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Abstract. Let K denote a finite extension of Qp. We give necessary and sufficient conditions for an
infinite totally wildly ramified extension L/K to be strictly APF in the sense of Fontaine-Wintenberger.
Our conditions are phrased in terms of the existence of a certain tower of intermediate subfields. These
conditions are well-suited to producing examples of strictly APF extensions, and in particular, our
main theorem proves that the ϕ-iterate extensions previously considered by the first two authors are
strictly APF.

1. Introduction

Let p be a prime and K a finite extension of Qp with residue field k and valuation vK normalized so

that vK(K×) = Z. Fix an algebraic closure K of K, and for any subfield E of K containing K write
GE := Gal(K/E). Recall [13] that an infinite, totally wildly ramified extension L/K is said to be
arithmetically profinite (APF) if the upper numbering ramification groups GuKGL are open in GK for
all u ≥ 0. The field of norms machinery of Fontaine–Wintenberger [13] functorially associates to any
such APF extension L/K a complete, discretely valued field XK(L) of equicharacteristic p and residue
field k with the amazing property that the étale sites of L and XK(L) are equivalent; in particular, one
has a canonical isomorphism of topological groups GL ' Gal(XK(L)sep/XK(L)) that is compatible
with the upper numbering ramification filtrations. In certain special cases, this isomorphism plays a
foundational role in Fontaine’s theory of (ϕ,Γ)-modules [6] and in the integral p-adic Hodge theory
of Faltings [5], Breuil [2, 3], and Kisin [7], and in general provides a key ingredient of Scholze’s recent
theory of perfectoid spaces and tilting [10].

A famous theorem of Sen [11] guarantees that any infinite, totally wildly ramified Galois extension
L/K with Gal(L/K) a p-adic Lie group is strictly1 APF; however, there are many other interesting
and important cases in which one is given an infinite and totally wildly ramified extension L/K, and
one would like to decide whether or not L/K is strictly APF. Such examples occur naturally in the
theory of p-adic analytic dynamics as follows: Choosing a uniformizer π1 of K, let ϕ ∈ OK [[x]] be
a power series which reduces modulo π1 to some power of the Frobenius endomorphism of k[[x]] and
which fixes zero, and let {πn}n≥1 be a compatible system (i.e., ϕ(πn) = πn−1) of choices of roots of

ϕ(n) − π1. The arithmetic of the rising union L := ∪n≥1K(πn) is of serious interest (e.g., [9]). For
example, if G is a Lubin–Tate formal group over (the valuation ring of) a subfield F of K and ϕ is
the power series giving multiplication by a uniformizer of F , then one may choose {πn}n≥1 so that
L/K is the Lubin–Tate extension generated by the p-power torsion points of G in K. While it is true
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1The meaning of the strictness condition, whose definition (Definition 2.12) is somewhat technical, is that the norm

field XK(L) of L/K admits a canonical embedding into the fraction field Ẽ of Fontaine’s ring Ẽ+ := lim←−x7→xp
OCK/(p);

see also Remark 2.13 for a geometric interpretation of strictness.
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that L/K is strictly APF if its Galois closure Lgal/K is [13, Proposition 1.2.3(iii)], it is often very
difficult or impossible in practice to describe Gal(Lgal/K), and so Sen’s theorem is of limited use in
these cases.

In this note, we establish the following elementary and explicit characterization of strictly APF
extensions:

Theorem 1.1. Let L/K be an infinite, totally wildly ramified extension. Then L/K is strictly APF
if and only if there exists a tower of finite extensions {En}n≥2 of E1 := K inside L with L = ∪En and
a norm compatible sequence {πn}n≥1 with πn a uniformizer of En such that:

(1) The degrees qn := [En+1 : En] are bounded above.
(2) If fn(x) = xqn + an,qn−1x

qn−1 + · · · + an,1x + (−1)pπn ∈ En[x] is the minimal polynomial of
πn+1 over En, then the non-constant and non-leading coefficients an,i of fn satisfy vK(an,i) > ε
for some ε > 0, independent of n and i.

Moreover, if L/K is strictly APF, one may take {En} to be the tower of elementary subextensions
(see Definition 2.8) and {πn} to be any norm-compatible sequence of uniformizers.

As a consequence of our work, we are able to produce many concrete examples of (typically non-
Galois) strictly APF extensions as follows: let π1 be a uniformizer of E1 := K; for n ≥ 1 and given
En and πn ∈ En a uniformizer, choose a monic polynomial ϕn(x) ∈ OEn [x] satisfying ϕn(0) = 0
and ϕn(x) ≡ xqn mod πnOEn for qn > 1 a power of p, and let πn be a choice of root of fn(x) :=
ϕn(x) − πn−1 = 0. If the degrees qn are bounded above and the non-leading and non-constant
coefficients of the fn have vK-valuation bounded below, then it follows at once from Theorem 1.1 that
L := ∪nEn is a strictly APF extension of K. In particular, the “ϕ-iterate” extensions described above
are always strictly APF.

In §4, we provide several examples of infinite, totally ramified extensions L/K which are not APF,
or which are APF but not strictly APF, to illustrate the subtlety of these conditions.

As any strictly APF extension L/K has norm field XK(L) that is canonically identified with a

subfield of Fontaine’s field Ẽ, one can try to find a canonical and functorial lift of XK(L) to a subring

of Ã := W (Ẽ). Such lifts play a crucial role in Fontaine’s classification [6] of p-adic representations of

GL by étale ϕ-modules. The question of functorially lifting XK(L) inside Ã is studied in [4] and [1],
and the main theorem of the present paper provides essential input for [4].

Remark 1.2. Much of Theorem 1.1 continues to hold if we allow K to be an equicharacteristic local
field. In particular, for {En} satisfying Conditions (1) and (2), the field L := ∪En is a strictly
APF extension of K. Conversely, for L/K infinite totally wildly ramified and strictly APF and for
{En} the tower of elementary subextensions and {πn} a norm compatible sequence of uniformizers,
Condition (2) continues to hold. (The proofs given below in the mixed characteristic case work in the
equal characteristic case as well.) However, Example 4.4 below shows we cannot expect Condition (1)
to hold in general.

Remark 1.3. The proofs below produce an explicit lower bound for the constant c(L/K) appearing in
the definition of strictly APF (Definition 2.12). The lower bound is given in terms of max qn and ε as
in Theorem 1.1.

2. Transition functions and ramification

Following [8, §2], we briefly review the definition and properties of the Herbrand transition functions,
and recall the definitions of APF and strictly APF as in [13, 1.2].
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Let L/K be a finite, totally ramified extension contained in K, and πL a uniformizer of L. Write vL
for the valuation of K, normalized so that vL(πL) = 1. Denote by G the Galois set of all K-embeddings
of L into K, and for real t ≥ 0 set

Gt := {σ ∈ G : vL(σ(πL)− πL) ≥ t}.
We define the transition function

φL/K(u) :=
1

[L : K]

∫ u

0
|Gt| dt;

it is a continuous, piecewise linear and increasing bijection on [0,∞), so we may define ψL/K := φ−1L/K ,

which is again continuous, piecewise linear and increasing. For L′/L any finite, totally ramified
extension contained in K, one has the transitivity relations

(2.1) φL′/K = φL/K ◦ φL′/L and ψL′/K = ψL′/L ◦ ψL/K .
In practice, we may compute φL′/L as follows:

Proposition 2.2 ([8, Lemma 1]). Let L′/L be a finite, totally ramified extension of subfields of K
containing K. Choose a uniformizer πL′ of L′ and let f(x) ∈ L[x] be the minimal polynomial of πL′ over
L. Set g(x) := f(x+πL′) ∈ L′[x], and let Ψg be the function whose graph is the boundary of the Newton
copolygon of g(x) =

∑
n≥1 bnx

n formed by the intersection of the half-planes {y ≤ ix + vK(bi)}i≥1.
Then

(2.3) φL′/L(x) = eL/KΨg(x/eL′/K).

If L/K is finite Galois, then the Gt are the usual lower-numbering ramification subgroups of G,
and we define the ramification subgroups in the upper-numbering to be Gt := GψL/K(t). Unlike the

lower-numbering groups, the Gt are well-behaved with respect to quotients: if K ′ is a finite Galois
extension of K contained in L then for H := Gal(L/K ′) E G one has (G/H)t = GtH/H for all real
t ≥ 0. It follows that by taking projective limits, we may define the upper numbering filtration {Gt}t≥0
for any Galois extension L/K, finite or infinite, contained in K; this is a separated and exhaustive
decreasing filtration of G by closed normal subgroups.

Remark 2.4. Because of our desire to have the simple description of φL′/L given in Proposition 2.2,
our transition functions differ from the ones considered by Serre [12] and Wintenberger [13] by a shift.
Indeed, following [8, §2], if SφL′/L and SψL′/L denote the transition functions defined by Serre [12, IV
§3], then one has the relations

φL′/L(x) = 1 + SφL′/L(x− 1) and ψL′/L(x) = 1 + SψL′/L(x− 1).

Correspondingly, the relation between our ramification groups Gt and Gt and those defined by Serre

SGt, SG
t is a through shift of one: Gt = SGt−1 and Gt = SG

t−1.

For any extension E of K contained in K, we define

(2.5) i(E/K) := sup
t≥0
{t : GtKGE = GK}.

Definition 2.6. Let L/K be an arbitrary (possibly infinite) totally ramified extension of K contained
in K. We say that L/K is arithmetically profinite (APF) if GuKGL is open in GK for all u ≥ 0. If
L/K is APF, we define

(2.7) ψL/K(u) :=

∫ u

0
[GK : GvKGL] dv,
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which is a continuous and piecewise linear increasing bijection on [0,∞), and we write φL/K := ψ−1L/K .

Observe that any finite totally ramified extension L/K is APF, and the functions φL/K and ψL/K
of Definition 2.6 coincide with the previously defined transition functions of the same name. It follows
from the definition that if L/K is an infinite APF extension, then the set of ramification breaks

{b ∈ R≥0 : Gb+εK GL 6= GbKGL ∀ ε > 0} is discrete and unbounded, so we may enumerate these real
numbers as b1 < b2 < . . ..

Definition 2.8. The n-th elementary subextension of L/K is the subfield Kn of K fixed by GbnKGL.

We note that each Kn is a finite extension of K contained in L, that L is the rising union of
the Kn, and that Kn+1/Kn is elementary of level in for in := i(Kn+1/Kn) = i(L/Kn) in the sense
that there is a unique break at u = in in the filtration {GuKn

GKn+1}u≥0 of GKn . Equivalently, the
transition function φKn+1/Kn

is the boundary function of the intersection of the two half-planes y ≤ x
and y ≤ [Kn+1 : Kn]−1(x− in) + in, and has a single vertex at (in, in). As in [13, 1.4.1], it follows that
{in}n≥1 is an increasing and unbounded sequence, and that one has

(2.9) bn = i1 +
i2 − i1

[K2 : K1]
+

i3 − i2
[K3 : K1]

+ · · ·+ in − in−1
[Kn : K1]

.

with {bn}n≥1 increasing and unbounded. It follows easily from definitions that the vertices of the
function φL/K of Definition 2.6 are {(in, bn)}n≥1, and the slope of the segment immediately to the

right of (in, bn) is [Kn+1 : K]−1.
We will make use of the following characterization:

Proposition 2.10. Let {En}n≥2 be a tower of finite extensions of E1 := K and let L = ∪n≥1En be
their rising union. Set Φn := φEn/K and define αn := sup{x : Φn+1(x) = Φn(x)}. Then L/K is
APF if and only if the following two conditions hold:

(1) We have limn→∞ αn = ∞. In particular, the pointwise limit Φ(x) := limn→∞Φn(x) exists,
and moreover, for fixed x1, we have Φ(x) = Φn(x) for all x ≤ x1 and all n sufficiently large.

(2) The function Φ(x) of (1) is piecewise linear and continuous, with vertices {(in, bn)}n≥1 where
{in} and {bn} increasing and unbounded sequences.

If L/K is APF, then Φ(x) = φL/K for φL/K as in Definition (2.6).

Proof. Assume first that the two numbered conditions hold. From the assumption that the {bn}
sequence is unbounded, we know the inverse function Φ−1(x) is defined for all x ≥ 0 and is the
pointwise limit of Φ−1n (x) (for any x, we have Φ−1(x) = Φ−1n (x) for all n suitably large). By definition,
Φ−1n (x) = φ−1En/K

(x) = ψEn/K(x). Thus, the convergence condition (and the definition of ψ) implies

that for any u we have [GK : GuKGEn ] = [GK : GuKGEn+1 ] for all n suitably large. Writing momentarily

K ′ for the fixed field of GuK acting on K, it follows that K ′∩En = K ′∩En+1 for all n sufficiently large.
Hence this intersection is also equal to K ′∩L and so, for fixed u, we find [GK : GuKGEn ] = [GK : GuKGL]
for n suitably large. In particular, GLG

u
K is of finite index—and hence open—in GK for every u, and

L/K is APF.
Now assume L/K is APF, and let {Kn} be the associated tower of elementary extensions as in

Definition 2.8. By [13, 1.4.1], we have limn→∞ i(L/Kn) =∞. This implies that for any fixed u, there
exists n0 := n0(u) with [GKn : GuKn

GL] = 1 and hence ψL/Kn
(u) = u for all n ≥ n0. As L = ∪Em, for

any u there exists m0 = m0(u) with Em ⊇ Kn0(u) whenever m ≥ m0(u). We then have αm+1 ≥ u for
all m ≥ m0(u); as u was arbitrary, this implies (1). It follows that Φ := limn→∞Φn is well-defined,
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piecewise linear and continuous, and is the unique such function with Φ′(u) = [GK : GuKGL]−1

whenever u is not the x-coordinate of a vertex. In particular, Φ = φL/K for φL/K as in Definition 2.6;
since L/K is APF we conclude that (2) holds. �

Corollary 2.11 ([13, 1.4.2]). Set E1 := K and for n ≥ 1, assume that En+1/En is elementary of level
in with {in} strictly increasing and unbounded, and let {bn} be given by (2.9). Then L := ∪nEn is an
APF extension of K if and only if {bn} is unbounded. Moreover, if L/K is APF, then En is the n-th
elementary subextension of L/K as in Definition 2.8.

Definition 2.12 ([13, 1.4.1]). Let L/K be an infinite APF extension with associated elementary tower
{Kn}, and recall the function i(·) of (2.5). We define

c(L/K) := inf
u≥i(L/K)

ψL/K(u)

[GK : GuKGL]
= inf

in
[Kn+1 : K]

for in := i(Kn+1/Kn) = i(L/Kn). We say that L/K is strictly APF if c(L/K) > 0.

Remark 2.13. If L/K is an infinite APF extension, it follows immediately from Definition 2.12 and
the discussion preceding Proposition 2.10 that the constant c(L/K) is equal to inf vnmn where vn is
the x-coordinate of the n-th vertex of φL/K and mn is the slope of the segment of φL/K immediately
to the right of vn. Thus, L/K is strictly APF if and only if the sequence {vnmn} is bounded below by
a constant c > 0. More geometrically, the strictness condition is equivalent to [GK : GuKGL]−1 ≥ c/u
for u ≥ i(L/K), which, upon integrating, is equivalent to the bound

φL/K(x) ≥ c log(x) + d for d := i(L/K)− c log(i(L/K))

for all x ≥ i(L/K).

Lemma 2.14. Let {En}n≥2 be a tower of finite extensions of E1 := K and L := ∪nEn. Suppose that
L/K is APF, and let Φ and Φn be the transition functions of Proposition 2.10. Let Vn be the set of
x-coordinates of vertices of Φn, and for v ∈ Vn let mv be the slope of the segment of Φn immediately
to the right of v. Then

c(L/K) ≥ lim inf
n→∞

(
min
v∈Vn

vmv

)
.

Proof. Writing V for the set of x-coordinates of vertices of Φ, we have c(L/K) = infv∈V vmv by Remark
2.13. This means that for any ε > 0, we can find v ∈ V such that vmv < c(L/K) + ε. It follows from
Proposition 2.10(1) that any vertex v of Φ is a vertex of Φn for all n sufficiently large, and the slopes
of the segments on Φ and Φn to the immediate right of v agree. Thus minv∈Vn vmv < c(L/K) + ε for
all n sufficiently large, which completes the proof. �

3. Proof of Theorem 1.1

From now until the end of Proposition 3.4, fix an infinite totally wildly ramified extension L/K
with a tower of subextensions {En} satisfying Conditions (1) and (2) from Theorem 1.1. We will show
that such an extension L/K is strictly APF, thus proving one direction of Theorem 1.1.

Lemma 3.1. Let fn(x) and πn be as in Theorem 1.1(2). Write

fn(x) = xqn + an,qn−1x
qn−1 + · · ·+ an,1x+ (−1)pπn,
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so

(3.2) gn(x) := fn(x+ πn+1) =

qn∑
i=1

bn,ix
i, for bn,i :=

∑
j≥i

an,j

(
j

i

)
πj−in+1.

Let 1 > ε > 0 be such that vK(an,i) > ε for all 0 < i < qn. If 0 < i < qn, then vK(bn,i) > ε.

Proof. If j 6= qn, then vK(an,j) > ε by hypothesis and so vK

(
an,j

(
j
i

)
πj−in+1

)
> ε. If j = qn and

0 < i < qn, then vK
(
j
i

)
≥ vK(p) ≥ 1. �

Proposition 3.3. The extension L/K is APF.

Proof. We prove this by verifying Conditions (1) and (2) of Proposition 2.10. We begin with Condi-
tion (1). Because Φn+1(x) = Φn(φEn+1/En

(x)), we know that Φn+1(x) = Φn(x) for all x ≤ v, where
v is the x-coordinate of the first vertex of φEn+1/En

(x). Let q := max(qn), let ε be as in Lemma 3.1,
and set x0 := ε

q . We claim that v ≥ eEn+1/Kx0, which will complete the verification of Condition (1).

By Proposition 2.2, it suffices to show that the first vertex of Ψgn(x) has x-coordinate at least x0,
where as usual gn(x) := fn(x + πn+1) and fn(x) is the minimal polynomial of πn+1 over En. From
Lemma 3.1, the only contribution to the Newton copolygon of gn(x) with y-intercept 0 occurs with
slope qn. All other contributions to the Newton copolygon have positive slope and y-intercept at least
ε. The line y = qnx crosses the line y = ε at x = ε/qn ≥ ε/q, as required.

We now verify that Condition (2) of Proposition 2.10 holds. We have seen that Φ(x) = Φn(x) for all
x ≤ eEn+1/Kx0. If max(qn) = ps, then Φn(x) has at most ns vertices and so ins+1 ≥ eEn+1/Kx0, and in
particular, the sequence {in} is unbounded. It remains to check that the {bn} sequence is unbounded.
Because Φ(x) is monotone increasing, it suffices to show that limx→∞Φ(x) =∞. This will follow from
the claim that for any x ≥ eEn+1/Kx0, we have Φ(x) ≥ q1x0 + (q2−1)x0 + · · ·+ (qn−1)x0. To see this,

notice that between x = eEi/Kx0 and x = eEi+1/Kx0, the slope of Φ(x) is at least 1
eEi/K

= 1
q1···qi−1

. We

then compute that for x ≥ eEn+1/Kx0, we have

Φ(x) ≥ 1 · q1x0 +
1

q1
(q1q2 − q1)x0 + · · ·+ 1

q1 · · · qn−1
(q1 · · · qn − q1 · · · qn−1)x0,

which completes the proof. �

Proposition 3.4. The extension L/K is strictly APF.

Proof. By Proposition 3.3, we know that L/K is APF; let Φn(x) and Φ(x) be the functions of Propo-
sition 2.10 and let Vn be the set of x-coordinates of vertices of Φn. For x0 = ε/q as in the proof of
Proposition 3.3, we will prove that

(3.5) min
v∈Vn

vmv ≥ x0;

it will then follow from Lemma 2.14 that L/K is strictly APF.
We will prove (3.5) using induction on n. In the proof of Proposition 3.3, we showed that any v ∈ V2

satisfies v ≥ q1x0; on the other hand, the slopes of Φ2(x) are all at least 1/q1. This settles the base
case n = 2. For the inductive step, let v ∈ Vn+1 and consider the following two cases:

(1) Assume v < eEn+1/Kx0. In this range, Φn+1(x) = Φn(x) and we are finished by the inductive
hypothesis.

(2) Assume v ≥ eEn+1/Kx0. Then vmv ≥ eEn+1/Kx0mv ≥ eEn+1/Kx0 · e
−1
En+1/K

= x0.
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�

Proposition 3.4 concludes the proof that L/K is strictly APF, giving one direction of Theorem 1.1.
The remainder of this section is devoted to proving the converse.

We now fix an infinite and totally wildly ramified strictly APF extension L/K, and let {Kn}n≥1 be
the associated tower of elementary extensions as in Definition 2.8, so that K1 = K and Kn+1/Kn is
elementary of level in; we set qn := [Kn+1 : Kn], so that [Kn+1 : K] = q1q2 · · · qn. Let πn ∈ Kn be any
choice of a norm-compatible family of uniformizers.2

Proposition 3.6. Let

fn(x) = xqn + an,qn−1x
qn−1 + · · ·+ an,1x+ (−1)pπn

denote the minimal polynomial of πn+1 over Kn. Then the valuations of the coefficients vK(an,i) for
0 < i < qn are bounded below by a positive constant (independent of n and i).

Proof. We prove this by contradiction. As L/K is strictly APF, there exists c > 0 such that

(3.7) inf
n

in
q1 · · · qn

≥ c.

Suppose that

(3.8) vK(an,i) < c

for some n and i. From (3.7) and (3.8) we will reach a contradiction.
Because Kn+1/Kn is elementary, from the discussion following Definition 2.8 we know that the

transition function φKn+1/Kn
(x) has a unique vertex (in, in). By Proposition 2.2, this means that for

gn(x) := fn(x+πn+1), the copolygon boundary function Ψgn(x) has a unique vertex with x-coordinate
in/(q1 · · · qn). By the correspondence between Newton polygons and copolygons (see for example [8,
§1]), we know that the Newton polygon of gn has exactly one segment of slope

(3.9)
−in

q1 · · · qn
≤ −c,

where the inequality follows from (3.7). On the other hand, writing gn(x) =
∑

j≥1 bn,ix
i we have

(3.10) vK(bn,i) = vK

∑
j≥i

an,j

(
j

i

)
πj−in+1

 = min
j≥i

vK

(
an,j

(
j

i

)
πj−in+1

)
as the valuations of the nonzero terms in the sum are all distinct: in fact, they are all distinct modulo

1/(q1 · · · qn−1). Now, using (3.8), we have vK(bn,i) ≤ vK
(
an,i
(
i
i

)
π0n+1

)
< c.

We now compute the Newton polygon associated to gn. It must pass through the point (qn, 0)
and by the discussion in the previous paragraph, it must pass below the point (i, c). Such a Newton
polygon has slope strictly greater than (i.e., negative and smaller in absolute value than) −c

qn−i ≥ −c.
This contradicts (3.9). �

2Such a choice exists as L/K is (strictly) APF. Indeed, the norm field of L/K is by definition XK(L) := lim←−E∈EL/K
E,

where EL/K is the collection of finite extensions of K in L and the limit is taken with respect to the Norm mappings.
For any nonzero (αE)E ∈ XK(L), one defines v(α) := vK(αK). By [13, 2.2.4, 2.3.1], one knows that (XK(L), v) is a
complete, discretely valued field with residue field k, and any choice of uniformizer in XK(L) corresponds to a norm
compatible sequence (πE)E with πE a uniformizer of E.
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Proposition 3.11. With notation as in Proposition 3.6, the degrees qn are bounded above.

Proof. The proof is similar to the proof of Proposition 3.6. As L/K is strictly APF, we can find a
positive constant c such that for all n,

in
q1 · · · qn

≥ c.

Since Kn+1/Kn is elementary, the Newton polygon of fn(x+ πn+1) consists of a single segment with
slope having absolute value greater than or equal to c. In the notation of (3.10), this implies that

(3.12) c ≤ vK(bn,1)

qn − 1
=
vK

(∑
j≥1 an,j

(
j
1

)
πj−1n+1

)
qn − 1

≤
vK

(
qnπ

qn−1
n+1

)
qn − 1

=
vK(p) · logp(qn) + qn−1

q1···qn
qn − 1

.

This implies {qn}n≥1 is bounded. �

Remark 3.13. Notice that in the equicharacteristic case, the term vK(p) appearing in (3.12) is vK(0),
and so our argument fails. See also Example 4.4.

Proof of Theorem 1.1. The content of Theorem 1.1 is that, in order for L/K to be strictly APF, it is
necessary and sufficient that there exist a tower of subfields satisfying Conditions (1) and (2). That
an infinite totally wildly ramified extension containing such a tower of subextensions is strictly APF
follows from Proposition 3.4. That the tower of elementary subextensions of a strictly APF extension,
together with any norm compatible family of uniformizers, satisfies Conditions (1) and (2) follows
from Proposition 3.6 and Proposition 3.11. �

4. Examples

We conclude with examples which illustrate the subtlety of the APF and strictly APF conditions.

Example 4.1. Fix a sequence of positive integers {rn}n≥1 and set qn := prn . Let K be a finite
extension of Qp, choose a uniformizer π1 of K, and for n ≥ 1 recursively choose a root πn+1 of
fn(x) := xqn + π1x + (−1)pπn = 0. Set E1 := K and for n ≥ 2 let En+1 := En(πn+1) and put
L = ∪n≥1En.

We first claim that En+1/En is elementary of level in = q1q2 · · · qn/(qn − 1). As in the proof of
Proposition 3.6, we would like to show that the Herbrand transition function φEn+1/En

(x) has exactly
two segments: a segment of slope 1 from x = 0 to x = in, and a segment of slope 1/qn for x > in.
Equivalently, it suffices to show that the Newton polygon of fn(x+ πn+1) has exactly one segment of
slope −in/eEn+1/K . (As always, we use the vK valuation for drawing Newton polygons.)

Using that qn is a power of p, the binomial theorem shows that the Newton polygon of fn(x+πn+1)
is the lower convex hull of the collection of vertices containing (1, 1), (qn, 0), and other vertices with
y-coordinate at least 1. Hence the Newton polygon consists of a single segment of slope −1/(qn − 1).
Thus in = q1q2 · · · qn/(qn − 1), as desired.

Notice that the {in}n is strictly increasing. We may thus use Corollary 2.11 to analyze the extension
L/K. Define bn as in (2.9). Substituting in = q1q2 · · · qn/(qn − 1) into the definition of the terms bn,
we find

bn =
q1

q1 − 1
+

n∑
k=2

(
qk

qk − 1
− 1

qk−1 − 1

)
,
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and it follows from Corollary 2.11 that L/K is APF for every choice of qn (i.e., for every choice of rn).
On the other hand, by Definition 2.12, L/K is strictly APF if and only if

inf
n>0

in
[En+1 : K]

= inf
n>0

1

(qn − 1)
> 0.

In other words, the extension L/K is strictly APF if and only if the degrees qn are bounded above.

Example 4.2. Fix an increasing sequence {sn}n≥1 of positive integers and let K be a finite extension
of Qp with absolute ramification index e. Choose a uniformizer π1 of K, set E1 := K and for n ≥ 2
recursively choose πn+1 a root of xp + πsnn x− πn = 0 and put En+1 := En(πn+1). Set L = ∪n≥1En.

As in Example 4.1, if we assume that sn ≤ pn−1e, we compute that En+1/En is elementary of level
in = psn/(p − 1), and because we have chosen sn to be an increasing sequence, we may again apply
Corollary 2.11. With bn as in (2.9), we compute

bn =
ps1
p− 1

+
p

p− 1

n∑
k=2

sk − sk−1
pk−1

.

As the following examples illustrate, whether or not the extension L/K is APF, strictly APF, or
neither, depends crucially on the choice of sn:

(1) If one takes sn = n, then the bn terms are increasing but bounded. In this case, the extension
L/K is not APF.

(2) Assume p ≥ 5 and take sn = bpn−1/nc. Then {in}n≥1 is strictly increasing (using the hypoth-
esis p ≥ 5). Moreover, the sequence {bn}n≥1 is increasing and unbounded and so L/K is APF,
but

inf
n>0

in
[En+1 : K]

= inf
n>0

sn
pn−1(p− 1)

= 0,

and so L/K is APF but not strictly APF.
(3) If we take sn = pn−1, then {bn}n≥1 is increasing and unbounded, and

inf
n>0

sn
pn−1(p− 1)

=
1

p− 1
> 0,

so L/K is strictly APF.

Remark 4.3. (1) Assume L/K is an infinite totally wildly ramified strictly APF extension. One
cannot expect that Condition (1) of Theorem 1.1 hold for every tower of subextensions {En}.
For example, for K a finite extension of Qp and π1 a uniformizer of K, consider the extension
L/K formed by recursively extracting roots of the polynomials fn(x) = xp

n − πn. These poly-
nomials determine the same extension as the polynomials fn(x) = xp−πn; however the former
collection of polynomials has unbounded degrees, while the degrees in the latter collection are
all equal to p.

(2) The authors do not know whether Condition (2) of Theorem 1.1 holds for every tower of
subextensions and every norm-compatible choice of uniformizers.

Example 4.4. Here we give an example to show that the full strength of our theorem does not hold in
characteristic p; see Remark 1.2 for positive results. Assume K is a local field of characteristic p, and
let π1 ∈ K denote a uniformizer. Consider the polynomials

fn(x) = xp
n

+ πp
n

1 x− πn,
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and let πn+1 denote a root of fn(x). Set En+1 := En(πn+1) and L := ∪En. We claim that L/K is
strictly APF, and that {En} is the associated tower of elementary extensions. Because the degrees
deg fn = pn are unbounded, this shows that Theorem 1.1 is not true for local fields of characteristic p.

We compute fn(x+ πn+1) = xp
n

+ πp
n

1 x and so the Newton polygon is a single segment with slope

−pn

pn − 1
=

−in
p · p2 · · · pn

,

which implies

in =
p · p2 · · · pn · pn

pn − 1
.

This is a strictly increasing sequence, so we can apply Corollary 2.11 as above. One checks that the
sequence {bn} defined by (2.9) is increasing and unbounded and

inf
in

[En+1 : E1]
> 0.

Corollary 2.11 then shows that L/K is strictly APF, as desired.

Remark 4.5. Theorem 1.1 is perhaps better suited to producing strictly APF extensions than to
establishing whether a given extension L/K is strictly APF. For example, consider the extension

Qp(µp∞ , p
1/p∞)/Qp. This is a Galois extension with Galois group a p-adic Lie group, hence is strictly

APF extension by Sen’s theorem [11, §4]. However, the authors do not know how to verify this fact
using Theorem 1.1, because we do not know how to select a tower {En}n≥1 and a norm compatible
family of uniformizers {πn}n≥1 which is amenable to explicitly computing the polynomials fn as in
the statement of Theorem 1.1.
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