Coefficients. ZAMM, Z. Angew. Math. Mech., 80(7):481--491, 2000.
Venditti, David A. and Darmofal, David L.. Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flows. Journal of Computational Physics, 176(1):40--69, 2002.
Yang, Daoqi. Iterative schemes for mixed finite element methods with applications to elasticity and compressible flow problems. Numer. Math., 93(1):177--200, 2002.
Brandts, Jan H.. Superconvergence for triangular order k=1 Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods. Applied Numerical Mathematics, 34(1):39--58, 2000.
Averbuch, A. and Braverman, E. and Coifman, R. and Israeli, M. and Sidi, A.. Efficient Computation of Oscillatory Integrals via Adaptive Multiscale Local Fourier Bases,. Applied and Computational Harmonic Analysis, 9(1):19--53, 2000.
Wu, Z. and Fang, M. and Qian, J. and Schramm, H.. {Multiscale adaptive method for blood vessel enhancement in x-ray angiography}. Proc. SPIE Vol. 3036, p. 326-335, Medical Imaging 1997: Image Perception, Harold L. Kundel%3B Ed., ():326-335, 1997.
Jenny, P. and Lee, S. and Tchelepi, H.. Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media. Multiscale Model. Simul., 3(1):50--64, 2004.
Griebel, Michael and Zumbusch, Gerhard. Parallel adaptive subspace correction schemes with applications to elasticity. Computer Methods in Applied Mechanics and Engineering, 184(2-4):303--332, 2000.
Markowich, Peter A. and Ringhofer, C. A.. Systems of singular perturbation problems with a first order turning point. SIAM J. Math. Anal., 14(5):875--896, 1983.
Gebremedhin, Assefaw Hadish and Manne, Fredrik and Pothen, Alex. What color is your {Jacobian}? Graph coloring for computing derivatives. SIAM Rev., 47(4):629--705, 2005.
Petersson, L. E. Rickard and Jin, Jian-Ming. An Efficient Procedure for the Projection of a Given Field onto Hierarchical Vector Basis Functions of Arbitrary Order. Electromagnetics, 25():81--91, 2005.
B\"or\"oczky, K. and Reitzner, M.. Approximation of smooth convex bodies by random circumscribed polytopes. The Annals of Applied Probability, 14(1):239--273, 2004.
Cardoze, David and Cunha, Alexandre and Miller, Gary L. and Phillips, Todd and Walkington, Noel. A Bezier-based Approach to unstructured moving meshes. To be decided, ():, 2005.
Li, Xiang-Yang and Teng, Shang-Hua and \"Ung\"or, Alper. Simultaneous refinement and coarsening: adatpive meshing with moving boundaries. To be decided, ():, 2005.
Kopteva, Natalia. Maximum norm a posteriori error estimates for a 1d singularly perturbed semilinear reaction-diffusion problem. IMA Journal of Numerical Analysis, ():, 2005.
Ainsworth, Mark and Coyle, Joe. Hierarchic finite element bases on unstructured tetrahedral meshes. International Journal for Numerical Methods in Engineering, 58():2103--2130, 2003.
B\"or\"oczky, K. and Cifre, Maria A. Hernandez and Salinas, G.. Optimizing Area and Perimeter of Convex Sets for Fixed Circumradius and Inradius. To be decided, ():, 2005.
Mukherjee, Arup. An Adaptive Finite Element Code for Elliptic Boundary Value Problems in Three Dimensions with Applications in Numerical Relativity. , ():, 1996.
Li, Xiang-Yang and Teng, Shang-Hua and \"Ung\"or, Alper. Biting: advancing front meets sphere packing. International Journal for Numerical Methods in Engineering, 49(1-2):61-81, 2000.
Fix, G. J. and Gunzburger, M. D. and Nicolaides, R. A.. On mixed finite element methods for first order elliptic systems. Numer. Math., 37(1):29--48, 1981.
Rusten, Torgeir and Vassilevski, Panayot S. and Winther, Ragnar. Interior penalty preconditioners for mixed finite element approximations of elliptic problems. Mathemathics of Computation, 65():447--466, 1996.
Arnold, Douglas N. and Brezzi, Franco and Marini, L. Donatella. A Family of Discontinuous Galerkin Finite Elements for the Reissner-Mindlin Plate. Journal of Scientific Computing, 22-23(1 - 3):25--45, 2005.
Brezzi, Franco and Marini, Luisa Donatella and Pietra, Paola. Two-Dimensional Exponential Fitting and Applications to Drift-Diffusion Models. SIAM J. Numer. Anal., 26(6):1342-1355, 1989.
Brezzi, Franco and Douglas, Jim and Marini, L. D.. Two families of mixed finite elements for second order elliptic problems. Numer. Math., 47(2):217--235, 1985.
Brezzi, F. and Hughes, T. J. R. and Marini, L. D. and Masud, A.. Mixed Discontinuous Galerkin Methods for Darcy Flow. Journal of Scientific Computing, 22-23(1 - 3):119--145, 2005.
B\"or\"oczky, K.. About the Error Term for Best Approximation with Respect to the {Hausdorff} Related Metrics. Discrete and Computational Geometry, 25(2):293--309, 2001.
Vassilevski, Panayot S. and Wang, Junping. Multilevel iterative methods for mixed finite element discretizations of elliptic problems. Numer. Math., 63(1):503--520, 1992.
Dziuk, Gerhard and Hutchinson, John E.. Finite element approximations to surfaces of prescribed variable mean curvature. Numer. Math., 102(4):611--648, 2006.
Rech, M. and Sauter, S. and Smolianski, A.. Two-scale composite finite element method for Dirichlet problems on complicated domains. Numer. Math., 102(4):681--708, 2006.
Webb, Jon P.. Hierarchal Vector Basis Functions of Arbitrary Order for Triangular and Tetrahedral Finite Elements. IEEE Trans. Antennas and Propagation, 47():1244--1253, 1999.
Gopalakrishnan, Jayadeep. A {Schwarz} preconditioner for a hybridized mixed method. Computational Methods In Applied Mathematics, 3(1):116---134, 2003.
Gopalakrishnan, Jayadeep and Garcia-Castillo, L. E. and Demkowicz, L. F.. Nedelec spaces in affine coordinates. Computer & Mathematics with Applications, 49(7--8):1285--1294, 2005.
Cockburn, Bernardo and Gopalakrishnan, Jayadeep. Incompressible Finite Elements via Hybridization. Part {II}: The Stokes System in Three Space Dimensions. SIAM J. Numer. Anal., 43(4):1627--1650, 2005.
Cockburn, Bernardo and Gopalakrishnan, Jayadeep. Incompressible Finite Elements via Hybridization. Part {I}: The Stokes System in Two Space Dimensions. SIAM J. Numer. Anal., 43(4):1627--1650, 2005.
Holst, Stefan and Jungel, Ansgar and Pietra, Paola. An Adaptive Mixed Scheme for Energy-Transport Simulations of Field-Effect Transistors. SIAM J. Sci. Comput., 25(5):1698--1716, 2004.
Holst, S. and Jüngel, A. and Pietra., P.. A mixed finite-element discretization of the energy-transport equations for semiconductors. SIAM J. Sci. Comput., 24():2058--2075, 2003.
Gatica, Gabriel N. and Maischak, Matthias. A posteriori error estimates for the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differential Equations, 21(3):421 - 450, 2004.
ska, Ivo Babu\v and Gatica, Gabriel N.. On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differential Equations, 19(2):192--210, 2003.
Buffa, Annalisa and Christiansen, Snorre H.. A dual finite element complex on the barycentric refinement. C. R. Acad. Sci. Paris, Ser. I, 340(6):461--464, 2005.
Demkowicz, L. and Monk, P. and Vardapetyan, L. and Rachowicz, W.. De Rham diagram for $hp$ finite element spaces. Computer & Mathematics with Applications, 39(7--8):29--38, 2000.
Hoppe, R. H. W. and Wohlmuth, B. I.. Adaptive mixed hybrid and macro-hybrid finite element methods. Acta Math. Univ. Comeniane, LXVII():159--179, 1998.
Cockburn, Bernardo and Gopalakrishnan, Jayadeep. A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems. SIAM J. Numer. Anal., 42(1):283--301, 2004.
Cockburn, Bernardo and Gopalakrishnan, Jayadeep. Error analysis of variable degree mixed methods for elliptic problems via hybridization. Mathematics of Computation, 74(252):1653--1677, 2005.
Arnold, D. N. and Brezzi, F.. Mixed and nonconforming finite element methods: Implementation, postporcessing and error estimates. RAIRO Model Math. Anal. Numer., 19():7--32, 1985.
Guillaume, Philippe and Latocha, Vladimir. Numerical Convergence of a Parameterisation Method for the Solution of a Highly Anisotropic Two-Dimensional Elliptic Problem. Journal of Scientific Computing, 25(3):423--444, 2005.
Kr\"oner, Dietmar and Ohlberger, Mario. A Posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Mathematics of Computation, 69(229):25--39, 1999.
Kl\"ofkorn, Robert and Kr\"oner, Dietmar and Ohlberger, Mario. Local adaptive methods for convection dominated problems. International Journal of Numer. Meth. Fluids, 40(1--1):79--91, 2002.
Babuška, Ivo and Rheinboldt, W. C.. A posteriori error analysis of finite element solutions for one dimensional problems. SIAM J. Numer. Anal., 18():565--589, 1981.
Zhang, Zhimin and Naga, Ahmed. Validation of the a posteriori error estimator based on polynomial preserving recovery for linear elements. Internat. J. Numeri. Methods Engrg., 61(11):1860--1893, 2004.
Park, Peter J. and Hou, Thomas Y.. Multiscale numerical methods for singularly perturbed convection-diffusion equations. International Journal of Computational Methods, 1(1):17--65, 2004.
Ceniceros, H. D. and Hou, T. Y.. An efficient dynamically adaptive mesh for potentially singular solutions. Journal of Computational Physics, 172():609--639, 2001.
Raviart, P. A. and Thomas, J.. A mixed finite element method fo 2-nd order elliptic problems. Mathematical aspects of the Finite Elements Method, ():292--315, 1977.
Gobbert, M. K. and Seidman, T. I. and Spiteri, R. J.. Towards a non-negativity preserving method for systems of reaction-diffusion equations. Finite Element Circus, ():, 2005.
Soane, Ana Maria and Gobbert, Matthias K. and Seidman, Thomas I.. Numerical exploration of a system of reaction-diffusion equations with internal and transient layers. Nonlinear analysis: Real world applications, ():914-934, 2005.
Layton, Anita T. and Layton, Harold E.. A semi-Lagrangian semi-implicit numerical method for modles of the urine concentrating mechanism. SIAM J. Sci. Comput., 23(5):1526-1548, 2002.
Kay, David and Loghin, Daniel and Wathen, Andrew. Preconditioner for the steady-state Navier-Stokes equations. SIAM J. Sci. Comput., 24(1):237-256, 2002.
Kim, T. and Pasciak, J. and Vassilevski, P.. Mesh independnt convergence of the modified inexact Newton method for a second order nonliner problem. Numerical linear algebra, ():, 2004.
Peszynska, Malgorzata and Wheeler, Mary F. and Yotov, Ivan. Mortar upscaling for multiphase flow in porous media. Computational Geosciences, 6():73-100, 2002.
Akrivis, G.D. and Dougalis, V.A. and Karakashian, O.A. and Mckinney, W.R.. Numerical approximation of blow up of radially symmetric solutions of the nonlinear Schrodinger equation. SIAM J. Sci. Comput., 25():186-212, 2003.
Arbogast, T.. Numerical subgrid upscaling of two-phase flow in porous media, in Numerical treatment of multiphase flows in porous media. Z. Chen et al., eds., Lecture Notes in Physics 552, Springer, Berlin, ():35-49, 2000.
Arbogast, T.. The existence of weak solutions to single-porosity and simple dual-porosity models of two-phase incompressible flow. J. Nonlinear Analysis: Theory, Methods, and Applications, 19():1009-1031, 1992.
Arbogast, T. and Bryand, S. and Dawson, C. and Saaf, F. and Wang, C. and Wheeler, M.. Computational methods for multiphase flow and reactive transport problems arising in subsurface contaminant remediation. J. Computational Appl. Math., 74():19-32, 1996.
Arbogast, T. and Dawson, C. N. and Wheeler, M. F.. A parallel algorithm for two phase multicomponent contaminant transport. Applications of Math, 40():163-174, 1995.
Badea, L. and Ewing, R. E. and Wang, J.. A study of free boundary problems of fluid flow in porous media by mixed methods. Proceedings of the 1997 Conference on Free Boundary Problems: Theory and Applications, Greece, ():, 1997.
Bernardi, Christine and Hecht, Frederic and Pironneau, Olivier. Coupling Darcy And Stokes Equations For Porous Media With Cracks. Mathematical Modelling and Numerical Analysis, 39():7-35, 2005.
Chen, X. and Nashed, Z. and Qi, L.. Convergence of Newton's method for singular smooth and nonsmooth equations using adaptive outer inverses. SIAM Journal on OPTIM, 7():445-462, 1997.
Chen, X. and Qi, L. and D.Sun. Global and suplinear convergence of the smoothing newton method and its application to general box constrained variational inequalities. Mathematics of computation, 67():519-540, 1998.
Chen, Z. and Ewing, R. E.. Fully discrete finite element analysis of multiphase flow in groundwater hydrology. SIAM J. Numer. Anal., 34():2228-2253, 1997.
Chen, Z. and Nochetto, R. and Schmidt, A.. A posteriori error control and adaptivity for a phase relaxation model. Model. Math. Anal., 34():775-797, 2000.
Chen, Z. and Qin, G. and Ewing, R. E.. Analysis of a comositional model for fluid flow in porous media. SIAM Journal on APPL. MATH, 60():747-777, 2000.
Cheng, P. and Wang, C.Y.. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media -- II: numerical simulation of the transport of non-aqueous phase liquids in the unsaturated subsurface. Int.J.Heat Mass Transfer, 39():3619-3632, 1996.
Class, H. and Helmig, R. and Bastian, P.. An efficient solution technique for the simulation of nonisothermal multiphase multicomponent processes in porous media. , ():, 2002.
Class, H. and Helmig, R. and Bastian, P.. Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 1. An efficient solution technique. Advances in water resources, 25():533-550, 2002.
Dawson, C. and Kile, H. and Wheeler, M. and Woodward, C.. A parallel, implicit, cell-centered method for two-phase flow with a preconditioned Newton Krylov solver. Computational Geosciences, 1():215-249, 1997.
Dibenedetto, E. and Elliott, C.. The free boundary of flow in a porous body heated from its boundary. Nonlinear Analysis, Theory, Methods and Applications, 10():879-900, 1986.
Diersch, H. and Kolditz, O.. Variable-density flow and transport in porous media: approaches and challenges. Advances in Water Resources, 25():899-944, 2002.
Discacciati, M. and Miglio, E. and Quarteroni, A.. Mathematical and numerical model for coupling surface and groundwater flows. Applied Numerical Mathematics, 43():57-74, 2002.
Douglas, J. and Pereira, F. and Roman, L.. Algorithmic aspects of a locally conservative Eulerian-Lagrangian method for 3-D porous media flow. Computational Methods in Water resources XIV, vol.~II, Mathematical and Numerical Modeling for Subsurface and Surface Problems, II():971-978, 2002.
Espedal, M. S. and Wing, R. E. and Russel, Thomas F. and Savaried, O.. Reservoir simulation using mixed methods, a modified method characteristics, and local grd refinement. , ():, 1992.
Ewing, R. E. and Lazarov, R. and Lyons, S. L. and Papavasslliou, D. V. and Pasciak, J. and Qin, G.. NUMERICAL WELL MODEL FOR NON-DARCY FLOW THROUGH ISOTROPIC POROUS MEDIA. , ():, 1998.
Ewing, R. E. and Lin, Y. and Wang, J.. A numerical approximation of nonFickian flows with mixing length growth in porous media. Proceedings of the Third Workshop on Computational Methods for Oceanic, Atmospheric, and Groundwater Flows, Rio de Janeiro, ():, 1997.
Ewing, R. E. and Wang, J. and Weekes, S.. On the Simulation of Multicomponent Gas Flow in Porous Media. Applied Numerical Mathematics, 31():405-427, 1999.
Girault, V. and Riviere, B. and Wheeler, MARY F.. A Discontinuous Galerkin Method With Nonoverlapping Domain Decompositionfor The Stokes And Navier-Stokes Problems. Mathematics of Computation, 74():53-84, 2004.
Harza, S. B. and Class, H. and Helmig, R. and Schulz, V.. Forward and inverse problems in modeling of multiphase flow and transport through porous media. Computational Geosciences, 0():1-27, 2004.
Huber, R. and Helmig, R.. Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media. Computational Geosciences, 4():141-164, 2000.
Huber, R. and Helmig, R.. Multiphase Flow In Heterogeneous Porous Media: A Classical Finite Element Method Versus An Implicit Pressure Explicit Saturation-Based Mixed Finite Element Finite Volume Approach. Int. J. Numer. Meth. Fluids, 29():899-920, 1999.
Jager, W. and Mikelic, A.. On the boundary condition at the interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23():403-465, 1996.
Jiang, X. and Nochetto, R. and Verdi, C.. finite element method for a phase relaxation model. Part II: Adaptively refined meshes. SIAM J. Numer. Anal., 36():974-999, 1999.
Kelley, C. T. and Rulla, J.. Solution of the time discretized stefan problem by newton's method. Nonlinear Analysis, Theory, Methods and Applications, 14():851-872, 1990.
LACROIX, S. and VASSILEVSKI, YU. and WHEELER, J. WHEELERand M.. ITERATIVE SOLUTION METHODS FOR MODELING MULTIPHASE FLOW IN POROUS MEDIA FULLY IMPLICITLY. SIAM J. Sci. Comput., 25():905-926, 2003.
Lacroix, Sebastien and Vassilevski, Yuri V. and Wheeler, Mary F.. Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numer. Linear Algebra Appl., 8():537-549, 2001.
Mansell, R. S. and Ma, L. and Ahuja, L. and Bloom, S. A.. Adaptive Grid Refinement in Numerical Models for Water Flow and Chemical Transport in Soil: A Review. Vadose Zone Journal, 1():222-238, 2002.
Natarajan, D. and Nguyen, T.V.. A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrance fuel cell using convectional gas distributors. J.Electrochem. Soc, 148():A1324-A1335, 2001.
Nochetto, R. and Schmidt, A. and Verdi, C.. A posteriori error estimation and adaptivity for degenerate parabolic problems. Mathematics of Computation, 69():1-24, 2000.
Nochetto, R. and Schmidt, A. and Verdi, C.. Adapting meshes and time-steps for phase change problems. Atti Accad. Naz. Lincei Mem. CI. Sci. Fis. Mat. Natur. Sez. la (9), 8():273-292, 1997.
Pasaogullari, U. and Wang, C. Y.. Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 152():A380-A390, 2005.
Pasaogullari, U. and Wang, C. Y.. Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells. Electrochimica Acta, 49():4359-4369, 2004.
Pasaogullari, U. and Wang, C.Y.. Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells. Journal of Electrochemical Society, 151():A399-A406, 2004.
Payne, L. E. and Straughan, B.. Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modeling questions. J. Math. Pures Appl.(9), 77():317-354, 1998.
Ramesh, P. S. and Torrance, K. E.. Boiling in a porous layer heated from below: effects of natural convection and a moving liquid/two-phase interface. J. Fluid Mech., 257():289-309, 1993.
Ramesh, P. S. and Torrance, K. E.. Numerical algorithm for problems involving boiling and natural convection in porous materials. Numerical Heat Transfer, Part B, 17():1-24, 1990.
Russell, T. and Wheeler, M.. Finite element and finite difference method for continuous flows in porous media. Frontiers in Applied Mathematics, 1():35, 1983.
Sun, J. and Sun, D. and Qi, L.. A squared smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems. , ():, .
Voller, V.R.. Numerical treatment of rapidly changing and discontinuous conductivities. Technical Note, Int.J.Heat and Mass Transfer, 44():4553-4556, 2001.
He, W. and Yi, J.S. and Nguyen, T.V.. Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields. AICHE J., 46():2053, 2000.
Wang, C.Y. and Beckermann, C.. A two-phase mixture model of liquid-gas flow and heat ransfer in capillary porous media-I. Formulation. Int.J.Heat Mass Transfer, 36():2747, 1993.
Wang, C.Y. and Beckermann, C.. A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media-II. Application to pressure-driven boiling flow adjacent to a vertical heated plate. Int. J. Heat Mass Transfer, 36():2759-2768, 1993.
Wang, C.Y. and Beckermann, C. and Fan, C.. Numerical study of boiling and natural convection in capillary porous media using the two-phase mixture model. Numerical heat transfer, Part A., 26():375-398, 1994.
Wang, C.Y. and Cheng, P.. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media -- I: model development. Int.J.Heat Mass Transfer, 39():3607-3618, 1996.
Wang, Hong and Liang, Dong and Ewing, Richard E. and Lyons, Stephen L. and Qin, Guan. An Improved Numerical Simulator for Different Types of Flows in Porous Media. , ():, 2002.
Weber, Adam Z. and Darling, Rober M. and Newmann, Johu. Modeling two-phase behavior in PEFCs. Journal of Electrochemical Society, 151():A1715-A1727, 2004.
Wheeler, J. A.. Simulation of heat transfer from a warm pipeline buried in permafrost. Exxon Production Research Company Report, Houston, Texas. Presented at 74th American Institute Chemical Engineers Nat. Meet.Exxon Production Research Company Report, Houston, Texas. Presented at 74th American Institute Chemical Engineers Nat. Meet., ():, 1973.
Wo, S. and Chen, B. and Wang, J.. A Generalized Godunov Method for Enhanced Oil Recovery Processes with Microbial Permeability Modification in 1-D Coreflood Models. Iterative Methods in Scientific Computation, Wang, Allen, Chen, Mathew (eds.), IMACS Publication, ():, 1998.
Schatz, A. and Sloan, I. and Wahlbin, L.. Superconvergence in Finite Element Methods and Meshes That are Locally Symmetric with Respect to a Point. SIAM J. Numer. Anal., 33(2):505--521, 1996.
Schatz, Alfred H. and Wang, Junping. Some New Error Estimates for Ritz--Galerkin Methods with Minimal Regularity Assumptions. Mathematics of Computation, 65():19--27, 1996.
Schatz, Alfred H.. Perturbations of Forms and Error Estimates for the Finite Element Method at a Point, with an Application to Improved Superconvergence Error Estimates for Subspaces that Are Symmetric with Respect to a Point. SIAM J. Numer. Anal., 42(6):2342--2365, 2005.
Wu, Jiming and Sun, Weiwei. The Superconvergence of the Composite Trapezoidal Rule for Hadamard Finite Part Integrals. Numer. Math., 102(2):343 - 363, 2005.
Cao, Weiming. An Interpolation Error Estimate in {$R^2$} based on the Anisotropic Measures of Higher Order Derivatives. Mathematics of Computation, 77():265--286, 2008.
Renka, Robert J.. Algorithm 772: STRIPACK: Delaunay Triangulation and Voronoi Diagram on the Surface of a Sphere. ACM Trans. Math. Soft., 23():416--434, 1997.
Du, Qiang and Wang, Desheng. The optimal centroidal Voronoi tessellations and the {Gersho}'s conjecture in the three-dimensional space. Computer & Mathematics with Applications, 49(9--10):1355--1373, 2005.
Du, Qiang and Huang, Zhaohui and Wang, Desheng. Mesh and solver co-adaptation in finite element methods for anisotropic problems. Numer. Methods Partial. Diff. Equations, 21(4):859--874, 2005.
Wang, Junping. Asymptotic expansions and $L^{\infty}$-error estiamtes for mixed finite element methods for second order elliptic problems. Numer. Math., 55(4):401--430, 1989.
Nealen, A. and Muller, M. and Keiser, R. and Boxermann, E. and Carlson, M.. Physically Based Deformable Models in Computer Graphics (State of the Art Report). Proceedings of Eurographics, ():71--94, 2005.
Ainsworth, Mark and Oden, J. Tinsley. A unified approach to a posteriori error estimation using element residual methods. Numer. Math., 65():23--50, 1993.
Rannacher, Rolf and Scott, Ridgway. Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations. Mathematics of Computation, 38(158):437--445, 1982.
Bramble, James H. and Nitsche, Joachim A. and Schatz, Alfred H.. Maximum-Norm Interior Estimates for {Ritz}-{Galerkin} Methods. Mathematics of Computation, 29(131):677-688, 1975.
Erikson, C. and Manocha, D.. {GAPS}: General and Automatic Polygonal Simplification. Symposium on Interactive 3D Graphics '99 Proceedings, 225():79--88, 1999.
Bern, Marshall Wayne and Chew, L. Paul and Eppstein, David and Ruppert, Jim. Dihedral bounds for mesh generation in high dimensions. Proc. 6th Symp. Discrete Algorithms, ():189--196, 1995.
Russell, T. F.. Finite elements and finite differences: are they really different, and does it matter?. Proceedings of the 7th International Conference on Finite Elements for Flow Problems, ():, 1989.
Trujillo, R. V. and Russell, T. F. and Dean, D. W.. Weak and Direct Eulerian-Lagrangian Localized Adjoint Methods for Nonlinear Physical Velocity and Reaction. Advances in Computational Mathematics, ():, 2005.
Bank, Randolph E. and Wan, Justin W. L. and Qu, Zhenpeng. Kernel Preserving Multigrid Methods for Convection-Diffusion Equations. SIAM Journal on Matrix Anal. Appl., to appear():, 2005.
Leykekhman, Dmitriy. Uniform Error Estimates in the finite element method for a singularly perturbed reaction-diffusion problem. Mathematics of Computation, Submitted():, 2006.
Jameson, A. and Wan, W. L.. Monotonicity Preserving and Total Variation Diminishing Multigrid Time Stepping Methods. Technique Report CS-2001-11, Department of Computer Science, University of Waterloo, Waterloo, ON, Canada, ():, 2001.
Jameson, A. and Schmidt, W. and Turkel, E.. Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA paper 81-1259 American Institute of Aeronautics and Astronautics, Reston, VA,, ():, 1981.
Wan, W. L. and Chan, Tony F.. A phase error analysis of multigrid methods for hyperbolic equations. SIAM J. Sci. Statist. Comput., 25(3):857--880, 2003.
Paisley, M. F.. Multigrid solution of the incompressible {Navier-Stokes} equations for density-stratified flow past three-dimensional obstacles. Journal of Computational Physics, 170(2):785--811, 2001.
Pierce, Niles A. and Giles, Michael B.. Preconditioned multigrid methods for compressible flow calculations on stretched meshes. Journal of Computational Physics, 136(2):425--445, 1997.
Wang, H. and Ewing, R. E. and Russell, T. F.. Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis. IMA Journal of Numerical Analysis, 15():405--459, 1995.
Russell, Thomas F. and Celia, Michael A.. An overview of research on Eulerian--Lagrangian localized adjoint methods ({ELLAM}). Advances in Water Resources, 25():1215--1231, 2002.
Celia, Michael A. and Russell, Thomas F. and Herrera, Ismael and Ewing, Richard E.. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Advances in Water Resources, 13():187--206, 1990.
Herrera, I. and Ewing, R. E. and Celia, M. A. and Russell, T.. {Eulerian-Lagrangian} localized adjoint methods: The theoretical framework. Numer. Methods Partial. Diff. Equations, 9():431--457, 1993.
Russell, Thomas F. and Douglas, Jim Jr.. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal., 19(5):871--885, 1982.
Eriksson, Kenneth and Johnson, Claes. Adaptive Streamline Diffusion Finite Element Methods for Stationary Convection-Diffusion Problems. Mathematics of Computation, 60(201):167--188, 1993.
Biswas, Rupak and Devine, Karen D. and Flaherty, Joseph E.. Parallel, adaptive finite element methods for conservation laws. Applied Numerical Mathematics, 14():255--283, 1994.
Cockburn, Bernardo and Shu, Chi-Wang. The local discontinuous {Galerkin} method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440--2463, 1998.
Hoffman, J. and Johnson, C.. On the Uniqueness of Weak Solutions of Navier-Stokes Equations: Remarks on a Clay Institute Prize Problem. Technique Report, ():, 2005.
Eriksson, K. and Johnson, C. and Logg, A.. Adaptive computational methods for parabolic problems. Encyclopedia of Computational Mechanics, to appear():, 2004.
Jaffre, J. and Johnson, C. and Szepessy, A.. Convergence Of The Discontinuous Galerkin Finite Element Method For Hyperbolic Conservation Laws. Mathematical Models and Methods in Applied Science, 5(3):367--386, 1995.
Eriksson, Kenneth and Johnson, Claes. Adaptive Finite Element Methods for Parabolic Problems {II}: Optimal Error Estimates in $L_\infty L_2$ and $L_\infty L_\infty$. SIAM J. Numer. Anal., 32(3):706--740, 1995.
Elman, Howard C. and Ramage, Alison. A characterisation of oscillations in the discrete two-dimensional convection-diffusion equation. Mathematics of Computation, 72():263--288, 2001.
Eriksson, Kenneth and Johnson, Claes and Larsson, Stig. Adaptive Finite Element Methods for Parabolic Problems {VI}: Analytic Semigroups. SIAM J. Numer. Anal., 35(4):1315--1325, 1998.
Hoffman, Johan and Johnson, Claes and Bertoluzza, Silvia. Subgrid modeling for convection--diffusion--reaction in one space dimension using a Haar Multiresolution analysis. Comput. Methods Appl. Mech. Engrg., 194(1):19--44, 2005.
Johnson, Claes and Szepessy, Anders. Adaptive finite element methods for conservation laws based on a posteriori error estimates. Comm. Pure Appl. Math., 48(3):199--234, 1995.
Azarenok, Boris N. and Tang, T.. Second-order Godunov-type scheme for reactive flow calculations on moving meshes. Journal of Computational Physics, 206():48--80, 2005.
Tang, H.-Z. and Tang, T.. Multi-dimensional moving mesh methods for shock computations. Proceedings of the International Conference on Scientific Computing and Partial Differential Equations, 330():169--183, 2003.
Kellogg, R. Bruce and Stynes, Martin. Corner singularities and boundary layers in a simple convection-diffusion problem. Journal of Differential Equations, 213(1):81--120, 2005.
Franca, Leopoldo P. and Russo, Alessandro. Deriving Upwinding, Mass Lumping and Selective Reduced Integration by Residual-Free Bubbles. Department Mathematics, University of Colorado at Denver, ():, 2005.
John, Volker and Kaya, Songul and Layton, William. A Two-level Variational Multiscale Method for Convection-Diffusion Equations. Technique Report, ():, 2005.
Kopteva, N. and Madden, N. and Stynes, M.. Grid equidistribution for reaction-diffusion problems in one dimension. Numer. Algor., 40(3):305--322, 2005.
Wang, Junping and Ye, Xiu. Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods. SIAM J. Numer. Anal., 39(3):1001--1013, 2001.
Chen, Hongsen and Wang, Junping. An Interior Estimate of Superconvergence for Finite Element Solutions for Second-Order Elliptic Problems on Quasi-uniform Meshes by Local Projections. SIAM J. Numer. Anal., 41(4):1318--1338, 2003.
Zegeling, Paul A.. A Dynamically-Moving Adaptive Grid Method Based on a Smoothed Equidistribution Principle along Coordinate Lines. Proceedings of the 5th Int'l Conf. on Numer. Grid Generation in Comput. Field Simulations, ():, 1996.
Becker, R. and Rannacher, R.. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples. East-West Journal of Numerical Mathematics, 4():237--264, 1996.
Eriksson, K. and Estep, D. and Hansbo, P. and Johnson, C.. Introduction to adaptive methods for differential equations. Acta Numer., ():105--158, 1995.
Du, Qiang and Wang, Desheng. Recent progress in robust and quality {Delaunay} mesh generation. Journal of Computational and Applied Mathematics, to appear():, 2005.
Du, Qiang and Liu, Chun and Wang, Xiaoqiang. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. Journal of Computational Physics, to appear():, 2005.
Alliez, Pierre and Cohen-Steiner, David and Yvinec, Mariette and Desbrun, Mathieu. Variational tetrahedral meshing. ACM Trans. Graph., 24(3):617--625, 2005.
Du, Qiang and Emelianenko, M.. Uniform Convergence of an Energy-based multilevel quantization scheme. Lect. Notes Comp. Sci. Engr., in proceedings of the DD16 conference, ():, 2005.
Du, Qiang and Emelianenko, M. and Ju, L.. Convergence properties of the {Lloyd} algorithm for computing the centrodial {Voronoi} tessellations. SIAM J. Numer. Anal., 44(1):102--119, 2006.
Du, Qiang and Gunzburger, Max and Ju, Lili and Faber, V.. Finite volume methods on a sphere based on the constrained centoridal Voronoi tessellations. Comput. Methods Appl. Mech. Engrg., ():, to appear.
Du, Qiang and Gunzburger, Max and Ju, Lili. Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere. Comput. Methods Appl. Mech. Engrg., 192():3993--3957, 2003.
Du, Qiang and Gunzburger, Max and Ju, Lili. Meshfree probabilistc determinate of point sets and support regions for meshless computing. Comput. Methods Appl. Mech. Engrg., 191():1349--1366, 2002.
Plaskota, Leszek and Wasilkowski, Grzegorz W.. Adaption allows efficient integration of functions with unknown singularities. Numer. Math., 102(1):123--144, 2005.
Perella, Andrew James. A Class of Petro-Galerkin Finite Element Methods for the Numerical Solution of the Stationary Convection-Diffusion Equation. , ():, 1996.
Huang, Y. Q. and Xu, J.. Superconvergence for quadratic triangular finite elements on mildly structured grids. Mathemathics of Computation, 77(263):1253--1268, 2008.
Bochev, P. and Gunzburger, M.. On least-sequares finite element methods for the Poisson equation and their connection to the {Dirichlet} and {Kelvin} Principles. SIAM J. Numer. Anal., 43(1):340--362, 2005.
Heimsund, B. and Tai, X. and Wang, J.. Superconvergence for the gradient of finite element approximations by ${L}^2$ projections. SIAM J. Numer. Anal., 40(4):1263--1280, 2002.
Wang, Junping. A superconvergence analysis for finite element solutions by the least-squares surface fitting on irregular meshes for smooth problems. J. Math. Study, 33():229--243, 2000.
Oganesjan, L. and Ruhovets, L. A.. Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary. \v{Z}. Vy\v{c}isl. Mat. Fiz., 9():1102--1120, 1969.
Dassios, George and Lindell, Ismo V. Uniqueness and reconstruction for the anisotropic {Helmholtz} decomposition. J. Phys. A: Math. Gen., 35():5139--5146, 2002.
Moon, Kyoung-Sook and Schwerin, Erikvon and Szepessy, Anders and R.Tempone. Convergence rates for an adaptive dual weighted residual finite element algorithm. Preprint, ():, 2003.
B\"ansch, Eberhard and Morin, Pedro and Nochetto, Ricardo H.. An Adaptive {Uzawa} {FEM} for the Stokes Problem: Convergence without the Inf-Sup Condition. SIAM J. Numer. Anal., 40(4):1207--1229, 2002.
Morin, Pedro and Nochetto, Ricardo H. and Siebert, Kunibert G.. Local problems on stars: A posteriori error estimators, convergence, and performance. Mathematics of Computation, 72():1067--1097, 2003.
Scott, R. and Zhang, S.. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Mathematics of Computation, 54():483--493, 1990.
Li, Jichun and Chen, C.S.. A simple efficient algorithm for interpolation between different grids in both 2D and 3D. Mathematics and Computers in Simulation, 58():125--132, 2002.
Lovadina, Carlo and Stenberg, Rolf. Energy Norm A Posteriori Error Estimates for Mixed Finite Element Methods. Mathemathics of Computation, Primary 65N30():, 2006.
Wang, James Z. and Li, Jia and Wiederhold, Gio. {SIMPLIcity}: Semantics-Sensitive Integrated Matching for Picture Libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9):947--963, 2001.
Belongie, Serge and Malik, Jitendra and Puzicha, Jan. Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4):509-522, 2002.
Lonsing, Marco and Verfurth, Rudiger. A posteriori error estimators for mixed finite element methods in linear elasticity. Numer. Math., 97(4):757--778, 2004.
Wheeler, Mary F. and Yotov, Ivan. A Posteriori Error Estimates for the Mortar Mixed Finite Element Method. SIAM J. Numer. Anal., 43(3):1021--1042, 2005.
Marini, Luisa. An Inexpensive Method for the Evaluation of the Solution of the Lowest Order Raviart--Thomas Mixed Method. SIAM J. Numer. Anal., 22(3):493--496, 1985.
Wohlmuth, B. I. and Hoppe, R. H. W.. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements. Mathematics of Computation, 82():253-279, 1999.
Babuška, Ivo and Vogelius, M.. Feeback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math., 44():75-102, 1984.
Bornemann, F. and Erdmann, B. and Kornhuber, R.. A Posteriori Error Estimates for Elliptic Problems in Two and Three Space Dimensions. SIAM J. Numer. Anal., 33(3):1188--1204, 1996.
Carstensen, C. and Orlando, A. and Valdman, J.. A Convergent Adaptive Finite Element Method for the Primal Problem of Elastoplasticity. Preprint, ():, 2005.
Carstensen, C. and Lazarov, R. and Tomov, S.. Explicit and Averaging a Posteriori Error Estimates for Adaptive Finite Volume Methods. SIAM J. Numer. Anal., 42(6):2496-2521, 2005.
Ciarlet, P. and Huang, J. and Zou, J.. Some Observations on Generalized Saddle-Point Problems. SIAM Journal on Matrix Anal. Appl., 25(1):224-236, 2003.
Hesthaven, J. S.. From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex. SIAM J. Numer. Anal., 35(2):655-676, 1998.
Feng, Xiaobing and Prohl, Andreas. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math., 94():33-65, 2003.
Hiptmair, Ralp and Toselli, Andrea. Overlapping and Multilevel Schwarz Methods for Vector Valued Elliptic Problems in Three Dimensions. IMA Volumes in Mathematics and its Applications, ():, 2000.
Feng, Xiaobing and Prohl, Andreas. Numerical Analysis of the Cahn-Hilliard Equation and Approximation for the Helle-Shaw Problem, Part II: Error Analysis and Convergence of the Interface. SIAM J. Numer. Anal., ():, 2001.
Lakkis, Omar and Nochetto, Ricardo H.. A Posteriori Error Analysis for the Mean Curvature Flow of Graphs. SIAM J. Numer. Anal., 42(5):1875--1898, 2005.
Kessler, Daniel and Nochetto, Ricardo H. and Schmidt, Alfred. A Posteriori Error Control for the Allen-Cahn Problem: Circumventing Gronwall's Inequality. Mathematical Modeling and Numerical Analysis, ():, 1999.
Feng, Xiaobing and Prohl, Andreas. Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Mathematics of Computation, 73(246):541--567, 2003.
Feng, Xiaobing and Prohl, Andreas. Numerical Analysis of the Cahn-Hilliard Equation and Approximation for the Helle-Shaw Problem, Part I: Error Analysis Under Minimum Regularities. SIAM J. Numer. Anal., ():, 2001.
Nochetto, R. H. and Paolini, M. and Verdi, C.. A Dynamic Mesh Algorithm for Curvature Dependent Evolving Interfaces. Journal of Computational Physics, 123():296-310, 1996.
Chen, Zhiming and Nochetto, Ricardo H. and Schmidt, Alfred. Error Control and Adaptivity for a Phase Relaxation Model. M2AN Math. Model. Numer. Anal., 34(4):775--797, 2000.
Boissonnat, Jean-Daniel and Sharir, Micha and Tagansky, Boaz and mariette Yvinec. Voronoi Diagrams in Higher Dimensions under Certain Polyhedral Distance Functions. repr, ():, 1996.
Tourigny, Y. and Baines, M. J.. Analysis of An Algorithm for Generating Locally Optimal Meshes for $L_2$ Approximation by Discontinuous Piecewise Polynomials. Mathematics of Computation, 66(218):623--650, 1997.
Baines, M. J.. Algorithms for Optimal discontinuous Piecewise Linear and Constant $L_2$ Fits to Continuous Functions with Adjustable Nodes in One and Two Dimensions. Mathematics of Computation, 62(206):645--669, 1994.
Ascher, U. and Christiansen, J. and Russell, R. D.. A Collocation Solver for Mixed Order Systems of Boundary Value Problems. Mathematics of Computation, 33(146):659--679, 1979.
Shimada, Kenji and Gossard, David C.. Automatic Triangular Mesh Generation of Trimmed Parametric Surfaces for Finite Element Analysis. Computer Aided Geometric Design, 15(3):199--222, 1998.
Shimada, Kenji and Gossard, David C.. Bubble Mesh: Automated Triangular Meshing of Non-Manifold Geometry by Sphere Packing. ACM Third Symposium on Solid Modeling and Applications, ():409-419, 1995.
Shimada, Kenji. Anisotropic Triangulation of Parametric Surfaces via Close Packing of Ellipsoids. International Journal of Computational Geometry and Applications, ():, 1999.
Li, Xiang-Yang and Teng, Shang-Hua and Ungor, Alper. Biting Ellipses to Generate Anisotropic Mesh. the International Journal of Numerical Methods in Engineering (IJNME), ():, 1999.
Du, Qiang and Wang, Desheng. Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. International Journal for Numerical Methods in Engineering, 56():1355--1373, 2003.
Baumann, Carlos Erik and Oden, J. Tinsley. A discontinuous $hp$ finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg., 175():311--341, 1999.
Bey, Kim S. and Oden, J. Tinsley. $hp$-Version discontinuous Galerkin methods for hyperbolic convervation laws. Comput. Methods Appl. Mech. Engrg., 133():259--286, 1996.
Oden, J. T. and Babuska, Ivo and Baumann, Carlos Erik. A Discontinuous $hp$ Finite Element Method for Diffusion Problems. Journal of Computational Physics, 146():491--519, 1998.
Babuška, Ivo and Baumann, C. E. and Oden, J. T.. A Discontinuous $hp$ Finite Element Method for Diffusion Problems: 1-D Analysis. Computers and Mathematics with Applications, 37():103--122, 1999.
Arnold, Douglas N. and Brezzi, Franco and Cockburn, Bernardo and Marini, L. Donatella. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems. SIAM J. Numer. Anal., 39(5):1749--1779, 2002.
Houston, Paul and Schwab, Christoph and Suli, Endre. Discontinuous $hp$-Finite Element Methods for Advection-Diffusion-Reaction Problems. SIAM J. Numer. Anal., 39(6):2133--2163, 2002.
Dupont, Todd F. and Liu, Yingjie. Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. Journal of Computational Physics, 190():311--324, 2003.
Dupont, Todd F. and Liu, Yingjie. An Explanation to the Phenomenon of Coupled First Order Shift of Conservative Quantities During the Interaction of Captured Discontinuities. preprint, ():, 2004.
Labelle, Francois and Shewchuk, Jonathan Richard. Anisotropic Voronoi Diagrams and Guaranteed-Quality Anisotropic Mesh Generation. Annual Symposium on Computational Geometry archive, Proceedings of the nineteenth annual symposium on Computational geometry table of contents, ():191 - 200, 2003.
Neuss, Nicolas. V-cycle Convergence with Unsymmetric Smoothers and Application to An Anisotropic Model Problem. SIAM J. Numer. Anal., 35(3):1201--1212, 1998.
Rivara, Maria-Cecilia and Inostroza, Patricio. Using Longest-side Bisection Techniques for the Automatic Refinement fo {D}elaunay Triangulations. International Journal for Numerical Methods in Engineering, 40():581--597, 1997.
Cristini, Vittorio and Blawzdziewica, Jerzy and Loewenberg, Michael. An Adaptive Mesh Algorithm for Evolving Surfaces: Simulations of Drop Breakup and Coalescence. Journal of Computational Physics, 168():445--463, 2001.
Freitag, Lori A. and Ollivier-Gooch, Carl. A Cost/Benefit Analysis of Simplicial Mesh Improvement Techniques as Measured by Solution Efficiency. International Journal of Computational Geometry & Applications, 10(4):361--382, 2000.
Batdorf, Michael and Freitag, Lori A. and Ollivier-Gooch, Carl. Computational Study of the Effect of Unstructured Mesh Quality on Solution Efficiency. Proc. 13th AIAA Computational Fluid Dynamics Conf., ():, 1997.
Freitag, Lori A. and Knupp, Patrick and Munson, Todd and Shontz, Suzanne. A Comparison of Optimization Software for Mesh Shape-Quality Improvement Problems. roundtable, ():, 2002.
Caginalp, Gunduz and Chen, Xinfu. Convergence of the phase field model to its sharp interface limits. Euro. Jnl of Applied Mathematics, 9():417--445, 1998.
Deckelnick, Klaus and Dziuk, Gerhard. Numerical Approximation of Mean Curvature Flow of Graphs and Level Sets. Mathematical Aspects of Evolving Interfaces, ():, 2003.
Moore, Peter K. and Flaherty, Joseph E.. A Local Refinement Finite-Element Method for One-Dimensional Parabolic Systems. SIAM J. Numer. Anal., 27(6):1422--1444, 1990.
Davis, Stephen F. and Flaherty, Joseph E.. An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations. SIAM J. Sci. Comput., 3(1):6--27, 1982.
Madden, Neil and Stynes, Martin. Efficient Generation of Oriented Meshes for Solving Convection-Diffusion Problems. International Journal for Numerical Methods In Engineering, Wiley, 40():565-576, 1997.
Liu, Biyue. The Analysis of a Fnite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations. SIAM J. Numer. Anal., 38(1):1-16, 2000.
Wu, Haijun and Chen, Zhiming. Uniform Convergence of Multigrid V-cycle on Adaptively Refined Finite Element Meshes for Second Order Elliptic Problems. Science in China: Series A Mathematics, 49(1):1--28, 2006.
Vassilevski, Panayot S. and Wang, Junping. Stabilizing the Hierarchical Basis by Approximate Wavelets {II}: Implementation and Numerical Results. SIAM J. Sci. Comput., 20(2):490-514, 1998.
Vassilevski, Panayot S. and Wang, Junping. Stabilizing the Hierarchical Basis by Approximate Wavelets, {I}: Theory. Numerical Linear Algebra with Applications, 4(2):103-126, 1997.
Giraldo, F. X. and Warburton, T.. A Nodal Triangle-based Spectral Element Method for the Shallow Water Equations on the Sphere. Journal of Computational Physics, ():, 2005.
Lenoir, M.. Optimal Isoparametric Finite Elements and Error Estimates for Domains Involving Curved Boundary. SIAM J. Numer. Anal., 23(3):562-580, 1986.
Cao, Weiming. On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle. SIAM J. Numer. Anal., 43(1):19-40, 2005.
Bloom, Thomas and Calvi, Jean-Paul. A Continuity Property of Multivariate {L}agrange Interpolation. Mathematics of Computation, 66(220):1561-1577, 1997.
Waldron, Shayne. A Multivariate Form of {H}ardy's Inequality and $L_p$-Error Bounds for Multivariate {L}agrange Interpolation Schemes. SIAM Journal on Mathematical Analysis, 28(1):233-258, 1997.
Babuska, Ivo and Guo, Benqi. Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part {III}:Inverse approxima- tion theorems. TICAM Report, ():99-132, 1999.
Babuska, Ivo and Guo, Benqi. Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part {II}: Optimal convergence of the p-version finite element solutions. Math. Models Methods Appl. Sci., 12(5):689-719, 2002.
Babuska, Ivo and Guo, Benqi. Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part {I}: Approximability of Functions in the Weighted Besov Spaces. SIAM J. Numer. Anal., 39(5):1512-1538, 2001.
Guo, Benqi and Heuer, Nobert. The optimal rate of convergence of the $p$-version of the boundary element method in two dimensions. Numer. Math., 98(3):499-538, 2004.
Farouki, Rida T. and Goodman, T. N. T. and Sauer, Thomas. Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains. Computer Aided Geometric Design, 20(4):, 2003.
Sun, Jiachang and Li, Huiyuan. Generalized {F}ourier transform on an arbitrary triangular domain. Advances in Computational Mathematics, 22():223-248, 2005.
Sablonniere, Paul. Recent progress on univariate and multivariate polynomial and spline quasi-interpolants. Trends and Applications in Constructive Approximation, ():, 2005.
Aurenhammer, Franz and Katoh, Naoki and Kojima, Hiromichi. Approximating Uniform Triangular Meshes in Polygons. Theoretical Computer Science, 289(2):879-895, 2002.
Lee, Jin Ho and Jang, Seong Hee. Uniqueness of Solutions for a degenerate Parabolic Equation with Absorption. Kangweon-Kyungki Math. Jour., 5(2):151-167, 1997.
Lutwak, Erwin and Yang, Deane and Zhang, Gaoyong. A New Affine Invariant for polytopes and {S}chneider's Projection Problem. Transactions of the AMS, 353():1767-1779, 2001.
Glasauer, Stefan. An Euler-type version of the local Steiner formula for convex bodies. Bulletin of the London Mathematical Society, 30():618-622, 1998.
Wang, Xinghua and Lai, Ming-Jun and Yang, Sijun. On the Divided Differences of the Remainder in Polynomial Interpolation. Journal of Approximation Theory, 127(2):193-197, 2004.
Chen, W. and Ditzian, Z. and Ivanov, K.. Strong Converse Inequality for the {B}ernstein-Durrmeyer Operator. Journal of Approximation Theory, 75():25-43, 1993.
Braess, Diretrich and Schwab, Christoph. Approximation on Simplices with Resepect to Weigthed {S}obolev Norms. Journal of Approximation Theory, 103():329-337, 2000.
Berdysheva, Elena and Jetter, Kurt and Stockler, Joachim. New polynomial preserving operators on simplices: direct results. Journal of Approximation Theory, 131():59-73, 2004.
Babuška, Ivo and Banerjee, Uday and Osborn, John E.. Survey of meshless and generalized finite element methods: a unified approach. Acta Numer., ():1-125, 2003.
Tai, Xue-Cheng and Chan, Tony F.. A survey on multiple level set methods with applications ofr identifying piecewise constant functions. International Journal of Numerical Analysis and Modeling, 1(1):25-47, 2004.
Bornemann, Folkmar A.. A sharpened condition number estimate for the {BPX} Preconditioner of Elliptic Finite Element Problems on Highly Nonuniform Triangulations. Technique Report, ():, 1991.
Brandts, Jan and Korotov, Sergey and Krizek, Michal. The Strengthened Cauchy-Bunyakowski-Schwarz Inequality for {\it }-Simplicial Linear Finite Elements.. NAA, ():203-210, 2004.
Dumett, Miguel A. and Vassilevski, Panayot S. and Woodward, Carol S.. a multigrid method for nonlinear unstructured finite element elliptic equations. Lawrence Livermore National Laboratory Technical Report UCRL-JC-150513, ():, 2002.
Bertaccini, Daniele and Golub, Gene H. and Serra-Capizzano, Stefano. Superlinear convergence of a preconditioned iterative method for the convection-diffusion equation. Preprint, ():, 2005.
Bertaccini, Daniele and Golub, Gene H. and Serra-Capizzano, Stefano. Analysis of a preconditioned iterative method for the convection-diffusion equation. Preprint, ():, 2005.
Wang, Hong. An Optimal-order error estimate for an {ELLAM} scheme for two-dimensional linear advection-diffusion equations. SIAM J. Numer. Anal., 37(4):1338-1368, 2000.
Wang, Hong and Dahle, Helge K. and Ewing, Richard E. and Espedal, Magne S. and Sharpley, Robert C. and Man, Shushuang. An {ELLAM} Scheme for Advection-diffusion equations in two dimensions. SIAM J. Sci. Comput., 20(6):2160-2194, 1999.
Ewing, Richard E. and Liu, Jiangguo and Wang, Hong. Adaptive biorthogonal spline schemes for advection-reaction equations. Journal of Computational Physics, 193():21-39, 2003.
Wang, Hong and Liu, Jiangguo. Development of {CFL}-free, explicit Schemes for Multidimensional advection-reaction equations. SIAM J. Sci. Comput., 23(4):1418-1438, 2001.
Alfa, Attahiru Sule and Xue, Jungong and ye, Qiang. Accurate Computation of the Smallest Eigenvalue of a Diagonally dominant $M$-matrix. Mathematics of Computation, 71(237):217-236, 2001.
Shu, Shi and Nie, Cunyun and Yu, Haiyun and Huang, Yunqing. A preserving-symmetry finite volume scheme and superconvergence on quadrangle grids. Priprint, ():, 2005.
Alberty, Jochen and Carstensen, Carsten and Funken, Stefan A.. Remarks around 50 lines of {M}atlab: short finite element implementation. Numerical Algorithms, 20():117-137, 1999.
Henson, Van Emden. Multigrid methods for nonlinear problems: an overview. submitted to the conference proceedings of the SPIE 15th Annual Symposium on Electronic Imaging, ():, 2005.
Berndt, Markus and Shashkov, Mikhail. Multilevel accelerated optimization for problems in grid generation. Proc. 12th Int. Meshing Roundtable, ():, 2003.
Burman, Erik and Hansbo, Peter. Edge stabilization for {G}alerkin approximations of convection-diffusion-reaction problems. Methods Appl. Mech. Engrg, ():, 2004.
Cohen, Albert and Dahmen, Wolfgang and DeVore, Ronald. Adaptive Wavelet Techniques in Numerical Simulation. Encyclopedia of Computational Mathematics, ():, 2004.
Chen, Xinfu and Hilhorst, Danielle and Logak, Elisabeth. Asymptotic behavior of solutions of an {A}llen-{C}ahn equation with a nonlocal term. Nonlinear Analysis, 28(7):1283-1298, 1997.
Ewing, Richard E. and Liu, Michael M. and Wang, Junping. Superconvergence of Mixed Finite Element Approximations over Quadrilaterals. SIAM J. Numer. Anal., 36(2):772-787, 1999.
Ewing, Richard E. and Liu, Mingjun and Wang, Junping. A New Superconvergence for Mixed Finite Element Approximations. SIAM J. Numer. Anal., 40(6):2133-2150, 2002.
Sun, Jia-chang. Orthogonal Piece-wise Polynomials Basis on an Arbitrary Triangular Domain and its Applications. Journal of Computational Mathematics, 19(1):55-66, 2001.
McCartin, Brian J.. Eigenstructure of the Equilateral Triangle, Part {II}: The Neumann Problem. Mathematical Problems in Engineering, 8(6):517-539, 2002.
Borisov, V. S.. On Discrete Maximum Principles for Linear Equation Systems and Monotonicity of Difference Schemes. SIAM Journal on Matrix Analysis and Application, 24(4):1110-1135, 2003.
Burman, Erik and Ern, Alexandre. Discrete Maximum principle for {G}alerkin approximations of the {L}aplace operator on arbitrary meshes. C. R. Acad. Sci. Paris Sér. I Math., 338():641-646, 2004.
Burman, Erik and Ern, Alexandre. Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection--diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg., 191():3833-3855, 2002.
Burman, Erik and Ern, Alexandre. Stabilized Galerkin Approximation of Convection-Diffusion-Reaction equations: discrete maximum principle and convergence. Mathematics of Computation, ():, 2005.
Draganescu, Andrei and Dupont, Todd F. and Scott, L. Ridgway. Failure of the Discrete Maximum principle for an Elliptic Finite Element Problem. Mathematics of Computation, 74(249):1-23, 2004.
Korotov, Sergey and Krizek, Michal and Neittaanmaki, Pekka. Weakened Acute Type Condition for Tetrahedral Triangulations and the Discrete Maximum Principle. Mathematics of Computation, 70(233):107-110, 2000.
Griebel, Michael and Zumbusch, Gerhard. Parallel multigrid in an adaptive {PDE} solver based on hashing and space-filling curves. Parallel Computing, 25(7):827-843, 1999.
Axelsson, Owe and Glushkov, Evgeny and Glushkova, Nataliz. Petrov-{G}lerkin method with local {G}reen's functions in singularly perturbed convection-diffusion problems. International Journal of Numerical Analysis and Modeling, 2(2):127-145, 2005.
Arnold, Douglas N.. Differential complexes and numerical stability. Plenary address delivered at ICM 2002 International Congress of Mathematicians, ():, 2004.
Chen, Zhangxin. Equivalence between and multigrid algorithms for nonconforming and mixed methods for second order elliptic problems. East-West Journal of Numerical Mathematics, 4():1-33, 1996.
Amrouche, C. and Bernardi, C. and Dauge, M. and Girault, V.. Vector Potentials in Three-dimensional Non-smooth Domains. Mathematical Methods in the Applied Sciences, 21():823-864, 1998.
Teixeira, F. L.. Geometric aspects of the simplicial discretization of maxwell's equations. Progress in Electromagnetics Research, PIER, 32(171-188):, 2001.
Paulino, G. H. and Menezes, I. F. M. and Neto, J. B. Cavalcante and Martha, L. F.. A methodology for adaptive finite element analysis: Towards an integrated computational environment. Comutational Mechanics, 23(5-6):361-388, 1999.
Mattiussi, Claudio. An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology. Journal of Computational Physics, 133(2):289-309, 1997.
Arnold, Douglas N. and Falk, Richard S. and Winther, Ragnar. Differential Complexes and Stability of Finite Element Methods. {II}. The de {R}ham Complex. preprint, ():, 2005.
Arnold, Douglas N. and Falk, Richard S. and Winther, Ragnar. Differential Complexes and Stability of Finite Element Methods. {I}. The de {R}ham Complex. preprint, ():, 2005.
Bose, P. and Cheong, O. and Cabello, S. and Gudmundsson, J. and van Kreveld, M. and Speckman, B.. Area-Preserving approximations of polygonal paths. Journal of Discrete Algorithms, ():accepted, 2004.
Karypis, George and Kumar, Vipin. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359-392, 1998.
Lazarov, R.D. and Pasciak, J.E. and Tomov, S.Z.. Error control, local grid refinement, and efficient solution algorithms for singularly perturbed problems. Analytical and Numerical Methods for Singularly Perturbed Problems, ():71--82, 2000.
Chumakov, G. A. and Chumakov, S. G.. A Method for the 2-{D} Quasi-Isometric Regular Grid Generation. Journal of Computational Physics, 143(1):1-28, 1998.
Dari, E. A. and Duran, R. G. and Padra, C.. Maximum Norm Error Estimators for Three-Dimensional Elliptic Problems. SIAM J. Numer. Anal., 37(2):683-700, 2000.
Lipnikov, Konstantin and Vassilevski, Yuri. Parallel adaptive solution of 3D boundary value problems by Hessian recovery. Comput. Methods Appl. Mech. Engrg., 192():1495-1513, 2003.
Buscaglia, Gustavo C. and Dari, Enzo A.. Anisotropic Mesh Optimization and its Application in Adaptivity. nternational Journal for Numerical Methods in Engineering, 40(22):4119-4136, 1997.
Lipnikov, Konstantin and Vassilevski, Yuri. Optimal Triangulations: Existence, Approximation and Double Differentiation of ${P}_1$ finite element functions. Comput. Math. Math. Phys., 43(6):827--835, 2003.
Carey, Graham F. and Anderson, M. and Carnes, B. and Kirk, B.. Some aspects of adaptive grid technology related to boundary and interior layers. Journal of Computational and Applied Mathematics, 166(1):55-86, 2004.
Tidriri, M. D.. Error estimates for the hybrid finite element/finite volume methods for linear hyperbolic and convection-dominated problems. Journal of Computational and Applied Mathematics, 156(1):77-92, 2003.
John, V. and Maubach, J.M. and Tobiska, L.. Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numer. Math., 78(2):165-188, 1997.
Knaub, Karl R. and Robert E. O'Malley, Jr.. The motion of internal layers in singularly perturbed advection-diffusion-reaction equations. Studies in Applied Mathematics, 112(1):1-16, 2004.
Galeão, A. C. and Almeida, R. C. and Malta, S. M. C. and Loula, A. F. D.. Finite element analysis of convection dominated reaction--diffusion problems. Applied Numerical Mathematics, 48(2):205--222, 2004.
Acosta, Gabtiel and Duran, Ricardo G.. An optimal poincare inequality in L1 for convex domains. Proceedings Of The American Mathematical Society, 132(1):195--202, 2003.
Duran, Ricardo G. and Muschietti, Maria Amelia. The korn inequality for jones domains. Electronic Journal of Differential Equations, 2004(2004)(127):1--10, 2004.
Acosta, Gabriel and Duran, Ricardo G.. The maximum angle condition for mixed and nonconforming element:application to the stokes equations. SIAM J. Numer. Anal., 37(1):18--36, 1999.
Bramble, James H. and Pasciak, Joseph E. and Steinbach, Olaf. On the stability of the ${L}^2$ projection in ${H^1(\Omega)}$. Mathematics of Computation, 71(237):147-156, 2001.
Douglas, Jim and Dupont, Todd and Wahlbin, Lars. Optimal ${L}_\infty$ error estimates for {G}alerkin approximation to solutions of two-point boundary value problems. Mathematics of Computation, 29(130):475-483, 1975.
Wheeler, Mary Fanett. An Optimal ${L}_\infty$ error estimates for {G}alerkin approximations to solutions of two-point boundary value problems. SIAM J. Numer. Anal., 10(5):914-917, 1973.
de Boor, C.. A bound on the ${L} _\infty$-norm of ${L}_2$-approximation by splines in terms of a global mesh ratio. Mathematics of Computation, 30(136):765-771, 1976.
Dahmen, Wolfgang and Müller, Siegfried and Schlinkmann, Thomas. On an adaptive multigrid solver for convection-dominated problems. SIAM J. Sci. Comput., 23(3):781-804, 2001.
Ludwig, Monika. Moment vectors of polytopes. IV International Conference in "Stochastic Geometry, Convex Bodies, Empirical Measures and Applications to Engineering Science",, II():123-138, 2001.
Andreev, V.B. and Kopteva, N.V.. A study of difference schemes with the first derivative approximated by a central difference ratio. Comp. Maths Math. Phys., 36(8):1065-1078, 1996.
Lenferink, Wim. A second order scheme for a time-dependent, singularly perturbed convection--d. Journal of Computational and Applied Mathematics, 143():49-68, 2002.
Beckett, G. and Mackenzie, J.A.. Uniformly convergent high order finite element solutions of a singularly perturbed reaction--diffusion equation using mesh equidistribution. Applied Numerical Mathematics, 39():31-45, 2001.
Roos, H. and Linß, T.. Gradient Recovery for Singularly Perturbed Boundary Value Problems {I}: One-Dimensional Convection-Diffusion. Computing, 66():163-178, 2001.
Linß, Torsten and Vulanovic, Relja. Uniform methods for semilinear problems with an attractive boundary turning point. Novi Sad J. Math, 31(2):99-114, 2001.
Linß, T. and Roos, H. and Vulanovic, R.. Uniform pointwise convergence of {S}hishkin-type meshes for quasi-linear convection-diffusion problems. SIAM J. Numer. Anal., 38(3):897-912, 2000.
Linß, Torsten. Analysis of a {G}alerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem. IMA Journal of Numerical Analysis, 20():621-632, 2000.
Andreyev, V. B. and Savin, I. A.. The uniform convergence with respect to a small parameter of {A.A. S}amarskii's monotone scheme and its modification. Comp. Maths Math. Phys., 35(5):581-591, 1995.
Linß, Torsten and Stynes, Martin. Asymptotic analysis and Shishkin-type decomposition for an Elliptic convection-diffusion Problem. Journal of Mathematical Analysis and Applications, 261():604-632, 2001.
Guzman, J.. Local Anaylsis of Discontinuous Galerkin Methods Applied to Singularly Perturbed Problems. Journal of Numerical Mathematics, Preprint():, 2005.
Linß, Torsten. Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems. Communications in Numerical Methods in Engineering, in press():Published online in Wiley InterScience, 2005.
Shih, Shagi-Di. A Novel uniform expansion for a singularly perturbed parabolic problem with corner singularity. Methods and Application of Analysis, 3(2):203-227, 1996.
Latecki, Longin Jan and Lakamper, Rolf. Convexity rule for shape decomposition based on discrete contour evolution. Computer Vision and Image Understanding, 73(3):441-454, 1999.
Kolesnikov, Alexander and Fr\''anti, Pasi. Reduced-search dynamic programming for approximation of polygonal curves. Pattern Recognition Letters, 24(14):2243-2254, 2003.
Berger, Alan E. and Han, Houde and Kellogg, R. Bruce. A Priori Estimates and Analysis of a Numerical Method for a Turning Point Problem. Mathematics of Computation, 42(166):465-492, 1984.
Kang, Tong and Yu, Dehao. Some a posteriori error estimates of the finite-difference streamline-diffusion method for convection-dominated diffusion equations. Advances in Computational Mathematics, 15():193-218, 2001.
Yu, D.. Asymptotically exact a posteriori error estimators for elements of bi-odd degree. Chinese Journal of Numerical Mathematics and Applications, 13():64-78, 1991.
Abraham, F.F. and Broughton, J.Q. and Bernstein, N. and Kaxiras, E.. Concurrent coupling of length scales: Methodology and application. Phys. Rev., 60():2391-2402, 1999.
Yu, D.. Asymptotically exact a posteriori error estimator for elements of bi-even degree. Chinese Journal of Numerical Mathematics and Applications, 13():82-90, 1991.
Abraham, F.F. and Broughton, J.Q. and Bernstein, N. and Kaxiras, E.. Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett., 44():783-787, 1998.
Chen, Zhiming and Dai, Shibin. On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients. SIAM J. Sci. Comput., 24(2):443-462, 2002.
Babu$s$ka, I. and Miller, A.. The post-processing approach in the finite element method. {P}art 1. {C}alculation of displacements, stresses and other higher derivatives of the dsplacements. International Journal for Numerical Methods in Engineering, 20():1085-1109, 1984.
Babu$s$ka, I. and Miller, A.. The post-processing approach in the finite element method-{P}art 2: {T}he calculation of stress intensity factors. International Journal for Numerical Methods in Engineering, 20():1111-1129, 1984.
Babu$s$ka, I. and Miller, A.. The post-processing approach in the finite element method. {P}art 3: A posteriori error estimates and adaptive mesh selection.. International Journal for Numerical Methods in Engineering, 20():2311-2324, 1984.
Adjerid, S. and Flaherty, J. E.. A moving-mesh finite element method with local refinement for parabolic partial differential equations. Comp. Meht. Appl. Mech. Engry., 55():3-26, 1986.
Adjerid, S. and Flaherty, J. E.. A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equation. SIAM J. Numer. Anal., 23():778--796, 1986.
Agarwal, P. and Har-Peled, S. and Mustafa, N. and Wang, Y.. Near-Linear Time Approximation Algorithms for Curve Simplification. Proceedings of the 10th Annual European Symposium on Algorithms, ():29-41, 2002.
Agarwal, P. K. and Varadarajan, K. R.. Efficient Algorithms for Approximating Polygonal Chains. Discrete and Computational Geometry, 23():273-291, 2000.
Agouzal, A. and Lipnikov, K. and Vassilevski, Y.. Adaptive generation of quasi-optimal tetrahedral meshes. East-West Journal of Numerical Mathematics, 7():223--244, 1999.
Ainsworth, M. and Coggins, P.. The stability of mixed $hp$-finite element methods for {S}tokes flow on high aspect ratio elements. SIAM J. Numer. Anal., 38(5):1721--1761 (electronic), 2000.
Ainsworth, Mark. Discrete dispersion relation for $hp$-version finite element approximation at high wave number. SIAM J. Numer. Anal., 42(2):553-575, 2004.
Ait-Ali-Yahia, D. and Habashi, W. and Tam, A. and Vallet, M.-G. and Fortin, M.. A directionally adaptive methodology using an edge-based error estimate on quadrilateral grids. Internat. J. Numer. Methods Fluids, 23(7):673--690, 1996.
Al-Mubaiyedh, U. A. and Sureshkumar, R. and Khomani, B.. Influence of energetics on the stability of viscoelastic Taylor-Couette flow. Phys. Fluids, 11():3217--3226, 1999.
Alcouffe, R. E. and Brandt, A. and Dendy, J. E. and Painter, J. W.. The multi--grid methods for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Statist. Comput., 2():430--454, 1981.
Alikakos, Nicholas D. and Bates, Peter W. and Chen, Xinfu. Convergence of the {C}ahn-{H}illiard equation to the {H}ele-{S}haw model. Arch. Rational Mech. Anal., 128(2):165--205, 1994.
Allen, M. B. and Ewing, R. E. and Lu, P.. Well conditioned iterative schemes for mixed finite element models of porous media flows. SIAM J. Sci. Statist. Comput., 13():794--814, 1992.
Almgren, Robert and Bertozzi, Andrea and Brenner, Michael P.. Stable and unstable singularities in the unforced {H}ele-{S}haw cell. Phys. Fluids, 8(6):1356--1370, 1996.
Alouges, F.. A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal., 34(5):1708-1726, 1997.
Alouges, F.. Un schéema numérique pour le calcul d'applications harmoniques de ${\bf {R}}\sp 3$ dans la sph\`ere. C. R. Acad. Sci. Paris Sér. I Math., 311(9):565-570, 1990.
Alouges, F. and Ghidaglia, J. M.. Minimizing {O}seen-{F}rank energy for nematic liquid crystals: algorithms and numerical results. Ann. Inst. H. Poincaré Phys. Théor., 66(4):411-447, 1997.
Alt, H. and Fuchs, U. and Rote, G. and Weber, G.. Matching convex shapes with respect to the symmetric difference. Proc. of the 4th Annual European Symp. on Algorithms, ():320-333, 1996.
Ambrosio, Luigi and Virga, Epifanio G.. A boundary value problem for nematic liquid crystals with a variable degree of orientation. Arch. Rational Mech. Anal., 114(4):335-347, 1991.
Amodio, P. and J. R. Cas and, G. Rousso and, R. W. Wright and Fairweather, G. and Gladwell, I. and Kraut, G. L. and Paprzycki, M.. Almost block diagonal linear systems: sequential and parallel solution techniques, and applications. Numer. Lin. Alg. Appl., 7():275--317, 2000.
Anderson, D. M. and McFadden, G. B. and Wheeler, A. A.. Diffuse-interface methods in fluid mechanics. Annual review of fluid mechanics, Vol. 30, ():139--165, 1998.
Andreev, V. B.. The Green Function and A Priori Estimates of Solutions of Monotone Three-Point Singularly Perturbed Finite-Difference Schemes. Differential Equation, 37(7):923-933, 2001.
Ansari, Ali R. and Hegarty, Alan F.. A note on iterative methods for solving singularly perturbed problems using non-monotone methods on {Shishkin} meshes. Comput. Methods Appl. Mech. Engrg., 192():3673-3687, 2003.
Apel, Th. and Berzins, M. and Jimack, P. K. and Kunert, G. and Plake, A. and Tsukerman, I. and Walkley, M.. Mesh Shape and Anisotropic elements: Theory and Practice. In J. R. Whiteman (ed. ): The Mathematics of Finite Elements and Applications X, Elsevier, Amsterdam,, ():367-376, 2000.
Arigo, M. T. and Rajagopalan, D. and McKinley, G. H.. The sedimentation of a sphere through a elastic fluid. Part 2 Tansient Motion. , 65():17--46, 1996.
Arkin, Esther M. and Chew, L. Paul and Huttenlocher, David P. and Kedem, Klara and Mitchell, Joseph S. B.. An Efficiently Computable Metric For Comparing Polygonal Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):209-216, 1991.
Arlt, G. and Dederichs, H.. Complex elastic, dielectric and piezoelectric constants by domain wall damping in ferroelectric cermaics. Ferroelectrics, 29():47--58, 1980.
Arney, D. C. and Flaherty, J. E.. An adaptive mesh-moving and local refinement method for time-dependentt partial differential equatioins. ACM Trans. Math. Softw., 16():48-71, 1990.
Arnold, D. N. and Brezzi, F.. Some new elements for the {R}eissner-{M}indlin plate model. Boundary value problems for partial differential equations and applications, ():287--292, 1993.
Arnold, D. N. and Falk, R.. Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials. Arch. Rational Mech. Anal., 98():143--165, 1987.
Arnone, A. and Boncinelli, P. and Marconcini, M.. Turbomachinery computations on parallel computers using a multigrid method. Multigrid Methods VI, 14():44--51, 2000.
Asano, T. and Katoh, N.. Number theory helps line detection in digital images. Proc. 4th Annual International Symposium on Algorithms and Computing, 762():313?322, 1993.
Avellaneda, M. and Hou, T. Y. and Papanicolaou, G. C.. Finite Difference Approximations for Partial Differential Equations with Rapidly Oscillating Coefficients. RAIRO Mathematical Modeling and Numerical Analysis, 25(6):693--710, 1991.
Avgousti, M. and Beris, A.. Viscoelastic Taylor-Couette flow: bifurcation analysis in the presence of symmetry. Proc. R. Soc. Lond. A, 443():17--37, 1993.
Axelsson, O. and Eijkhout, V.. The nested recursive two--level factorization method for nine--point difference matrices. SIAM J. Sci. Statist. Comput., 12():1373--1400, 1991.
Axelsson, O. and Gustafsson, I.. Preconditioning and two-level multigrid methods of arbitrary degree of approximation. Mathematics of Computation, 40():219--242, 1983.
Axelsson, O. and Kaporin, I.. Minimum residual adaptive multilevel procedure for the finite element solution of nonlinear stationary problems. , ():, 1996.
B\''ansch, E. and Morin, P. and Nochetto, R. H.. Surface Diffusion of Graphs: Variational Formulation, Error Analysis, and Simulation. SIAM J. Numer. Anal., 42(2):773-799, 2004.
Baaijens, F.T.P.. An U-ALE formulation of 3-D unsteady viscoelastic flow. International Journal for Numerical Methods in Engineering, 36():1115-1143, 1993.
Babuška, Ivo and Caloz, G. and Osborn, J.. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal., 31(4):945-981, 1994.
Babuška, I. and Osborn, J.. Generalized finite element methods: their performance, and their relation to the mixed methods. SIAM J. Numer. Anal., 20(3):510-536, 1983.
Babuška, Ivo and Miller, A.. A feedback finite element method with a posteriori error estimation. {P}art~{I}. {T}he finite element method and some basic properties of a posteriori error estimator. Computer Meth. Appl. Mech Engineer., 61():1-40, 1987.
Babuška, I. and Craig, A. W. and Mandel, J. and Pitkranta, J.. Efficient preconditioning for the {$p$}-version finite element method in two dimensions. SIAM J. Numer. Anal., 28():624--662, 1991.
Bacuta, C. and Xu, Jinchao. Partition of Unity Method for Stokes Problem on Nonmatching Grids. Copper Mountain Conference on Multigrid Methods, ():, 2003.
Bacuta, Constantin and Bramble, James H. and Xu, Jinchao. Regularity Estimates for elliptic boundary value problems with smooth data on polygonal domains. Numer. Math., 11(2):75--94, 2003.
Bacuta, Constantin and Bramble, James H. and Xu, Jinchao. Regularity Estimates for elliptic boundary value problems in Besov spaes. Mathematics of Computation, 72(244):1577--1595, 2002.
Badea, L.. On the {S}chwarz alternating method with more than two subdomains for nonlinear monotone problems. SIAM J. Numer. Anal., 28():179--204, 1991.
Baginski, F. E. and Whitaker, N. Numerical Solutions of Boundary Value Problems for {K} Surfaces in {$\Re^3$}. Numer. Methods Partial. Diff. Equations, 12():525--546, 1996.
Baines, M. J. and Wathen, A. J.. Moving Finite Element methods for Evolutionary problems, I. Theory. Journal of Computational Physics, 79():245-269, 1988.
Baker, A.J. and Chaffin, D.J. and Iannelli, J.S. and Roy, S.. FINITE ELEMENTS FOR CFD---HOW DOES THE THEORY COMPARE?. International Journal of Numer. Meth. Fluids, 31():345--358, 1999.
Bakhalov, N. S.. Towards optimization of methods for solving boundary value problems in the presence of boundary layers. Zh. Vychisl. Mater. Mater. Fiz., 9():841-859, 1969.
Ball, J. M.. A Version of the Fundamental Theorem for {Young} Measures. Partial Differential Equations and Continuum Models of Phase Transitions, ():, 1988.
Ball, J. M. and Holmes, P. J. and James, R. D. and Pego, R. L. and Swart, P. J.. On the Dynamics of Fine Structure. Journal of Nonlinear Science, 1():17--70, 1991.
Ball, J. M. and James, R. D.. Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. Soc. London, A, 338():389--450, 1992.
Bank, R. and Bürger, J. and Fichtner, W. and Smith, R.. Some upwinding techniques for finite element approximations of convection diffusion equations. Numer. Math., 58():185-202, 1990.
Bank, R. E.. Efficient implementation of local mesh refinement algorithms. Adaptive Computational Methods for Partial Differential Equations, ():74--81, 1984.
Bank, R. E.. Hierarchical preconditioners for elliptic partial differential equations. Large Scale Matrix Problems and the Numerical Solution of Partial Differential Equations, ():121--155, 1994.
Bank, R. E.. Analysis of a local a posteriori error estimator for elliptic equations. Accuracy Estimates and Adaptivity in Finite Element Computations, ():119--128, 1986.
Bank, R. E.. A comparison of two multi--level iterative methods for nonsymmetric an indefinite elliptic finite element equations. SIAM J. Numer. Anal., 18():724--743, 1981.
Bank, R. E. and Benbourenane, M.. A {F}ourier analysis of the two--level hierarchical basis multigrid method for convection--diffusion equations. Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, ():178--184, 1991.
Bank, R. E. and Chan, T. F.. {PLTMGC}: A multi--grid continuation program for parameterized nonlinear elliptic systems. SIAM J. Sci. Statist. Comput., 7():540--559, 1986.
Bank, R. E. and Chan, T. F. and Coughran, W. M. and Smith, R. K.. The alternating-block-factorization procedure for systems of partial differential equations. BIT, 29():938--954, 1989.
Bank, R. E. and Douglas, C. C.. Sharp estimates for multigrid rates of convergence with general smoothing and acceleration. SIAM J. Numer. Anal., 22():617--633, 1985.
Bank, R. E. and Gutsch, S.. The generalized hierarchical basis two-level method for the convection-diffusion equation on a regular grid. Multigrid Methods V, 3():1--20, 1998.
Bank, R. E. and Gutsch, S.. Hierarchical basis for the convection-diffusion equation on unstructured meshes. Ninth International Conference on Domain Decomposition Methods, ():251--265, 1997.
Bank, R. E. and Jerome, J. W. and Rose, D. J.. Analytical and numerical aspects of semiconductor device modeling. Computing Methods in Applied Sciences and Engineering V, ():593--597, 1982.
Bank, R. E. and Mittelmann, H. D.. Stepsize selection in continuation procedures and damped {N}ewton's method. J. Comp. and Appl. Math., 26():67--78, 1989.
Bank, R. E. and Rose, D. J.. Discretization and multilevel solution techniques for nonlinear elliptic systems. Elliptic Problem Solvers II, ():493--505, 1984.
Bank, R. E. and Rose, D. J.. Analysis of a multilevel iterative method for nonlinear finite element equations. Mathematics of Computation, 39():453--465, 1982.
Bank, R. E. and Sherman, A. H.. Algorithmic aspects of the multi--level solution of finite element equations. Sparse Matrix Proceedings 1978, ():62--89, 1979.
Bank, R. E. and Sherman, A. H.. A comparison of smoothing iterations for multi--level methods. Advances in Computer Methods for Partial Differential Equations III, ():143--147, 1979.
Bank, R. E. and Sherman, A. H.. The use of adaptive grid refinement for badly behaved elliptic partial differential equations. Mathematics and Computers in Simulation, XXII, ():18--24, 1980.
Bank, R. E. and Sherman, A. H.. A multi--level iterative method for solving finite element equations. Proceedings of the Fifth Symposium on Reservoir Simulation, ():117--126, 1979.
Bank, R. E. and Sherman, A. H. and Weiser, A.. Refinement algorithms and data structures for regular local mesh refinement. Scientific Computing, ():3-17, 1983.
Bank, R. E. and Welfert, B. D. and Yserentant, H.. A class of iterative methods for solving mixed finite element equations. Numer. Math., 56():645--666, 1990.
Bank, R. E. and Xu, Jinchao. A hierarchical basis multigrid method for unstructured grids. Fast Solvers for Flow Problems. Proceedings of the Tenth GAMM-Seminar Kiel, 49():1--13, 1995.
Bank, R. E. and Xu, Jinchao. The hierarchical basis multigrid method and incomplete {LU} decomposition. Domain Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International Conference on Domain Decomposition, 180():163--173, 1994.
Bank, R. E. and Xu, Jinchao. Asymptotically Exact A Posteriori Error Estimators, {P}art {II}: General Unstructured Grids. SIAM J. Numer. Anal., 41(6):2313-2332, 2003.
Bank, R. E. and Xu, Jinchao. Asymptotically Exact A Posteriori Error Estimators, {P}art {I}: Grids with Superconvergence. SIAM J. Numer. Anal., 41(6):2294-2312, 2003.
Bank, Randolph E. and Jimack, Peter K.. A new parallel domain decomposition method for the adaptive finite element solution of elliptic partial differential equations. Concurrency and Computation: Practice and Experience, 13(5):327 - 350, 2001.
Baranger, J. and Sandri, D.. A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow. RAIRO Math. model. and numer. anal., 26():331--345, 1992.
Choi, Hyeokho and Baraniuk, Richard. Multiple basis wavelet denosing using besov projections. Department of Electrical and Computer Engineering, ():, .
Barenblatt, G. I. and Zheltov, I. P. and Kohina, I. N.. Basic Concepts in the Theory of Seppage of Homgeneous Liquids in Fissured Rocks. J Appl. Math. Mech., 24():1286--1303, 1960.
Barequet, G. and Chen, D. Z. and Daescu, O. and Goodrich, M. T. and JSnoeyink. Efficiently Approximating Polygonal Paths in Three and Higher Dimensions. Algorithmica, 33():150-167, 2002.
Barles, G. and Souganidis, P.. Convergence of Approximation Schemes for Fully Nonlinear Second Order Equations. Asymptotic Analysis, 4():271--282, 1991.
Barnik, M.I. and Blinov, L.M. and Grbenkin, M.F. and Pikin, S.A. and Grebekin, V.G.. Experimental verification of the theory of electrohydrodynamic instability in nematic liquid crystals. Phys. Lett A, 51():175--177, 1975.
Bartels, S. and Carstensen, C.. Each averaging technique yields reliable a posteriori error control in {FEM} on unstructured grids. {II}. Higher order {FEM}.. Mathematics of Computation, 71(239):971-994, 2002.
Basri, Ronen and Costa, Luiz and Geiger, Davi and Jacobs, David. Determining the similarity of deformable shapes. Vision Research, 38():2365-2385, 1998.
Bastian, P. and Horton, G.. Parallelization of robust multigrid methods: {ILU} factorization and frequency. SIAM J. Sci. Statist. Comput., 12():1457--1470, 1991.
Bastian, Peter and Johannsen, Klaus and Lang, Stefan and N?gele, Sandra and Wieners, Christian and Reichenberger, Volker and Wittum, Gabriel and Wrobel, Christian. A Parallel Software-Platform for Solving Problems of Partial Differential Equations using Unstructured Grids and Adaptive Multigrid Methods. NIC Symposium 2001, ():503-594, 2002.
Battaglia, F. and Tavener, S. J. and Kuhlkarni, A. K. and Merkle, C. L.. Bifurcation of low Reynolds number flows in symmetric channels. AIAA J., 35():99--105, 1997.
Bauman, P. and Calderer, M. C. and Liu, C. and Phillips, D.. Mathematical studies of the phase transition between chiral nematic and smectic~{A} liquid crystals. Arch. Rat. Mech. Ana., 165(2):161--186, 2002.
Bauman, P. and Calderer, M. C. and Liu, C. and Phillips, D.. The uniform twist grain boundary phase of smectic~{A}* liquid crystals. Preprint, ():, 1999.
Baumert, B. M. and Muller, S. J.. Axisymmetric and non-axisymmetric elastic and inertio-elastic instabilities in Taylor-Couette flow. J. non-Newtonian Fluid Mech., 83():33--69, 1999.
Beale, J. T. and Hou, T. Y. and Lowengrub, J. S. and Shelley, M. J.. Spatial and temporal stability issues for interfacial flows with surface tension. Mathematics of Computation. Modelling, 20(10-11):1--27, 1994.
Beckett, G. and Mackenzie, J. A.. Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Applied Numerical Mathematics, 35():87-109, 2000.
Beckett, G. and Mackenzie, J. A. and Ramage, A. and Sloan, D. M.. Computational Solution of Two-Dimensional Unsteady {PDE}s Using Moving Mesh Methods. Journal of Computational Physics, 182(2):478-495, 2002.
Beckett, G. and Mackenzie, J. A. and Robertson, M. L.. A Moving Mesh Finite Element Method for the Solution of Two-Dimensional Stefan Problems. Journal of Computational Physics, 168(2):500-518, 2001.
Belford, B. B. and Kaufman, J. H. E.. An application of approximation theory to an error estimate in linear algebra. Mathematics of Computation, 28():711--712, 1974.
Belgacem, F. B. and Brenner, S. C.. Some nonstandard finite element estimates with applications to {3D} {P}oisson and {S}ignorini problems. Elect. Trans. Numer. Anal., 12():134--148, 2001.
Bellettini, G. and Paolini, M.. Two Examples of Fattening for the Curvature Flow with a Driving Force. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Mat. Appl, 9(5):229--236, 1994.
Belmonte, A. and Shelley, M. J. and Eldakar, S. T. and Wiggins, C. H.. Dynamic Patterns and Self-Knotting of a Driven Hanging Chain. , 87():114301--114304, 2001.
Ben, Y. and Takhistov, P. and Demekhin, E. A. and Chang, H.-C.. Miscible Fingering in Electrokinetic Flow. J. of the Chinese Institute of Chemical Engineers, 33(1):15, 2002.
Benamou, J. and Brenier, Y.. Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampre transport problem. SIAM Journal on Appl. Math, 58(5):1450--1461, 1998.
Benilan, P. and Crandall, M. G. and Sacks, P.. Some {$L^1$} Existence and Dependence Results for Semilinear Elliptic Equations under Nonlinear Boundary Conditions. Appl. Math. and Optim, 17():203--224, 1988.
Benner, P. and Byers, R. and Fassbender, H. and Mehrmann, V. and Watkins, D.. Cholesky-like factorizations of skew-symmetric matrices. Elect. Trans. Numer. Anal., 11():85--93, 2000.
Bergamaschi, L. and Pini, G. and Sartoretto, F.. Approximate inverse preconditioning in the parallel solution of sparse eigenproblems. Numer. Lin. Alg. Appl., 7():99--116, 2000.
Berger, A. E. and Brezis, H. and Rogers, C. W.. A Numerical Method for Solving the Problem {$u_t-\Delta f(u) = 0$}. RAIRO Numerical Analysis, 13(4):297--312, 1979.
Bern, M. and Eppstein, D. and Gilbert, J. R.. Provably good mesh generation. 31th Annual Symposium on Foundations of Computer Science, ():231--241, 1990.
Bertaccini, D. and Golub, G. and Capizzano, S.. Superlinear Convergence of a preconditioned iterative method for the convection-diffusion equation. Preprint, ():, 2004.
Bertaccini, D. and Golub, G. and Capizzano, S.. Analysis of a preconditioned iterative method for the convection-diffusion equation. Preprint, ():, 2003.
Bertram, M. and Barnes, J. and Hamann, B. and Joy, K. and Pottmann, H. and Wushoura, D.. Piecewise optimal triangulation for the approximation of scattered data in the plane. Computer Aided Geometric Design, (17):767--787, 2000.
Berzins, M. and Jimack, P. K. and Walkley, M. and Durbeck, L. J. K.. Mesh Quality and Moving Meshes for 2D and 3D Unstructured Mesh Flow Solvers. VKI Lecture Series 2000-05, 31st Computational Fluid Dynamics, ():, 2000.
Bethuel, F. and Brézis, H. and Coleman, B. D. and Hélein, F.. Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders. Arch. Rational Mech. Anal., 118(2):149--168, 1992.
Bethuel, F. and Brézis, H. and Hélein, F.. Asymptotics for the minimization of a {G}inzburg-{L}andau functional. Calc. Var. Partial Differential Equations, 1(2):123--148, 1993.
Bethuel, F. and Brézis, H. and Hélein, F.. Tourbillons de {G}inzburg-{L}andau et énergie renormalisée. C. R. Acad. Sci. Paris S\'er. I Math., 317(2):165--171, 1993.
Bethuel, F. and Brézis, H. and Hélein, F.. Limite singuli\`ere pour la minimisation de fonctionnelles du type {G}inzburg-{L}andau. C. R. Acad. Sci. Paris S\'er. I Math., 314(12):891--895, 1992.
Bey, J. and Reusken, A.. On the convergence of basic iterative methods for convection-diffusion equations. Numer. Linear Algebra Appl., 6():329--352, 1999.
Bhattacharya, K. and Firoozye, N. B. and James, R. D. and Kohn, R. V.. Restrictions on Microstructure. Proc. Royal Soc. Edinburgh, 124(5):843--878, 1994.
Bhattacharya, K. and James, R. D.. A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids, 47():531--576, 1999.
Biler, Piotr and Karch, Grzegorz and Woyczynski, Wojbor A.. Asymptotics for conservation laws involving Levy diffusion generators. Studia Math., 148():171--192, 2001.
Billingham, J. and King, A. C. and Copcutt, R. C. and Kendall, K.. Analysis of a model for a loaded, planar, solid oxide fuel cell. SIAM Journal on Appl. Math., 60(2):574--601 (electronic), 2000.
Binev, P. and Dahmen, W. and Devore, R. and Dyn, N.. Adaptive Approximation of Curves. Approximation theory: a volume dedicated to Borislav Bojanov, ():43--57, 2004.
Bjørstad, P. E. and Widlund, O. B.. To overlap or not to overlap: {A} note on a domain decomposition method for elliptic problems. SIAM J. Sci. Statist. Comput., 10():1053--1061, 1989.
Bjørstad, P. E. and Widlund, O. B.. Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal., 23():1097--1120, 1986.
Blake, G. and Mullin, T. and Tavener, S. J.. The Freedericksz transition as a bifurcation problem. Dynamics and Stability of Systems, 14():299--331, 1999.
Blum, H. and Lin, Q. and Rannacher, R.. Asymptotic error expansions and {R}ichardson extrapolation for linear finite elements. Numer. Math., 49():11--37, 1986.
Blum, H. and Rannacher, R.. Extrapolation techniques for reducing the pollution effect ofreentrant corners in the finite element method. Numer. Math., 52():539--564, 1988.
Bolstad, J. H. and Keller, H. B.. A multigrid continuation method for elliptic problems with turning points. SIAM J. Sci. Statist. Comput., 7():1081--1104, 1986.
Boltenhagen, P. and Hu, Y. and Matthys, E. F. and Pine, D. J.. Inhomogeneous structure formation and shear-thickening in worm-like micellar solutions. Europhys. Lett., 38():389, 1997.
Bookstein, Fred L.. Principal Warps: Thin-Plate Splines and the Decomposition of Deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, II(6):567-585, 1989.
de Boor, C.. Good approximation by splines with variables knots {II}. Proceedings of the Eleventh International Conference on Numerical Methods in Fluid Dynamics, 363():12-20, 1974.
Bornemann, F. and Erdmann, B. and Kornhuber, R.. Adaptive multilevel methods in three space dimensions. Intl. J. for Numer. Meth. in Eng., 36(18):3187-3203, 1993.
Borouchaki, H. and Castro-Diaz, M. J. and George, P. L. and Hecht, F. and Mohammadi, B.. Anisotropic adaptive mesh generation in two dimensions for {CFD}. 5th International Conference On Numerical Grid Generation in Computational Field Simulations, 3():197-206, 1996.
Borouchaki, H. and George, P. L. and Hecht, F. and Laug, P. and Saltel, E.. {Delaunay} mesh generation governed by metric specifications. {I}. Algorithms.. Finite Elem. Anal. Des., 25(1-2):61-83, 1997.
Borouchaki, H. and George, P. L. and Mohammadi, B.. {Delaunay} mesh generation governed by metric specifications. {II}. Applications.. Finite Elem. Anal. Des., 25(1-2):85--109, 1997.
Borzi, A. and Kunisch, K. and Vanmaele, M.. A multigrid approach to the optimal control of solid fuel ignition problems. Multigrid Methods VI, 14():59--65, 2000.
Bossavit, Alain. Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches. Magnetics, IEEE Transactions on, 36(4):861 -867, 2000.
Tarhasaari, T. and Kettunen, L. and Bossavit, Alain. Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis]. Magnetics, IEEE Transactions on, 35(3):1494 -1497, 1999.
Bossavit, Alain. Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. Science, Measurement and Technology, IEE Proceedings, 135(8):493-500, 1988.
Botta, E. F. F. and Wubs, F. W.. Matrix Renumbering {ILU}: an effective algebraic multilevel {ILU}-pre\-conditioner for sparse matrices. SIAM Journal on Matrix Anal. Appl., 20():1007--1026, 1999.
Boyer, F.. Theoretical and numerical study of multi-phase flows through order parameter formulation. International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), ():488--490, 1999.
Braess, D.. The convergence rate of a multigrid method with {G}auss--{S}eidel relaxation for the {P}oisson equation (revised). Mathematics of Computation, 42():505--519, 1984.
Braess, Diretrich and Ming, Pingbing. A finite element method for nearly incompressible elasticity problems. Mathematics of Computation, ():Article electronically published on April 28, 2004, 2004.
Bramble, J. and Pasciak, J.. Iterative techniques for time dependent Stokes problems. Computer Methods in Applied Mechanics and Engineering, 1-2():13-30, 1997.
Bramble, J. H. and Ewing, R. E. and Parashkevov, R. R. and Pasciak, J. E.. Domain decomposition methods for problems with partial refinement. SIAM J. Sci. Statist. Comput., 13():397--410, 1992.
Bramble, J. H. and Kwak, D. Y. and Pasciak, J. E.. Uniform convergence of multigrid {V}--cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal., 31():1746--1763, 1994.
Bramble, J. H. and Pasciak, J. E. and Schatz, A. H.. The construction of preconditioners for elliptic problems by substructuring, {IV}. Mathematics of Computation, 53():1--24, 1989.
Bramble, J. H. and Pasciak, J. E. and Schatz, A. H.. The construction of preconditioners for elliptic problems by substructuring, {III}. Mathematics of Computation, 51():415--430, 1988.
Bramble, J. H. and Pasciak, J. E. and Schatz, A. H.. The construction of preconditioners for elliptic problems by substructuring, {II}. Mathematics of Computation, 49():1--16, 1987.
Bramble, J. H. and Pasciak, J. E. and Schatz, A. H.. The construction of preconditioners for elliptic problems by substructuring, {I}. Mathematics of Computation, 47():103--134, 1986.
Bramble, J. H. and Pasciak, J. E. and Schatz, A. H.. An iterative method for elliptic problems on regions partitioned into substructures. Mathematics of Computation, 46():361--369, 1986.
Bramble, J. H. and Pasciak, J. E. and Wang, J. and Xu, Jinchao. Convergence estimates for product iterative methods with applications to domain decomposition. Mathematics of Computation, 57():1--21, 1991.
Bramble, J. H. and Pasciak, J. E. and Wang, J. and Xu, Jinchao. Convergence estimates for multigrid algorithms without regularity assumptions. Mathematics of Computation, 57():23--45, 1991.
Bramble, J. H. and Pasciak, J. E. and Xu, Jinchao. Parallel multilevel preconditioners. Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, ():341--357, 1990.
Bramble, J. H. and Pasciak, J. E. and Xu, Jinchao. A multilevel preconditioner for domain decomposition boundary systems. Proceedings of the Tenth International Conference on Computer Methods in Applied Science and Engineering, ():, 1992.
Bramble, J. H. and Pasciak, J. E. and Xu, Jinchao. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Mathematics of Computation, 56():1--34, 1991.
Bramble, J. H. and Pasciak, J. E. and Xu, Jinchao. The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems. Mathematics of Computation, 51():389--414, 1988.
Bramble, J. H. and Xu, Jinchao. A local post-processing technique for improving the accuracy in mixed finite element approximation. SIAM J. Numer. Anal., 26(6):1267--1275, 1989.
Bramble, J. H. and Zhang, X.. Uniform convergence of the multigrid ${V}$-cycle for an anisotropic problem. Mathematics of Computation, 70(234):453--470, 2001.
Bramble, J.H. and Pasciak, J.E. and Vassilevski, P.S.. Computational scales of Sobolev norms with application to preconditioning. Mathematics of Computation, 69(230):, 1999.
Brandt, A.. Multi--level adaptive technique ({MLAT}) for fast numerical solution to boundary value problems. Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, 18():82--89, 1973.
Brandt, A.. Rigorous local mode analysis of multigrid. Preliminary Proc. of the 4th Copper Mountain Conference on Multigrid Methods, 1():55--133, 1989.
Brandt, A.. Multi--level algorithms for partial differential equations and large grid problems. Preliminary Proc. of the 4th Copper Mountain Conference on Multigrid Methods, 1():21--54, 1989.
Brandt, A.. The {W}eizmann {I}nstitute research in multilevel computation: 1988 report. Proceedings of the Fourth Copper Mountain Conference on Multigrid Methods, ():13--53, 1989.
Brandt, A.. Numerical stability and fast solutions to boundary value problems. Boundary and Interior Layers---Computational and Asymptotic Methods, ():29--49, 1980.
Brandt, A.. Local and multi--level parallel processing mill. Rechnerarchitekturen für die numerische {S}imulation auf der {B}asis superschneller {L}ösunsverfahren I, ():31--40, 1984.
Brandt, A.. Multilevel computations of integral transforms and particle interaction with oscillatory kernels. Comput. Phys. Commun., 65():24--38, 1991.
Brandt, A. and Cryer, C. W.. Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems. SIAM J. Sci. Statist. Comput., 4():655--684, 1983.
Brandt, A. and Dendy, J. E. and Ruppel, H. M.. The multigrid method for semi--implicit hydrodynamics codes. Journal of Computational Physics, 34():348--370, 1980.
Brandt, A. and Diskin, B.. Multigrid solvers on decomposed domains. Domain Decomposition Methods in Science and Engineering: The Sixth International Conference on Domain Decomposition, 157():135--155, 1994.
Brandt, A. and Dym, J.. Effective boundary treatment for the biharmonic {D}irichlet problem. Seventh Copper Mountain Conference on Multigrid Methods, CP 3339():97--107, 1996.
Brandt, A. and Fulton, S. R. and Taylor, G. D.. Improved spectral multigrid methods for periodic elliptic problems. Journal of Computational Physics, 58():96--112, 1985.
Brandt, A. and Lubrecht, A. A.. Multilevel matrix multiplication and fast solution of integral equations. Journal of Computational Physics, 90():348--370, 1990.
Brandt, A. and McCormick, S. F. and Wade, G.. Multilevel parameter estimation. Preliminary Proceedings of the Fifth Copper Mountain Conference on Multigrid Methods, 2():283--296, 1991.
Brandt, A. and Mikulinsky, V.. On recombining iterants in multigrid algorithms and problems with small islands. SIAM J. Sci. Comput., 16():20--28, 1995.
Brandt, A. and Ta'asan, S.. Multigrid solutions to quasi--elliptic schemes. Progress and Supercomputing in Computational Fluid Dynamics, ():235--255, 1985.
Brandt, A. and Yavneh, I.. Improved coarse--grid correction for high--{R}eynolds flows. Preliminary Proceedings of the Fifth Copper Mountain Conference on Multigrid Methods, 1():127--149, 1991.
Brandt, A. and Yavneh, I.. On multigrid solution of high-{R}eynolds incompressible entering flows. Journal of Computational Physics, 101():151--164, 1992.
Brandt, A. and Yavneh, I.. Inadequacy of first-order upwind difference schemes for some recirculating flows. Journal of Computational Physics, 93():128--143, 1991.
Brandt, A. and Zaslavsky, L. Yu.. Multilevel algorithm for atmospheric assimilation. Seventh Copper Mountain Conference on Multigrid Methods, CP 3339():87--96, 1996.
Brandts, J. and Krizek, M.. Gradient superconvergence on uniform simplicial partitions of polytopes. IMA Journal of Numerical Analysis, 23():489-505, 2003.
Brandts, J. and Krizek, M.. History and Future of Superconvergnece in Three-Dimensional Finite Element Methods. Proc. Conf. Finite Element Methods: Three dimensional Problems, GAKUTO Internat. Series Math. Sci. Appl., 15():22--33, 2001.
Brenner, S.. Convergence of the multigrid {$V$}-cycle algorithm for second-order boundary value problems without full elliptic regularity. Mathematics of Computation, 71(238):507--525 (electronic), 2002.
Brenner, S. C.. Two-level additive {S}chwarz preconditioners for nonconforming finite element methods. Mathematics of Computation, 65():897--921, 1996.
Brenner, S. C.. A nonconforming mixed multigrid method for the pure traction problem in planar linear elasticity. Mathematics of Computation, 63():435--460 and S1--S5, 1994.
Brenner, S. C.. A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity. SIAM J. Numer. Anal., 30():116--135, 1993.
Brenner, S. C.. A Multigrid algorithm for the lowest-order {R}aviart-{T}homas mixed triangular finite element method. SIAM J. Numer. Anal., 29():647--678, 1992.
Brezina, M. and Cleary, A. J. and Falgout, R. D. and Henson, V. E. and Jones, J. E. and Manteuffel, T. A. and McCormick, S. F. and Ruge, J. W.. Algebraic multigrid based on element interpolation ({AMG}e). SIAM J. Sci. Comput., 22(5):1570--1592 (electronic), 2000.
Brezis, H. and Pazy, A.. Convergence and Approximations of Semigroups of Nonlinear Operators in {Banach} Spaces. Journal of Functional Analysis, 9():63--74, 1972.
Brezzi, F.. On the Existence, Uniqueness and Approximation of Saddle Point Problems Arising from {Lagrange} Multipliers. RAIRO Numerical Analysis, 8():129--151, 1974.
Brezzi, F. and Franca, L.P. and A.Russo. Further Considerations on Residual Free Bubbles for Advection-Diffusive Equations. Comput. Methods Appl. Mech. Engrg, 166():25-33, 1998.
Brezzi, F. and Hughes, T. J. R. and Marini, L. D. and Russo, A. and Süli, E.. A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems. SIAM J. Numer. Anal., 36(4)():1933-1948, 1999.
Brezzi, F. and Marini, D. and Süli, E.. Residual-free bubbles for advection-diffusion problems: the general error analysis. Numer. Math., 85():31-47, 2000.
Brezzi, F. and Marini, L.D. and Russo, A.. Applications of Pseudo Residual-Free Bubbles to the Stabilization of Convection-Diffusion Problems. Comput. Methods Appl. Mech. Engrg., 166():51-63, 1998.
Brooks, A. and Hughes, T.. Streamline upwind/{P}etrov-{G}alerkin formulations for convection dominated flows with particular emphasis on the incompressible {N}avier-{S}tokes equations. Comp. Meth. in Appl. Mech. Eng., 32():199-259, 1982.
Brown, D. L. and Reyna, L. G. M. and Guillermo, L.. A two--dimensional mesh refinement method for problems with one--dimensional singularities. SIAM J. Sci. Statist. Comput., 6():515--531, 1985.
Brown, L. G. and Lucier, B. J.. Best Approximations in L1 are Near Best in $L_p, p < 1$. Proceedings of the American Mathematical Society, 120(1):97-100, 1994.
Budd, C. J. and Chen, J. and Huang, W. and Russell, R.. Moving mesh methods with applications to blow-up problems for PDEs. Proc. of 1995 Biennial Conference on Numerical Analysis, ():1-17, 1996.
Budd, C. J. and Koomullil, G. P. and Stuart, A. M.. On the Solution of Convection-Diffusion Boundary Value Problems Using Equidistributed Grids. SIAM J. Sci. Comput., 20():591-618, 1998.
Buhmann, Martin D. and Micchelli, Charles A. and Ron, Amos. Asymptotically Optimal Approximation and Numerical Solutions of Differential Equations. Approximation theory and optimization, ():59-82, 1996.
Burchard, Paul and Cheng, Li-Tien and Merriman, Barry and Osher, Stanley. Motion of curves in three spatial dimensions using a level set approach. Journal of Computational Physics, 170(2):720--741, 2001.
Burger, R.and Liu, C. and Wedland, W.. Existence and Stability for Mathematical Models of Sedimentation-Consolidation Processes in Several Space Dimensions. Accepted by Journal of Mathematical Analysis and Applications, ():, 2001.
Börgers, C. and Widlund, O. B.. A domain decomposition {L}aplace solver for internal combustion modeling. SIAM J. Sci. Statist. Comput., 10():211--226, 1989.
C.Y. David Lu, P.D. Olmsted and Ball, R.C.. Effects of Nonlocal Stress on the Determination of Shear Banding Flow. Physical Review Letters, 84():642-645, 2000.
Caffarelli, Luis A. and Muler, Nora E.. An ${L}\sp \infty$ bound for solutions of the {C}ahn-{H}illiard equation. Arch. Rational Mech. Anal., 133(2):129--144, 1995.
Caginalp, G. and Chen, X.. Phase field equations in the singular limit of sharp interface problems. On the evolution of phase boundaries (Minneapolis, MN, 1990--91), ():1--27, 1992.
Caginalp, G. and Socolovsky, E. A.. Efficient Computation of a Sharp Interface by Spreading via Phase Field Methods. Appl. Math. Let., 2/2():117--120, 1989.
Cahn, J. W. and Allen, S. M.. A Microscopic Theory for Domain Wall Motion and Its Experimental Varification in Fe-Al Alloy Domain Growth Kinetics. J. Phys. Colloque, C7():C7-51, 19778.
Cahouet, J. and Chabard, J.. Some fast 3D finite element solvers for the generalized Stokes problem. International Journal of Numer. Meth. in Fluid, 8(8):869-895, 1988.
Cai, W. and de Koning, M. and Bulatov, V.V. and Yip, S.. Minimizing boundary reflections in coupled-domain simulations. Phys. Rev. Lett., 85():3213-3216, 2000.
Cai, W. and Shi, Z. C. and Shu, C. W. and Xu, Jinchao. On A Schur Complement Operator Arisen from Navier-Stokes Equations and Its Preconditioning. Advances in Computational Mathematics, ():481-490, 1998.
Cai, X.--C.. An optimal two--level overlapping domain decomposition method for elliptic problems in two and three dimensions. SIAM J. Sci. Statist. Comput., 14():239--247, 1989.
Cai, X.--C. and Widlund, O. B.. Multiplicative {S}chwarz algorithms for some nonsymmetric and indefinite problems. SIAM J. Numer. Anal., 30():936--952, 1993.
Cai, Z. and Goldstein, C. I. and Pasciak, J. E.. Multilevel iteration for mixed finite element systems with penalty. SIAM J. Sci. Comput., 14():1072--1088, 1993.
Cai, Z. and Lazarow, R. D. and Manteuffel, T. A. and McCormick, S. F.. First-order system least squares for second-order partial differential equations: Part I. SIAM J. Numer. Anal., 31():1785--1802, 1994.
Cai, Z. and Mandel, J. and McCormick, S. F.. The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal., 28():392--402, 1991.
Cai, Z. and McCormick, S. F.. On the accuracy of the finite volume element method for diffusion equations on composite grids. SIAM J. Numer. Anal., 27():636--655, 1990.
Calderer, M. C. and Cook, P. L. and Schleiniger, G.. An analysis of the Bird--Deaguiar model for polymer melt. J. non-Newtonian Fluid Mech., 31():209--225, 1989.
Calderer, M. C. and Cook, P. L. and Schleiniger, G.. Embedded hyperbolic regions in a nonlinear model for viscoelastic flow. Contemporary Mathematics, 100():9--20, 1989.
Calderer, M. C. and Golovaty, D. and Lin, F.-H. and Liu, C.. Time evolution of nematic liquid crystals with variable degree of orientation. Submitted to SIAM Journal on Math. Anal., ():, 1999.
Calderer, M. C. and Liu, C.. Mathematical developments in the study of smectic~{A} liquid crystals. International Journal of Engr. Sci. Mech., 38():1113--1128, 2000.
Calderer, M. C. and Liu, C. and Shen, Q.. Axisymmetric configurations of bipolar liquid crystal droplets. Accepted by Continuum Mechanics and Thermodynamics, ():, 2000.
Calderer, M. C. and Palffy-Muhoray, P.. Ericksen's mar and modeling of the smectic~A --nematic phase transition. SIAM Journal on Appl. Math., accepted, ():, 1999.
Cao, W. and Saxena, A. and Hatch, D.. Improper ferroelastic phase transitions driven by zone boundary phonon in RAg1-xInx. Submitted to Phys. Review B, 83():4415--4420, 1999.
Cao, W. and Huang, W. and Russell, R. D.. A study of monitor functions for two dimensional adaptive mesh generation. SIAM J. Sci. Comput., 20():1978-1994, 1999.
Cao, W. and Lang, J. and Huang, W. and Russell, R. D.. A Two-dimensional Moving Finite Element Method with Local Refinement Based on a Posteriori Error Estimates. Applied Numerical Mathematics, 46():75-94, 2003.
Cao, W. and Tavener, S. J. and Xie, S.. Simulation of boundary condition influence in a second-order ferroelectric phase transition. To appear in J. App. Phys, ():, 1999.
Capeci, S. W. and Pintauro, P. N. and Bennion, D. N.. The Molecular-Level Interpretation of Salt Uptake and Anion Transport in Nafion Membranes. J. Electrochem. Soc., 136():2876, 1989.
Capizzano, S. S. and Possio, C. T.. High-order Finite Difference schemes and {T}oeplitz based preconditioners for elliptic problems. Elect. Trans. Numer. Anal., 11():55-84, 2000.
Cappelaere, E. and Berret, J.-F. and Decruppe, J.-P. and Cressely, R. and Lindner, P.. Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: Evidence of a shear-induced phase transition. Phys. Rev. E, 56():1869--1878, 1997.
Carlson, Neil N. and Miller, Keith. Design and Application of a Gradient-Weighted Moving Finite Element Code {II}: in Two Dimensions. SIAM J. Sci. Comput., 19 No. 3():766-798, 1998.
Carlson, Neil N. and Miller, Keith. Desing and Application of a Gradient Weighted Moving Finite Element Code I: In One Dimension. SIAM J. Sci. Comput., 19 No. 3():728-765, 1998.
Carpentieri, B. and Duff, I. S. and Giraud, L.. Sparse pattern selection strategies for robust {F}robenius norm minimization preconditioners in electromagnetism. Numer. Lin. Alg. Appl., 7():667-685, 2000.
Carré, G. and Carte, G. and Guillard, H. and Lanteri, S.. Multigrid strateegies for {CFD} problems on non--structured meshes. Multigrid Methods VI, 14():1--10, 2000.
Carstensen, C.. Some Remarks On The History And Future Of Averaging Techniques In A Posteriori Finite Element Error Analysis. ZAMMZ. Angew. Math. Mech., 84(1):3-21, 2004.
Carstensen, C.. All First-Order Averaging Techniques For A Posteriori Finite Element Error Control On Unstructured Grids Are Efficeent And Reliable. Mathematics of Computation, 73(247):1153-1165, 2003.
Carstensen, C. and Bartels, S.. Each averaging technique yields reliable a posteriori error control in {FEM} on unstructured grids. {I}. Low order conforming, nonconforming, and mixed {FEM}.. Mathematics of Computation, 71(239):945-969, 2002.
Carstensen, C. and Bartels, S. and Klose, R.. An experimental survey of a posteriori Courant finite element error control for the Poisson equation. Advances in Computational Mathematics, 15():79--106, 2001.
Carstensen, C. and Maischak, M. and Stephan, E. P.. A posteriori error estimate and $h$-adaptive algorithm on surfaces for Symm's integral equation.. Numer. Math., 90(2):197-213, 2001.
Carstensen, Carsten. Mering The {Bramble}-{Pasciak}-{Steinbach} And The {Crouzeix}- {Thomee} Criterion For ${H}^1$-Stability Of The ${L}^2$-Projection Onto Finite Element Spaces. Mathematics of Computation, 71(237):157-163, 2001.
Carstensen, Carsten. Quasi-Interpolation And A Posteriori Error Analysis In Finite Element Methods. Mathematical Modelling and Numerical Analysis, 33(6):1187-1202, 1999.
Carvalho, L. M. and Giraud, L. and Meurant, G. A.. Local preconditioners for two-level non-overlapping domain decomposition methods. Numer. Lin. Alg. Appl., 8():207--227, 2001.
Cawood, M. E. and Ervin, V. J. and Layton, W. J. and Maubach, J. M.. Adaptive defect correction methods for convection dominated, convection diffusion problems. Journal of Computational and Applied Mathematics, 116(1):1-21, 2000.
Chambolle, Antonin and Devore, Ronald A. and Lee, Nam-yong and Lucier, Bradley J.. Nonlinear wavelet image processing:variational problems, compression, and noise removal through wavelet shrinkage. IEEE TRANSACTIONS ON IMAGE PROCESSING, 7(3):319-335, 1998.
Chan, T. and Sharapov, I.. Subspace Correction Multilevel Methods for Elliptic Eigenvalue Problems. The Proceedings for Ninth International Conference on Domain Decomposition Methods, ():, 1996.
Chan, T. F. and Gallopoulos, E. and Simoncini, V. and Szeto, T. and Tong, C.. {QMRCGSTAB}: A quasi-minimal residual variant of the {Bi-CGSTAB} algorithm for nonsymmetric systems. SIAM J. Sci. Comput., 15():338--347, 1993.
Chan, T. F. and Goovaerts, D.. On the relationship between overlapping and nonoverlapping domain decomposition methods. SIAM Journal on Matrix Anal. Appl., 13():663--670, 1992.
Chan, T. F. and Goovaerts, D.. A note on the efficiency of domain decomposed incomplete factorizations. SIAM J. Sci. Statist. Comput., 11():794--803, 1990.
Chan, T. F. and Hou, T. and Lions, P. L.. Geometry-independent convergence results for domain decomposition algorithms. SIAM J. Numer. Anal., 28():378--391, 1991.
Chan, T. F. and Jackson, K. R.. The use of iterative linear equation solvers in codes for systems of stiff {IVP}s for {ODE}s. SIAM J. Sci. Statist. Comput., 7():378--417, 1986.
Chan, T. F. and Keller, H. B.. Arc--length continuation and multi--grid techniques for nonlinear elliptic eigenvalue problems. SIAM J. Sci. Statist. Comput., 3():173--194, 1982.
Chan, T. F. and Keyes, D. E.. Interface preconditionings for domain--decomposed convection--diffusion operators. Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, ():245--262, 1990.
Chan, T. F. and Schreiber, R.. Parallel networks for multi--grid algorithms: architecture and complexity. SIAM J. Sci. Statist. Comput., 6():698--711, 1985.
Chan, T. F. and Smith, B.. Domain decomposition and multigrid methods for elliptic problems on unstructured meshes. Domain Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International Conference on Domain Decomposition, 180():175--189, 1994.
Chan, Tony F. and Xu, Jinchao and Zikatanov, Ludmil. An agglomeration multigrid method for unstructured grids. 10-th international conference on {D}omain {D}ecomposition methods, 218():67--81, 1998.
Chan, W. S. and Chin, F.. Approximation of polygonal curves with minimum number of line segments or minimum errror. International Journal of Computational Geometry and Applications, 6(1):59-77, 1996.
Chang, H.-C. and Demekhin, E. A. and Kalaidin, E.. Coherent Structures, Self-Similarity, and Universal Roll Wave Coarsening Dynamics. Phys. of Fluids, 12():2268, 2000.
Chang, H.-C. and Demekhin, E. A. and Takhistov, P. V.. Circular Hydraulic Jumps Triggered by Boundary Layer Separation. Journal of Colloid and Interface Science, 233():329, 2001.
Chang, Y. C. and Hou, T. Y. and Merriman, B. and Osher, S.. A level set formulation of {E}ulerian interface capturing methods for incompressible fluid flows. Journal of Computational Physics, 124(2):449--464, 1996.
Chemin, J. Y. and Masmoudi, N.. About Lifespan of Regular Solutions of Equations Related to Viscoelastic Fluids. SIAM Journal on MAth. Anal., 33(1):84--112, 2001.
Chen, H. and Jasnow, D. and Vinals, J.. Interface and Contact Line Motion in a Two Phase Fluid under Shear Flow. Phys. Rev. Lett., 85():1686--1689, 1986.
Chen, H. C. and Sameh, A. H.. A matrix decomposition method for orthotropic elasticity problems. SIAM Journal on Matrix Anal. Appl., 10():39--64, 1989.
Chen, Long. New Analysis of the Sphere Covering Problems and Optimal Polytope Approximation of Convex Bodies. Journal of Approximation Theory, 133(1):134-145, 2005.
Chen, Long and Sun, Pengtao and Xu, Jinchao. Multilevel Homotopic Adaptive Finite Element Methods for Convection Dominated Problems. The Proceedings for 15th Conferences for Domain Decomposition Methods, 40():459--468, 2004.
Chen, Long and Xu, Jinchao. Stability and accuracy of adapted finite element methods for singularly perturbed problems. Numer. Math., 109(2):167--191, 2008.
Chen, Long and Xu, Jinchao. An Optimal Streamline Diffusion Finite Element Method for a Singularly Perturbed Problem. AMS Contemporary Mathematics Series: Recent Advances in Adaptive Computation, 383():236--246, 2005.
Chen, M. and Temam, R.. Nonlinear {G}alerkin method in the finite difference case and wavelet like incremental unknowns. Numer. Math., 64():271--294, 1993.
Chen, X.. Spectrum for the {A}llen-{C}ahn, {C}ahn-{H}illiard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations, 19(7-8):1371--1395, 1994.
Chen, Y.. Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adaptive grid. Accepted by Advances in Computational Mathematics, ():, 2005.
Chen, Y.. Uniform pointwise convergence for a singularly perturbed problem using arc-length equidistribution. Proceedings of the 6th Japan-China Joint Seminar on Numerical Mathematics (Tsukuba, 2002).. J. Comput. Appl. Math. 159, 159(1)():25-34, 2003.
Chen, Y. G. and Giga, Y. and Goto, S.. Analysis Toward Snow Crystal Growth. Proceedings of International Symposium on Functional Analysis and Related Topics, ():43--57, 1991.
Chen, Y. G. and Giga, Y. and Goto, S.. Uniqueness and Existence of Viscosity Solutions of Generalized Mean Curvature Flow Equations. J. Diff. Geom., 33():749--786, 1991.
Chen, Y. G. and Giga, Y. and Hitaka, T. and Honma, M.. Numerical Analysis for Motion of a Surface by it's Mean Curvature. J. Diff. Geom., 33():749--786, 1991.
Chen, Z. and Nochetto, R. and Schmidt, A.. A characteristic Galerkin method with adaptive error control for the continuous casting problem. Comput. Methods Appl. Mech. Engrg., 189(1):249-276, 2000.
Cheng, H. and Yeh, G. and Xu, Jinchao and Cheng, J. and Carsel, R.. A study of incorporating the multigrid method into the three-dimensional finite element discretization: a modular setting of grid generation and application. International Journal for Numerical Methods in Engineering, 41():499--526, 1998.
Cheng, H. and Yeh, G. and Xu, Jinchao and Cheng, J. and Carsel, R.. An application of incorporating the multigrid method into two three-dimensional subsurvace finite element models. International Journal for Numerical Methods in Engineering, ():, 1996.
Chetverikov, Dmitry. A Simple and Efficient Algorithm for Detection of High Curvature Points in Planar Curves. Computer Analysis of Images and Patterns: 10th International Conference, CAIP 2003, Groningen, The Netherlands, August 25-27, 2003, Proceedings, ():746 - 753, 2003.
Chin, R. C. Y. and Krasny, R.. A hybrid asymptotic--finite element method for stiff two--point boundary value problems. SIAM J. Sci. Statist. Comput., 4():229--243, 1983.
Chou, M. H.. An efficient scheme for unsteady flow past an object with boundary conformal to a circle. SIAM J. Sci. Statist. Comput., 13():860--873, 1992.
Chui, C. K. and Hong, D. and Jia, R. Q.. Stability of Optimal-Order Approximation by Bivariate Splines over Arbitrary Triangulations. Transactions of the American Mathematical Society, 347(9):3301-3318, 1995.
Ciarlet, P. G. and Raviart, P. A.. Maximum Principle and Uniform Convergence for the Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 2():17--31, 1973.
Cliffe, K. A. and Spence, A. and Tavener, S. J.. O(2)-symmetry breaking bifurcations: with application to flow past a sphere in a pipe. To appear in International Journal of Numer. Meth. Fluids, ():, 1999.
Cliffe, K. A. and Tavener, S. J.. Marangoni-{B}\'enard convection with a deformable free surface. Journal of Computational Physics, 145(1):193--227, 1998.
Cliffe, K. A. and Tavener, S. J. and Wheeler, A. A.. {An orthogonal mapping technique for the computation of a viscous free-surface flow}. {International Journal of Numer. Meth. Fluids}, {15}():{1243--1258}, {1992}.
Cockburn, B. and Coquel, F. and Lefloch, P. G.. Convergence of the Finite Volume Method for Multidimensional Conservation Laws. SIAM J. Numer. Anal., 32():3, 1995.
Codina, Ramon. Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comp. Meht. Appl. Mech. Engry., 156():185-210, 1998.
Cohen, A.. Adaptive Methods for PDE's: waveletes or mesh refinement?. Proceedings of the International Congress of Mathematicians, Vol. I, ():607-620, 2002.
Cohen, A. and Dahmen, W. and DeVore, R.. Adaptive wavelet methods for elliptic operator equations: Convergence rates. Mathematics of Computation, 70():27-75, 2001.
Cohen, Albert and Dahmen, Wolfgang and Daubechies, Ingrid and DeVore, Ronald. Harmonic Analysis of the space {BV}. Rev. Mat. Iberoamericana, 19(1):235-263, 2003.
Cohen, Albert and Kaber, Sidi Mahmoud and Müller, Siegfried and Postel, Marie. Fully adaptive multiresolution finite volume schemes for conservation laws. Mathematics of Computation, 72():183-225, 2003.
Cohen, R. and Hardt, R. and Kinderlehrer, D. and Lin, S. Y. and Luskin, M.. Minimum energy configurations for liquid crystals: computational results. Theory and applications of liquid crystals, ():99-121, 1987.
Cohen, R. and Lin, S. Y. and Luskin, M.. Relaxation and gradient methods for molecular orientation in liquid crystals. Comput. Phys. Comm., 53():455-465, 1989.
Colby, R. H. and Gillmor, J. R. and Galli, G. and Laus, M. and Ober, C. K. and Hall, E.. Linear viscoelasticity of side chain liquid crystal polymers. Liquid Crystals, 13():13:233, 1993.
Collins, C. and Kinderlehrer, D. and Luskin, M. Numerical Approximation of the Solution of a Variational Problem with a Double Well Potential. SIAM J. Numer. Anal., 28(2):321--332, 1991.
Collins, C. and Luskin, M.. The Computation of the Austenitic-Martensitic Phase Transition. Partial Differential Equations and Continuum Models of Phase Transitions, Lecture Notes in Physics 344, ():34--50, 1989.
Collins, C. and Luskin, M.. Computational Results for Phase Transitions in Shape Memory Materials. Smart Materials, Structures and Mathematical Issues, ():198--215, 1989.
Collins, C. and Luskin, M.. Optimal order Error Estimates for the Finite Element Approximation of the Solution of a Nonconvex Variational Problem. Mathematics of Computation, 57(196):621--637, 1991.
Concus, P. and Golub, G. H. and Meurant, G. A.. Block preconditioning for the conjugate gradient method. SIAM J. Sci. Statist. Comput., 6():220--252, 1985.
Conway, J. H. and Sloane, N. J. A.. A Lower Bound on the Average Error of Vector Quantizers. IEEE Transactions on Information Theory, 31():106-109, 1985.
Crandall, M. G.. An Introduction to Evolution Equations Governed by Accretive Operators. Dynamical Systems, Volume 1, An International Symposium, ():, 1976.
Crandall, M. G. and Ishi, H. and Lions, P. L.. User's Guide to Viscosity Solutions of Second Order Partial Differential Equations. Bulletin AMS, 27(1):1--67, 1992.
Crandall, M. G. and Liggett, T. M.. Generation of Semigroups of Nonlinear Transformations on General {Banach} Spaces. Ameraican Journal of Mathematics, 93():265--293, 1971.
Crouzeix, M. and Thomee, V. The Stability in ${L}^p$ and ${W}^{1,p}$ of the ${L}^2$ Projection onto Finite Element Function Spaces. Mathematics of Computation, 48(178):521--532, 1987.
D.Ait-Ali-Yahia and G.Baruzzi and W.G.Habashi and M.Fortin and J.Dompierre and M.G.Vallet. Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD - Part II Structured grids. International Journal for Numerical Methods in Fluids, 39():657-673, 2002.
Dahlke, S. and Lindemann, M. and Teschke, G. and Zhariy, M. and Soares, M. J. and Cerejeiras, P. and Kahler, U.. A Wavelet Based Numerical Method for Nonlinear Partial Differential Equations. , ():, .
Dahmen, Wolfgang and Stevenson, Rob. Element-by-elment construction of wavelets satisfying stability and moment conditions. SIAM J. Numer. Anal., 37(1):319-352, 1999.
Dai, F. and Wang, K.. A note on the equivalences between the averages and the K-functionals related to the Laplacian. J. Approx. Theory, 130():38-45, 2004.
Davis, T. A. and Gartland, E. C.. Finite element analysis of the {L}andau-de {G}ennes minimization problem for liquid crystals. SIAM J. Numer. Anal., 35():336--362, 1998.
Davis, T.J.. Fast decomposition of digital curves into polygons using the Haar transform. IEEE Transactions on IPattern Analysis and Machine Intelligence, 21(8):786 - 790, 1999.
Davydov, O. and Petrushev, P.. Nonlinear Approximation from Differentiable Piecewise Polynomials. SIAM Journal on Mathematical Analysis, 35(3):708-758, 2003.
Dawson, C. and Wheeler, M.. Two-grid methods for mixed finite element approximations of nonlinear parabolic equations. Domain Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International Conference on Domain Decomposition, 180():191--203, 1994.
Dawson, C. and Woodward, C. and Wheeler, M.. A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal., 35(2):435-452, 1998.
Dawson, C. N. and Dupont, T. F.. Explicit/implicit, conservative domain decomposition procedures for parabolic problems based on block-centered finite differences. SIAM J. Numer. Anal., 31():1045--1061, 1994.
Deang, J. and Du, Q. and Gunzburger, M. and Peterson, J.. Vortices in superconductors: modelling and computer simulations. Philos. Trans. Roy. Soc. London, 355(1731):1957--1968, 1997.
Debled-Rennesson, I. and Tabbone, S. and Wendling, L.. Fast polygonal approximation of digital curves. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, ():, 2004.
DeGersem, H. and Vandewalle, S. and Hameyer, K.. A finite--element/equivalent--circuit two--level method for magnetic field simulations. Multigrid Methods VI, 14():73--79, 2000.
Dendy, J. E.. Two multigrid methods for three-dimensional equations with highly discontinuous coefficients. SIAM J. Sci. Statist. Comput., 8():673--685, 1987.
Dendy, J. E. and Ida, M. P. and Rutledge, J. M.. A semicoarsening multigrid algorithm for {SIMD} machines. SIAM J. Sci. Statist. Comput., 13():1460--1469, 1992.
Denisova, I. V. and Solonnikov, V. A.. Classical solvability of the problem of the motion of two viscous incompressible fluids. Algebra i Analiz, 7(5):101--142, 1995.
Denisova, I. V. and Solonnikov, V. A.. Solvability of a linearized problem on the motion of a drop in a fluid flow. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 171():, 1989.
Denny, D. L. and Pego, R. L.. Models of low-speed flow for near-critical fluids with gravitational and capillary effects. Quart. Appl. Math., 58(1):103--125, 2000.
DeVore, R. A.. Adaptive numerical methods for solving {PDE}s. A. Blouza, I. Danaila, P. Joly, S.M. Kaber, B. Lucquin, F. Murat and M. Postel, ():97-116, 2002.
DeVore, Ronald A and Lucier, Bradley J. On the size and smoothness of solutions to nonlinear hyperbolic conservations laws. Siam J, MATH. ANAL., 27(3):1-24, 1996.
Devore, Ronald A. and Sharpley, Robert C.. {B}esove Spaces on Domains in $\mathbb{R}^d$. Transactions of the American Mathematical Society, 335(2):843-864, 1993.
DeMottoni, P. and Schatzman, M.. Geometrical Evolution of Developped Interfaces. Emerging Applications in Free Boundary Problems, (280):166--172, 1990.
de~Zeeuw, P. M. and van~Asselt, E. J.. The convergence rate of multi--level algorithms applied to convection-diffusion equations. SIAM J. Sci. Statist. Comput., 6():492--503, 1985.
Di, Y. and Li, R. and Tang, T. and Zhang, P.. Moving Mesh Finite Element Methods for the Incompressible Navier-Stokes Equations. to appear in SIAM J. Sci. Comput., ():, 2003.
Dieci, L. and Bader, G.. Solution of the systems associated with invariant tori approximation. {II}. {M}ultigrid methods. SIAM J. Sci. Comput., 15():1375--1400, 1994.
Difilippo, Felix C. and Perez, Rafael B.. Application of a new integral representation of the ${K}\sb 0$ {B}essel function. Appl. Math. Lett., 5(5):51--53, 1992.
DiPerna, R. J. and Lions, P.-L.. On the {C}auchy problem for {B}oltzmann equations: global existence and weak stability. Ann. of Math. (2), 130(2):321--366, 1989.
DiPerna, R. J. and Lions, P.-L. and Meyer, Y.. ${L}\sp p$ regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8(3-4):271--287, 1991.
Doi, M.. Molecular dynamics and rheological properties of concentrated solutions of rodlike polmers in isotropic and liquid crystalline phases. J. Polymer Sci.: Polumer Phys. Edi., 19():229--243, 1981.
Dolejsi, V.. Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Computing and Visualization in Science, 1():165-178, 1998.
Dompierre, Julien and Vallet, Marie-Gabrielle and Labbe, Paul and Guibault, Francois. On simplex shape measures with extension for anisotropic meshes. Presented at Workshop on Mesh Quality and Dynamic Meshing, more, CA, janvier 2003. Sandia National Laboratories.():46--71, 2003.
Donoho, David L. and Johnstone, Iain M.. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90():1200-1224, 1995.
Dorlofsky, L. and Engquist, B. and Osher, S.. Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comp. Phys., 98(1):, 1992.
Dorr, M. R.. The approximation of solutions of elliptic boundary--value problems via the p--version of the finite element method. SIAM J. Numer. Anal., 23():58--77, 1986.
Douglas, C. C. and Douglas, J.. A unified convergence theory for abstract multigrid or multilevel algorithms, serial and parallel. SIAM J. Numer. Anal., 30():136--158, 1993.
Douglas, C. C. and Haase, G. and Hu, J. and Kowarschik, M. and Rüde, U. and Weiss, C.. Portable memory hierarchy techniques for PDE solvers, Part II. SIAM News, 33(6):1, 10--11, 16, 2000.
Douglas, C. C. and Haase, G. and Hu, J. and Kowarschik, M. and Rüde, U. and Weiss, C.. Portable memory hierarchy techniques for PDE solvers, Part I. SIAM News, 33(5):1, 8--9, 2000.
Douglas, C. C. and Hu, J. and Iskandarani, M.. Preprocessing costs of cache based multigrid. Proceeding of ENUMATH99: Third European Conference on Numerical Methods for Advanced Applications, ():362--370, 2000.
Douglas, C. C. and Hu, J. and Iskandarani, M. and Kowarschik, M. and Rüde, U. and Weiss, C.. Maximizing cache memory usage for multigrid algorithms. Multiphase Flows and Transport in Porous Media: State of the Art, ():124--137, 2000.
Douglas, C. C. and Hu, J. and Karl, W. and Kowarschik, M. and Rüde, U. and Weiss, C.. Fixed and adaptive cache aware algorithms for multigrid methods. Multigrid Methods VI, 14():87--93, 2000.
Douglas, C. C. and Hu, J. and Kowarschik, M. and Rüde, U. and Weiss, C.. Cache optimization for structured and unstructured grid multigrid. Elect. Trans. Numer. Anal., 10():21--40, 2000.
Douglas, C. C. and Hu, J. and Ray, J. and Thorne, D. T. and Tuminaro, R. S.. Fast, adaptively refined computational elements in 3{D}. Computational Science -- ICCS 2002, 3():774--783, 2002.
Douglas, C. C. and Smith, B. F.. Using symmetries and antisymmetries to analyze a parallel multigrid algorithm. SIAM J. Numer. Anal., 26():1439--1461, 1989.
Douglas, D. H. and Peucker, T. K.. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10(2):112-122, 1973.
Drikakis, D. and Iliev, O. and Vassileva, V.. An adaptive--smoothing multigrid method for the {N}avier--{S}tokes equations. Multigrid Methods VI, 14():94--100, 2000.
Dris, I. M. and Shaqfeh, E. S. G.. Flow of a viscoelastic fluid between eccentric cylinders: impact on flow stability. J. non-Newtonian Fluid Mech., 80():59--87, 1998.
Dris, I. M. and Shaqfeh, E. S. G.. Experimental and theoretical observations of elastic instabilities in eccentric cylinder flows: local versus global instability. J. non-Newtonian Fluid Mech., 80():1--58, 1998.
Dryja, M.. A finite element--capacitance matrix method for elliptic problems in regions partitioned into subregions. Numer. Math., 44():153--168, 1984.
Dryja, M. and Smith, B. F. and Widlund, O. B.. Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal., 31():, 1994.
Du, Liu and Yan, Ningning. Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes. Adv. Comput. Math., 14(2):175--193, 2001.
Du, Q. and Gunzburger, M.. Grid generation and optimization based on centroidal {Voronoi} tessellations. Appl. Mathematics of Computation, 133():591-607, 2002.
Du, Q. and Nicolaides, R. A. and Wu, X. Analysis and convergence of a covolume approximation of the {Ginzburg-Landau} model of superconductivity. SIAM J. Numer. Anal., 35(3):1049--1072, 1997.
Du, Q. and Shen, J. and Guo, B.. Fourier Spectral Approximation to a Dissipative System Modeling the Flow of Liquid Crystals. SIAM J. Numer. Anal., 39():735-762, 2001.
Dudek, Gregory and Tsotsos, John K.. Shape Representation and Recognition from Multiscale Curvature. COMPUTER VISION AND IMAGE UNDERSTANDING, 68(2):170-189, 1997.
Dunham, James George. Optimum uniform piecewise linear approximation of planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):67-75, 1986.
Dupont, T. and Liu, Y.. Symmetric Error Estimates for Moving Mesh Galerkin Methods for Advection-Diffusion Equations. SIAM J. Numer. Anal., 40(3):914-927, 2002.
Dupont, T. F. and Kendall, R. P. and Rachford, H. H.. An approximate factorization procedure for solving self--adjoint elliptic difference equations. SIAM J. Numer. Anal., 5():559--573, 1968.
Duran, R. and Muschietti, M.A. and Rodriguez, R.. On the asymptotic exactness of error estimators for linear triangular finite elements. Numer. Math., 59():107-127, 1991.
Dureisseix, D. and Farhat, C.. A numerically scalable domain decomposition method for the solution of frictionless contact problems. International Journal of Numer. Meth. Engng., 50():2643--2666, 2001.
Dari, E. A. and Buscaglia, G. C.. Mesh optimization: how to obtain good unstructured 3-D finite element meshes with not-so-good mesh generators. Structural Optimization, 8():181-188, 1994.
Eijkhout, V. and Vassilevski, P. S.. The role of the strengthened {C}auchy--{B}uniakowskii--{S}chwarz inequality in multilevel methods. SIAM Rev., 33():405--419, 1991.
Eikerling, M. and Kharkats, Yu. I. and Kornyshev, A. A. and Volkovich, Yu. M.. Phenomenological theory of electro-osmotic effect and water management in polymer elecrolyte proton-conducting membranes. J. ELec. Soc., 145():2684-2699, 1998.
Eikerling, Michael and Paddison, S. J. and R.Pratt, Lawrence and Jr., T. A. Zawodzinski. Defect structure for proton transport in a triflic acid monohydrate solid. Chemical Physics Letters, 368():108-114, 2003.
Eisenstat, S. C. and Elman, H. C. and Schultz, M. H.. Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 20():345--357, 1983.
Elliot, C. M. and French, D. A. and Milner, F. A.. A Second Order Spitting Method for the {Cahn--Hilliard} Equation. Numer. Math., 54():575--590, 1989.
Elman, H. C. and Chernesky, M. P.. Ordering Effects on Relaxation Methods Applied to the Discrete Convection-Diffusion Equation. Recent Advances in Iterative Methods, 60():45--58, 1994.
Elman, H. C. and Chernesky, M. P.. Ordering Effects on Relaxation Methods Applied to the Discrete One-Dimensional Convection-Diffusion Equation. SIAM J. Numer. Anal., 30(5):1268--1290, 1993.
Elman, H. C. and Golub, G. H.. Line Iterative Methods for Cyclically Reduced Discrete Convection-Diffusion Problems. SIAM J. Sci. Statist. Comput., 13(1):339--363, 1992.
Elman, H. C. and Golub, G. H.. Iterative Methods for Cyclically Reduced Non-self-adjoint Linear Systems II. Mathematics of Computation, 56(193):215--242, 1991.
Elman, H. C. and Golub, G. H.. Iterative Methods for Cyclically Reduced Non-self-adjoint Linear Systems. Mathematics of Computation, 54(190):671-700, 1990.
Elman, H. C. and Golub, G. H. and Starke, G.. On the Convergence of Line Iterative Methods for Cyclically Reduced Non-symmetrizable Linear Systems. Numer. Math., 67():177--190, 1994.
Elman, Howard C. and Ramage, Alison. An Analysis of Smoothing Effects of Upwinding Strategies for the Convection-Diffusion Equation. SIAM J. Numer. Anal., 40(1):254-281, 2002.
Erhart, J. and Cao, W.. Effective symmetry and physical properties of twinned perovskite ferroelectric single crystals. Submitted to J. Mat. Res., ():, 1999.
Ericksen, J. L.. Some Constrained Elastic Crystals. Material Instabilities in Continuum Mechanics and Related Mathematical Problems, ():119--135, 1988.
Erickson, K. and Johnson, C. Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal., 28(1):43--77, 1991.
Eriksson, K. and Johnson, C.. Adaptive finite element methods for parabolic problems~{IV}: Nonlinear problems. SIAM J. Numer. Anal., 32():1729-1749, 1995.
Eu, D. and Toussaint, G. T.. On approximation polygonal curves in two and three dimensions. CVGIP: Graphical Models and Image Processing, 56(3):231-246, 1994.
Ewing, R. E. and Lazarov, R. D. and Vassilevski, P. S.. Local refinement techniques for elliptic problems on cell--centered grids. {I}: {E}rror analysis. Mathematics of Computation, 56():437--461, 1991.
Eydeland, A. and Spruck, J. and Turkington, B. Multiconstrained Variational Problems of Nonlinear Eigenvalue Type: New Formulations and Algorithms. Mathematics of Computations, 55(192):509--535, 1990.
Falk, R. and Osborn, J.. Remarks on mixed finite element methods for problems with rough coefficients. Mathematics of Computation Anal., 62(205):1-19, 1994.
Farhat, C. and Roux, F.--X.. An unconventional domain decomposition method for an efficient parallel solution of large--scale finite element systems. SIAM J. Sci. Statist. Comput., 13():379--396, 1992.
Farrell, P. A. and Hegarty, A. F. and Miller, J. J. H. and O'Riordan, E. and Shishkin, G. I.. Singularly perturbed convection-diffusion problems with boundary and weak interior layers. Journal of Computational and Applied Mathematics, 166():131-151, 2004.
Fassbender, J.. Experiences with multigrid--prolongation for two--equation turbulence models in flows with high {R}eynolds numbers. Multigrid Methods VI, 14():108--114, 2000.
Fehribach, J. D.. Diffusion-reaction-conduction processes in porous electrodes: the electrolyte wedge problem. European J. Appl. Math., 12(1):77--96, 2001.
Feng, J. and Hu, H. H. and Joseph, D. D.. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. {P}art 2. {C}ouette and {P}oiseuille flows. J. Fluid Mech., 277():271--301, 1994.
Feng, J. and Joseph, D. D. The motion of solid particles suspended in viscoelastic liquids under torsional shear. J. Fluid Mech., 324():199--222, 1996.
Fiorentino, G. and Serra, S.. Multigrid methods for symmetric positive definite block {T}oeplitz matrices with nonnegative generating functions. SIAM J. Sci. Comput., 17():1068--1081, 1996.
Fischer, B. and Peherstorfer, F.. Chebyshev approximation via polynomial mappings and the convergence behaviour of {K}rylov subspace methods. Elect. Trans. Numer. Anal., 12():205--215, 2001.
Fonseca, I. and Francfort, G. A.. Relacation in BV Versus Quasiconvexification in {$W^{1,p}$}%3B a Model for Interaction between Fracture and Damage. , (94--NA--011):, 1994.
Fonseca, I. and Rybka, P.. Relaxation of Multiple Integrals in the Space {$BV(\Omega%3B\Re^p)$}. Preprint, Research Group in Nonlinear Analysis and Continuum Mechanics in the Science of Materials, Report No. 91-109-NAMS-14, Department of Mathematics, Carnegie Mellon University, ():, 1991.
Forest, M. G. and Wang, Q.. Anisotropic microstructure-induced reduction of the {R}ayleigh instability for liquid crystalline polymers. Physical Letters A, 245():518--526, 1998.
Forest, M. G. and Wang, Q. and Bechtel, S. E.. 1-{D} models for thin filaments of liquid crystalline polymers: coupling of orientation and flow in the stability of simple solutions. Phys. D, 99(4):527--554, 1997.
Forest, M. G. and Wang, Q. and Zhou, H.. Exact banded patterns frm a {D}oi-{M}arrucci-{G}reco models of nematic liquid crystal polumers. Phys. Rev. E, 61(6):61--69, 2000.
Forest, M. G. and Wang, Q. and Zhou, H.. Homogeneous patter selection and director instabilities of nematic liquid crystal polymers induced by elongational flow. Phys. Fluid, 12(3):490--498, 2000.
Fournier, L. and Lanteri, S.. Additive aspects of hybrid mulitgrid/domain decomposition solution of fluid flow problems on parallel computers. Multigrid Methods VI, 14():115--121, 2000.
Franca, L. P. and Russo, A.. Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles. Applied Mathematics Letters, 9():83-88, 1996.
Freitag, L.. On combining Laplacian and optimization-based mesh smoothing techniques. AMD Trends in Unstructured Mesh Generation, ASME, 220():37-43, July 1997.
Freitag, L. A. and Jones, M. T. and Plassmann, P. E.. An efficient parallel algorithm for mesh smoothing. 4th International Meshing Roundtable, ():47-58, 1995.
Freitag, LA and Ollivier-Gooch, C.. Tetrahedral mesh improvement using swapping and smoothing. International Journal of Numerical Methods in Engineering, 40():3979-4002, 1997.
Frommer, Andreas and Szyld, Daniel B.. Weighted max norms, splittings,and overlapping additive {S}chwarz iterations. Numer. Math., 83():259--278, 1999.
Funaro, D. and Quarteroni, A. and Zanolli, P.. An iterative procedure with interface relaxation for domain decomposition methods. SIAM J. Numer. Anal., 25():1213--1236, 1988.
Furzeland, R. M. and Verwer, J. G. and Zegeling, P. A.. A numerical study of three moving gird methods for 1-D partial differential equations which are based on the method of lines. Journal of Computational Physics, 89():349-388, 1990.
Gallez, X. and Halin, P. and Lielens, G. and Keunings, R. and Legat, V.. The adaptive Lagrangian particle method for macroscopic and micro-macro computations of time-dependent viscoelastic flows. Computer Methods in Applied Mechanics and Engineering, 180():345-364, 1999.
Gander, M. J. and Nataf, F.. {AILU}: A preconditioner based on the analytic factorization of the elliptic operator. Numer. Lin. Alg. Appl., 7():505--526, 2000.
Gardner, W. R. and Rao, B. D.. Theoretical Analysis of the High-Rate Vector Quantization of LPC Parameters. IEEE Trans. Speech and Audio Processing, 3():367-381, 1995.
Gartland, E. and Palffy--Muhoray, P. and Varga, R.. Numerical Minimization of the {Landau--De Gennes} Free Energy: Defects in Cylindrical Capillaries. Mol. Cryst. Liq. Cryst., 199():429--452, 1991.
Gartland, E. G.. Graded-mesh difference schemes for singularly perturbed two-point boundary value problems. Mathematics of Computation, 51():631-657, 1988.
Geymonat, G. and Oswald, P.. Some remarks on the approximation by finite element methods. Approximation and Function Spaces, Banach Center Publ. 22, ():137--164, 1989.
Ghidaglia, J. M. and Temam, R.. Long Time Behavior for Partly Dissipative Equations: The Slightly Compressible 2D-Navier-Stokes Equations. Asym. Ana., 1():23--29, 1988.
Giga, Y. and Takahashi, S.. On global weak solutions of the nonstationary two-phase {S}tokes flow. S\=urikaisekikenky\=usho K\=oky\=uroku, 785():29--45, 1992.
Giga, Yoshikazu and Takahashi, Shuji. On global weak solutions of the nonstationary two-phase {S}tokes flow. SIAM Journal on Math. Anal., 25(3):876--893, 1994.
Gillmor, J. R. and Colby, R. H. and Hall, E. and Ober, C. K.. Viscoelastic properties of a model main-chain liquid crystalline polyether. Submitted to J. Mat. Res., ():, 1999.
Girao, P. M.. Convergence of a Crystalline Algorithm for the Motion of a Simple Closed Convex Curve by Weighted Mean Curvature. SIAM J. Numer. Anal., submitted():, 1993.
Girao, P. M. and Kohn, R. V.. Convergence of a Crystalline Algorithm for the Heat Equation in One Dimension and for the Motion of a Graph by Weighted Mean Curvature. Numer. Math., submitted():, 1993.
Gjesdal, T.. Local grid refinement for improved description of leaks in industrial gas safety analysis. Computing and Vizualisation in Science, 3():25--32, 2000.
Glowinski, R. and Pironneau, O.. {Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem}. SIAM Rev., 21():167--212, 1979.
Godau, M.. A natural metric for curves: {C}omputing the distance for polygonal chains and approximation algorithms.. Proc. of the 8th Annual Symposium on Theoretical Aspects of Computer Science, ():127-136, 1991.
Goldstein, C. I.. Analysis and application of multigrid method preconditioners for singularly perturbed boundary value problems. SIAM J. Numer. Anal., 26():1090--1123, 1989.
Goldstein, Raymond E. and Pesci, Adriana I. and Shelley, Michael J.. Instabilities and singularities in {H}ele-{S}haw flow. Phys. Fluids, 10(11):2701--2723, 1998.
Goodsell, G.. Pointwise superconvergence of the gradient for the linear tetrahedral element. Numer. Methods Partial Differential Equations, 10():651-666, 1994.
Goodsell, G. and Whiteman, J. R. Superconvergence of recovered gradients of piecewise quadratic finite element approximations. Numer. Methods Partial Differential equations, 7():85-99, 1991.
Gremaud, P. A.. Numerical Analysis of a Non--Convex Variational Problem Related to Solid--Solid Phase Transitions. SIAM J. Numer. Anal., 31(1):111--127, 1994.
Griebel, M. and Oswald, P.. Tensor-product-type subspace splittings and multilevel iterative methods for anisotropic problems. Advances of Computational Mathematics, 4():171--206, 1995.
Gritzmann, P. and Klee, V.. On the Complexity of Some Basic Problems in Computational Convexity {II}. Volume and Mixed Volumes.. Polytopes: Abstract, Convex and Computational., ():373-467, 1994.
Groisman, A. and Steinberg, V.. Mechanism of elastic instability in Couette flow of polymer solutions: Experiment. Phys. Fluids, 10():2451--2463, 1998.
Gropp, W. D. and Keyes, D. E.. Parallel performance of domain--decomposed preconditioned {K}rylov methods for {PDE}'s with locally uniform refinement. SIAM J. Sci. Statist. Comput., 13():128--145, 1992.
Gropp, W. D. and Keyes, D. E.. Complexity of parallel implementation of domain decomposition techniques for elliptic partial differential equations. SIAM J. Sci. Statist. Comput., 9():312--326, 1988.
Gropp, W. D. and Keyes, D. E. and McInnes, L. C. and Tidriri, M. D.. Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD. International Journal of High Performance, Computing Applications, 14():102--136, 2000.
Gu, W. B. and Wang, C. Y. and Li, S. M. and Geng, M. M. and Liaw, B. Y.. Modeling discharge and charge characteristics of Nickel-Metal hydride batteries. Electrochimica Acta, 44():4525-4541, 1999.
Gu, W. B. and Wang, C. Y. and Weidner, J. and Jungst, R.. Computational Flui Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow. J. of Electrochem. Soc., 147():427-434, 2000.
Gui, W. and Babuška, Ivo. The $h,p$ and $h-p$ version of the finite element method in one dimension. Part {III}: The adaptive $h-p$ version. Numer. Math., 48():, 1986.
Gui, W. and Babuška, I.. The h, p and h--p versions of the finite element method for one--dimensional problems. {P}art {I}: {T}he error analysis of the p--version. Numer. Math., 49():577--612, 1986.
Gui, W. and Babuška, I.. The h, p and h--p versions of the finite element method for one--dimensional problems. {P}art {II}: {T}he error analysis of the h and p versions. Numer. Math., 49():613--657, 1986.
Gui, W. and Babuška, I.. The h, p and h--p versions of the finite element method for one--dimensional problems. {P}art {III}: {T}he adaptive h--p version. Numer. Math., 49():659--683, 1986.
Guibas, L. and Hershberger, J. and Mitchell, J. and Snoeyink, J.. Approximating polygonas and subdivisions with minimum-link paths. International Journal of Computational Geometry and Applications, ():, 1993.
Gunzburger, M. and Hou, L. and Svobodny, T.. Optimal control problems for a class of nonlinear equations with an application to control of fluids. Optimal control of viscous flow, ():43--62, 1998.
Guo, Benyu and Shen, Jie. Laguerre-Galerkin Method for Nonlinear Partial Differential Equations on a Semi-Infinite Interval. to appear in Numer. Math, ():, .
Guo, Wen and Stynes, Martin. An Analysis of a Cell-Vertex Finite Volume Method for a Parabolic Convection-Diffusion Problem. Mathematics of Computation, 66():105-124, 1997.
Gurtin, M. E.. Multiphase Thermodynamics with Interfacial Structure, 1. {Heat} Conduction and the Capillary Balance Law. Archive for Rational Mechanics and Analysis, 104():195--221, 1988.
Gurtin, Morton E. and Polignone, Debra and Vinals, Jorge. Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci., 6(6):815--831, 1996.
Gáspár, C.. Biharmonic and bi--{H}elmholtz type scattered data interpolation using quadtrees and multigrid technique. Multigrid Methods VI, 14():122--128, 2000.
Habashi, W. and Fortin, M. and Dompierre, J. and Vallet, M.-G. and Bourgault, Y.. Anisotropic mesh adaptation: a step towards a mesh-independent and user-independent {C}{F}{D}. Barriers and challenges in computational fluid dynamics, ():99--117, 1998.
Habashi, W. G. and Fortin, M. and Dompierre, J. and Vallet, M. -G. and Ait-Ali-Yahia, D. and Bourgault, Y. and Robichaud, M. P. and Tam, A. and Boivin., S.. Anisotropic mesh optimization for structured and unstructured meshes. In 28th Computational Fluid Dynamics Lecture Series, ():, 1997.
Habashi, W.G. and Fortin, M. and Ait-Ali-Yahia, D. and Boivin, S. and Bourgault, Y. and J. Dompierre, M. Robichau. Anisotropic mesh optimization: towards a solver-independent and mesh-independent CFD. , ():, 1996.
Hackbusch, W.. The frequency decomposition multi grid method. {II}. {C}onvergence analysis based on the additive {S}chwarz method. Numer. Math., 63():433--453, 1992.
Hackbusch, W.. On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi--grid method. SIAM J. Numer. Anal., 16():201--215, 1979.
Hackbusch, W. and Nowak, Z. P.. On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math., 54():463--491, 1989.
Hackbusch, W. and Probs, T.. Downwind Gau{ß}-Seidel Smoothing for Convection Dominated Problems. Numerical Linear Algebra with Applications, 1(1):1-7, 1993.
Hakimi, S. L. and Schmeichel, E. F.. Fitting polygonal functions to a set of points in the plane. CVGIP: Graph. Models Image Process., 53(2):132?136, 1991.
Han, W. H. and Rey, A. D.. Theory and simulation of optical banded texture of nematic polymers during shear flow. Macromolecules, 28():8401-8405, 1995.
Hardt, R. and Kinderlehrer, D. and Lin, F. H.. Existence and Partial Regularity of Static Liquid Crystal Configurations. Comm. Math. Phys., 105():547--570, 1986.
Hardt, R. and Kinderlehrer, D. and Luskin, M.. Remarks about the mathematical theory of liquid crystals. Calculus of variations and partial differential equations, ():123-138, 1988.
Hawken, D. F. and Gottlieb, J. J. and Hansen, J. S.. Review of some adaptive node-movement techniques in finite element and finite difference solutions of PDEs. Journal of Computational Physics, 95():254--302, 1991.
Heckbert, Paul and Garland, Michael. Optimal Triangulation and Quadric-Based Surface Simplification. Journal of Computational Geometry: Theory and Applications, ():, 1999.
Hedstrom, G. W. and Howes, F. A.. Domain decomposition for a boundary--value problem with a shock layer. Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, ():130--140, 1990.
Hegarty, A. F. and Miller, J. J. H. and O'Riordan, E. and Shishkin, G. I.. Use of central-difference operators for solution of singularly perturbed problems. Commun. Numer. Methods Engrg., 10 (4)():297-302, 1994.
Heinkenschloß, M. and Kelley, C. T. and Tran, H. T.. Fast algorithms for nonsmooth compact fixed point problems. SIAM J. Numer. Anal., 29():1769--1792, 1992.
Heinrichs, W. and Eisen, H.. A new method of stabilization for singular perturbation problems with spectral methods. SIAM J. Numer. Anal., 29():107--122, 1992.
Heinrichs, W. and Funaro, D.. Some results about the pseudospectral approximation of one--dimensional fourth--order problems. Numer. Math., 58():399--419, 1990.
Heise, B. and Jung, M.. Efficiency, scalability, and robustness of parallel multilevel methods for nonlinear partial differential equations. SIAM J. Sci. Comput., 20(2):553-567, 1999.
Helfrich, W.. Conduction-induced alignment of nematic liquid crystals: basic model and stability considerations. J. Chem. Phys., 51():4092--4105, 1969.
Hemker, P. W. and Schippers, H.. Multiple grid methods for the solution of {F}redholm integral equations of the second kind. Mathematics of Computation, 36():215--232, 1981.
Hemminger, Thomas L. and Pomalaza-R\'aez, Carlos A.. Polygonal representation: a maximum likelihood approach. Comput. Vision Graph. Image Process., 52(2):239--247, 1990.
Hemmingsson-Franden, L. and Wathen, A.. A nearly optimal preconditioner for the {N}avier--{S}tokes equations. Numer. Lin. Alg. Appl., 8():229--243, 2001.
Henson, Van Emden and Vassilevski, Panayot S.. Element-free {AMG}e: general algorithms for computing interpolation weights in {AMG}. SIAM J. Sci. Comput., 23(2):629--650 (electronic), 2001.
Herbin, Raphaèle. Existence of a solution to a coupled elliptic system arising in the mathematical modelling of fuel cells. Proceedings of the Fifth International Colloquium on Differential Equations (Plovdiv, 1994), ():133--142, 1995.
Hershberger, John and Snoeyink, Jack. An ${O}(n\log n)$ implementation of the {Douglas}-{Peucker} algorithm for line simplification. Symposium on Computational Geometry, ():383 -- 384, 1994.
Heuveline, V. and Bertsch, C.. On multigrid methods for the eigenvalue computation of nonselfadjoint elliptic operators. E. W. J. Numer. Anal., 8():275--297, 2000.
Hlavacek, Ivan. and Krizek, Michal. On a superconvergent finite element scheme for elliptic systems, I Dirichlet boundary condition. Aplikace Matematiky, 32(2):131--154, 1987.
Hoffmann, W. and Schatz, A. H. and Wahlbin, L. B. and Wittum, G.. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes {I}: A smooth problem and globally quasi-uniform meshes. Mathematics of Computation, 70():897-909, 2001.
Hornung, U. and Showalter, R. E.. Elliptic--Parabolic Equations with Hysteresis Boundary Condtions. SIAM Journal on Mathematical Analysis, to appear():, 1995.
Horton, G. and Vandewalle, S. and Worley, P.. An algorithm with polylog parallel complexity for solving parabolic partial differential equations. SIAM J. Sci. Comput., 16():531--541, 1995.
Hosur, Prabhudev I. and Ma, Kai-Kuang. Optimal algorithm for progressive polygon approximation of discrete planar curves. 1999 International Conference on Image Processing, 1():16-20, 1999.
Hou, T. Y. and Wu, X.-H. and Cai, Z.. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation, 68(227):913--943, 1999.
Hou, T. Y. and H.~Wu, Z.. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 134(1):169--189, 1997.
Hou, Thomas Y. and Lowengrub, John S. and Shelley, Michael J.. Removing the stiffness from interfacial flows with surface tension. Journal of Computational Physics, 114(2):312--338, 1994.
Houwen, P. J.~van~der and Vries, H. B.~de. Preconditioning and coarse grid corrections in the solution of the initial value problem for nonlinear partial differential equations. SIAM J. Sci. Statist. Comput., 3():473--485, 1982.
Hu, Y. and Wang, S. Q. and Jamieson, A. M.. Rheological and flow birefringence studies of a shear-thickening complex fluid - A surfactant model system. J. Rheol., 37():531, 1993.
Huang, M.D.. The constant-flow patch test---a unique guideline for the evaluation of discretization schemes for the current continuity equations. IEEE Trans. CAD, 4():, 1985.
Huang, W.. Practical aspects of formulation and solution of moving mesh partial differential equations. Journal of Computational Physics, 171():753-775, 2001.
Huang, W. and Ren, Y. and Russell, R. D.. Moving mesh partial differential equations (MMPDEs) based on the equidistribution principle. SIAM J. Numer. Anal., 31():709--730, 1994.
Huang, W. and Russell, R. D.. Moving Mesh Strategy Based On A Gradient Flow Equation For Two-Dimensional Problems. SIAM J. Sci. Comput., 20():998-1015, 1999.
Huang, Y. and Xu, Jinchao. A conforming finite element method for overlapping and nonmatching grids. Mathematics of Computation, 72(243):1057--1066, 2003.
Huang, Y. and Xu, Jinchao. A partition-of-unity finite element method for elliptic problems with highly oscillating coefficients. Proceedings for the Workshop on Scientific Computing 99, ():, 1999.
Hughes, J. P. and Davies, J. M. and Jones, T. E. R.. Concentric cylinder end effects and fluid inertia effects in controlled stress rheology: part I: numerical simulation. J. non-Newtonian Fluid Mech., 77():79--101, 1998.
Hughes, T. J. R. and Brooks, A.. A multidimensional upwind scheme with no crosswind diffusion. Finite Element Methods for Convection Dominated Flows, ():19-35, 1979.
Hughes, T. J. R. and Feijoo, G. and Mazzei, L. and Quincy, J. -B.. The variational multiscale method - A paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg., 166():3-24, 1998.
Hughes, T. J. R. and Franca, L. P.. A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Engrg., 65():85-96, 1987.
Hughes, T. J. R. and Hulbert, G. M.. Space-time finite element methods for second-order hyperbolic equations. Comput. Methods Appl. Mech. Engrg., 84():327-348, 1990.
Hughes, T. J. R. and Hulbert, G. M.. Space-time finite element methods for elastodynamics: Formulations and error estimates. Comput. Methods Appl. Mech. Engrg., 66():339-363, 1988.
Hummer, G. and Garde, S. and Garcia, A. and Paulaitis, M. and Pratt, L.. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proceedings of the National Academy of Sciences of the United States of America, 95():1552-1555, 1998.
Johnson, I. W. and Baines, M. J. and Wathen, A. J.. Moving finite element methods for evolutionary problems. {II}. Applications. Journal of Computational Physics, 79(2):270--297, 1988.
I.Babuska and T.Strouboulis and C.S.Upadhyay. $\eta$-superconvergence of finite element approximations in the interior of general meshes of triangles. Comput. Methods Appl. Mech. Engrg., 122():273--305, 1995.
Babuška, Ivo and Rheinboldt, W. C.. A posteriori error error estimates for the finite element method. International Journal for Numerical Methods in Engineering, 12():1597--1615, 1978.
Kossaczk$y$, I.. A recursive approach to local mesh refinement in two and three dimensions. Journal of Computational and Applied Mathematics, 55():275-288, 1994.
Imai, H. and Iri, M.. Computational-geometric methods for polygonal approximations of a curve. Computer vision, Graphics and Image Processing, 36():31-41, 1986.
Ishii, H. On Uniqueness and Existence of Viscosity Solutions of Fully Nonlinear Second Order Elliptic {PDE}'s. Communications on Pure and Applied Mathematics, XLII():15--45, 1989.
J.Paddison, Stephen and Paul, Reginald and Kreuer, Klaus-Dieter. Theoretically computed proton diffusion coe .cients in hydrated PEEKK membranes. Physical Chemistry Chemical Physics, 4():1151-1157, 2002.
Jager, Willi and Mikelic, RO and Neuss, Nicolas. Asymptotic Analysis Of The Laminar Viscous Flow Over A Porous Bed. SIAM J. Numer. Anal., 22(6):2006-2028, 2001.
James, R. D. and Kinderlehrer, D.. Theory of Diffusionless Phase Transitions. Partial Differential Equations and Continuum Models of Phase Transitions, Lecture Notes in Physics 344, ():51--84, 1989.
Jameson, A.. Solution of the {E}uler equations for two dimensional transonic flow by a multigrid method. Appl. Mathematics of Computation., 13():327--355, 1983.
Janssen, J. and Vandewalle, S.. Multigrid waveform relaxation on spatial finite element meshes: the continuous-time case. SIAM J. Numer. Anal., 33():456--474, 1996.
Janssen, J. and Vandewalle, S.. Multigrid waveform relaxation on spatial finite element meshes: the discrete-time case. SIAM J. Sci. Comput., 17():133--155, 1996.
Jensen, R.. The Maximum Principle for Viscosity Solutions of Fully Nonlinear Second Order Partial Differential Equations. Archive for Rational Mechanics and Analysis, 101():1--27, 1988.
Jerrard, Robert L. and Soner, Halil Mete. Scaling limits and regularity results for a class of {G}inzburg-{L}andau systems. Ann. Inst. H. Poincaré Anal. Non Linéaire, 16(4):423--466, 1999.
Jimack, Peter K. and Mahmood, Rashid and Walkley, Mark A. and Berzins, Martin. A Multilevel Approach for Obtaining Locally Optimal Finite Element Meshes. Developments in Engineering Computational Technology, Topping BHV (ed), Civil-Comp Press, ():191-197, 2000.
John, Fritz. Distance changes in deformations with small strain. Studies and Essays (Presented to Yu-why Chen on his 60th Birthday, April 1, 1970), ():1--15, 1970.
Johnson, A. A. and Tezduyar, T. E.. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput. Methods Apl. Mech. Engrg., 119():73--94, 1994.
Johnson, C. and Nvert, U.. An analysis of some finite element methods for advection-diffusion problems. Analytical and Numerical Approaches to Asymptotic Problems in Analysis, ():99-116, 1981.
Johnson, C. and Schatz, A. H. and Wahlbin, L. B.. Crosswind smear and pointwise errors in streamline diffusion finite element methods. Mathematics of Computation, 49():25-38, 1987.
Johnson, M.W. and Segalman, D.. A Model for Viscoelastic fluid behaviour which allows non-newtonian deformation. Journal of Non-Newtonian fluid mechanics, 2():255-270, 1977.
Johnson, O. G. and Micchelli, C. A. and Paul, G.. Polynomial preconditioners for conjugate gradient calculations. SIAM J. Numer. Anal., 20():362--376, 1983.
Jordan, R. and Kinderlehrer, D. and Otto, F.. The Variational Formulation of the {Fokker--Planck} Eqution. SIAM Journal on Math. Anal.,, 29(1):1--17, 1998.
Joseph, D. D. and Renardy, M. and Saut, J.-C.. Hyperbolicity and change of type in the flow of viscoelastic fluids. Arch. Rat. Mech. Anal., 87():213--251, 1985.
Kadalbajoo, M. and Patidar, K.. A survey of numerical techniques for solving singularly perturbed ordinary differential equations. Applied Mathematics and Computation, 130():457--510, 2002.
Kan, J.~van and Vuik, C. and Wesseling, P.. Fast pressure calculation for 2{D} and 3{D} time dependent incompressible flow. Num. Lin. Alg. with Appl., 7():429--447, 2000.
Kangro, U. and Nicolaides, R.. Asymptotic Behavior of Solutions of Two--Dimensional Periodic Scattering Problems in Electromagnetics. SIAM Journal on Math. Anal., 28(6):1406--1419, 1998.
Kangro, U. and Nicolaides, R.. Spurious Fields in Time--Domain Computations of Scattering Problems. IEEE Trans. Antennas and Propagation, 45(2):228--234, 1997.
Kantchev, V. K. and Lazarov, R. D.. Superconvergence of the gradient of linear finite elements for 3-D {P}ossion equation. Proceedings of the Conference on Optimal Algorithms, ():172-182, 1986.
Kanungo, T. and Jaisimha, M. and Palmer, J. and Haralick, R.. A methodology for quantitative performance evaluation of detection algorithms. IEEE Transactions on Image Processing, 4(12):1667-1674, 1995.
Karaivanov, B. and Petrushev, P. and Sharpley, R.. Algorithms for nonlinear piecewise polynomial approximation: Theoretical aspects. Trans. Amer. Math. Soc., 355():2585-2631, 2003.
Karpik, S. R. and Peltier, W. R.. Multigrid methods for the solution of Poisson's equation in a thick spherical shell. SIAM J. Sci. Statist. Comput., 12():681--694, 1991.
Katsaggelos, A. K. and Kondi, L. P. and Ostermann, J. and Schuster, G. M.. {MPEG}-4 and Rate-Distortion-Based Shape-Coding Techniques. Proceedings of the IEEE, 86(6):1126-1154, 1998.
Katsoulakis, M. and Kossioris, G. and Retich, F.. Generalized Motion by Mean Curvature with {Neumann} Conditions and the {Allen--Cahn} Model for Phase Transitions. , (92-NA-036):, 1992.
Keith, J. M. and Leighton, D. T. and Chang, H.-C.. A New Design of Reverse-Flow Reactors with Enhanced Thermal Dispersion. Ind. Eng. Chem. Res., 38():667, 1999.
Keller, S. L. and Boltenhagen, P. and Pine, D. J. and Zasadzinski, J. A.. Direct Observation of Shear-Induced Structures in Wormlike Micellar Solutions by Freeze-Fracture Electron Microscopy. Phys. Rev. Lett., 80():2725, 1998.
Kelley, C. T. and Sachs, E. W.. Fast algorithms for compact fixed point problems with inexact function evaluations. SIAM J. Sci. Statist. Comput., 12():725--742, 1991.
Kellogg, R. B. and Tsan, A.. Analysis of some difference approximations for a singular perturbation problem without turning points. Mathematics of Computation, 32():1025-1039, 1978.
Kerkhoven, T. and Jerome, J. W.. {$L_{\infty}$} Stability of Finite Element Approximations of Elliptic Gradient Equations. Numer. Math., 57():561--575, 1990.
Keyes, D. E. and Gropp, W. D.. A comparison of domain decomposition techniques for elliptic partial differential equations. SIAM J. Sci. Statist. Comput., 8():166--202, 1987.
Keyes, D. E. and Xu, Jinchao. Domain Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International Conference on Domain Decomposition. , 180():, 1994.
Kharchenko, S. A. and Kolotilina, L. Yu. and Nikishin, A. A. and Yeremin, A. Yu.. A robust AINV-type preconditioning method for constructing sparse approximate inverse preconditioners in factored form. Numer. Lin. Alg. Appl., 8():165--179, 2001.
Kim, H. and Xu, Jinchao and Zikatanov, L.. Uniformly convergent multigrid methods for convection diffusion problems without any constraint on coarse grids. Advances in Comp. Math., 20(4):385--399, 2004.
Kim, H. and Xu, Jinchao and Zikatanov, L.. A multigrid method based matching in graph for convection diffusion equations. Num. Lin. Alg. and Appl., 10():181--195, 2003.
Kinderlehrer, D. and Liu, C.. Revisiting the focal conic structure in smectic-{A}. Contemporary research in the mechanics and mathematics of materials, ():, 1998.
Kinderlehrer, D. and Liu, C. and Manolache, F. and Ta'asan, S.. Remarks about analysis an simulation of grain boundary systems. Third International Conference of Grain Growth, ():437--443, 1998.
Kinderlehrer, D. and Nicolaides, R. and Wang, H.. Spurious Oscillations in Computing Microstructures. Mathematics in Smart Structures, 1919():38--46, 1993.
Kinderlehrer, D. and Ou, B. and Walkington, N. J.. The Elementary Defects of the Oseen--Frank Energy for a Liquid Crystal. C. R. Acad. Sci. Paris, Serie I, 316():465--470, 1993.
Kinderlehrer, D. and Pedregal, P.. Weak Convergence of Integrands and the {Young} Measure Representation. The Journal of Geometric Analysis, 4(1):59--90, 1994.
King, R. C. and Apelian, M. N. and Armstrong, R. C. and Brown, R. A.. Numerically stable finite element techniques for viscoelastic calculations in smooth and singular geometries. J. non-Newtonian Fluid Mech., 29():147--216, 1988.
Klawonn, A. and Pavarino, L.. A comparison of overlapping {S}chwarz methods and block preconditioners for saddle point problems. Numer. Lin. Alg. Appl., 7():1--25, 2000.
Kloucek, P. and Luskin, M.. Computational Modeling of the Martensitic Transformation with Surface Energy. Mathematical and Computer Modelling, 20():, 1994.
Ko, J. and Kurdila, A. J. and Oswald, P.. Scaling function and wavelet preconditioners for second order elliptic problems. Multiscale Wavelet Methods for Partial Differential Equations, 6():413--438, 1997.
Kock, S. and Schneider, T. and Küter, W.. The velocity field of dilute cationic surfactant solutions in a Couette-viscometer. J. Non-Newtonian Fluid Mech., 78():47, 1998.
Kohn, R. V. and Strang, G.. Optimal Design and Relaxation of a Variational Problems, {I--III}. Communications on Pure and Applied Mathematics, XXXIX():113--137, 139--182, 353--377, 1986.
Kohn, R. V. and Vogelius, M.. Relaxation of a Variational Method for Impedance Computed Tomography. Communications on Pure and Applied Mathematics, XL():745--777, 1987.
Kolotilina, L. Yu and Nikishin, A. A. and Yeremin, A. Yu.. An incomplete {LU}-factorization algorithm based on block bordering. Numer. Lin. Alg. Appl., 7():543--567, 2000.
Koobus, B. and Lallemand, M. H. and Dervieux, A.. Unstructured volume-agglomeration {MG}: solution of the {Poisson} equation. International Journal for Numerical Methods in Fluids, 18(1):27--42, 1994.
Kopriva, D. A.. Computation of hyperbolic equations on complicated domains with patched and overset {C}hebyshev grids. SIAM J. Sci. Statist. Comput., 10():120--132, 1989.
Kopteva, N.. Error Expansion For An Upwind Scheme Applied To A Two-Dimensional Convection-Diffusion Problem. SIAM J. Numer. Anal., 41(5):1851?1869, 2003.
Kopteva, N. V.. Uniform Pointwise Convergence of Difference Schemes for Convection-Diffusion Problems on Layer-Adapted Meshes. , 66(2)():179 - 197, 2001.
Kopteva, N. V.. Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem. SIAM J. Numer. Anal., 39 (2)():423-441, 2001.
Kopteva, N. V.. Uniform convergence with respect to a small parameter of a scheme with central difference on refining grids. Comput. Math. Math. Phys., 39 (10)():1594-1610, 1999.
Kopteva, N. V. and Stynes, M.. A robust adaptive method for quasi-linear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal., 39():1446-1467, 2001.
Kornhuber, R.. On robust multigrid methods for non-smooth variational inequalities. The 5 th European Multigrid Conference, Stuttgart, Germany, ():173-188, 1996.
Kornhuber, R. and Roitzsch, R.. On adaptive grid refinement in the presence of internal or boundary layers. IMPACT Comput. Sci. Engrg., 2():40-72, 1990.
Korsawe, J. and Starke, G.. Multilevel projection methods for nonlinear least-squares finite element computations. Elect. Trans. Numer. Anal., 10():56--73, 2000.
Kunert, G.. A posteriori $L^2$ error estimation on anisotropic tetrahedral finite element meshes. IMA Journal of Numerical Analysis, 21(2):503-523, 2001.
Kunert, G.. Toward anisotropic mesh construction and error estimation in the finite element method. Numer. Methods Partial. Diff. Equations, 189(5):625 - 648, 2001.
Kunert, G.. An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math., 86(3):471-490, 2000.
Kunert, G. and Nicaise, S.. Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes. M2AN Math. Model. Numer. Anal., 37(6):1013-1043, 2003.
Kunert, G. and Verfürth, R.. Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math., 86(2):283-303, 2000.
Kunisch, K. and Tai, X.-C.. Sequential and parallel splitting methods for bilinear control problems in {H}ilbert spaces. SIAM J. Numer. Anal., ():, 1997.
Kuo, C. C. J. and Chan, T. F.. Two--color {F}ourier analysis of iterative algorithms for elliptic problems with red/black ordering. SIAM J. Sci. Statist. Comput., 11():767--793, 1990.
Kuznetsov, N. N.. Accuracy of some Approximate Methods for Computing the Weak Solutions of a First--Order Quasi--linear Equation. USSR Computational Mathematics and Mathematical Physics, 16(6):105--119, 1976.
Krizek, M. and Neittaanm\"aki, P.. Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math., 45():105--116, 1984.
Evans, L. C. and Soner, H. M. and Souganidis, P. E.. Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45(9):1097--1123, 1992.
Ladeveze, P. and Dureisseix, D.. A micro / macro approach for parallel computing of heterogeneous structures. International Journal for Computational Civil and Structural Engineering, 1():18--28, 2000.
Ladeveze, P. and Loiseau, O. and Dureisseix, D.. A micro-macro and parallel computational strategy for highly heterogeneous structures. International Journal of Numer. Meth. Engng., 52():121--138, 2001.
Lahaye, D. and De~Gersem, H. and Vandewalle, S. and Hameyer, K.. Algebraic multigrid for complex symmetric systems. IEEE Trans. Magn., 36():1535--1538, 2000.
Lakhany, A. M. and Marek, I. and Whiteman, J. R.. Superconvergence results on mildly structured triangulations. Comput. Methods Appl. Mech. Engrg., 189():1-75, 2000.
Lallemand, M. H. and Koren, B.. Iterative defect correction and multigrid accelerated explicit time stepping schemes for the steady {E}uler equations. SIAM J. Sci. Comput., 14():953--970, 1993.
Laso, M. and Ottinger, H. C.. Calculation of viscoelastic ow using molecular models: the CONNFFESSIT approach. J. Non-Newtonian Fluid Mech., 47():1-20, 1993.
Lastdrager, B. and Koren, B. and Verwer, J.. The sparse--grid combination technique applied to time--dependent advection problems. Multigrid Methods VI, 14():143--149, 2000.
Latecki, Longin Jan and Lakamper, Rolf. Shape Similarity Measure Based on Correspondence of Visual Parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1-6, 2000.
Lee, C. O. and Parter, S. V.. On the rate of convergence of the $k*k$ block, $k$ line iterative methods: $k$ to infinity. Numer. Math., 71():59--90, 1995.
Lee, Y. and Wu, J. and Xu, Jinchao and Zikatanov, L.. Successive Subspace Correction method for Singular System of Equations. Proceedings of the 14th International Conference on Domain Decomposition Methods in Cocoyoc, Mexico, ():, 2002.
Lee, Y. and Wu, J. and Xu, J. and Zikatanov, L.. A sharp convergence estimate of the method of subspace corrections for singular systems. Mathematics of Computation (To appear), ():, 2005.
Lenferink, W.. Pointwise convergence of approximations to a convection-diffusion equation on a {Shishkin} mesh. Applied Numerical Mathematics, 32 (1)():69-86, 2000.
Leonard, B. and Patel, A. and Hirsch, C.. Multigrid acceleration in a 3{D} {N}avier--{S}tokes solver using unstructured hexahedral meshes with adaptation. Multigrid Methods VI, 14():150--156, 2000.
Lepot, I. and Geuzaine, P. and Meers, F. and Essers, J. A. and Vaassen, J. M.. Analysis of several multigrid implicit algorithms for the solution of the {E}uler equations on unstructured meshes. Multigrid Methods VI, 14():157--163, 2000.
Lerouge, S. and Decruppe, J-P. and Berret, J-F.. Correlations between Rheological and Optical Properties of a Micellar Solution under Shear Banding Flow. Langmuir, 16():6464--6474, 2000.
Lessani, B. and Smirnov, S. and Lacor, Cl. and Baelmans, T. and Meyers, J.. Efficient large--eddy simulations of compressible flows using multigrid. Multigrid Methods VI, 14():164--170, 2000.
Lewiner, Thomas and Gomes, João D. and Lopes, Hélio and Craizer, Marcos. Arc-length Based Curvature Estimator. 17th Brazilian Symposium on Computer Graphics and Image Processing, ():, 2004.
Lewiner, Thomas and Lopes, Helio and Tavares, Geovan. Visualizing {F}orman's discrete vector field. {V}isualization and {M}athematics III, ():95--112, 2003.
Lewiner, Thomas and Lopes, Hélio and Tavares, Geovan. Applications of Forman s discrete Morse theory to topology visualization and mesh compression. Transactions on Visualization and Computer Graphics, 10(5):499-508, 2004.
Lewiner, Thomas and Lopes, Hélio and Tavares, Geovan. Optimal discrete {M}orse functions for 2-manifolds. Computational Geometry: Theory and Applications, 26(3):221--233, 2003.
Li, B. and Luskin, M.. Finite Element Analysis of Microstructure for the Cubic to Tetragonal Transformation. SIAM J. Numer. Anal., 35(1):376--392, 1998.
Li, B. and Zhang, Z. M.. Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements. Numer. Methods Partial. Diff. Equations, 15():151-167, 1999.
Li, Jia and Chaddha, Navin and Gray, Robert M.. Asymptotic performance of vector quantizers with a perceptual distortion measure. IEEE Transactions on Information Theory, 45(4):1082-1091, 1999.
Li, Jichun. Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems. Applied Numerical Mathematics, 36(2-3):129--154, 2001.
Li, R. and Tang, T. and Zhang, P.. A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions. Journal of Computational Physics, 177(2):365-393, 2002.
Li, R. and Tang, T. and Zhang, P.. Moving Mesh Methods in Multiple Dimensions Based on Harmonic Maps. Journal of Computational Physics, 170(2):562-588, 2001.
Li, Z. and Openshaw, S.. Algorithms for automated line generalization based on a natural principle of objective generalization. Internat. J. Geogr. Inform. Systems., 6():373-389, 1992.
Liao, X. and Nochetto, R. H.. Local a Posteriori Error Estimates and Adaptive Control of Pollution Effects. Numerical Methods for Partial Differential Equations, 19(4):421--442, 2003.
Lin, F. H.. Solutions of {Ginzburg--Landau} Equations and Critical Points of Renormalized Energy. Ann. Inst. H. Poincar? Anal. Nonlinear, 12(5):599--622, 1995.
Lin, F. H. and Liu, C.. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and Continuous Dynamic Systems, 2(1):1--22, 1996.
Lin, F.-H. and Xin, J. X.. On the incompressible fluid limit and the vortex motion law of the nonlinear {S}chrödinger equation. Comm. Math. Phys., 200(2):249--274, 1999.
Lin, F.H.. Static and moving defects in liquid crystals. Proceedings of the International Congress of Mathematicians, Vol.\ I, II (Kyoto, 1990), ():1165-1171, 1991.
Lin, Fang Hua. Complex {G}inzburg-{L}andau equations and dynamics of vortices, filaments, and codimension-$2$ submanifolds. Comm. Pure Appl. Math., 51(4):385--441, 1998.
Lin, FangHua and Wang, ChangYou. Harmonic and quasi-harmonic spheres. {I}{I}{I}. {R}ectifiability of the parabolic defect measure and generalized varifold flows. Ann. Inst. H. Poincaré Anal. Non Linéaire, 19(2):209--259, 2002.
Linß, Torsten. Robustness of an Upwind Finite Difference Scheme for Semilinear Convection-diffusion Problems with Boundary Turning Points. J. Comput. Math., 21(4):401-410, 2003.
Lions, P.--L.. On the {S}chwarz Alternating Method {I}. First International Symposium on Domain Decomposition Methods for Partial Differential Equations, ():1--42, 1988.
Lipnikov, K. and Vassilevski, Y.. Error estimates for {H}essian-based mesh adaptation algorithms with control of adaptivity. 13th International Meshing Roundtable, ():345-351, 2004.
Little, T. D. and Showalter, R. E.. Semilinear Parabolic Equations with Preisach Hysteresis. Differential and Integral Equationt, 7():1021--1040, 1994.
Liu, C. and Tavener, S. J. and Walkington, N.J.. A Variational Phase Field Model for Marangoni-{B}énard convection with a deformable free surface. Preprint, ():, 2001.
Liu, Y. and Bank, R. E. and Dupont, T. F. and Garcia, S. and Santos, R. F.. Symmetric Error Estimates for Moving Mesh Mixed Methods for Advection-Diffusion Equations. SIAM J. Numer. Anal., 40(6):2270-2291, 2003.
Liu, Y. and Liao, T. and Joseph, D. D.. A two-dimensional cusp at the trailing edge of an air bubble rising in a viscoelastic liquid. , 304():321--342, 1995.
Lo, S. H.. a New Mesh Generation Scheme for Arbitrary Planar Domains. International Journal for Numerical Methods in Engineering, 21():1403-1426, 1985.
Lockett, T. J. and Richardson, S. M. and Worraker, W. J.. The stability of inelastic non-Newtonian fluids in Couette flow between concentric cylinders: a finite-element study. J. non-Newtonian Fluid Mech., 43():165--177, 1992.
Lopez, J. M. and Hirsa, A.. Oscillatory driven cavity with an air/water interface and an insoluble monolayer: Surface viscosity effects. J. Colloid Interface Sci., 242():1--5, 2001.
Lopez, J. M. and Hirsa, A.. Surfactant influenced gas/liquid interfaces: Nonlinear equation of state and finite surface viscosities. J. Colloid Interface Sci., 229():575--583, 2000.
Lopez, J. M. and Hirsa, A.. Direct determination of the dependence of the surface shear and dilatational viscosities on the thermodynamic state of the interface: Theoretical foundations. J. Colloid Interface Sci., 206():231--239, 1998.
Lopez, J.M. and Shen, Jie. Numerical Simulation of Incompressible Flows in Cylindrical Geometries Using a Spectral Projection Method. Intern. J. of Appl. Sciences \& Comput., ():, Feb. 1998.
Lopez, J.M. and Shen, Jie. An efficient spectral-projection method for the {N}avier-{S}tokes equations in cylindrical geometries I. Axisymmetric cases. Journal of Computational Physics, 139():308-326, 1997.
Lorentz, R. and Oswald, P.. Multilevel finite element {R}iesz bases in {S}obolev spaces. Proc. 9th Intern. Conf. on Domain Decomposition Methods, Bergen 1996, ():, 1998.
Lorentz, R. and Oswald, P.. Nonexistence of compactly supported box spline prewavelets in {S}obolev spaces. Proc. Intern. Conf. Curves and Surfaces, Chamonix 1996, ():235--244, 1997.
Lowengrub, J. and Truskinovsky, L.. Quasi-incompressible {C}ahn-{H}illiard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1978):2617--2654, 1998.
Lu, C. C. and Dunham, J. G.. Hierarchical shape recognition using polygon approximation and dynamic alignment. 1988 International Conference on Acoustics, Speech, and Signal Processing, 1988. ICASSP-88, 2():976-979, 1988.
Lu, S.-M. and Barlow, J. L.. Multifrontal Computation with the Orthogonal Factors of a Sparse Matrix. SIAM Journal on Matrix Anal. Appl., 17():658--679, 1996.
Lube, G. and Müller, L. and Müller, H.. A new nonoverlapping domain decomposition method for stabilized finite element methods applied to the nonstationary {N}avier--{S}tokes equations. Numer. Lin. Alg. Appl., 7():449--472, 2000.
Lubensky, T. C. and Renn, S. R.. Twist grain boundary phases near smectic {A} --smectic {C} point in liquid crystals. Phys. Rev. A, 41():4392--4401, 1990.
Lubensky, T. C. and Renn, S. R.. Abrikosov dislocation lattice in a model of the cholesteric - to smectic-{A} transition. Phys. Rev. A, 38(4):2132--2147, 1988.
Mackenzie, J. A.. Uniform convergence analysis of an upwind finite-difference approximation of a convection-diffusion boundary value problem on an adaptive grid. IMA J. Numer. Anal., 19(2)():233-249, 1999.
Mackenzie, J. A. and Robertson, M. L.. A moving mesh method for the solution of the one-dimensional phase-field equations. Journal of Computational Physics, 181(2):526-544, 2002.
Mackenzie, J. A. and Robertson, M. L.. The Numerical Solution of One-Dimensional Phase Change Problems Using an Adaptive Moving Mesh Method. Journal of Computational Physics, 161(2):537-557, 2000.
Maday, Y. and Meiron, D. and Patera, A. T. and Rønquist, E. M.. Analysis of iterative methods for steady and unsteady {S}tokes problem: {A}pplication of spectral element discretization. SIAM J. Sci. Comput., 14():301--337, 1993.
Magenes, E. and Verdi, C. and Visintin, A.. Theoretical and Numerical Results on the Two--Phase {Stefan} Problem. SIAM J. Numer. Anal., 26(6):1425--1438, 1989.
Malvihill, M. and Cross, L. E. and Cao, W. and Uchino, K.. Related phase transition-like behavior in Lead Zinc Niobate relaxor ferroelectric single crystals. J. Am. Ceram. Soc., 80():1642--1648, 1997.
Mandel, J. and McCormick, S. F. and Ruge, J. W.. An algebraic theory for multigrid methods for variational problems. SIAM J. Numer. Anal., 25():91--110, 1988.
Mankiewicz, P. and Schütt, C.. A simple proof of an Estimate for the Approximation of the {E}uclidean Ball and the {D}elone Triangulation Numbers. J. Approx. Theory, 107():268-280, 2000.
Mansfield, L.. On the conjugate gradient solution of the {S}chur complement system obtained from domain decomposition. SIAM J. Numer. Anal., 27():1612--1620, 1990.
Manteuffel, T. A. and McCormick, S. F. and Morel, J. and Oliveira, S. and Yang, G.. A fast multigrid algorithm for isotropic transport problems. {I}. {P}ure scattering. SIAM J. Sci. Comput., 16():601--635, 1995.
Manteuffel, T. A. and McCormick, S. F. and Morel, J. and Oliveira, S. and Yang, G.. A parallel version of a multigrid algorithm for isotropic transport equations. SIAM J. Sci. Comput., 15():474--493, 1994.
Marion, M. and Xu, Jinchao. Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal., 32(4):1170--1184, 1995.
Markowich, P. A. and Villani, C.. On the trend to equilibrium for the {F}okker-{P}lanck equation: an interplay between physics and functional analysis. Mat. Contemp., 19():1--29, 2000.
Marrucci, G. and Maffettone, P. L.. Description of the liquid crystalline phase of rodlike polymer at high shear rates. Amer. Chem. Soc., 22():4076--4082, 1989.
Martin Campos-Pinto, Albert Cohen, Wolfgang Dahmen and Devore, Ronald. On the stability of nonlinear conservation laws in the Hausdorff metric. Journal of Hyperbolic Differential Equations, 2():25-38, 2005.
Martin, Joaquim and Soria, Javier. Characterization of rearrangement invariant spaces with fixed points for the Hardy-Littlewood maximal operator. , ():, .
Mastroianni, G.. Polynomial inequalities, functional spaces and best approximation on the real semiaxis with {L}aguerre weights.. Electron. Trans. Numer. Anal., 14():125-134, 2002.
Mathew, T. P.. {S}chwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part {I}: algorithms and numerical Results. Numer. Math., ():445--468, 1993.
Mathew, T. P.. {S}chwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part {II}: theory. Numer. Math., ():468--492, 1993.
McCormick, S. F. and Thomas, J. W.. The fast adaptive composite grid ({FAC}) method for elliptic equations. Mathematics of Computation, 46():439--456, 1986.
McFadden, G. B. and Wheeler, A. A. and Anderson, D. M.. Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities. Phys. D, 144():, 2000.
McFadden, G. B. and Wheeler, A. A. and Braun, R. J. and Coriell, S. R. and Sekerka, R. F.. Phase-field models for anisotropic interfaces. Phys. Rev. E (3), 48(3):2016--2024, 1993.
Meijerink, J. A. and Vorst, H. A.~van~der. An iterative solution method for linear systems of which the coefficient matrix is a symmetric {M}--matrix. Mathematics of Computation, 31():148--162, 1977.
Mekchay, K. and Nochetto, R.. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic {PDE}. SIAM J. Numer. Anal., 43(5):1803--1827, 2005.
Mench, M.M. and Scott, J. and Thynell, S.T. and Wang, C.Y.. Direct methanol fuel cell experimental and model validation study. Proc. 200th Electrochemical Society Fall Meeting, San Francisco, Sept.2-7. Abstract No.315, ():, 2001.
Meyer~Spasche, R. and Fornberg, B.. Discretization errors at free boundaries of the {G}rad {S}chluter {S}hafranov equation. Numer. Math., 59():683--710, 1991.
Mijalković, S.. Evaluation of multigrid as a solver for stress analysis problems in semiconductor process simulation. Multigrid Methods VI, 14():179--185, 2000.
Miller, G. L. and Talmor, D. and Teng, S. and Walkington, N. J.. On the Radius--Edge Condition in the Control Volume Method. SIAM J. Numer. Anal., accepted():, 1998.
Miller, G. L. and Talmor, D. and Teng, S. and Walkington, N. J. and Wang, H.. Control Volume Meshes using Sphere Packing: Generation, Refinement and Coarsening. 5th International Meshing Round Table, `96, ():47--62, 1996.
Miller, G. L. and Talmor, D. and Teng, S. H. and Walkington, N.. A {Delaunay} based numerical method for three dimensions: generation, formulation, and partition. Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, ():683--692, 1995.
Miller, J. and Weichman, P. B. and Cross, M. C.. Statistical Mechanics, {Euler's} equation, and Jupiters Red Spot. Physical Review A, 45(4):2328--2359, 1991.
Miller, J. J. H. and O'Riordan, E. and Shishkin, G. I.. On piecewise-uniform meshes for upwind- and central-difference operators for solving singularly perturbed problems. IMA J. Numer. Anal., 15 (1)():89-99, 1995.
Miller, J.J.H. and Wang, S. and Wu, C.. A Mixed Finite Element Method for the Stationary Semiconductor Device Equations. Engineering Computations, 5():285-288, 1988.
Mitchell, S. A. and Vavasis, S. A.. Quality mesh generation in three dimensions. Proceedings of the ACM Computational Geometry Conference, ():212--221, 1992.
Mitchell, W.F.. Adaptive refinement for arbitrary finite-element spaces with Hierarchical bases. Journal of Computational and Applied Mathematics, 36():65-78, 1991.
Mobley, A. V. and Carroll, M. P. and Canann, S. A.. An Object Oriented Approach to Geometry Defeaturing for Finite Element Meshing. 7th International Meshing Round Table, `98, ():547--563, 1998.
Mohr, M. and Rüde, U.. Multilevel techniques for the solution of the inverse problem of electrocardiography. Multigrid Methods VI, 14():186--192, 2000.
Mokhtarian, F. and Mackworth, A.. A Theory of Multiscale, Curvature-Based Shape Representation For Planar Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(8):789-805, 1992.
Montero, R. S. and Prieto, M. and Llorent, I. M. and Tirado, F.. Robust multigrid algorithms for 3{D} elliptic equations on strutured grids. Multigrid Methods VI, 14():193--199, 2000.
Morano, E. and Mavriplis, D. J. and Venkatakrishnan, V.. Coarsening Strategies for unstructured multigrid techniques with application to anisotropic problems. SIAM J. Sci. Comput., 20(2):95--34, 1998.
Moriya, K. and Nodera, T.. The {DEFLATED-GMRES}(m,k) method with switching the restart frequency dynamically. Numer. Lin. Alg. Appl., 7():569--584, 2000.
Mousseau, V. A. and Knoll, D. A. and Rider, W. J.. A multigrid {N}ewton--{K}rylov solver for non--linear systems. Multigrid Methods VI, 14():200--206, 2000.
Mukherjee, B. and Mazumder, S. and Calderer, M. C.. Poiseuille flow of liquid crystals: highly oscillatory regimes. Submitted to J. non-Newtonian Fluid Mech., ():, 1999.
Mulder, W. A.. A note on the use of symmetric line {G}auss--{S}eidel for the steady upwind differenced {E}uler equations. SIAM J. Sci. Statist. Comput., 11():389--397, 1990.
Mullin, T. and Cliffe, K. A. and Pfister, G.. Unusual time-dependent phenomena in Taylor-Couette flow at moderately low Reynolds numbers. Phys. Rev. Lett., 58():2212--2215, 1987.
Mullin, T. and Kobine, J. J. and Tavener, S. J. and Cliffe, K. A.. On the creation of stagnation points near straight and sloped walls. To appear in Phys. Fluids, ():, 1999.
Nadler, B. and Naeh, T. and Schuss, Z.. The stationary arrival process of independent diffusers from a continuum to an absorbing boundary is Poissonian. SIAM Journal onAppl.Math., 62():433-447, 2001.
Naik, N. H. and Rosendale, J. R.~van. The improved robustness of multigrid elliptic solvers based on multiple semicoarsened grids. SIAM J. Numer. Anal., 30():215--229, 1993.
Nicolaides, R. A.. On the observed rate of convergence of an iterative method applied to a model elliptic difference equation. Mathematics of Computation, 32():127--133, 1978.
Nicolaides, R. A. and Walkington, N. J.. Strong Convergence of Numerical Solutions to Degenerate Variational Problems. Mathematics of Computation, 64(209):117--127, 1995.
Nicolaides, R. A. and Walkington, N. J.. Computation of Microstructure Utilizing {Young} Measure Representations. J. Intelligent Material Systems and Structures, 4(4):457--462, 1993.
Nill, N. B.. A visual model weighted cosine transform for image compression and quality assessment. IEEE Transactions on Communications, COM-33(6):551-557, 1985.
Nochetto, R. H. and Paolini, M. and Verdi, C. Optimal Interface Error Estimates for the Mean Curvature Flow. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4(21):193--212, 1994.
Nochetto, R. H. and Paolini, M. and Verdi, C. An Adaptive Finite Element Method for Two--Phase {Stefan} Problems in Two Space Dimensions. Part II: Implementation, and Numberical Experiments. SIAM J. Sci. Comput., 12():1207--1244, 1991.
Nochetto, R. H. and Verdi, C. Convergence of Double Obstacle Problems to the Generalized Geometric Motion of Fronts. SIAM J. Numer. Anal., 26(6):1514--1526, 1995.
Nochetto, R. H. and Verdi, C. Convergence Past Singularities for a Fully Discrete Approximation of Curvature Driven Interfaces. SIAM J. Numer. Anal., submitted():, 1994.
Westdickenberg, Michael and Noelle, Sebastian. A New Convergence Proof For Finite Volume Schemes Using The Kinetic Formulation Of Conservation Laws. SIAM J. Numer. Anal., 37():742-757, 2000.
O'Leary, D. P. and Widlund, O. B.. Capacitance matrix methods for the {H}elmholtz equation of general three--dimensional regions. Mathematics of Computation, 30():849--879, 1979.
Oosterlee, C. W. and Wienands, R. and Washio, T. and Gaspar, F. J.. The acceleration of multigrid convergence by recombination techniques. Multigrid Methods VI, 14():34--43, 2000.
Osher, S. and Sanders, R.. Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Mathematics of Computation, 41():321--336, 1983.
Osher, S. and Sethian, J.. Fronts Propagating with Curvature Dependent Speed: Algorithms based on {Hamilton Jacobi} Formulations. Journal of Computational Physics, 79():12--49, 1988.
Oswald, P.. Multilevel solvers for elliptic boundary value problems on domains. Multiscale Wavelet Methods for Partial Differential Equations, 6():3--58, 1997.
Oswald, P.. Multilevel preconditioners for discretizations of the biharmonic equation by rectangular finite elements. Numer. Lin. Alg. Appl., 2():487--505, 1995.
Oswald, P.. Stable subspace splittings for {S}obolev spaces and domain decomposition algorithms. Domain Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International Conference on Domain Decomposition, 180():87--98, 1994.
Oswald, P.. On discrete norm estimates related to multilevel preconditioners in the finite element method. Constructive Theory of Functions, Proc. Int. Conf. Varna 1991, ():203--214, 1992.
Oswald, P.. On a connectedness property of the complements of zero-neighbourhoods in topological vector spaces. Comm. Math. Univ. Carol., 22(2):351--356, 1981.
Otto, F. and Villani, C.. Generalization of an inequality by {T}alagrand and links with the logarithmic {S}obolev inequality. J. Funct. Anal., 173(2):361--400, 2000.
Paddison, Stephen J. and Paul, Reginald and Thomas A. Zawodzinski, Jr.. A statistical mechanical model for the calculation of the permittivity of water in hydrated polymer electrolyte membrane pores. JOURNAL OF CHEMICAL PHYSICS, 115():7762-7771, 2001.
Paddison, Stephen J. and Paul, Reginald and Thomas A. Zawodzinski, Jr.. Proton friction and diffusion coefficients in hydrated polymer electrolyte membranes: Computations with a non-equilibrium statistical mechanical model. JOURNAL OF CHEMICAL PHYSICS, 115():7753-7761, 2001.
Paddison, Stephen J. and Paul, Reginald and Thomas A. Zawodzinski, Jr.. A Statistical Mechanical Model of Proton and Water Transport in a Proton Exchange Membrane. Journal of The Electrochemical Society, 147():617-626, 2000.
Pavarino, L. and Widlund, O.. Iterative substructuring methods for spectral element discretizations of elliptic systems. II: mixed methods for linear elasticity and Stokes flow. SIAM J. Numer. Anal., ():, 1999.
Pavarino, L. F. and Widlund, O. B.. A polylogarithmic bound for an iterative substructuring method for spectral elements in three dimensions. SIAM J. Numer. Anal., 33(4):1303--1335, 1996.
Pavlidis, T.. Algorithms for shape analysis of contours and waveforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2():301-312, 1980.
Peacock, T. and Mullin, T. and Binks, D. J.. Bifurcation phenomena in flows of a nematic liquid crystal. International Journal of Bifurcation Chaos, 9():427--441, 1999.
Pego, R. L.. Phase Transitions in One--Dimensional Nonlinear Viscoelasticity: Admissibility and Stability. Archive for Rational Mechanics and Analysis, 97():353--394, 1987.
Peisker, P. and Braess, D.. {A conjugate gradient method and a multigrid method for Morley's finite element approximation of the biharmonic equation}. Numer. Math., 50():567--586, 1987.
Pereyra, V. and Proskurowski, W. and Widlund, O. B.. {High order fast Laplace solvers for the Dirichlet problem on general regions}. Mathematics of Computation., 31():1--16, 1977.
Pereyra, V. and Sewell, E. G.. Mesh selection for discrete solution of boundary problems in ordinary differential equations. Numer. Math., 23():261-268, 1975.
Pernice, M.. A hybrid multigrid method for the steady--state incompressible {N}avier--{S}tokes equations. Elect. Trans. Numer. Anal., 10():74--91, 2000.
Pesci, Adriana I. and Goldstein, Raymond E. and Shelley, Michael J.. Domain of convergence of perturbative solutions for {H}ele-{S}haw flow near interface collapse. Phys. Fluids, 11(10):2809--2811, 1999.
Peter, A. A. and Hoogstraten, V. and Slaats, P. M. A. and Baaijens, F. P. T.. A Eulerian approach to the finite element modelling of neo-Hookean rubber material. Applied Scientific Research, 48():193-210, 1991.
Petersdorff, T.~von and Stephan, E. P.. On the convergence of the multigrid method for a hypersingular integral equation of the first kind. Numer. Math., 57():379--391, 1990.
Phillips, T.N. and Williams, A.J.. Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method. Journal of Non-Newtonian fluid mechanics, 87():215-246, 1999.
Picasso, M.. An Anisotropic Error indicator Based On Zienkiewicz-Zhu Error Estimator:Application To Elliptic And Parabolic Problems. SIAM J. Sci. Comput., 24(4):1328-1355, 2003.
Picasso, M.. Numerical Study Of The Effectivity Index For An Anisotropic Error Indicator Based On Zienkiewicz-Zhu Error Estimator. COMMUNICATION IN NUMERICAL METHODS IN ENGINEERING, 19():13-23, 2003.
Pikaz, A. and Dinstein%3B, I.. Optimal polygonal approximation of digital curves. Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994. Vol. 1 - Conference A: Computer Vision \& Image Processing, 1():619 - 621, 1994.
Pinheiro, A.M.G and Izquierdo, E. and Ghanhari, M.. Shape matching using a curvature based polygonal approximation in scale-space. 2000 International Conference on Image Processing, 2():538 - 541, 2000.
Pitkranta, J. and Saarinen, T.. A multigrid version of a simple finite element method for the {S}tokes problem. Mathematics of Computation, 45():1--14, 1985.
Pottmann, H. and Krasauskas, R. and Hamann, B. and Joy, K. and Seibold, W.. On piecewise linear approximation of quadratic functions. J. Geometry and Graphics, 4(1)():31-53, 2000.
Pritchard, W. G. and Scott, L. R. and Tavener, S. J.. {Numerical and asymptotic methods for certain viscous free-surface flows}. {Phil. Trans. R. Soc. Lond. A}, {340}():{1--45}, {1992}.
Promislow, Keith and Stockie, John M.. Adiabatic relaxation of convective-diffusive gas transport in a porous fuel cell electrode. SIAM Journal on Appl. Math., 62(1):180--205 (electronic), 2001.
Proskurowski, W. and Widlund, O. B.. {A finite element capacitance matrix method for the Neumann problem for Laplace's equation}. SIAM J. Sci. Statist. Comput., 1():410--425, 1980.
Proskurowski, W. and Widlund, O. B.. On the numerical solution of {H}elmholtz's equation by the capacitance matrix method. Mathematics of Computation, 30():433--468, 1976.
Oden, J.T. and Prudhomme, S.. Goal-Oriented Error Estimation And Adaptivity For The Finite Element Method. Computers and Mathematics with Applications, 41():735-756, 2001.
Qiu, Y. and Sloan, D. M.. Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid. J. Comput. Appl. Math., 101():1-25, 1999.
Qiu, Y. and Sloan, D. M. and Tang, T.. Convergence analysis of an adaptive finite difference method for a singular perturbation problem. J. Comput. Appl. Math., 116():121-143, 2000.
Quarteroni, A.. Domain decomposition methods for systems of conservation laws: spectral collocation approximations. SIAM J. Sci. Statist. Comput., 11():1029--1052, 1990.
Quarteroni, A. and Valli, A.. Theory and application of {S}teklov--{P}oincar{\/e} operators for boundary--value problems. Applied and Industrial Mathematics, ():179--203, 1989.
Quivy, L.. A minimization algorithm for a relaxed energy connected with the theory of liquid crystals. Math. Models Methods Appl. Sci., 6(5):605-621, 1996.
Lazarov, R. and Pasciak, J. E. and Vassilevski, P. S.. Iterative solution of a coupled mixed and standard Galerkin discretization method for elliptic problems. Numer. Lin. Alg. Appl., 8():13--31, 2001.
Bank, R. E.. The efficient implementation of local mesh refinement algorithms. Adaptive Computational Methods for partial Differential Equations, ():74-81, 1983.
Rajagopalan, D. and Armstrong, R. C. and Brown, R. A.. Comparison of computational efficiency of flow simulations with multimode constitutive equations: integral and differential methods. J. non-Newtonian Fluid Mech., 46():243--273, 1993.
Rajagopalan, D. and Armstrong, R. C. and Brown, R. A.. Calculation of steady viscoelastic flow using a multimode Maxwell model: application of the explicitly elliptic momentum equation (EEME) formulation. J. non-Newtonian Fluid Mech., 36():135--157, 1990.
Randall, C. A. and Kim, N. and Kucera, J. P. and Cao, W. and Shrout, T. R.. Intrinsic and extrinsic effects in fine grain MPB PZT ceramics. J. Am. Ceram. Soc., 81():677--688, 1998.
Ren, W. and Wang, X.. An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions. Journal of Computational Physics, 159():246-273, 2000.
Renardy, M.. An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM Journal on Math. Anal., 22(2):313--327, 1991.
Reusken, A.. Convergence of the multigrid full approximation scheme for a class of elliptic mildly nonlinear boundary value problems. Numer. Math., 52():251--277, 1988.
an K. Riemslagh, J. Vierendeels and Merci, B. and Dick, E.. Treatment of all speed flows and high aspect ratios in {CFD} applications. Multigrid Methods VI, 14():256--263, 2000.
Rivara, M. C. and Iribarren, G.. The 4-triangles longest-side Partition of Triangles and linear Refinement Algorithms. Mathemathics of Computation, 65(216):1485-1501, 1996.
Rivara, M. C. and Venere, M.. Cost Analysis of the longest-side (triangle bisection) Refinement Algorithms for Triangulations. Engineering with Computers, 12():224--234, 1996.
Robert, R. and Sommeria, J.. Relaxation Towards a Statistical Equilibrium State in Two--Dimensional Perfect Fluid Dynamics. Physical Review Letters, 69(19):2776--2779, 1992.
Roccato, D. and Virga, E.. On plane defects in nematic liquid crystals with variable degree of orientation. Contin. Mech. Thermodyn., 4(2):121-136, 1992.
Rodrigue, D. and Kee, D. De and Fong, C.F. Chan Man. An experimental study of the effect of surfactants on the free rise velocity of gas bubbles. J. Non-Newtonian Fluid Mech, 66():213, 1996.
Rogers, J. C. W. and Berger, A. E. and Ciment, M. The Alternating Phase Truncation Method for Numerical Solution of a {Stefan} Problem. SIAM J. Numer. Anal., 16(4):563--587, 1979.
Roos, H. -G.. Optimal convergence of basic schemes for elliptic boundary value problems with strong parabolic layers. J. Math. Anal. Appl., 267():194-208, 2002.
Roos, H. -G. and Zarin, H.. The streamline-diffusion method for a convection-diffusion problem with a point source. J. Comput. Appl. Math., 150():109-128, 2003.
Rosen, I. G. and Chunming, W.. A multilevel technique for the approximate solution of operator {L}yapunov and algebraic {R}iccati equations. SIAM J. Numer. Anal., 32():514--541, 1995.
Rosin, P.L.. Techniques for assessing polygonal approximations of curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6):659-666, 1997.
Roy, S. and Fleming, M.. Nonlinear subgrid embedded element-free Galerkin method for monotone CFD solutions. Proceedings of the third ASME/JSME Joint Fluids Engineering Conference, ():, 1999.
Rubinstein, J. and Sternberg, P. and Keller, J. B.. Fast reaction, slow diffusion, and curve shortening. SIAM Journal on Appl. Math., 49(1):116--133, 1989.
Rubinstein, Jacob and Sternberg, Peter and Keller, Joseph B.. Reaction-diffusion processes and evolution to harmonic maps. SIAM Journal on Appl. Math., 49(6):1722--1733, 1989.
Rudd, R.E. and Broughton, J.Q.. Atomistic simulation of MEMS resonators through the coupling of length scales. J. Modeling and Simulation of Microsystems, 1():29-38, 1999.
Rulla, J. and Walkington, N. J.. Optimal Rates of Convergence for Degenerate Parabolic Problems in Two Dimensions. SIAM J. Numer. Anal., 33(1):56--67, 1996.
Ruppert, J.. A new and Simple Algorithm for Quality 2-Dimensional Mesh Generation. Third Annual ACM-SIAM Symposium on Discrete Algorithms, ():83--92, 1992.
Rychkov, V.S.. On restrictions and extensions of the {B}esov and {T}riebel-{L}izorkin spaces with respect to {L}ipschitz domains.. J. London Math. Soc., 60(1):237-257, 1999.
S. Allen, J. W. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening.. Acta Metall., 27():1084®C1095, 1979.
Saad, Y. and Schultz, M. H.. {GMRES}: {A} generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7():856--869, 1986.
Saad, Y. and Zhang, J.. {BILUM}: block versions of multielimination and multilevel {ILU} preconditioner for general sparse linear systems. SIAM J. Sci. Comput., 20():2103--2121, 1999.
Sangalli, G.. Quasi optimality of the SUPG method for the one-dimensional adavection-diffusion problem. SIAM J. Numer. Anal., 41(4)():1528--1542, 2003.
Sangalli, G.. Global and local error analysis for the residual-free bubbles method applied to advection-dominated problems. SIAM J. Numer. Anal., 38(5)():1496-1522, 2000.
Sawyer, D. R. and Sen, M. and Chang, H.-C.. Heat Transfer Enhancement in Three-Dimensional Corrugated Channel Flow. International Journal of of Heat and Mass Transfer, 41():3559, 1998.
Schafer, M.. Numerical solution of the time dependent axisymmetric {B}oussinesq equations on processor arrays. SIAM J. Sci. Statist. Comput., 13():1377--1393, 1992.
Schatz, A. H.. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. {II}. Interior estimates. SIAM J. Numer. Anal., 38(4)():1269-1293 (electronic), 2000.
Schatz, A. H.. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. {I}. Global estimates. Mathematics of Computation, 67(223)():877-899, 1998.
Schatz, A. H. and Thomee, V. and Wahlbin, L. B.. Maxmimum Norm Stability and Error Estimates in Parabolic Finite Element Equations. Communications on Pure and Applied Mathematics, 33():265--304, 1980.
Schatz, A. H. and Wahlbin, L. B.. Asymptotically Exact A Posteriori Estimators For The Pointwise Gradient Error On Each Element In Irregular Meshes. Part {II}: The Piecewise Linear Case. Mathematics of Computation, 73():517-523, 2003.
Schatz, A. H. and Wahlbin, L. B.. Pointwise Error Estimates for Differences in Piecewise Linear Finite Element Approximations. SIAM J. Numer. Anal., 41(6)():2149-2160, 2003.
Schatz, A. H. and Wahlbin, L. B.. Interior Maximum-Norm Estimates for Finite Element Methods, Part {II}. Mathematics of Computation, 64(211)():907-928, 1995.
Schatz, A. H. and Wahlbin, L. B.. On the Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems in Two and One Dimensions. Mathematics of Computation, 40(161)():47-89, 1983.
Schatz, A. H. and Wahlbin, L. B.. On the Quasi-Optimality in ${L}_\infty$ of the $\overset{\circ}{H^1}$-Projection into Finite Element Spaces. Mathematics of Computation, 38(157)():1-22, 1982.
Schuss*, Z. and Nadler, B.. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. PHYSICAL REVIEW E, 64():036116, 2001.
Schuster, Guido M. and Katsaggelos, Aggelos K.. An optimal polygonal boundary encoding scheme in the rate distortion sense. IEEE Transactions on Image Processing, 7(1):13-26, 1998.
Canann, Scott A. and Tristano, Joseph R. and Staten, Matthew L.. An approach to combined Laplacian and Optimization-based smoothing for triangular, quadrilateral and quad-dominant meshes. 7th International Meshing Roundtable, ():479-494, 1998.
Seifert, U.. Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating vesicles in shear flow. The European Physical Journal, B8():405, 1999.
Serrin, J.. On the Interior Regularity of Weak Solutions of {Navier--Stokes} Equations. Archive for Rational Mechanics and Analysis, 9():187--195, 1962.
Sethian, J. A.. Numerical Algorithms for Propagating Interfaces: {Hamilton--Jacobi} Equations and Conservation Laws. J. Diff. Geom., 31():131--161, 1990.
Shaqfeh, E. S. G. and Muller, S. J. and Larson, R. G.. The effects of gap width and dilute solutions properties on the viscoelastic instability. J. Fluid Mech., 235():285--317, 1992.
Sharaiha, Y.M. and Christofides, N.. An optimal algorithm for the straight segment approximation of digital arcs. Computer Vision, Graphics, and Image Processing, 55(5):397--407, 1993..
Sharon, Eitan and Brandt, Achi and Basri, Ronen. Completion Energies and Scale. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1117-1131, 2000.
Shelley, Michael J. and Tian, Fei-Ran and Wlodarski, Krzysztof. Hele-{S}haw flow and pattern formation in a time-dependent gap. Nonlinearity, 10(6):1471--1495, 1997.
Shen, J. and Wang, F. and Xu, Jinchao. An optimal finite element multigrid preconditioner for {C}hebyshev-collocation method. Applied Numerical Mathematics, 33():471--477, 2000.
Shen, Jie. On error estimates of projection methods for the {N}avier-{S}tokes equations: second-order schemes. Mathematics of Computation, 65():1039-1065, July 1996.
Shen, Jie. Efficient spectral-{G}alerkin method {I}. Direct solvers for second- and fourth-order equations by using {L}egendre polynomials. SIAM J. Sci. Comput., 15():1489-1505, 1994.
Shen, Jie. On error estimates of the projection methods for the {N}avier-{S}tokes equations: first-order schemes. SIAM J. Numer. Anal., 29():57-77, 1992.
Shen, Jie and Mejdo, T. Tachim and Wang, Shouhong. On a Wind-Driven, Double-Gyre, Quasi-Geostrophic Ocean Model: Numerical Simulations and Structural Analysis. Journal of Computational Physics, 155():, 1999.
Shen, Jie and Wang, Shouhong. A fast and accurate numerical scheme for the primitive equations of the atmosphere. SIAM J. Numer. Anal., 36():719-737, 1999.
Shen, Q. and Calderer, M. C.. Homogenization of relaxed models of nematic liquid crystals with polymeric inclusions. Submitted to SIAM Journal on Math. Anal., ():, 1999.
Shenoy, V.B. and Miller, R. and Tadmor, E.B. and D. Rodney, R. Phillips and Ortiz, M.. An adaptive finite element approach to atomic-scale mechanics - the quasicontinuum method. J. Mech. Phys. Solids, 47():611-642, 1999.
Shephard, M. and Georges, M.. Automatic three-dimensional mesh generation by the finite octree technique. Internat. J. Numeri. Methods Engrg., 32():709-749, 1991.
Shewchuk, J.. What is a Good Linear element? Interpolation, Conditioning, and Quality measures. 11th International Meshing Roundtable, ():115-126, 2002.
Shih, Yin-Tzer and Elman, Howard C.. Iterative Methods For Stabilized Discrete Convection-Diffusion Problems. IMA Journal of Numerical Analysis, 20(3):333--358, 2000.
Shikata, T. and Hirata, H. and Kotaka, T.. Micelle formation of detergent molecules in aqueous media: viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions. Langmuir, 3():1081, 1987.
Shikata, T. and Sakaiguch, Y. and Urakami, H. and Tamura, A. and Hirata, H.. Enormously elongated cationic surfactant micelle formed in {C}{T}{A}{B}-aromatic additive systems. J. Colloid Interface Sci., 119():291, 1987.
Shkoller, S.. Well-posedness and global attractors for liquid crystals on Riemannian manifolds. Comm. Partial Differential Equations, to appear, ():, 2001.
Shu, S. and Xiao, Y. and Xu, Jinchao and Zikatanov, L.. Algebraic multigrid methods for lattice block materials. Recent progress in computational and applied PDEs, ():287--306, 2001.
Silvester, D. and Wathen, A.. {Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners}. SIAM J. Numer. Anal., 31():1352--1367, 1994.
Smith, B. F.. A parallel implementation of an iterative substructuring algorithm for problems in three dimensions. SIAM J. Sci. Comput., 14():406--423, 1993.
Smith, B. F.. An optimal domain decomposition preconditioner for the finite element solution of linear elasticity problems. SIAM J. Sci. Statist. Comput., 13():364--378, 1992.
Smith, B. F. and Bjørstad, P. E. and Gropp, W. D.. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. , ():, 1996.
Smolka, L. B. and Belmonte, A.. Drop pinch-off and filament dynamics of wormlike micellar fluids. submitted to J. Non-Newtonian Fluid Mech., ():, 2001.
Sohr, H. and von Wahl, B.. On the Regularity of the Pressure of Weak Solutions of the Navier Stokes Equations. Archive for Rational Mechanics and Analysis, 46():428--439, 1986.
Solonnikov, V. A.. Oseen and {S}tokes asymptotics for the problem on stationary motion of two immiscible liquids. J. Math. Sci. (New York), 92(6):4364--4385, 1998.
Sommeria, J. and Staquet, C. and Robert, R.. Final Equilibrium State of a Two--Dimensional Shear Layer. Journal of Fluid Mechanics, 233():661--689, 1991.
Soner, H. M.. Convergence of the phase-field equations to the {M}ullins-{S}ekerka problem with kinetic undercooling [97d:80007]. Fundamental contributions to the continuum theory of evolving phase interfaces in solids, ():413--471, 1999.
Soner, H. Mete. Convergence of the phase-field equations to the {M}ullins-{S}ekerka problem with kinetic undercooling. Arch. Rational Mech. Anal., 131():, 1995.
Sosonkina, M. and Melson, J. T. and Saad, Y. and Watson, L. T.. Preconditioning strategies for linear systems arising in tire design. Numer. Lin. Alg. Appl., 7():743--757, 2000.
Spekreijse, S. P.. Multigrid solution of monotone second-order discretization of hyperbolic conservation laws. Mathematics of Computation, 49():135--155, 1987.
Spence, A. and Cliffe, K. A. and Tavener, S. J.. The numerical analysis of bifurcation problems with application to fluid mechanics. Submitted to Acta Numer., ():, 2000.
Spiegelberg, S. H. and McKinley, G. H.. Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow. , 67():49--76, 1996.
Micheletti, Stefano and Perotto, Simona and Picasso, Marco. Stabilized finite elements on anisotropic meshes :A priori error estimates for the advantion-diffusion and the stokes problem. SIAM J. Numer. Anal., 41(3):1131-1162, 2003.
Tadmor, Eitan and Tang, Tao. Pointwise convergence rate for nonlinear conservation laws. Hyperbolic Problems:Theory, Numerics, Applications Proceedings of the 7th int'l Conference in Zurich, (M. Fey and R. Jeltsch, eds. ), Birkhauser, 130():925-934, 1999.
Tai, X. and Xu, J.. Global convergence of subspace correction methods for convex optimization problems. Mathematics of Computation, 71(237):105--124, 2002.
Talmage, G. and Shuy, S.-H. and Moeny, M. J. and Tavener, S. J. and Cliffe, K. A.. Inertial effects on electrically conducting fluids in the presence of transverse magnetic fields: an example problem. International Journal of Engr. Sci., 36():1--13, 1997.
Tanaka, Naoto. Global existence of two phase nonhomogeneous viscous incompressible fluid flow. Comm. Partial Differential Equations, 18(1-2):41--81, 1993.
Tang, Tao and Teng, Zhen-huan and zhouping Xin. Fractional rate of convergence for viscous approximation to nonconvex conservation laws. SIAM Journal on Mathematical Analysis, 35():98-122, 2004.
Tang, Tao and Xue, Wei-min and Zhang, Ping-wen. Analysis of moving mesh methods based on geometrical variables. Journal of Computational Mathematics, 19():41-54, 2001.
Tartar, L.. The Compensated Compactness Method Applied to Systems of Conservation Laws. Systems of Nonlinear Partial Differential Equations, ():263--285, 1983.
Tartar, L.. Compensated Compactness and Applications to Partial Differential Equations. Research Notes in Mathematics, Nonlinear Analysis, and Mechanics, Heriot Watt Symposium, 4():, 1979.
Tavener, S. J. and Mullin, T. and Blake, G. and Cliffe, K. A.. A numerical bifurcation study of electrohydrodynamic convection in nematic liquid crystals. Submitted to Proc. R. Soc, ():, 1999.
Taylor, J. E. and Cahn, J. W.. Diffuse interfaces with sharp corners and facets: phase field models with strongly anisotropic surfaces. Phys. D, 112(3-4):381--411, 1998.
Taylor, Jean E. and Cahn, John W.. Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Statist. Phys., 77(1-2):183--197, 1994.
Teh, C.H. and Chin, R.T.. On the Detection of Dominant Points in Digital Curves. IEEE Trans. Pattern Analysis and Machine Intelligence, 11():859-872, 1989.
Teng, S. H. and Wong, Chi Wai. Unstructured Mesh Generation: Theory, Practice, and Perspectives. International Journal of Computational Geometry and Applications, 10(3):227-266, 2000.
Thatcher, R. W.. Estimating the Form of an Elastic Vertex Singularity with Mixed Boundary Condtions. Boundary Value Problems and INtegral Equations in Nonsmooth Domains, 167():285--298, 1993.
Thomee, V. and Zhang, N. and Xu, Jinchao. Superconvergence of gradient in piecewise linear finite element approximation to a parabolic problem. SIAM J. Numer. Anal., 26(3):553--573, 1989.
Thompson, J. and Thames, F. and Mastin, C.. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics, 15():299-319, 1974.
Tian, Fei Ran. A {C}auchy integral approach to {H}ele-{S}haw problems with a free boundary: the case of zero surface tension. Arch. Rational Mech. Anal., 135(2):175--196, 1996.
Timpf, Sabine and Frank, Andrew. A multi-scale {DAG} for cartographic objects. Twelfth International Symposium on Computer- Assisted Cartography, 4():157--163, 1995.
Tong, C. H. and Chan, T. F. and Kuo, C. C. J.. Multilevel filtering preconditioners: extensions to more general elliptic problems. SIAM J. Sci. Statist. Comput., 13():227--242, 1992.
Tong, C. H. and Chan, T. F. and Kuo, C. C. J.. A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Statist. Comput., 12():1486--1495, 1991.
Tuminaro, R. S. and Womble, D. E.. Analysis of the multigrid {FMV} cycle on large scale parallel machines. SIAM J. Sci. Comput., 14():1159--1173, 1993.
Turkington, B. and Jordan, R.. Turbulent Relaxation of a Manetofluid: A Statistical Equilibrium Model. International Conference on Advances in Geometric Analysis and Continuum Mechanics, ():, 1993.
Turkington, B. and Whitaker, N.. Statistical Equilibrium Computations of Coherent Structures in Turbulent Shea Layers. SIAM J. Sci. Statist. Comput., Submitted():, 1993.
Um, S. and Wang, C.Y.. Three dimensional analysis of transport and reaction in proton exchange membrane fuel cells. Proc. of the ASME Heat Transfer Division, Orlando, FL, ():, 2000.
van der Waals, J.. The thermodynamic theory of capillarity under the hypothesis of a continuous density variation. J. Stat. Phys., 20():197--244, 1893.
van Duijn, C. J. and Fehribach, Joseph D.. Analysis for a molten carbonate fuel cell. Electron. J. Differential Equations, ():No.\ 06, approx.\ 25 pp.\ (electronic only), 1993.
Vanderbilt, D. and Zhong, W.. First-principles theory of structural phase transitions for perovskites: competing instabilities. Ferroelectrics, 206():181-204, 1998.
Vandewalle, S. and Piessens, R.. On dynamic iteration methods for solving time-periodic differential equations. SIAM J. Numer. Anal., 30():286--303, 1993.
Vandewalle, S. and Piessens, R.. Efficient parallel algorithms for solving initial-boundary value and time-periodic parabolic partial differential equations. SIAM J. Sci. Statist. Comput., 13():1330--1346, 1992.
Vaněk, P. and Mandel, J. and Brezina, M.. Algebraic multigrid based on smoothed aggregation for second and fourth order problems. Computing, 56():179--196, 1996.
Vanek, P. and Mandel, J. and Brezina, M.. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing, 56(3):179--196, 1996.
Vassilevski, P. S. and Petrova, S. I. and Lazarov, R. D.. Finite difference schemes on triangular cell--centered grids with local refinement. SIAM J. Sci. Statist. Comput., 13():1287--1313, 1992.
Verbrugge, M. W. and Hill, R. F.. Ion and Solvent Transport in Ion-Exchange Membranes I. A Macrohomogeneous Mathematical Model. J. Electrochem. Soc., 137():886, 1990.
Carstensen, Carsten and Verf\"urth, Rudiger. Edge Residuals Dominate A Posteriori Error Estimates For Low Order Finite Element Methods. SIAM J. Numer. Anal., 36(5):1571-1587, 1999.
W. Rachowicz, J. T. Oden and Demkowicz, L.. Toward a universal $h-p$ adaptive finite element strategy, Part 3: Design of $h-p$ meshes. Comp. Meth. in Appl. Mech. and Engng., 77():181-212, 1989.
Wagner, C.. On the algebraic construction of multilevel transfer operators (for convection--diffusion--reaction equations. Multigrid Methods VI, 14():264--270, 2000.
Wahlbin, Lars B.. General principles of superconvergence in {G}alerkin finite element methods. Finite element methods (Jyv{\''a}skyl{\''a}, 1997), ():269--285, 1998.
Wan, W. L. and Chan, T. F. and Smith, B.. An energy-minimizing interpolation for robust multigrid methods. SIAM J. Sci. Comput., 21(4):1632--1649 (electronic), 2000.
Wan, W. L. and Chan, T. F.. Wave Propagation Analysis of Multigrid Methods for Convection Dominated Problems. Fourteenth International Conference on Domain Decomposition Methods, ():171-181, 2003.
Wang, C. Y.. Two-phase flow and transport phenomena in proton exchange membrane fuel cells - modeling and experiments. Proc. of Gordon Research Conference on Fuel Cells, ():, 2001.
Wang, C. Y. and Gu, W. B.. Micro-macroscopic coupled modeling of batteries and fuel cells. {P}art {I}: Model development. J. Electrochem. Soc., 145(10):, 1998.
Wang, C. Y. and Gu, W. B. and Cullion, R. and Thomas, B.. Heat and mass transfer issues in advanced batteries. Proc. of Int. Mech Engr Congress \& Exhibits, ():, 1999.
Wang, C. Y. and Gu, W. B. and Liaw, B. Y.. Micro-macroscopic coupled modeling of battery and fuel cell systems. {P}art {I}{I}: Application to Ni-Cd and Ni-MH cells. J. Electrochem. Soc., 145(10):, 1998.
Wang, C. Y. and Wang, Z. H. and Pan, Y.. Two-phase transport in proton exchange membrane fuel cells. Proc. of Int. Mech Engr Congress \& Exhibits, ():, 1999.
Wang, Feng and Glimm, James G. and Grove, John W. and Plohr, Bradley J. and Sharp, David H.. A conservative {E}ulerian numerical scheme for elastoplasticity and application to plate impact problems. Impact Comput. Sci. Engrg., 5():, 1993.
Wang, H. and Dahle, H. K. and Ewing, R. E. and Lin, T. and V/oag, J. E.. {ELLAM}--based domain decomposition and local refinement techniques for advection--diffusion equations with interfaces. Domain Decomposition Methods in Scientific and Engineering Computing: Proceedings of the Seventh International Conference on Domain Decomposition, 180():361--366, 1994.
Wang, J.. Convergence analysis without regularity assumptions for multigrid algorithms based on {SOR} smoothing. SIAM J. Numer. Anal., 29():987--1001, 1992.
Wang, Q. and E, W. and Liu, C. and Zhang, P.. A Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential. Physical Review E, 65():051504, 2001.
Wheeler, E. K. and Fischer, P. and Fuller, G. G.. Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution. J. Non-Newtonian Fluid Mech., 75():193, 1998.
Widlund, O. B.. Some {S}chwarz methods for symmetric and nonsymmetric elliptic problems. Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, ():19--36, 1992.
Wienands, R. and Oosterlee, C. W.. Fourier analysis for {K}rylov subspace acceleration of multigrid with application to 3{D} anisotropic problems. Multigrid Methods VI, 14():278--284, 2000.
Winslow, A.. Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh. Journal of Computational Physics, 1967():149--172, 1967.
Wittum, G.. On the convergence of multi--grid methods with transforming smoothers---theory with applications to the {N}avier-- {S}tokes equations. Numer. Math., 57():15--38, 1990.
Wohlmuth, B. I.. A multigrid method for saddle point problems arising from mortar finite element discretizations. Elect. Trans. Numer. Anal., 11():43--54, 2000.
Wu, J. and Srinivasan, V. and Xu, Jinchao and Wang, C. Y.. Newton-Krylov-Multigrid method for battery simulation. J. of the Electrochemical Society, 149():1342--1348, 2001.
Xenophontos, Christos. A note on the convergence rate of the finite element method for singularly perturbed problems using the Shishkin mesh. Applied Mathematics and Computation, 142():545-559, 2003.
Xu, Jinchao. The {EAFE} scheme and {CWS} method for Convection Dominated Problems. The Proceedings for Ninth International Conference on Domain Decomposition Methods, ():, 1997.
Xu, Jinchao. Convergence estimates for some multigrid algorithms. Proceedings of the 1989 Houston Domain Decomposition Methods Conference, ():174--187, 1990.
Xu, Jinchao. Iterative methods by {SPD} and small subspace solvers for nonsymmetric or indefinite problems. Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, ():106--118, 1992.
Xu, Jinchao. Some two--grid finite element methods. Domain Decomposition Methods in Science and Engineering: The Sixth International Conference on Domain Decomposition, 157():79--87, 1994.
Xu, Jinchao. The error analysis and the improved algorithms for the infinite element method. Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, ():326--331, 1985.
Xu, Jinchao. Some inequalities in Sobolev space and finite and infinite elements on polygonal domains. M. A. thesis, under Longan Ying, Peking University, ():, 1984.
Xu, Jinchao. Error estimates of the finite element method for the 2nd order elliptic equation with discontinuous coefficient. J. Xiangtan Univ, (1):, 1982.
Xu, J. and Ying, L.. Convergence of an explicit upwind finite element method to multi-dimensional conservation laws. J. of Comp. Math., 19(1):87--100, 2001.
Xu, Jinchao and Zhang, S.. Preconditioning the Steklov-Poincaré operator by using Green's function. Mathematics of Computation, 66(217):125--138, 1997.
Xu, J. and Zhou, A.. Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Advances in Comp. Math., 14(4):293--327, 2001.
Xu, Jinchao and Zhou, A.. Local and parallel finite element algorithms based on two-grid discretizations. Mathematics of Computation, 231():881--909, 2000.
Xu, Jinchao and Zhou, A.. Some local and parallel properties of finite element discretizations. Proceedings of of the 11th International Conference on Domain Decomposition Methods, ():, 1998.
Xu, Jinchao and Zikatanov, L.. On Multigrid Methods for Generalized Finite Element Methods. Lect. Notes Comput. Sci. Eng.the International Workshop on Meshfree Methods for {PDE}, 26():, 2003.
Xu, Jinchao and Zikatanov, L.. The Method of Alternating Projections and the Method of Subspace Corrections in {H}ilbert Space. Journal of The American Mathematical Society, 15():573--597, 2002.
Xu, Jinchao and Zikatanov, Ludmil. On An Energy Minimazing Basis in Algebraic Multigrid Methods. Computing and visualization in sciences, 7(121--127):, 2004.
Efendiev, Y. R. and Hou, T. Y. and Wu, Z. H.. Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal., 37(3):888--910 (electronic), 2000.
Yan, Ningning and Zhou, Aihui. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Engrg., 190(32-33):4289--4299, 2001.
Yao, M. and McKinley, G. H.. Numerical simulations of extensional deformations of viscoelastic liquid bridges in filament stretching devices. , 74():47--88, 1998.
Yeh, G. and Cheng, H. and Wang, H. and Xu, Jinchao and Carsel, R.. {3DMGWATER/3DMGWASTE}: {A} 3-D {F}inite {E}lement {M}odel of {W}ater {F}low and {A} 3-{D} {H}ybrid {L}agrangian-{E}ulerian {F}inite {E}lement {M}odel of {WASTE} {T}ransport through {S}aturated-{U}nsaturated {P}orous {M}edia: {M}ultigrid {V}ersion. , (EPA/600/xxxx/*xxx):, 1996.
Yin, J. and Cao, W.. Observation and analysis of domain configurations in domain-engineered Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals. Submitted to J. Appl. Phys., ():, 1999.
Yin, J. and Jiang, B. and Cao, W.. Elastic, piezoelectric and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 single crystal with designed multidomains. IEEE Transactions UFFC, in press, ():, 1999.
Yserentant, H.. The convergence of multi--level methods for solving finite--element equations in the presence of singularites. Mathematics of Computation, 47():399--409, 1986.
Yserentant, H.. On the multi--level splitting of finite element spaces for indefinite elliptic boundary value problems. SIAM J. Numer. Anal., 23():581--595, 1986.
Yuzhakov, V. and Takhistov, P. V. and Miller, A. E. and Chang, H.-C.. Pattern Selection during Electropolishing due to Double-Layer Effects. Chaos, 9():62, 1999.
Zana, E. and Leal, L. G.. The dynamics and dissolution of gas bubbles in a viscoelastic fluid. International Journal of Multiphase Flow, 4():237, 1978.
Zeng, S. and Wesseling, P.. Multigrid solution of the incompressible {N}avier--{S}tokes equations in general coordinates. SIAM J. Numer. Anal., 31():1764--1784, 1994.
Zhang, Z. M.. Derivative superconvergent points in finite element solutions of Poisson's equation for the serendipity and intermediate families - a theoretical justification. Math. Comp., 67(222):541-552, 1998.
Zhang, Zhimin and Zhu, J. Z.. Superconvergence of the derivative patch recovery technique and a posteriori error estimation. Modeling, mesh generation, and adaptive numerical methods for partial differential equations (Minneapolis, MN, 1993), ():431--450, 1995.
Zhao, Hong-Kai and Chan, T. and Merriman, B. and Osher, S.. A variational level set approach to multiphase motion. Journal of Computational Physics, 127(1):179--195, 1996.
Zhou, G. and Rannacher, R.. Pointwise superconvergence of the streamline diffusion finite element method. Numer. Meth. PDEs, 12, CMP 96:05():123-145, 1996.
Zhu, J. and Chen, L.Q. and Shen, Jie and Tikare, V.. Coarsening Kinetics from a Variable Mobility Cahn-Hilliard Equation - Application of Semi-implicit Fourier Spectral Method. Phys. Review E., 60():3564-3572, 1999.
Zhu, J. Z. and Zienkiewicz, O. C.. Superconvergence recovery technique and a posteriori error estimators. International Journal for Numerical Methods in Engineering, 30(7):1321--1339, 1990.
Zhu, Pengfei and Chirlian, Paul M.. On Critical Point Detection of Digital Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):737 - 748, 1995.
Zhu, S. and Cao, W.. Imaging of 180$^o$ ferroelectric domains in LiTa$O_3$ by means of scanning electron microscopy. Phys. Stat. sol. (a), 173():2495--2502, 1999.
Zhu, S. and Cao, W.. Direct observation of ferroelectric domains in LiTa$O_3$ using environmental scanning electron microscopy. Phys. Rev. Lett., 79():2558-2561, 1997.
Zhu, Y. and Seneviratne, L.D.. Optimal polygonal approximation of digitised curves. IEE Proceedings Vision, Image and Signal Processing, 144(1):8-14, 1997.
Zienkiewicz, O. C. and Zhu, J. Z.. The superconvergence patch recovery and a posteriori error estimates. {P}art 2: Error estimates and adaptivity. International Journal for Numerical Methods in Engineering, 33():1365-1382, 1992.
Zienkiewicz, O. C. and Zhu, J. Z.. The superconvergence patch recovery and a posteriori error estimates. {P}art 1: The recovery techniques. International Journal for Numerical Methods in Engineering, 33():1331-1364, 1992.
Zikatanov, L.. Generalized Finite element Method and Inverse-Average-Type Discretisation for Selfadjoint Elliptic Boundary Value Problems. Num.Meth. for PDEs, ():, (to appear).
@ These notes are copyrighted by Long Chen. All rights reserved. The HTML template for bib file was created by Mauro Cherubini and modified by Long Chen.