PROGRAMMING OF WEAK GALERKIN METHOD

LONG CHEN

1. Poisson type equations

1.1. 2-D $\left(P_{0}, P_{0}\right)-R T_{0}$. We chose piecewise constant bases for boundary edges and interior of triangles. The four bases are denoted by $\phi_{0}, \phi_{b_{1}}, \phi_{b_{2}}, \phi_{b_{3}}$ as shown in Fig 1. The weak gradient is $\nabla_{w} \phi=Q_{T}(\nabla \phi)$. Here $\nabla \phi$ is understood in the distribution sense and Q_{T} is the L^{2} projection to $R T_{0}$ space. Chose a bases $\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}$ of $R T_{0}$, the computation of $\nabla_{w} \phi_{i}=Q_{T}\left(\nabla \phi_{i}\right)$ will involve the assembling of the corresponding mass matrix and the evaluation of the action $\left\langle\nabla \phi_{i}, \chi_{j}\right\rangle$.

Figure 1. Bases of WG element
Since the inverse of the mass matrix is needed, we chose a L^{2}-orthogonal bases of $R T_{0}(T)$ as the following

$$
\begin{equation*}
\chi_{1}=\binom{1}{0}, \chi_{2}=\binom{0}{1}, \chi_{3}=\binom{x-\bar{x}}{y-\bar{y}} . \tag{1}
\end{equation*}
$$

where (\bar{x}, \bar{y}) is the barycenter of triangle T. The mass matrix is

$$
M=\operatorname{diag}\left(|T|,|T|, C_{T}^{-1}|T|\right)
$$

where $|T|$ is the area of triangle T and

$$
C_{T}=\left[\frac{1}{T} \int_{T}(x-\bar{x})^{2}+(y-\bar{y})^{2} \mathrm{~d} x \mathrm{~d} y\right]^{-1}
$$

The quantity C_{T} can be computed using numerical quadrature, e.g., three middle points rule.

For a weak function $\phi=\left(\phi_{0}, \phi_{b}\right)$, we now compute

$$
\boldsymbol{q}=\left(q_{j}\right)=\left\langle\nabla \phi, \chi_{j}\right\rangle:=-\left(\phi_{0}, \nabla \cdot \chi_{j}\right)_{T}+\left(\phi_{b}, \chi_{j} \cdot n\right)_{\partial T} .
$$

[^0]For the basis ϕ_{0}, the boundary part is vanished. Since $\nabla \cdot \chi_{1}=\nabla \cdot \chi_{2}=0$, the only nonzero is $q_{3}^{0}=-\int_{T} \nabla \cdot \chi_{3}=-2|T|$. Therefore we obtain

$$
\boldsymbol{q}^{0}=\left(\begin{array}{c}
0 \\
0 \\
-2|T|
\end{array}\right), \quad \nabla \phi^{0}=M^{-1} \boldsymbol{q}^{0}=\left(\begin{array}{c}
0 \\
0 \\
-2 C_{T}
\end{array}\right)
$$

For the basis $\phi_{b_{i}}, i=1,2,3$, only need to compute the boundary part. We compute the first two components as follows

$$
\begin{aligned}
& q_{1}^{i}=\left(\phi_{b_{i}}, \chi_{1} \cdot n\right)_{\partial T}=\int_{e_{i}} \chi_{1} \cdot n_{i} d S=\left|e_{i}\right| n_{i} \cdot(1,0) \\
& q_{2}^{i}=\left(\phi_{b_{i}}, \chi_{2} \cdot n\right)_{\partial T}=\int_{e_{i}} \chi_{2} \cdot n_{i} d S=\left|e_{i}\right| n_{i} \cdot(0,1)
\end{aligned}
$$

Now we use the formula of gradient of barycentric coordinate $\nabla \lambda_{i}$

$$
\nabla \lambda_{i}=-\frac{n_{i}}{d_{i}}=-\frac{n_{i}\left|e_{i}\right|}{2|T|}
$$

to express $\left(q_{1}^{i}, q_{2}^{i}\right)=-2 \nabla \lambda_{i}|T|$. The computation of the third component is a little bit subtle.

$$
\begin{aligned}
q_{3}^{i} & =\left(\phi_{b_{i}}, \chi_{3} \cdot n\right)_{\partial T}=\int_{e_{i}} \chi_{3} \cdot n_{i} d S=\left(x_{i m}-\bar{x}, y_{i m}-\bar{y}\right) \cdot n_{i}\left|e_{i}\right| \\
& =\frac{1}{3}\left(x_{i m}-x_{i}, y_{i m}-y_{i}\right) \cdot n_{i}\left|e_{i}\right|=\frac{1}{3} d_{i}\left|e_{i}\right|=-\frac{2}{3}|T|
\end{aligned}
$$

We summarize as for $i=1,2,3$

$$
\boldsymbol{q}^{i}=\binom{-2 \nabla \lambda_{i}|T|}{\frac{2}{3}|T|}, \quad \nabla_{w} \phi_{b_{i}}=M^{-1} \boldsymbol{q}^{i}=\binom{-2 \nabla \lambda_{i}}{\frac{2}{3} C_{T}}
$$

Remark 1.1. Due to the nonlinear term C_{T}, the weak gradient is not affine invariant. The traditional way of computing gradient and local stiffness matrix using affine map is no longer valid.

Remark 1.2. It is interesting to note that the first two components of $\nabla_{w} \phi_{b_{i}}$ corresponds to the gradient of nonconforming CR element. For CR element, the three bases are $\left\{1-2 \lambda_{i}\right\}$ and the element-wise gradient is $\left\{-2 \nabla \lambda_{i}\right\}$.

With the formulae of weak gradient, we can compute the local stiffness by the standard formulae

$$
A_{i j}=\left(\nabla_{w} \phi_{i}, \nabla_{w} \phi_{j}\right)=\left(\nabla_{w} \phi_{j}\right)^{T} M \nabla_{w} \phi_{i}=\boldsymbol{q}^{j} \cdot \nabla_{w} \phi_{i}
$$

We write the formulae for different block of the local stiffness matrix:

$$
\begin{aligned}
A_{b_{i} b_{j}} & =4 \nabla \lambda_{i} \cdot \nabla \lambda_{j}|T|+\frac{4}{9} C_{T}|T| \\
A_{0, b_{i}} & =-\frac{4}{3} C_{T}|T| \\
A_{00} & =4 C_{T}|T|
\end{aligned}
$$

If we eliminate the interior basis ϕ_{0} and form the Schur complement

$$
S=A_{b b}-A_{b 0} A_{00}^{-1} A_{0 b}=A_{C R}
$$

which is exactly the stiffness matrix for the CR nonconforming element. The difference will be the right hand side $\frac{1}{3} \int_{T} f$ comparing with $\int_{T} f\left(1-2 \lambda_{i}\right)$.

Locally the weak function space $\left(P_{0}, P_{0}\right)$ is of dimension 4 and its gradient space $R T_{0}$ is dimension 3. The weak gradient $\nabla_{w}:\left(P_{0}, P_{0}\right) \rightarrow R T_{0}$ maps a 4×1 vector to a 3×1 vector. The matrix representation G is formed by using $\nabla_{w} \phi_{i}$ as column vectors, i.e,

$$
G=\left(\nabla_{w} \phi_{0}, \nabla_{w} \phi_{1}, \nabla_{w} \phi_{2}, \nabla_{w} \phi_{3}\right)=\left(\begin{array}{cccc}
0 & -2 \nabla \lambda_{1} & -2 \nabla \lambda_{2} & -2 \nabla \lambda_{3} \\
-2 C_{T} & \frac{2}{3} C_{T} & \frac{2}{3} C_{T} & \frac{2}{3} C_{T}
\end{array}\right) .
$$

It is easy to see the rank of G is 3 and the null space of G is the constant vector which reflects to the important property of the weak gradient

$$
\nabla_{w} \phi=0 \Longleftrightarrow \phi=\text { constant }
$$

Evaluation of the weak gradient. Suppose four coefficients $\boldsymbol{u}=\left(u_{0}, u_{1}, u_{2}, u_{3}\right)^{T}$ are given, the product $G \boldsymbol{u}$ will give the coefficients in the bases $\boldsymbol{\chi}=\left(\chi_{1}, \chi_{2}, \chi_{3}\right)^{T}$. Then the function $\nabla_{w} u=\chi^{T} G \boldsymbol{u}$. Using the formulae of χ, we can write the weak gradient in two parts:

$$
\nabla_{w} u=\nabla_{C R} u+\text { h.o.t. }
$$

The constant vector $\nabla_{C R} u=-2 \sum u_{i} \nabla \lambda_{i}$ is exactly the gradient of CR element. The h.o.t term corresponds to the contribution of χ_{3} whose coefficient is

$$
\left[\frac{1}{3}\left(u_{1}+u_{2}+u_{3}\right)-u_{0}\right] 2 C_{T} \chi_{3}
$$

The term $\left(u_{1}+u_{2}+u_{3}\right) / 3-u_{0}$ is zero for linear polynomial and interpolant and thus in general it is of order $\mathcal{O}\left(h^{2}\right)$. This term can be safely skipped.

We check the scaling as follows: $\nabla \lambda_{i}=\mathcal{O}(1 / h)$ and $C_{T} \chi_{3}=\mathcal{O}(1 / h)$, i.e, as a gradient of bases, they are in $(1 / h)$ scaling. The coefficient u_{i} are $\mathcal{O}(1)$ for $\nabla_{C R} u$ and the coefficient for linear part is $\mathcal{O}\left(h^{2}\right)$. Two orders higher.

Remark 1.3. For general Poisson equation with scalar coefficient $\int_{T} K|\nabla u|^{2}$, since the lowest order scheme is used, we compute the average of K over T and multiply to the local stiffness matrix. For highly oscillatory or tensor coefficient, we need to compute the mass matrix

$$
M_{K}=\left(\int_{T} K \chi_{i} \chi_{j} \mathrm{~d} V\right)
$$

The local stiffness matrix will be given by

$$
A_{4 \times 4}=G_{4 \times 3}^{t} M_{K, 3 \times 3} G_{3 \times 4}
$$

Note that M_{K} may not be diagonal and the formulae of $A_{i j}$ is not concise and not necessary.
1.2. 3D $\left(P_{0}, P_{0}\right)-R T_{0}$. The computation is similar. We collect the computation result and skip details.

- Bases of weak function: $\phi_{0}, \phi_{b_{1}}, \phi_{b_{2}}, \phi_{b_{3}}, \phi_{b_{4}}$.
- Bases of $R T_{0}$:

$$
\chi_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \chi_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \chi_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \chi_{4}=\left(\begin{array}{c}
x-\bar{x} \\
y-\bar{y} \\
z-\bar{z}
\end{array}\right)
$$

- The mass matrix of $R T_{0}$ is

$$
M=\operatorname{diag}\left(|T|,|T|,|T|, C_{T}^{-1}|T|\right)
$$

where $|T|$ is the area of triangle T and

$$
C_{T}=\left[\frac{1}{T} \int_{T}(x-\bar{x})^{2}+(y-\bar{y})^{2}+(z-\bar{z})^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z\right]^{-1}
$$

- The weak gradient is

$$
\left.\begin{array}{rl}
& \left(\nabla_{w} \phi_{0}, \nabla_{w} \phi_{1}, \nabla_{w} \phi_{2}, \nabla_{w} \phi_{3}, \nabla_{w} \phi_{4}\right) \\
= & \left(\begin{array}{cccc}
0 & -3 \nabla \lambda_{1} & -3 \nabla \lambda_{2} & -3 \nabla \lambda_{3} \\
-3 \nabla \lambda_{4} \\
-3 C_{T} & \frac{3}{4} C_{T} & \frac{3}{4} C_{T} & \frac{3}{4} C_{T}
\end{array} \frac{3}{4} C_{T}\right.
\end{array}\right) .
$$

- Local stiffness matrix

$$
\begin{aligned}
A_{b_{i} b_{j}} & =9 \nabla \lambda_{i} \cdot \nabla \lambda_{j}|T|+\frac{9}{16} C_{T}|T| \\
A_{0, b_{i}} & =-\frac{9}{4} C_{T}|T| \\
A_{00} & =9 C_{T}|T|
\end{aligned}
$$

[^0]: Date: Created on Nov, 2012. Updated January 3, 2016.

