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LONG CHEN

1. POISSON TYPE EQUATIONS

1.1. 2-D (P0, P0) − RT0. We chose piecewise constant bases for boundary edges and
interior of triangles. The four bases are denoted by φ0, φb1 , φb2 , φb3 as shown in Fig 1. The
weak gradient is ∇wφ = QT (∇φ). Here ∇φ is understood in the distribution sense and
QT is theL2 projection toRT0 space. Chose a bases {χ1, χ2, χ3} ofRT0, the computation
of ∇wφi = QT (∇φi) will involve the assembling of the corresponding mass matrix and
the evaluation of the action 〈∇φi, χj〉.

FIGURE 1. Bases of WG element

Since the inverse of the mass matrix is needed, we chose a L2-orthogonal bases of
RT0(T ) as the following

(1) χ1 =

(
1
0

)
, χ2 =

(
0
1

)
, χ3 =

(
x− x̄
y − ȳ

)
.

where (x̄, ȳ) is the barycenter of triangle T . The mass matrix is

M = diag(|T |, |T |, C−1
T |T |),

where |T | is the area of triangle T and

CT =

[
1

T

∫
T

(x− x̄)2 + (y − ȳ)2 dxdy

]−1

.

The quantity CT can be computed using numerical quadrature, e.g., three middle points
rule.

For a weak function φ = (φ0, φb), we now compute

q = (qj) = 〈∇φ, χj〉 := −(φ0,∇ · χj)T + (φb, χj · n)∂T .
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For the basis φ0, the boundary part is vanished. Since ∇ · χ1 = ∇ · χ2 = 0, the only
nonzero is q03 = −

∫
T
∇ · χ3 = −2|T |. Therefore we obtain

q0 =

 0
0

−2|T |

 , ∇φ0 = M−1q0 =

 0
0

−2CT

 .

For the basis φbi , i = 1, 2, 3, only need to compute the boundary part. We compute the
first two components as follows

qi1 = (φbi , χ1 · n)∂T =

∫
ei

χ1 · nidS = |ei|ni · (1, 0),

qi2 = (φbi , χ2 · n)∂T =

∫
ei

χ2 · nidS = |ei|ni · (0, 1).

Now we use the formula of gradient of barycentric coordinate∇λi

∇λi = −ni
di

= −ni|ei|
2|T |

to express (qi1, q
i
2) = −2∇λi|T |. The computation of the third component is a little bit

subtle.

qi3 = (φbi , χ3 · n)∂T =

∫
ei

χ3 · nidS = (xim − x̄, yim − ȳ) · ni|ei|

=
1

3
(xim − xi, yim − yi) · ni|ei| =

1

3
di|ei| = −

2

3
|T |.

We summarize as for i = 1, 2, 3

qi =

−2∇λi|T |

2
3 |T |

 , ∇wφbi = M−1qi =

−2∇λi

2
3CT

 .

Remark 1.1. Due to the nonlinear term CT , the weak gradient is not affine invariant. The
traditional way of computing gradient and local stiffness matrix using affine map is no
longer valid.

Remark 1.2. It is interesting to note that the first two components of∇wφbi corresponds to
the gradient of nonconforming CR element. For CR element, the three bases are {1−2λi}
and the element-wise gradient is {−2∇λi}.

With the formulae of weak gradient, we can compute the local stiffness by the standard
formulae

Aij = (∇wφi,∇wφj) = (∇wφj)
TM∇wφi = qj · ∇wφi.

We write the formulae for different block of the local stiffness matrix:

Abibj = 4∇λi · ∇λj |T |+
4

9
CT |T |,

A0,bi = −4

3
CT |T |

A00 = 4CT |T |.
If we eliminate the interior basis φ0 and form the Schur complement

S = Abb −Ab0A
−1
00 A0b = ACR
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which is exactly the stiffness matrix for the CR nonconforming element. The difference
will be the right hand side 1

3

∫
T
f comparing with

∫
T
f(1− 2λi).

Locally the weak function space (P0, P0) is of dimension 4 and its gradient space RT0
is dimension 3. The weak gradient ∇w : (P0, P0) → RT0 maps a 4 × 1 vector to a 3 × 1
vector. The matrix representation G is formed by using∇wφi as column vectors, i.e,

G =
(
∇wφ0,∇wφ1,∇wφ2,∇wφ3

)
=

(
0 −2∇λ1 −2∇λ2 −2∇λ3

−2CT
2
3CT

2
3CT

2
3CT

)
.

It is easy to see the rank of G is 3 and the null space of G is the constant vector which
reflects to the important property of the weak gradient

∇wφ = 0 ⇐⇒ φ = constant.

Evaluation of the weak gradient. Suppose four coefficients u = (u0, u1, u2, u3)T are
given, the product Gu will give the coefficients in the bases χ = (χ1, χ2, χ3)T . Then the
function ∇wu = χTGu. Using the formulae of χ, we can write the weak gradient in two
parts:

∇wu = ∇CRu+ h.o.t.

The constant vector ∇CRu = −2
∑
ui∇λi is exactly the gradient of CR element. The

h.o.t term corresponds to the contribution of χ3 whose coefficient is[
1

3
(u1 + u2 + u3)− u0

]
2CTχ3.

The term (u1 + u2 + u3)/3− u0 is zero for linear polynomial and interpolant and thus in
general it is of order O(h2). This term can be safely skipped.

We check the scaling as follows: ∇λi = O(1/h) and CTχ3 = O(1/h), i.e, as a
gradient of bases, they are in (1/h) scaling. The coefficient ui areO(1) for∇CRu and the
coefficient for linear part is O(h2). Two orders higher.

Remark 1.3. For general Poisson equation with scalar coefficient
∫
T
K|∇u|2, since the

lowest order scheme is used, we compute the average ofK over T and multiply to the local
stiffness matrix. For highly oscillatory or tensor coefficient, we need to compute the mass
matrix

MK =
(∫

T
Kχiχj dV

)
.

The local stiffness matrix will be given by

A4×4 = Gt
4×3MK,3×3G3×4.

Note that MK may not be diagonal and the formulae of Aij is not concise and not neces-
sary.

1.2. 3D (P0, P0) − RT0. The computation is similar. We collect the computation result
and skip details.

• Bases of weak function: φ0, φb1 , φb2 , φb3 , φb4 .
• Bases of RT0:

χ1 =

1
0
0

 , χ2 =

0
1
0

 , χ3 =

0
0
1

 , χ4 =

x− x̄y − ȳ
z − z̄

 .
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• The mass matrix of RT0 is

M = diag(|T |, |T |, |T |, C−1
T |T |),

where |T | is the area of triangle T and

CT =

[
1

T

∫
T

(x− x̄)2 + (y − ȳ)2 + (z − z̄)2 dx dy dz

]−1

.

• The weak gradient is(
∇wφ0,∇wφ1,∇wφ2,∇wφ3,∇wφ4

)
=

(
0 −3∇λ1 −3∇λ2 −3∇λ3 −3∇λ4

−3CT
3
4CT

3
4CT

3
4CT

3
4CT

)
.

• Local stiffness matrix

Abibj = 9∇λi · ∇λj |T |+
9

16
CT |T |,

A0,bi = −9

4
CT |T |,

A00 = 9CT |T |.
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