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Abstract. Fix K/Qp a finite extension and let L/K be an infinite, strictly APF extension in the sense
of Fontaine–Wintenberger [21]. Let XK(L) denote its associated norm field. The goal of this paper

is to associate to L/K, in a canonical and functorial way, a p-adically complete subring A+
L/K ⊂ Ã+

whose reduction modulo p is contained in the valuation ring of XK(L). When the extension L/K is of
a special form, which we call a ϕ-iterate extension, we prove that XK(L) is (at worst) a finite purely
inseparable extension of Frac(A+

L/K/pA
+
L/K). The class of ϕ-iterate extensions includes all Lubin–Tate

extensions, as well as many other extensions such as the non-Galois “Kummer” extension occurring
in work of Faltings, Breuil, and Kisin. In particular, our work provides a canonical and functorial
construction of every characteristic zero lift of the norm fields that have thus far played a foundational
role in (integral) p-adic Hodge theory, as well as many other cases which have yet to be studied.

1. Introduction

Let K be a finite extension of Qp with residue field kK , fix an algebraic closure K of K, and let

GK := Gal(K/K) be the absolute Galois group of K. A natural approach to the classification of p-adic
representations of GK is to first study their restrictions to subgroups GL of GK for L/K an infinite
extension. When L/K is arithmetically profinite (APF) in the sense that the higher ramification
subgroups GvKGL are open in GK , a miracle occurs: by the field of norms machinery of Fontaine–
Wintenberger [21], there is a canonical isomorphism of Galois groups

(1.1) Gal(K/L) ' Gal(XK(L)sep/XK(L)),

where XK(L) is the field of norms of L/K, which is a discretely valued field of equicharacteristic p,
noncanonically isomorphic to kL((u)), where kL is the residue field of L. As a consequence of (1.1),
Fontaine proved [13] that GL-representations on Fp-vector spaces are classified by étale ϕ-modules over
XK(L). In order to lift this to a classification of GL-representations on Zp-modules, it is necessary to
lift the norm field XK(L) together with its Frobenius endomorphism to characteristic zero. Provided
that this can be done, one then aims to recover the entire GK-representation via appropriate descent
data from GL to GK . This strategy has successfully been carried out in three important cases:

(1) For L = K(µp∞), Fontaine’s work [13] provides the necessary lift of XK(L), and results in
the theory of (ϕ,Γ)-modules which has played a pivotal role in the development and major
applications of p-adic Hodge theory. This lift of the norm field is also essential in Berger’s
theory of Wach modules, which provides a classification of (certain) crystalline representations
of GK when K is an abelian extension of an absolutely unramified extension of Qp [1], [3].

(2) More recently, the natural generalization of Fontaine’s theory in which the cyclotomic extension
of K is replaced by an arbitrary Lubin–Tate extension determined by a Lubin–Tate formal
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group over a subfield F of K has been studied by several authors [14], [8], [17]. As in (1)

(which is the special case F = W (kK) with formal group Ĝm), the underlying formal group
plays an essential role in constructing a characteristic zero lift of the norm field XK(L) that
has enough structure to encode the desired descent data from GL to GK .

(3) For L = K(π
1/p∞

0 ) the (non-Galois) “Kummer” extension obtained by adjoining a compatible
system of p-power roots of a uniformizer π0 in K, the resulting theory of ϕ-modules (due to
Fontaine) has been extensively exploited by Faltings [12], Breuil [5] [6], and Kisin [16] in their
development of integral p-adic Hodge theory. In this case, the ramification structure of L/K
is such that for crystalline GK-representations, there is a unique descent datum from GL to
GK so that one obtains a classification of these representations by ϕ-modules alone (without
any Γ!).

In each of these special cases, the required lift of the norm field to characteristic zero is constructed
in a rather ad hoc manner, and it is not in general clear that it is independent of the choices made to
construct it.

In this paper, we propose a candidate for a canonical and functorial lift to characteristic zero of the
valuation ring AK(L) of the norm field XK(L). In order to encompass the aforementioned special cases,
we work in slightly greater generality: let F be a subfield of K with residue field kF ⊆ kK of cardinality
q := |kF |, choose a uniformizer π of F , and for any W (kF )-algebra A, write AF := A⊗W (kF ) OF .

Theorem 1.2. Let L/K be an arbitrary strictly1 APF extension and let kL denote the residue field

of L. There is a canonical W (kL)F -subalgebra A+
L/K of Ã+

F := W (Ẽ+)F , depending only on L/K and

the choices F , π, such that:

(1) A+
L/K is π-adically complete and separated, and closed for the weak topology on Ã+

F .

(2) A+
L/K is stable under the q-power Frobenius automorphism of Ã+

F .

(3) Via the inclusion A+
L/K ↪→ Ã+

F , the residue ring A+
L/K/πA+

L/K of A+
L/K is naturally a kL-

subalgebra of AK(L).
(4) The ring A+

L/K is functorial in L/K: for any strictly APF extension L′/K and any K-

embedding τ : L ↪→ L′ with L′/τ(L) finite and of wild ramification degree a power2 of q = |kF |,
there is associated a canonical embedding A+

L/K ↪→ A+
L′/K whose reduction modulo π is the

restriction of the map on norm fields induced by τ [21, 3.1.1]; in particular, A+
L/K is naturally

equipped with an action of Aut(L/K).

For general strictly APF extensions L/K, the canonical homomorphism W (kL)F → A+
L/K is often

an isomorphism, and our candidate ring A+
L/K is too small; following recent work of Berger [2], we

prove that this happens, for example, whenever L/K is Galois with group that is a p-adic Lie group
admitting no abelian quotient by a finite subgroup (see Remark 5.15). Nevertheless, we isolate a large
class of (not necessarily Galois) strictly APF extensions L/K—containing each of the extensions (1)–
(3) above as special cases—for which we are able to prove that A+

L/K provides the desired functorial

lift of the valuation ring in the norm field of L/K:

Definition 1.3. With notation above, let π0 be any choice of uniformizer of K, and let ϕ(x) ∈ OF [[x]]
be any power series satisfying ϕ(0) = 0 and ϕ(x) ≡ xq mod πOF . Beginning with π0 ∈ OK , recursively

1The strictness hypothesis guarantees that AK(L) is naturally a subring of Fontaine’s ring Ẽ+ := lim←−x 7→xp OK/(p).
2This restriction is vacuous if q = p, i.e. if F/Qp is totally ramified
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choose πi+1 ∈ OK a root of ϕ(x) − πi, and let L := ∪iK(πi). We call a strictly APF extension L/K

of this form3 a ϕ-iterate extension.

For any ϕ-iterate extension L/K, we prove that our candidate ring A+
L/K lifts the valuation ring

AK(L) of the norm field of L/K, up to possibly a finite, purely inseparable extension (which for
applications to p-adic Hodge theory is sufficient; see e.g. [13, 3.4.4 (a)]):

Theorem 1.4. Let L/K be a ϕ-iterate extension. There exists u ∈ A+
L/K whose reduction modulo π is

the qd-th power of a uniformizer in AK(L), for some integer d ≥ 0. In particular, A+
L/K 'W (kL)F [[u]],

and the norm field XK(L) is a finite, purely inseparable extension of Frac(A+
L/K/πA+

L/K).

Our work thus provides a unified and canonical construction of every characteristic zero lift of the
norm fields that have thus far played a foundational role in (integral) p-adic Hodge theory, and raises
the possibility of a general theory for arbitrary strictly APF extensions.

Throughout this article, we keep the following conventions and notations:

Notation 1.5. We fix a finite extension F of Qp and a choice π of uniformizer of OF , and we denote
by mF and kF the maximal ideal and residue field of OF , respectively. We write pa = q := |kF |, and for
any W (kF )-algebra A we set AF := A⊗W (kF ) OF . When we consider a strictly APF extension L/K,
the bottom field K is assumed to contain F . We let K0 and K1 denote, respectively, the maximal
unramified and tamely ramified subextensions of L/K. We let k denote the residue field of L (or
equivalently, of K0). Our construction of A+

L/K will depend implicitly on our choices F and π, though

we suppress this in our notation.

Acknowledgments. The authors are very grateful to Laurent Berger, Jim Borger, Lars Hesselholt,
Kiran Kedlaya, Abhinav Kumar, Ruochuan Liu, Jonathan Lubin, and Anders Thorup for many helpful
discussions. The first author is supported by an NSA “Young Investigator” grant (H98230-12-1-0238).
The second author is partially supported by the Danish National Research Foundation through the
Centre for Symmetry and Deformation (DNRF92).

2. Generalized Witt vectors

Let F, q, π, ϕ(x) be defined as in Notation 1.5 and Definition 1.3. Our construction of A+
L/K is

inspired by the alternative description Ã+ ∼= lim←−Fr
W (OCF ) due to the second author and Kedlaya

[10] (see also Proposition 3.4 below), in which the inverse limit is taken along the Witt vector Frobenius
map. To account for ramification and to account for q-powers instead of p-powers, we use generalized
Witt vectors.

The power series ϕ determines a unique continuous OF -algebra homomorphism

OF [[x]]→ OF [[x]], x 7→ ϕ(x).

In the special case that F = Qp, meaning q = p and we can take π = p, then such a ring homomorphism
determines a unique ring homomorphism

λϕ : OF [[x]]→W (OF [[x]])

which is a section to the projection map W (OF [[x]])→ OF [[x]] and which satisfies

λϕ ◦ ϕ = Fr ◦λϕ,
3Together with Jonathan Lubin, the authors expect to show that the strictly APF condition is automatically satisfied

by every extension of this type.
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where Fr is the Witt vector Frobenius. In fact, a completely analogous result holds for the general fields
F/Qp considered in this paper; see Proposition 2.13. For this result, we will require a generalization
of the classical p-typical Witt vectors. These generalized Witt vectors have appeared in the work of
Drinfeld [11, §1] and Hazewinkel [15, (18.6.13)]. Our exposition follows that of Borger4 in [4]. The
goal of this section is to recall the properties of these generalized Witt vectors.

Define functors •N from sets to sets, from OF -algebras to sets, and from OF -algebras to OF -algebras
in the obvious way.

Definition 2.1. Let Wπ(•) denote the unique functor from OF -algebras to OF -algebras satisfying the
following two properties:

• The induced functor from OF -algebras to sets agrees with •N.
• The ghost map Wπ(•)→ •N given by

(a0, a1, a2, . . .) 7→ (a0, a
q
0 + πa1, a

q2

0 + πaq1 + π2a2, . . .)

is a natural transformation of functors.

Remark 2.2. Perhaps the notation Wπ,q would be more precise. We hope the notation Wπ is sufficient
to remind the reader that these are not the usual p-typical Witt vectors.

This defines the ring operations on Wπ(R) for any OF -algebra R in the usual way: If R is π-torsion
free, then the ghost map is injective, and so the ring operations are uniquely determined by the
requirement that the ghost map be a ring homomorphism. In the general case, we take a surjection
from a π-torsion free ring S to R; we then use the ring operations on S to define the ring operations
on R.

Proposition 2.3. The functor Wπ(•) defined above exists. In particular, for any OF -algebra R,
Wπ(R) is an OF -algebra.

Proof. The functor Wπ(•) is constructed in a more abstract way in [4]. For the agreement with our
definition, see [4, §3.1]. See also page 235 of loc. cit. for a more direct formulation. �

Lemma 2.4. Let R denote an OF -algebra, and let a, b ∈ R satisfy a ≡ b mod πi. Then aq ≡ bq mod

πi+1. In particular, if a ≡ b mod π, then aq
j ≡ bqj mod πj+1.

Proof. The second statement follows from the first by induction. To prove the first statement, we
write b = a+ πix and compute

bq = (a+ πix)q ≡ aq + πqixq mod pπi

by the binomial theorem. Using that p ∈ (π), this completes the proof. �

Proposition 2.5 (Generalized Dwork Lemma). Let R denote a π-torsion free OF -algebra, and let φ
denote an OF -algebra homomorphism such that

φ(x) ≡ xq mod π.

Let (yj) denote a sequence of elements such that

φ (yi−1) ≡ yi mod πi.

Then the sequence (yj) is in the image of the ghost map.

4Borger has indicated to the authors that the constructions and arguments of his paper work equally well under the

more general hypotheses ϕ(x) ≡ xq
j

mod π for any j ≥ 1 and ϕ(0) = 0; we stick to the present assumptions for simplicity.
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Proof. We will construct (xj), the pre-image of (yj), inductively. Constructing x0 is trivial. Now
assume we have constructed (x0, . . . , xn−1). Then we wish to choose xn such that

n∑
j=0

πjxq
n−j

j = yn.

We know by our inductive hypothesis that

n−1∑
j=0

πjxq
n−1−j

j = yn−1.

Applying φ to both sides
n−1∑
j=0

πjφ (xj)
qn−1−j

= φ(yn−1).

The right side is congruent to yn modulo πn. On the other hand, φ(xj) ≡ xqj mod π, and so by

Lemma 2.4, φ(xj)
qn−1−j ≡ xq

n−j

j mod πn−j . This shows

n−1∑
j=0

πjφ (xj)
qn−1−j

≡
n−1∑
j=0

πjxq
n−j

j mod πn.

Hence we can find xn such that
n∑
j=0

πjxq
n−j

j = yn,

which completes the construction. �

Definition 2.6 ([4, §1.7]). The generalized Witt vector Frobenius is the unique natural transformation
Fr : Wπ(•)→Wπ(•) which has the following effect on ghost components:

(a0, a1, a2, . . .) 7→ (a1, a2, . . .).

In particular, for any fixed OF -algebra A, the map Fr : Wπ(A)→Wπ(A) is an OF -algebra homomor-
phism.

Definition 2.7 ([4, §3.7]). The generalized Witt vector Verschiebung V is defined on Witt vector
components by

(a0, a1, a2, . . .) 7→ (0, a0, a1, . . .).

It is OF -linear but not multiplicative.

Lemma 2.8. The Witt vector Frobenius has the following description in terms of Witt components:

(a0, a1, . . .) 7→ (aq0 + πf0(a0, a1), a
q
1 + πf1(a0, a1, a2), . . .).

In other words, for arbitrary i, the i-th Witt component of Fr(a) has the form aqi + πfi, where fi
is some universal polynomial over OK in the variables a0, . . . , ai+1. Moreover, fi is homogeneous of
degree qi+1 under the weighting in which aj has weight qj.

Proof. The proof of the analogous result in the p-typical case [9, Lemma 1.4] easily adapts to this
case. The idea for proving homogeneity is to use induction and the fact that the ghost components
have this property. See also [4, Lemma 3.2] for a proof of everything except homogeneity. �



6 BRYDEN CAIS AND CHRISTOPHER DAVIS

Lemma 2.9. If R is any OF -algebra, we have FrV = π, where π on the right side refers to the map
Wπ(R) → Wπ(R) given by multiplication by π. If R is a kF = OF /π-algebra, then we furthermore
have V Fr = FrV = π.

Proof. The fact that FrV = π is clear in terms of ghost components. Using Lemma 2.8, it is clear in
terms of Witt components that when π = 0 in R, then FrV = V Fr. �

Corollary 2.10. If the OF -algebra R is a kF = OF /π-algebra, then multiplication by π on Wπ(R)
has the following effect on Witt coordinates:

π : (a0, a1, a2, . . .) 7→ (0, aq0, a
q
1, . . .).

Proposition 2.11. If the OF -algebra R is a perfect kF -algebra, then Wπ(R) is the unique π-adically
complete and separated π-torsion free OF -algebra which satisfies Wπ(R)/πWπ(R) ∼= R.

Proof. Corollary 2.10 makes it clear that when R is a kF -algebra for which the q-power map is injective,
then Wπ(R) is π-torsion free, π-adically complete, and π-adically separated. This corollary, together
with surjectivity of the q-power map, also makes it clear that πWπ(R) = V (Wπ(R)), and so the residue
ring is isomorphic to R.

It remains to prove that Wπ(R) is the unique such ring. The proof is similar to the usual proof
for Witt vectors; see for example [20, §II.5]. The idea is to first note that if a ≡ b mod π, then

aq
i ≡ bqi mod πi as in Lemma 2.4. Using this fact one constructs a unique family of Teichmüller lifts,

and then notes that elements in a ring satisfying the properties of the proposition can be expressed
uniquely as π-adic combinations of Teichmüller lifts. �

Let Ẽ+ := lim←−x7→xp OCF /pOCF ; this is a perfect ring of characteristic p and its fraction field Ẽ is

algebraically closed. By [21, §4], the norm fields which we seek to lift can be embedded naturally into

Ẽ. Note that the usual p-typical Witt vectors appear on the right side of the following corollary.

Corollary 2.12. Wπ(Ẽ+) ∼= Ã+
F := W (Ẽ+)⊗W (kF ) OF .

Proof. This follows from the uniqueness assertion of Proposition 2.11. �

Borger’s approach to Witt vectors emphasizes the importance of the following result. It is also of
central importance to our work, in that we use it to lift a (power of a) uniformizer for E+

L/K to our

Cohen ring A+
L/K in the case that L/K is a ϕ-iterate extension. This existence of a lift is the only

part of our construction which fails to work for arbitrary strictly APF extensions L/K.

Proposition 2.13. Let R denote a π-torsion free OF -algebra, and let ϕ : R→ R denote an OF -algebra
homomorphism that induces the q-power Frobenius modulo π. Then there is a unique OF -algebra
homomorphism

λϕ : R→Wπ(R)

which is a section to the projection Wπ(R)→ R, and such that

λϕ ◦ ϕ = Fr ◦λϕ.

Proof. See [4, Proposition 1.9(c)]. The π-torsion free requirement in our statement of the proposition
corresponds to the “E-flatness” condition in Borger’s paper. �

Corollary 2.14. Keep notation as in Proposition 2.13. For any r ∈ R, the ghost components of λϕ(r)
are (r, ϕ(r), ϕ2(r), . . .).
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Proof. Notice that for any n ≥ 1,

λϕ ◦ ϕn(r) = Frn ◦λϕ(r).

Consider the first Witt component (which is also the first ghost component) of both sides. Consider
the left-hand side first. Because λϕ is a section to the first Witt component, we have that this first
Witt component is ϕn(r). Now consider the right-hand side. By the definition of the Witt vector
Frobenius (Definition 2.6), the first ghost component of Frn ◦λϕ(r) is the (n+ 1)-st ghost component
of λϕ(r). This completes the proof. �

The preceding results, especially Proposition 2.13, are the fundamental properties we will require
of Wπ(R). We conclude this section with several lemmas of a more technical nature which we will
require in our proofs.

Lemma 2.15. If x = (x0, x1, x2, . . .) ∈Wπ(R) is divisible by πi, then xj ∈ πi−jR for all 0 ≤ j ≤ i.

Proof. This follows easily using induction and ghost components. �

Lemma 2.16. If the OF -algebra R is π-torsion free, then Wπ(R) is also π-torsion free.

Proof. If πx = 0 for x ∈ Wπ(R), then at least the component x0 is zero (because R is assumed
π-torsion free). But using the fact that Verschiebung is injective and OF -linear, we reduce to this
case. �

Lemma 2.17. If the OF -algebra R is π-adically separated, then Wπ(R) is π-adically separated.

Proof. Assume x ∈ Wπ(R) is non-zero, and say for example that xj 6= 0. Then by the assumption
that R is π-adically separated, we know that xj 6∈ πNR for some suitably large N . But then by
Lemma 2.15, we know that x 6∈ πj+NWπ(R). �

Remark 2.18. The authors suspect that when R is π-adically complete and π-adically separated, then
Wπ(R) is also π-adically complete. It is not hard to find a candidate limit by working componentwise,
but proving it is actually the limit seems difficult, because π-divisibility of elements in Wπ(R) seems
difficult to detect when R is π-torsion free.

Lemma 2.19. Let (R,m) denote a complete local OF -algebra such that π ∈ m. Let x0, x1, . . . ∈Wπ(R)
denote a sequence of Witt vectors such that the ghost components

(xi0, xi1, . . .) ∈ RN

converge termwise to some sequence (x∞0, x∞1, . . .). Then there is a Witt vector x∞ ∈ W (R) whose
ghost components are equal to (x∞0, x∞1, . . .). In fact, the Witt vector components of x0, x1, . . . con-
verge termwise to x∞.

Proof. We work momentarily in Rπ := R
[
1
π

]
. In this setting, the ghost map Wπ(Rπ) → RN

π is
an isomorphism, and the inverse is given in terms of sequences of polynomials. In particular, the
components of the inverse map are m-adically continuous functions. The element x∞ exists in Wπ(Rπ),
and its components are m-adic limits of elements in R. Hence its components are themselves elements
of R, and the claim follows. �
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3. Witt vector constructions

As in Notation 1.5, let F/Qp be a finite extension, q := |kF | its residue cardinality, and π a uni-
formizer of OF . Let Wπ(R) denote generalized Witt vectors with coefficients in R, as in Definition 2.1.
Consider the inverse system lim←−Fr

Wπ(OCF ), where the transition maps are the Witt vector Frobenius
as in Definition 2.6. We first note that this Witt vector inverse limit enjoys the same functoriality
properties as the Witt vectors.

Remark 3.1. Let γ : OCF → OCF denote any OF -algebra homomorphism. This extends to a ring
homomorphism Wπ(γ) : Wπ(OCF )→Wπ(OCF ) by Witt vector functoriality, and because the compo-
nents of the Witt vector Frobenius are defined by polynomials with coefficients in OF (Lemma 2.8),
we have that Fr ◦Wπ(γ) = Wπ(γ) ◦ Fr. Hence γ induces a ring homomorphism

lim←−
Fr

Wπ(OCF )→ lim←−
Fr

Wπ(OCF ), (x1, xq, . . .) 7→ (Wπ(γ)(x1),Wπ(γ)(xq), . . .).

There is also a natural action of Fr on lim←−Fr
Wπ(OCF ), defined as follows.

Definition 3.2. Define the Frobenius ring homomorphism on lim←−Fr
Wπ(OCF ) by the formula

Fr : lim←−
Fr

Wπ(OCF )→ lim←−
Fr

Wπ(OCF ), (x1, xq, xq2 , . . .) 7→ (Fr(x1), x1, xq, . . .).

This definition is equivalent to applying Fr to each entry in the inverse system.

Despite the fact that the Witt vector Frobenius Fr : Wπ(OCF )→Wπ(OCF ) is neither injective nor
surjective, the above map Fr : lim←−Fr

Wπ(OCF )→ lim←−Fr
Wπ(OCF ) is an automorphism.

Lemma 3.3. The ring homomorphism Fr of Definition 3.2 is an automorphism.

Proof. It’s clear that the left-shift map

(x1, xq, . . .) 7→ (xq, xq2 , . . .)

is a two-sided inverse to Fr. Hence the ring homomorphism Fr is bijective, hence an isomorphism. �

We will now use this Witt vector inverse limit construction to describe a familiar ring from p-adic

Hodge theory. Recall the perfect characteristic p ring Ẽ+ described above Corollary 2.12.

Proposition 3.4 ([10, Proposition 4.5]). There are canonical isomorphisms

lim←−
Fr

Wπ(OCF )
$→ lim←−

Fr

Wπ(OCF /(π))
α→Wπ(lim←−OCF /(π))

∼→W (Ẽ+)⊗W (kF ) OF =: Ã+
F .

Here the transition maps in lim←−OCF /(π) are the q-power Frobenius, and only the Witt vectors in the
right-most term are the classical p-typical Witt vectors; all other Witt vectors are the generalized Witt
vectors as in Definition 2.1.

Note that the statement that these isomorphisms are canonical includes equivariance with respect
to the action of the absolute Galois group of F on every term.

Proof. The ring lim←−OCF /(π) is isomorphic to Ẽ+ (cf. the proof of Proposition 4.2), which is a perfect
kF -algebra of characteristic p. Hence the final isomorphism follows from Proposition 2.11. Thus we
concentrate on the first two maps.
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The map $ is induced by functoriality of Witt vectors. We check that it is injective. Write an
element x ∈ lim←−Wπ(OCF ) as (xqi), where xqi ∈ Wπ(OCF ) and where Frn(xqi+n) = xqi . Using the
definition of the Witt vector Frobenius, we obtain the equation

(3.5) xqi0 =
n∑
j=0

πjxq
n−j

qi+nj
(i, n ≥ 0).

Suppose now that $(x) = 0. This implies that v(xqij) ≥ 1 for all i, j ≥ 0, where we write v for the

π-adic valuation on OCF . By (3.5), for all i, n ≥ 0, we have v(xqi0) ≥ n because j + qn−j ≥ n for
0 ≤ j ≤ n. Hence xqi0 = 0 for all i ≥ 0. If for some n we have xqij = 0 for all i and all j < n, then
from (3.5) we immediately obtain xqin = 0 for all i ≥ 0. We thus conclude that xqij = 0 for all i, j ≥ 0,
so $ is injective.

To see that $ is surjective, we construct a preimage of x ∈ lim←−Fr
Wπ(OCF /(π)). For each i, j ≥ 0,

choose any lift yqij ∈ OCF of xqij ∈ OCF /(π), and put y
qi

= (yqi0, yqi1, . . . ) ∈ Wπ(OCF ). Using the

polynomials expressing Frobenius in terms of Witt components (Lemma 2.8), one can check that for
each i, j ≥ 0, as k → ∞, the j-th Witt component of Frk(y

qi+k
) converges π-adically to some limit

zqij . These define an element z ∈ lim←−Fr
Wπ(OCF ) with $(z) = x.

Having proved that $ is an isomorphism, we now consider the map α, which we must first define.
For x ∈ lim←−Fr

Wπ(OCF /(π)), the sequence y
i

= (x1i, xqi, xq2i, . . . ) defines an element of lim←−OCF /(π)

because the Witt vector Frobenius on W (OCF /(π)) is the map which in each coordinate sends x 7→ xq.
Using the polynomials defining the ring operations on generalized Witt vectors [4, §1.19], we can check
that setting α(x) = (y

0
, y

1
, . . . ) in W (lim←−OCF /(π)) defines a ring homomorphism. Finally, the map

α is clearly injective and surjective, as it simply involves permuting certain indices. This completes
the proof. �

Remark 3.6. Recall that the weak topology on W (Ẽ+) is obtained by identifying W (Ẽ+) with
∏

Ẽ+

(as a set), and equipping the latter with the product topology, where each factor is given its valuation
topology. In terms of lim←−Wπ(OCF ), this corresponds to the coarsest topology such that the maps

lim←−
Fr

W (OCF )→ lim←−
x 7→xq

OCF /(π), (x1, xq, xq2 , . . .) 7→ (x1j , xqj , xq2j , . . .)

(which are not ring maps if j > 0) are continuous for all j ≥ 0.

Recall that we write q = pa. Using the fact that modulo π, the Witt vector Frobenius is the same
as raising each coordinate to the q-th power, one can check that our map Fr defined in Definition 3.2

agrees with the map Fra⊗1 on W (Ẽ+)⊗W (kF ) OF , via the isomorphism in Proposition 3.4.

Definition 3.7. For an element xqij ∈ OCF , write xqij for its image in OCF /(π). Let β denote the
ring homomorphism

β : lim←−
Fr

Wπ(OCF )→ lim←−
x 7→xq

OCF /(π), x 7→ (x11, xq1, xq21, . . .).

Remark 3.8. Under the isomorphism

lim←−
Fr

Wπ(OCF ) ∼= W (Ẽ+)⊗W (kF ) OF =: Ã+
F .

from Proposition 3.4, the ring homomorphism β corresponds to reduction modulo the ideal generated

by 1 ⊗ π. In terms of Wπ(Ẽ+), the map β corresponds to projection onto the first Witt component
(or equivalently, onto the first ghost component).
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Proposition 3.4 allows us to relate lim←−Fr
Wπ(OCF ) to Ã+ = W (Ẽ+). One pleasant feature of this

comparison is that it provides a simple description of the θ map from p-adic Hodge theory. We first
recall this map.

Definition 3.9. Define the θ map

θ : W

(
lim←−
x 7→xp

OCF /(π)

)
→ OCF ,

∑
pi[ai] 7→ pi lim

j→∞
ãij

pj ,

where aij is the j-th term in the inverse system corresponding to ai, and where ãij is any lift from
OCF /(π) to OCF . If we replace the transition maps x 7→ xp by x 7→ xq, the map becomes

θ :
∑

pi[ai] 7→ pi lim
j→∞

ãij
qj .

For ramified Witt vectors, this becomes

θ : W

(
lim←−
x 7→xq

OCF /(π)

)
⊗W (kF ) OF → OCF ,

∑
πi[ai] 7→

∑
πi lim

j→∞
ãij

qj .

Proposition 3.10. For an element x ∈ lim←−Fr
Wπ(OCF ), write (x1, xq, . . . , xqi , . . .) for the Witt vectors

in this inverse system and write xqij for the j-th Witt component of the Witt vector xqi. Define θ to
be the ring homomorphism

θ : lim←−
Fr

Wπ(OCF )→ OCF , x 7→ xq00.

Under the isomorphisms of Proposition 3.4, this induces the same map θ as in Definition 3.9.

Proof. We adapt the argument [10, Proposition 5.8] which is due to Ruochuan Liu. Assume

a =
∑

πi[ai] ∈W (Ẽ+)⊗W (kF ) OF

corresponds to an element x ∈ lim←−Fr
Wπ(OCF ) under the isomorphisms of Proposition 3.4. Recall that

we let ãij denote an arbitrary lift of aij ∈ OCF /(π) to OCF . To prove the proposition, we will describe

θ(a) =
∑

πi lim
j→∞

ãij
qj

in terms of the coordinates of x ∈ lim←−Fr
Wπ(OCF ). If we view a as an element of Wπ

(
lim←−x 7→xq OCF

)
,

then by Corollary 2.10 it has coordinates (a0, a
q
1, a

q2

2 , . . .). By definition of the maps $,α in Propo-

sition 3.4, we find that xqji is a lift of aq
i

ij . Then we can take xqj+ii for ãij , our lift of aij . We then
compute

∞∑
i=0

πi lim
j→∞

ãij
qj = lim

j→∞

j∑
i=0

πiãij
qj

= lim
j→∞

j∑
i=0

πixq
j

qj+ii

= lim
j→∞

j∑
i=0

πixq
j−i

qji
.
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The term
∑j

i=0 π
ixq

j−i

qji
∈ OCF is the j-th ghost component of the Witt vector xqj . If we write wj for

this ghost component, then the above limit becomes

= lim
j→∞

wj(xqj ).

Because x ∈ lim←−Fr
Wπ(OCF ), we have Fr(xqj ) = xqj−1 . By the definition of the Frobenius map

(Definition 2.6), we find that wj(xqj ) is independent of j. Taking j = 0 completes the proof. �

4. Norm rings

Let L/K denote an arbitrary strictly APF extension. Recall [21, 1.4] that canonically attached to
L/K is the sequence of ramification breaks {bm}m>0: this is the increasing sequence of real numbers b

for which Gb+εK GL 6= GbKGL for all ε > 0. Let K0 be the maximal unramified extension of K contained

in L, and for m > 0 denote by Km the fixed field of GbmK GL acting on K; it is a subfield of L of finite
degree over K with the property that Kn+1/Kn is elementary of level in := ΨL/K(bn), where ΨL/K is
the transition function of Herbrand as in [21, 1.2.1]. Following [21, 1.4], we call {Km}m≥0 the tower of
elementary extensions associated to L/K, and for m ≥ 1 we write rm for the unique positive integer
determined by prm = [Km : K1].

Lemma 4.1. Each Km is preserved by Aut(L/K). In particular, when L/K is Galois, so is Km/K.

Proof. Fix σ ∈ Aut(L/K), and let σ̃ ∈ GK be any extension of σ to an automorphism of K. Then

σ̃−1GbmK GLσ̃ = (σ̃−1GbmK σ̃)(σ̃−1GLσ̃) = GbmK GL

as GbmK is normal in GK and GL is stable under conjugation by any automorphism of K that preserves
L. The result follows. �

Let us recall the definition of the perfect norm field associated to L/K:

Proposition 4.2. Let a ⊆ OL be any ideal with the property that the a-adic and p-adic topologies on
OL coincide. Then reduction modulo a induces a multiplicative bijection

(4.3) lim←−x7→xp O
L̂

' // lim←−x 7→xp OL/a.

In particular, Ẽ+
L/K := lim←−x 7→xp OL/a is naturally a subring of Ẽ+ that is independent of a.

Proof. This is standard (e.g. [7, Proposition 4.3.1]): if (xn)n ∈ Ẽ+
L/K , then for any choices of lifts

x̂n ∈ OL of xn, our hypotheses on a ensure that the a-adic and p-adic topologies on O
L̂

coincide,

so for each fixed n, the sequence {x̂p
m

n+m}m converges to an element yn of O
L̂

that is independent of
these choices with the resulting sequence {yn}n compatible under the p-power map. The association
xn  yn gives the desired inverse mapping to (4.3). The rest of the Proposition follows easily. �

The strictness hypothesis on the APF extension L/K amounts to the assumption that the quantities
in/[Kn+1 : Kn] are bounded below by a positive constant, and we define the constants [21, 1.2.1, 1.4.1]

(4.4) c(L/Km) := inf
n≥m

in
[Kn+1 : Km]

.

Denote by b the ideal of OL defined by

(4.5) b := {α ∈ OL : vK1(α) ≥ c(L/K1)}.



12 BRYDEN CAIS AND CHRISTOPHER DAVIS

If a is any ideal of OL, then for any extension E of K1 contained in L we write aE := a ∩ OE for the
induced ideal of OE , which is visibly the kernel of the canonical map OE ↪→ OL � OL/a. For any
subfields E′ ⊇ E of L containing K, we may (and do) therefore view OE/aE as a subring of OE′/aE′ .

Definition 4.6. Let L/K be an infinite and strictly APF extension, and let a ⊆ OL be any ideal such
that aN ⊆ b ⊆ a for some integer N ≥ 1. We define

E+
L/K(a) :=

{
(xn) ∈ lim←−

x 7→xp
OL/a : xrm ∈ im (OKm/aKm ↪→ OL/a) for all m

}
For ease of notation, we set E+

L/K := E+
L/K(b) and EL/K := Frac(E+

L/K).

By definition, E+
L/K is a subring of Ẽ+

L/K—depending only on L/K—which, thanks to Lemma 4.1,

is stable under the natural coordinate-wise action of Aut(L/K) on Ẽ+
L/K .

Let XK(L) be the imperfect norm field attached to L/K as in [21, §2.1]. For each finite intermediate
extension E/K1, define

(4.7) r(E) :=

⌈
(p− 1)

p
i(L/E)

⌉
where i(L/E) := sup{i ≥ −1 : GiEGL = GE}.

Due to [21, 2.2.3.1], the integers r(E) are nondecreasing and tend to infinity with respect to the directed
set EL/K1

of intermediate extensions L ⊇ E ⊇ K1 that are finite over K1. Let s := {s(E)}E∈EL/K1

be any fixed choice of positive integers s(E) ≤ r(E) with s(E) nondecreasing and tending to infinity
(with respect to EL/K1

). Thanks to [21, 2.2.1, 2.2.3.3], the norm maps induce ring homomorphisms

NmE′/E : OE′/m
s(E′)
E′ → OE/m

s(E)
E by and we put

(4.8) AK(L)s := lim←−
E∈EL/K1

OE/m
s(E)
E .

Lemma 4.9. Let r := {r(E)}E∈EL/K1
and let s := {s(E)}E∈EL/K1

be any choice of positive integers as

above. Then the natural reduction map AK(L)r → AK(L)s is an isomorphism of rings; in particular,
the ring AK(L) := AK(L)s is independent of the choice of s. Moreover, AK(L) is canonically identified
with the valuation ring of the norm field XK(L).

Proof. Given a norm compatible sequence (xE)E ∈ lim←−OE/m
s(E)
E , we choose for each n an arbitrary

lift x̂E ∈ OE of xE , and we set yE := lim−→E′∈EL/E
NmE′/E(x̂E′); this limit exists and is independent of

the choices of lifts x̂E′ by the proof 2.3.2 of [21, Proposition 2.3.1]. By construction, (yE mod m
r(E)
E )E

is then a norm compatible sequence in lim←−Nm
OE/m

r(E)
E lifting the given sequence (xE)E , and the

association (xE)E 7→ (yE)E provides the desired inverse to the reduction map AK(L)r → AK(L)s; see
[21, §2.3] for further details. That AK(L) is canonically identified with the valuation ring of XK(L) is
[21, Proposition 2.3.1]. �

By 4.4, we have

i(L/Kn) = i(Kn+1/Kn) = [Kn+1 : K1]
i(Kn+1/Kn)

[Kn+1 : K1]
≥ [Kn+1 : K1]c(L/K1),

and it follows that r(Kn) ≥ d(p−1)[Kn : K1]c(L/K1)e. In particular, the sequence of positive integers
s(Kn) := d[Kn : K1]c(L/K1)e has s(Kn) ≤ r(Kn), is nondecreasing and tends to infinity with n.
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Furthermore, as the value group of vKn is Z, we have by definition (4.5) of b

bKn = {x ∈ OKn : vKn(x) ≥ [Kn : K1]c(L/K1)} = m
s(Kn)
Kn

.

If a ⊆ OL is any ideal with aN ⊆ b ⊆ a, then for any E ∈ EL/K1
we have aNE ⊆ (aN )E ⊆ bE ⊆ aE ,

so defining integers sa(E) by aE = m
sa(E)
E we have sa(Kn) ≤ s(Kn) ≤ Nsa(Kn) and the sequence

{sa(Kn)}n tends to infinity with n and has sa(Kn) ≤ r(Kn). We claim that the sequence sa(Kn) is
nondecreasing. To see this, let E′/E denote any two fields in EL/K1

. We then have

m
sa(E)
E = aE = aE′ ∩ OE = m

sa(E′)
E′ ∩ OE ⊇ (mE′ ∩ OE)sa(E

′) = m
sa(E′)
E ;

comparing the left and right sides shows that sa(E) ≤ sa(E′), as desired.
We thus obtain natural maps of rings

(4.10) lim←−
E∈EL/K ,Nm

OE/m
r(E)
E

forget // lim←−
n,Nm

OKn/m
r(Kn)
Kn

mod m
sa(?)
? // lim←−

n,Nm

OKn/m
sa(Kn)
Kn

= lim←−
n,Nm

OKn/aKn

Lemma 4.11. The maps (4.10) are ring isomorphisms.

Proof. The first is an isomorphism as {Kn} is cofinal in the directed system EL/K1
of intermediate

extensions L/E/K. That the second is an isomorphism follows from the proof of Lemma 4.9. �

Corollary 4.12. For any ideal a ⊆ OL with aN ⊆ b ⊆ a for some integer N , there is a canonical iso-
morphism of rings AK(L) ' E+

L/K(a). In particular, E+
L/K(a) ' E+

L/K and these rings all correspond

to the same subring of Ẽ+.

Proof. As the sequence {rm} is cofinal in N, the forgetful map induces an isomorphism of rings

(4.13) E+
L/K(a) ' {(xn) : xn ∈ OKn/aKn , and x[Kn:Kn−1]

n = xn−1 inside OL/a}.

On the other hand, we claim that NmKn+1/Kn(α)− α[Kn+1:Kn] ∈ b ⊆ a for all α ∈ OKn+1 , so that the
right sides of (4.10) and (4.13) are equal. In other words, we claim that

vK1

(
NmKn+1/Kn(α)− α[Kn+1:Kn]

)
≥ c(L/K1).

This follows from

vKn

(
NmKn+1/Kn(α)− α[Kn+1:Kn]

)
≥ c(Kn+1/Kn) ≥ c(L/Kn) ≥ c(L/K1)[Kn : K1],

with the first two inequalities given by 4.2.2.1 and 1.2.3 (iv) of [21], respectively, and the final inequality
following immediately from the definition (4.4) of c(L/Km). This completes the proof of the claim.

We have subrings

E+
L/K(b) ⊆ E+

L/K(a) ⊆ Ẽ+,

with the first inclusion given by reduction modulo a in each coordinate. On the other hand, as
observed in the previous paragraph, these first two rings are equal to the rings AK(L)sb and AK(L)sa ,
respectively. We then in fact have

E+
L/K(b) = E+

L/K(a) ⊆ Ẽ+,

by Lemma 4.11. �
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If K ′ ∈ EL/K if any finite extension of K contained in L, then as the finite subextensions of L/K ′ and
L/K are co-final among each other, there is a canonical isomorphism of abstract rings AK(L) ' AK′(L)

cf. [21, 2.1.4]. We warn the reader, however, that the embedding of AK(L) into Ẽ+ described in [21,
4.2]—whose image is exactly E+

L/K—is sensitive to K. More precisely:

Proposition 4.14. Let K ′ be a finite extension of K contained in L. Let K1 (resp., K ′1) be the

maximal tamely ramified subextension of L/K (resp., L/K ′). Considered as subfields of Ẽ via the
embedding described in [21, 4.2], we have that XK′(L) is a purely inseparable extension of XK(L) of
degree [K ′1 : K1]. In particular, the group Aut(L) = Aut(L/Qp) acts naturally on XK′(L).

Proof. As abstract rings, both XK(L) and XK′(L) are isomorphic to k((x)) by [21, Théorème 2.1.3].
Let (πE)E denote a uniformizer for either XK(L) or XK′(L); we may choose the same elements πE in
both cases, although the index sets differ. Then the map in [21, 4.2] sends this element to the p-power
compatible sequence with n-th term

lim
E, [E:K1]>>0

π
p−n[E:K1]
E or lim

E, [E:K′1]>>0
π
p−n[E:K′1]
E .

Thus we have subfields k((x)) ⊆ k((x′)) ⊆ Ẽ, and clearly (x′)[K
′
1:K1] = x. Because K ′1 is a subextension

of the totally wildly ramified extension L/K1, we have that [K ′1 : K1] is a power of p. The final
assertion follows by taking K = Qp and L/K ′ arbitrary strictly APF and the fact that Aut(L) acts
naturally on EL/Qp

by the preceding constructions and discussion. This completes the proof. �

5. The ring A+
L/K

In Section 3, we described the ring Ã+
F using inverse limits of Witt vectors. In this section, we will

use this formulation to construct canonical rings A+
L/K sitting inside of Ã+

F for any infinite strictly

APF extension L/K with K ⊇ F . (We remark that our ring A+
L/K depends on F, π as in Notation 1.5;

this dependence is suppressed from our notation.) We show in this section that the ring A+
L/K is always

π-adically complete and separated, and always has residue ring contained within E+
L/K . In the special

case that L/K is a ϕ-iterate extension (Definition 1.3), we prove in Section 7 that EL/K is a finite

purely inseparable extension of Frac
(
A+
L/K/πA+

L/K

)
.

The ring Ẽ+
L/K of Proposition 4.2 is a perfect ring of characteristic p, so the classical theory of Witt

vectors suffices to lift it to a Cohen ring. In the next proposition, we put this classical description in
our “Witt inverse limit” framework.

Proposition 5.1. Let L/K be an infinite strictly APF extension, Then there is a canonical identifi-
cation

(5.2) Ã+
L/K := Wπ(Ẽ+

L/K) = lim←−
Fr

Wπ(O
L̂

).

Proof. It is straightforward to adapt the proof of Proposition 3.4. Note that it is important to work
with O

L̂
instead of OL, because we require π-adic completeness. �

Remark 5.3. Note that Ẽ+
L/K and Ã+

L/K are independent of K in the sense that for any finite extension

K ′/K contained in L we have Ẽ+
L/K′ = Ẽ+

L/K and Ã+
L/K′ = Ã+

L/K .
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The following is the key definition of this paper.

Definition 5.4. Let F, π, q be as in Notation 1.5. Let K/F denote a finite extension and let L/K
be a strictly APF extension. Let {Km}m≥0 be the tower of elementary extensions of L/K defined in
Section 4. We define

A+
L/K :=

{
(xqi)i ∈ lim←−

Fr

Wπ(O
L̂

) : xqj ∈Wπ(OKm) whenever qj | [Km : K1]

}
,

viewed as a subring of Ã+
L/K ⊆ Ã+

F via Proposition 5.1.

Remark 5.5. As observed in Lemma 4.1, the elementary fields Km are stable under the action of
Aut(L/K) on L, so the ring A+

L/K carries a natural action of Aut(L/K). In particular, if L/K is

Galois, then A+
L/K is a GK-stable subring of Ã+

F that is fixed element-wise by GL.

Because Wπ(OE) is always an OF -algebra for any intermediate field K ⊆ E ⊆ L and because the
Witt vector Frobenius Fr is an OF -algebra homomorphism, we find that A+

L/K is an OF -algebra.

Recall that the weak topology on Ã+
F
∼= lim←−Wπ(OCF ) was described in Remark 3.6.

Proposition 5.6. The OF -subalgebra A+
L/K of Ã+

F is closed for the weak topology.

Proof. We will show that the complement is open. Let x = (xqi) denote an element in the complement.

Then there exist some indices i, j such that qi | [Km : K1] and xqij 6∈ OKm . Let n be such that there is
no element of OKm congruent to xqij modulo πnOCF . The collection of all elements y ∈ lim←−Wπ(OCF )

such that vπ(yqij − xqij) > n is an open set containing x and contained in the complement of A+
L/K .

This completes the proof. �

Proposition 5.7. Recall that β : lim←−Fr
Wπ(OCF ) → Ẽ+ was defined in Definition 3.7. The induced

map β : A+
L/K → Ẽ+ has image contained in E+

L/K .

Proof. Let a := (b, π). This ideal satisfies the hypotheses of Corollary 4.12. By that lemma (and
using its notation), it suffices to show that for x ∈ A+

L/K , we have β(x) ∈ E+
L/K(a). We will show

β(x)rn ∈ OKn/(π) for all n. Write q = pa and let sn be the smallest index such that qsn | [Kn : K1].
Then by the definition of A+

L/K , we know that xqsn0 ∈ OKn . This shows that β(x)pasn ∈ OKn/(π).

Because rn = asn − d for some d ≥ 0, we have that β(x)rn is the pd-th power of some element in
OKn/(π), and hence is itself in OKn/(π), which completes the proof. �

Our next goal is to study the effect of multiplication by π on an element in A+
L/K . We will use these

results to show that A+
L/K is π-adically complete and separated. Recall that Lemma 2.15 showed that

for a Witt vector x ∈ Wπ(R) which is divisible by πi, then xj is divisible by πi−j for any 0 ≤ j ≤ i.
The converse to this lemma is not true; for example, the first Witt component being divisible by π does
not imply that the Witt vector is divisible by π. For example, V ([1]) ∈Wπ(OK) is not divisible by π,
even though its first component is zero. However, we do have the following result (whose proof was
suggested to us by Abhinav Kumar), which states that if we take a Witt vector whose first component
is divisible by π, and apply Frobenius to it, then the result is a Witt vector which is divisible by π.
This result will be very useful with respect to our inverse systems under Frobenius maps.

Lemma 5.8. Let R denote any OF -algebra, and let y ∈Wπ(R) with y0 ∈ πR. Then Fr(y) ∈ πW (R).
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Proof. Write y = π[y′] + V (ỹ), for some y′ ∈ R and ỹ ∈Wπ(R). Applying Fr to both sides, and using
the facts that Fr is an OF -algebra homomorphism (Definition 2.6) and that the composition FrV is
equal to multiplication by π (Lemma 2.9), immediately yields the result. �

The following proposition shows that the ring A+
L/K satisfies many of the desired properties which

were enumerated in Theorem 1.2.

Proposition 5.9. Recall that k denotes the residue field of OL (or, equivalently, of OK0) and that

β : lim←−Fr
Wπ(OCF )→ Ẽ+ was defined in Definition 3.7. The ring A+

L/K is a π-torsion free, π-adically

complete and separated Wπ(k)-algebra. Furthermore, the map β : A+
L/K → E+

L/K has kernel equal to

πA+
L/K .

Proof. We first show that A+
L/K is a Wπ(k)-algebra; this is slightly harder than showing it is a Wπ(kF )-

algebra. The Witt vector Frobenius Fr : Wπ(k) → Wπ(k) is an OF -algebra homomorphism which in-
duces the q-power map modulo π. Hence using Proposition 2.13, we have a natural ring homomorphism
λFr : Wπ(k)→Wπ(Wπ(k)), and the family of ring homomorphisms λFr ◦ Fr−n : Wπ(k)→Wπ(Wπ(k))
are Frobenius compatible, so we have an induced map to lim←−Fr

Wπ(Wπ(k)). From the explicit descrip-

tion of Wπ(k) given in Proposition 2.11, we know that we have a natural inclusion Wπ(k) ↪→ OK0 , so
we have a natural map Wπ(k)→ lim←−Fr

Wπ(OK0). Because K0 ⊆ Kn for all n, this completes the proof

that A+
L/K is a Wπ(k)-algebra.

Lemma 2.16 shows that A+
L/K is π-torsion free and Lemma 2.17 shows that A+

L/K is π-adically sep-

arated. To check that A+
L/K is π-adically complete, let x(1), x(2), . . . denote a π-adic Cauchy sequence

of elements in A+
L/K . Lemma 2.15 shows that for any i, j, the coordinates x

(1)

qij
, x

(2)

qij
, . . . ∈ O

L̂
form

a π-adic Cauchy sequence. The resulting limits form a Frobenius-compatible system of Witt vectors
in Wπ(O

L̂
), because the definition of Fr in terms of coordinates involves polynomials over OF by

Lemma 2.8, and such polynomials are in particular π-adically continuous. We thus have a well-defined

candidate for the limit x ∈ Ã+
L/K . On the other hand, we know that there does exist a π-adic limit

in Ã+
L/K , because Ã+

L/K
∼= Wπ(Ẽ+

L/K), and the latter is π-adically complete. Each Witt vector xqi in

the inverse system corresponding to x has at least the same first Witt coordinate as the actual limit
(because addition and multiplication are defined in the obvious way on the first Witt coordinate). But

Lemma 5.8 and the fact that Ã+
L/K is π-adically separated shows that an element in Ã+

L/K is uniquely

determined by its sequence of first Witt components. We have shown that our π-adic Cauchy sequence

has a limit in Ã+
L/K . To show that the limit is in fact in A+

L/K , we note that each elementary subfield

Km is a finite extension of K, and hence is π-adically complete.
Next we check that the kernel of β is equal to πA+

L/K . The fact that every element divisible by

π is contained in the kernel of β follows immediately from the definitions (or from the fact that the
target is characteristic p). So to prove the reverse inclusion, let x denote an element in the kernel of
β. From the fact that β(x) = 0, we have that xqi1 is divisible by π for every i. Using Lemma 5.8,
this shows that each Witt vector xqi comprising x is divisible by π. Using that W (O

L̂
) is π-torsion

free by Lemma 2.16, we deduce that the Witt vectors xqi/π are Frobenius-compatible, and hence x is
divisible by π, as required. �

Our hope is that the ring A+
L/K provides a functorial lift of the valuation ring in the norm field

of L/K in many situations. In §7, we will prove that this is indeed the case (up to a finite, purely
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inseparable extension) for a large class of strictly APF extensions. However, in many cases of interest
(e.g. when L/K is Galois with Gal(L/K) admitting no abelian quotient by a finite subgroup) our
candidate lift A+

L/K is too small. The remainder of this section is devoted to making this statement

precise.

Corollary 5.10. Write E+ and E for A+
L/K/πA+

L/K and its fraction field, respectively. If the residue

ring E+ is strictly larger than k, then EL/K is a finite extension of E. In particular, there is a non-

canonical isomorphism of rings A+
L/K 'Wπ(k)[[y]].

Proof. By [21, Théorème 2.1.3] and our results from Section 4, we know that E+
L/K

∼= k[[x]]. Let

y ∈ (x) ⊆ k[[x]] denote an element in the image of E+ such that ordx(y) is minimal. We can find a

lift ỹ ∈ A+
L/K of y of the form [y] + πz, where z ∈ Ã+

F . (Note that we do not claim z ∈ A+
L/K .) We

have an inclusion of rings Wπ(k) [ỹ] ⊆ A+
L/K . Because A+

L/K ⊆ Ã+
F is weakly closed (Proposition 5.6),

using our explicit description of ỹ, we see that in fact Wπ(k)[[ỹ]] ⊆ A+
L/K , which implies k[[y]] ⊆ E+.

As k((y)) ⊆ k((x)) is a finite extension of degree ordx(y) (see for example [19, Theorem 3]), the first
assertion follows.

We next claim that k((y)) = E as subrings of EL/K . Consider more generally any field k((y)) ⊆ l ⊆
k((x)). Any element of l ∩ k[[x]] can be written uniquely in the form

a0 + a1x+ · · ·+ an−1x
n−1,

where n := ordx(y) and where a0, . . . , an−1 ∈ k[[y]]. Unless a1 = · · · = an−1 = 0, one may (after
subtracting off a0) divide by ym, where m = min (ordy(a1), . . . , ordy(an−1)) to produce an element g
in l such that 0 < ordx(g) < n. In the specific case l = E, this contradicts the minimality of ordx(y).
This proves the claim. The embedding of rings Wπ(k)[[ỹ]]→ A+

L/K is surjective modulo π, and hence

is an isomorphism because the target is π-adically separated. �

Lemma 5.11. The group Aut(L) acts faithfully on XK(L).

Proof. One adapts the proof of [21, Lemme 3.1.3.1]: if τ is an automorphism acting trivially on XK(L),
then in particular τ fixes the residue field k of L and also fixes uniformizers for subfields E ⊆ L which
are finite over K. �

Lemma 5.12. Continue to write E := Frac
(
A+
L/K/πA+

L/K

)
and write Esep for the separable closure

of E in EL/K . The kernel of the action of Aut(L/K) on A+
L/K has order at most σL/K := [Esep : E].

Proof. Let H denote the kernel of the action of Aut(L/K) on A+
L/K . We have natural maps

H → Aut(EL/K/E)→ Aut(Esep/E)→ Aut(E).

The first two maps are injective (by Lemma 5.11 and the fact that EL/K/E
sep is purely inseparable,

respectively). The composite map H → Aut(E) is clearly trivial, by our definitions of H and E.
It thus suffices to bound the size of the kernel of the third map, and the result follows by Galois
theory. �

The reduction map OL → k induces a ring homomorphism

ρ : A+
L/K →Wπ(OL)→Wπ(k),

where the first map is projection onto the first Witt vector in the inverse system.
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Lemma 5.13. Assume that the residue ring E+ := A+
L/K/πA+

L/K is strictly larger than k, so that by

Corollary 5.10 we have a noncanonical isomorphism

A+
L/K
∼= Wπ(k)[[y]].

Then Fr(y) ∈ ker ρ and for any unit u ∈Wπ(k)[[y]] we have

vπ

(
ρ

(
Fr(y)

y

))
= vπ

(
ρ

(
Fr(uy)

uy

))
.

Proof. The first result follows from

ρ (Fr(y)) = Fr (ρ(y)) = Fr(0) = 0.

The second result follows from the fact that u is a unit, and hence so are Fr(u) and ρ(Fr(u)/u). �

It follows from Lemma 5.13 that if the residue ring E+ strictly contains k, then we may choose an
isomorphism A+

L/K ' Wπ(k)[[y]], and writing Fr(y) = a1y + · · · , the absolute value |Fr′(0)| := |a1| is

well-defined (i.e. is independent of any choices and depends only on A+
L/K).

Proposition 5.14. Let L/K be a strictly APF extension and suppose that the residue ring E+ strictly
contains k, so that EL/K is a finite extension of E. Let σL/K be the separable degree of EL/K/E, and

suppose that |Fr′(0)| 6= 0. There is a natural homomorphism of groups Aut(L/K) → Wπ(k)× with
finite kernel of order at most σL/K . In particular, if EL/K is a purely inseparable extension of E, then
Aut(L/K) is abelian.

Proof. Lemma 5.12 shows that the kernel H of the action of Aut(L/K) on A+
L/K has order at most

σL/K . By Corollary 5.10 and our hypotheses, we thus have a power series ring Wπ(k)[[y]] equipped
with an endomorphism Fr determined by Fr(y) = f1y + · · · with f1 6= 0 and a commuting, faithful
action of the group G := Aut(L/K)/H. Put E := Frac(Wπ(k)). Under these circumstances, we prove
that G is isomorphic to a subgroup of Wπ(k)× and is in particular abelian. For each g ∈ G, we have
gu = a1(g)u + · · · with a1(g) 6= 0 as G acts by automorphisms. As in the proof of [2, Theorem 4.1],
there is a unique power series A(u) := a1u+ · · · ∈ E[[u]] with a1 = 1 which satisfies A(Fr(u)) = f1A(u)
(cf. [18, Proposition 1.2]). As the action of G commutes with Fr, we have

a1(g)−1A(g Fr(u)) = a1(g)−1A(Fr(gu)) = f1
(
a1(g)−1A(gu)

)
for all g ∈ G, and it follows from a1(g)−1A(gu) = u+ · · · and the uniqueness of A that

A(gu) = a1(g)A(u).

From the construction of A one sees that A(gu) = A(u) if and only if gu = u, which happens if and
only if g = 1 since G acts faithfully. We conclude that the mapping G→Wπ(k)× given by g 7→ a1(g)
is an injective homomorphism, whence G is isomorphic to a subgroup of Wπ(k)× and in particular is
abelian. �

Remark 5.15. If L/K is Galois with group that is a p-adic Lie group, then one has |Fr′(0)| 6= 0 thanks
to [2, Lemma 4.5]. It follows that if the residue ring A+

L/K/πA+
L/K is strictly larger than k, then

Gal(L/K) admits an abelian quotient by a finite subgroup.

The above results complete the proof of Theorem 1.2 (1)-(3). The proof of Theorem 1.2 (4), concern-
ing functoriality of our construction, is completed in Section 6. In Section 7, we prove Theorem 1.4,
which says that in the case that L/K is a ϕ-iterate extension, then the norm field EL/K is a finite,
purely inseparable extension of E.
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6. Functoriality

The goal of this section is to prove Theorem 6.9, which describes a sense in which the association

L/K  A+
L/K

is functorial in L. This functoriality is compatible with the functoriality of E+
L/K . In order to prove

functoriality, we are restricted to working with finite extensions L′/L which have wild ramification
degree equal to a power of q.

Lemma 6.1. Let L/K denote a strictly APF extension and let L′/L denote a finite extension of
degree N . Let Kn (respectively, K ′n), denote the associated elementary subfields of L/K (respectively,
L′/K). For every n, there exists an r(n) such that K ′n ∩ L = Kr(n).

Proof. There exists some u such that

K ′n = Fix(GuKGL′).

Because GL′ ≤ GL, we have (for the same u),

K ′n ∩ L = Fix(GuKGL′GL) = Fix(GuKGL).

Every such fixed field occurs in the tower of elementary extensions of L/K, which completes the
proof. �

Lemma 6.2. If LK ′n = L′, then the natural map

(6.3) L⊗L∩K′n K
′
n → L′

is an isomorphism.

Proof. Surjectivity of the map is clear, so we concentrate on injectivity. It suffices to show that
L⊗L∩K′n K

′
n is a field, which we prove by showing it is an integral domain, and in particular is not a

direct sum of multiple fields.
Let u be such that K ′n = Fix(GuKGL′). Set K ′′n := Fix(GuK). Then K ′′n is a Galois extension of K,

and hence is a Galois extension of any intermediate field between itself and K. In particular, K ′′n is a
Galois extension of L ∩K ′′n. This implies that the natural map

(6.4) L⊗L∩K′′n K
′′
n → LK ′′n

is injective. Because L ⊆ L′, we have

L ∩K ′′n = L ∩ (K ′′n ∩ L′) = L ∩K ′n.

Using this result and flatness, we have an injective map

L⊗L∩K′n K
′
n → L⊗L∩K′n K

′′
n = L⊗L∩K′′n K

′′
n.

By (6.4), the right-hand side injects into a field, and hence the left-hand side L⊗L∩K′nK
′
n is an integral

domain. �

Corollary 6.5. For n sufficiently large, the degree of K ′n over K ′n ∩ L is independent of n.

Proof. Indeed, the previous lemma shows that if n is sufficiently large that LK ′n = L′, then this degree
is always the degree of L′/L. �
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Corollary 6.6. For any n, let r(n) be such that K ′n ∩ L = Kr(n); this is possible by Lemma 6.1. For
n sufficiently large, there exists a constant a independent of n such that

[K ′n : K ′1] = a[Kr(n) : K1].

Proof. A calculation shows that we may take a = [K ′n : Kr(n)]/[K
′
1 : K1] and we have already seen

that the numerator of this is independent of n for n sufficiently large. �

The formula stated in the previous proof, together with the descriptions of K1 and K ′1 as the
maximal tamely ramified subextensions, shows the following.

Corollary 6.7. The constant a of Corollary 6.6 is equal to the wild ramification degree of L′/L.

Corollary 6.8. Let a denote the same constant as in Corollary 6.6. Then for all n ≥ 1

[K ′n : K ′1] ≤ a[Kr(n) : K1].

Proof. The assumption that n be sufficiently large was used only only to ensure the surjectivity of
(6.3); the proof given in Lemma 6.2 shows that this map is always injective. This shows that

[K ′n : Kr(n)] ≤ [L′ : L] = a[K ′1 : K1]

for all n. Using this, we have

[K ′n : K ′1] =
[K ′n : Kr(n)][Kr(n) : K1]

[K ′1 : K1]
≤ a[Kr(n) : K1],

as required. �

Theorem 6.9. If L′/L has wild ramification degree a power of q, say qb, then the map

A+
L/K → A+

L′/K

given by
(xqi)i 7→ (x′qj )j , x′qj+b := xqj

lifts the norm field map E+
L/K → E+

L′/K defined in [21, 3.1.1].

Proof. By Corollary 6.7, we may write a = qb, where a is the constant of Corollary 6.8 and the
surrounding results. We first claim that this map does have image in A+

L′/K . In other words, we are

given an element
(xqj ) ∈ lim←−

Fr

Wπ(O
L̂

)

such that for all j, if qj | [Km : K1] then xqj ∈ OKm , and we want to show that if qj+b | [K ′n : K ′1],

then xqj ∈ OK′n . By Corollary 6.8, the condition qj+b | [K ′n : K ′1] implies qj | [Kr(n) : K1]. Hence
xqj ∈ OKr(n) = OK′n ∩ L ⊆ OK′n , as required.

We now show that the given shift map does lift the functorial map on norm fields. By Corollary 4.12,
we may view the non-zero elements of E+

L/K as norm compatible families of elements in OKn for n

large enough that the statement of Corollary 6.6 holds, and similarly for L′/K. The description in
[21, 3.1.1], together with Lemma 6.2, shows that the norm field map is given by

(zKn) 7→ (z′K′n), z′K′n := zKr(n) .

To complete the proof, we must relate this norm-compatible description of the norm field to the
q-power compatible description of the norm field, as in our definition of E+

L/K . If we begin with an
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element (zKn) of the norm field, viewed as a norm-compatible family, we may find a corresponding
q-power compatible family using the map in [21, Proposition 4.2.1]. In particular, the qs-component
in the q-power compatible system is equal to

lim
n→∞

z
q−s[Kr(n):K1]

Kr(n)
= lim

n→∞
z
q−s−b[K′n:K

′
1]

Kr(n)
= lim

n→∞
(z′K′n)q

−s−b[K′n:K
′
1].

This is equal to the qs+b component of the image of (zK′n). This shows that the norm field map, in
terms of q-power compatible systems, is given again by the “b-shift” map. This is clearly compatible
with our “b-shift” map on A+

L/K → A+
L′/K , which completes the proof. �

7. Lifting a uniformizer to A+
L/K for ϕ-iterate extensions

Throughout this section, we fix a ϕ-iterate extension L/K in the sense of Definition 1.3. This
definition includes the (likely redundant) hypothesis that L/K is strictly APF, so there is a positive
constant c such that

(7.1) c ≤
ψL/K(u)

[GK : GuKGL]

for all u. The goal of this section is to prove Theorem 1.4. This theorem says loosely that, in the
case of a ϕ-iterate extension, the map β : A+

L/K → E+
L/K is nearly surjective. The ring E+

L/K is

noncanonically isomorphic to k[[x]], and our strategy is to construct a lift of some qd-th power of the
uniformizer x. From our assumption that L/K is a ϕ-iterate extension, we know explicit uniformizers
πi for a tower of intermediate fields K(πi). This enables us to construct an explicit uniformizer for
E+
L/K . The difficulty then is to relate these elements πi to the elementary extensions Km which appear

in the definition of A+
L/K .

Lemma 7.2. Let L/K denote a ϕ-iterate extension. There exist positive constants A,B such that for
any i ≥ 1, and any non-trivial embedding σ of K(πi) into L fixing K(πi−1), we have

Aqi ≤ ordπi(σ(πi)− πi) ≤ Bqi.

Proof. We first find an A such that

Aqi ≤ ordπi(σ(πi)− πi).

We know that ϕ(πi) = ϕ(σ(πi)), which shows that

ordπi ((σ(πi))
q − πqi ) ≥ ordπi π,

where π is as in the definition of a ϕ-iterate extension. On the other hand,

(σ(πi)− πi)q ≡ σ(πi)
q − πqi mod p.

Thus

ordπi(σ(πi)− πi) ≥
ordπi π

q
.

This shows that we may take A =
ordπ0 π

q .

We now find B such that for all i,

ordπi(σ(πi)− πi) ≤ Bqi.
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Write ϕ(x) =
∑
ajx

j . Let j0 be the smallest index at which the minimum B1 := minj ordπ0(jaj) is
attained. (Note that B1 > 0, because aj is a unit only for j = q.) We then claim that for i >> 0, we
have

ordπi ϕ
′(πi) = ordπi(j0aj0π

j0−1
i ) = j0 − 1 +B1q

i.

It suffices to show that for all j 6= j0 and i >> 0, we have

j − 1 + ordπi(jaj) > j0 − 1 +B1q
i.

If j > j0, then this follows immediately from the definition of B1. This leaves only the finitely
remaining values j < j0. We must show that for i sufficiently large, we have

(ordπ0(jaj)−B1) q
i > j0 − j,

and this is clear. After choosing B to account for the finitely many values of i which are not sufficiently
large, we find that for every i ≥ 1, we have

ordπi ϕ
′(πi) ≤ Bqi.

We now show how this implies the result. By Weierstrass preparation, we can write

ϕ(x)− πi−1 = w(x)h(x),

where h(x) is a monic polynomial of degree q and where w(x) is a unit in OK(πi−1)[[x]]. Taking the
derivative of both sides and evaluating at πi yields

ϕ′(πi) = w′(πi)h(πi) + w(πi)h
′(πi) = w(πi)

∏
σ 6=id

(πi − σ(πi)).

(Here the product is over the q − 1 embeddings of K(πi) into L which fix K(πi−1).) Hence we have

ordπi(πi − σ(πi)) ≤ ordπi(ϕ
′(πi)) ≤ Bqi,

as required. �

Lemma 7.3. Let τ denote a non-trivial embedding of K(πi) into L, fixing K. Then

ordπi(τ(πi)− πi) ≤ Bqi,
where B is the same as in Lemma 7.2.

Proof. We already know the result if τ fixes K(πi−1), so choose a τ which doesn’t fix K(πi−1). Assume
towards contradiction that

ordπi(τ(πi)− πi) > Bqi.

Considering the power series ϕ which relates πi and πi−1, we then have

ordπi(τ(πi−1)− πi−1) ≥ ordπi(τ(πi)− πi) > Bqi,

and so
ordπi−1(τ(πi−1)− πi−1) > Bqi−1.

Using descent on i, we reach a contradiction. �

Lemma 7.4. Let K(πi) denote the Galois closure of K(πi) over K. Let $i denote a uniformizer of

K(πi). There exists a constant B, independent of i, such that if τ ∈ Gal(K(πi)/K) is nontrivial and
acts trivially on the maximal unramified subextension. Then

ord$i(τ($i)−$i) ≤ Bqi.
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Proof. We have

ord$i(τ($i)−$i) = ord$i(πi) · ordπi(τ($i)−$i)

≤ ord$i(πi) · ordπi(τ(πi)− πi)

(to obtain this bound, write πi as a polynomial in $i with coefficients in the maximal unramified
subextension)

≤ ord$i(πi) ·Bqi,

where the last inequality follows from Lemma 7.3. Because the degree of K(πi)/K(πi) is bounded by
(q − 1)! (independent of i), taking B = (q − 1)!B proves the inequality. �

Lemma 7.5. For any i and any x ≤ Aqi, we have

ψK(πi)/K(πi−1)(x) = x.

In particular, for any i and any x ≤ Aqi+1

ψL/K(πi)(x) = x.

Proof. For the first assertion, it suffices to show that φK(πi)/K(πi−1)(x) = x for x ≤ Aqi. By Lemma 7.2,

every embedding σ of K(πi) into L which fixes K(πi−1) satisfies

ordπi(σ(πi)− πi) ≥ Aqi.
Thus using the definition of [21, §1.1.1], we see that φK(πi)/K(πi−1)(x) = x for x ≤ Aqi.

For the second assertion, we use the first assertion and the fact that for any j ≥ 1

ψL/K(πi) = ψL/K(πi+j) ◦ ψK(πi+j)/K(πi+j−1) ◦ · · · ◦ ψK(πi+1)/K(πi).

�

Lemma 7.6. There exists an increasing and unbounded sequence of real numbers (independent of i, j)
A0, A1, A2, . . . such that for all i, j we have

ψ′K(πi+j)/K(πi)
(x) ≤


1 for x ≤ A0q

i+1

q for A0q
i+1 ≤ x ≤ A1q

i+1

· · ·
qj for Aj−1q

i+1 ≤ x <∞.

Proof. Note first that for any finite extension of fields E/F , we have that ψ′E/F (x) ≤ [E : F ]. This

fact will be used without further comment below.
Let A be defined as above. We claim that we may take Aj−1 = jA− (j−1)A

q . (Because Aj−1 ≥ j
2A,

these numbers do approach infinity.) We prove this using induction on j. The claim for j = 1 follows
from Lemma 7.5, together with the fact that [K(πi+1) : K(πi)] = q. Now assume the claim for some
fixed j − 1. Our strategy is to use the fact that

ψ′K(πi+j)/K(πi)
(x) = ψ′K(πi+j)/K(πi+j−1)

(
ψK(πi+j−1)/K(πi)(x)

)
· ψ′K(πi+j−1)/K(πi)

(x),

together with Lemma 7.5 and the inductive hypothesis. Because

ψ′K(πi+j)/K(πi+j−1)
(y) ≤ 1
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for y ≤ Aqi+j and
ψ′K(πi+j)/K(πi+j−1)

(y) ≤ q
for all y, we are finished by induction if we can show that

ψK(πi+j−1)/K(πi)(Aj−1q
i+1) ≤ Aqi+j .

Using our slope bounds and ψ(0) = 0, we know that for all x ≥ Aj−2qi+1, we have

ψK(πi+j−1)/K(πi)(x) ≤ A0q
i+1 + q(A1 −A0)q

i+1 + · · ·+ qj−1(x−Aj−2qi+1).

Evaluating at x = Aj−1q
i+1 and using our formula for A0, . . . , Aj−1 in terms of A, we complete the

proof. �

Corollary 7.7. Let B denote some fixed constant. There exists a constant D, depending on B but
independent of i, such that

Dqi ≥ ψL/K(πi)(Bq
i).

Proof. In the notation of Lemma 7.6, choose a j such that Bqi ≤ Ajq
i+1; note that this does not

depend on i. Then as a coarse bound, we have ψL/K(πi)(Bq
i) ≤ qjBqi. Hence for D we may take qjB.

Note that this is independent of i. �

Lemma 7.8. Let K ⊆ K1 ⊆ K2 be two Galois extensions of K, with Galois groups G1, G2. Then

Fix(Gu2) ∩K1 = Fix(Gu1).

Proof. Let H1 E G2 denote the subgroup corresponding to the field K1; we thus have G2/H1
∼= G1.

By properties of ramification groups in the upper numbering, we have

(Gu2H1/H1) = (G2/H1)
u ∼= Gu1 .

The claim follows immediately. �

Proposition 7.9. There exists a constant D, independent of i, such that K(πi) is contained in the

fixed field corresponding to G
φL/K(Dqi)

K GL.

Proof. Write K(πi+j) for the Galois closure of K(πi+j) over K. It suffices to show that there exists a
constant D, independent of i and j, such that

K(πi) ⊆ Fix

(
Gal(K(πi+j)/K)ψ

K(πi+j)/K
◦φL/K(Dqi)

)
.

By Lemma 7.8, it suffices to consider the case j = 0. We want to show that if σ(πi) 6= πi, then

σ 6∈ Gal(K(πi)/K)ψ
K(πi)/K

◦φL/K(Dqi) = Gal(K(πi)/K)ψ
K(πi)/K(πi)

◦φL/K(πi)
(Dqi)

Because ψ(x) ≥ x, it suffices to prove that there exists a D, independent of i, such that

σ 6∈ Gal(K(πi)/K)φL/K(πi)
(Dqi).

By Lemma 7.4, we know
σ 6∈ Gal(K(πi)/K)Bqi .

Because ψL/K(πi) is an increasing function, it suffices to show that there exists a constant D, indepen-
dent of i, such that

Dqi ≥ ψL/K(πi)(Bq
i).

We are finished by Corollary 7.7. �
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Lemma 7.10. There exists a constant N , independent of i, such that

[GK : G
φL/K(Dqi)

K GL] ≤ Nqi

for all i.

Proof. By (7.1), using the fact that ψL/K is the inverse to φL/K , we have

[GK : G
φL/K(Dqi)

K GL] ≤ Dqi

c
.

Thus we may take N = D/c. �

Let D be as in Proposition 7.9. Let vi := φL/K(Dqi) and let Fi denote the fixed field corresponding
to GviKGL.

Lemma 7.11. There does not exist an infinite sequence 0 = i0 < i1 < i2 < · · · such that

[Fij+1 : Fij ] > qij+1−ij

for all j.

Proof. By Proposition 7.9, we know that K(πi) ⊆ Fi. We also know that [K(πi) : K] = qi for all i.
By these observations and Lemma 7.10, we have that

qi | [Fi : K] and [Fi : K] ≤ Nqi

for all i.
Now assume towards contradiction that there does exist a sequence as in the statement of the lemma.

We have [Fi1 : F0] > qi1 , and also qi1 | [Fi1 : F0], so [Fi1 : F0] ≥ 2qi1 . We also have [Fi2 : Fi1 ] > qi2−i1 ,
so [Fi2 : F0] > 2qi2 , and also qi2 | [Fi2 : F0], so [Fi2 : F0] ≥ 3qi2 . Continuing in this way, we eventually
pass Nqi, and thus reach a contradiction. �

Corollary 7.12. There exists an i0 >> 0 such that [Fi0+j : Fi0 ] ≤ qj for all j. In particular, there
exists a field Ki in the tower of elementary extensions such that

qm | [Ki+j : Ki]

implies πi0+m ∈ Ki+j.

Proof. The first assertion follows immediately from Lemma 7.11. We now prove the second assertion.
Notice that each of the fields Fj , being the fixed field of G

vj
KGL, occurs in the tower of elementary

extensions, since the tower of elementary extensions contains the fixed field of GvKGL for every v. Take
Ki = Fi0 . We know that πi0+j ∈ Fi0+j by Proposition 7.9, and we know that Fi0+j occurs somewhere
in the tower of elementary extensions. Because [Fi0+m : Ki] = [Fi0+m : Fi0 ] ≤ qm, we deduce that if
qm | [Ki+j : Ki], then πi0+m ∈ Fi0+m ⊆ Ki+j , as required. �

The preceding results provide a connection between the elementary fields Kn and the fields K(πi).
The fields Kn are important because of their appearance in the definition of A+

L/K (and because they

are canonically associated to the extension L/K). The fields K(πi) are important because in each such
field we know an explicit uniformizer πi, and from these uniformizers we can produce a uniformizer
for E+

L/K .
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Lemma 7.13. Let b be as in (4.5) and let a = (π, b). Let q = pa. A uniformizer for E+
L/K is given

by the p-power compatible system in

lim←−
x 7→xp

OL/a

which has ai component equal to πi mod a.

Proof. Using that the system of fields K(πi) is cofinal among the system of all intermediate fields
between L and K, we may express the valuation ring inside of XK(L) as lim←−Nm

OK(πi). Using Weier-

strass preparation, write ϕ(x) = w(x)h(x), where w(x) ∈ OF [[x]] is a unit and where h(x) is a monic
degree q polynomial with no constant term. Because ϕ(x) ≡ xq mod π, we must have w(x) ≡ 1 mod π.
Because ϕ(πi) = πi−1, we must have that h(πi) ≡ πi−1 mod π.

Let fi(x) ≡ xq mod πi−1 ∈ OK(πi−1)[x] denote the minimal polynomial for πi over K(πi−1). We
compare this polynomial to h(x)− πi−1. Write

fi(x)− (h(x)− πi−1) = a1x
q−1 + · · ·+ aq ∈ OK(πi−1)[x].

Evaluating this polynomial at πi yields a sum of q elements of OK(πi) which have distinct πi-valuations.
On the other hand, evaluating this polynomial at πi yields an element divisible by π. This shows that
each of the q terms, and in particular the constant term, must be divisible by π. We deduce that the
constant term of fi(x) differs from −πi−1 by a multiple of π. In particular, NmK(πi)/K(πi−1)(πi) ≡
πi−1 mod π. (This holds for both p = 2 and for p odd.) Thus, for the ideal a as in the statement of
the lemma, we have that the elements (πi mod a) are norm-compatible. As in the proof of Lemma 4.9,
this sequence lifts to a norm-compatible family of uniformizers, which in turn is a uniformizer for
E+
L/K . �

Recall that the map β was defined in Definition 3.7 (see also Proposition 5.7). The following result
shows that the image of β contains the uniformizer of Lemma 7.13 raised to some power of q.

Proposition 7.14. For i > 0, set π−i := ϕi(π0). There exists some i1 ≥ 0 and some x ∈ A+
L/K such

that β(x) = (πn−i1 mod b)n.

Proof. We first show that there exists a Frobenius-compatible family of elements xn ∈ Wπ(OK(πn))
such that their first components satisfy

xn0 = πn.

Consider the unique continuous OF -algebra homomorphism ϕ : OF [[x]] → OF [[x]] which sends x to
ϕ(x). By Proposition 2.13, there is a unique ring homomorphism

λϕ : OF [[x]]→Wπ(OF [[x]])

which is a section to the projection Wπ(OF [[x]]) → OF [[x]] and which satisfies Fr ◦λϕ = λϕ ◦ ϕ. By
Corollary 2.14, the element λϕ(x) has ghost components (x, ϕ(x), ϕ2(x), . . .). Now for any n, con-
sider the OF -algebra homomorphism OF [[x]] → OK(πn) determined by x 7→ πn. This determines a
map Wπ(OF [[x]]) → Wπ(OK(πn)). Because the ghost components are defined by polynomials with
coefficients in OF , we see that the composite

OF [[x]]→Wπ(OF [[x]])→Wπ(OK(πn))

sends x to a Witt vector with ghost components (πn, ϕ(πn), ϕ2(πn), . . .) = (πn, πn−1, . . . , π0, ϕ(π0), . . .).
We define xn to be the image of x under this composite. In particular, xn0 = πn, and Fr(xn) = xn−1.
This completes our construction of the elements xn ∈Wπ(OK(πn)).
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To construct the desired element in A+
L/K , we need to work with the elementary subfields Km,

rather than the fields K(πn). Let Ki be is as in Corollary 7.12, and let i1 be such that [Ki : K1] | qi1 .
Using notation of the previous paragraph and the statement of the proposition, we claim that (xn−i1)n,

which we know is an element of Ã+, is in fact an element of A+
L/K . Recalling the definition of A+

L/K ,

we need to show that if qn | [Km : K1], then πn−i1 ∈ Km. We deduce this as follows:

qn | [Km : K1]

qn | [Km : Ki][Ki : K1]

qn−i1 | [Km : Ki]

and by Corollary 7.12, this implies

πi0+n−i1 ∈ Km,

and in particular πn−i1 ∈ OKm . This completes the proof, at least for n − i1 ≥ 0, but if n − i1 < 0,
then πn−i1 = ϕi1−n(π0) ∈ OK ⊆ OKm for all m. �

Proposition 7.15. As subrings of Ẽ+, we have A+
L/K/πA+

L/K ⊆ E+
L/K , and moreover EL/K is a

finite purely inseparable extension of Frac
(
A+
L/K/πA+

L/K

)
.

Proof. The inclusion A+
L/K/πA+

L/K ⊆ E+
L/K follows from Proposition 5.7. We know that E+

L/K is

abstractly isomorphic to k[[u]]. We also know that the image of β contains the coefficient ring k by

Proposition 5.9. By Proposition 7.14, we know that there exists v ∈ A+
L/K such that β(v) = uq

i1 .

Because A+
L/K ⊆ Ã+ is weakly closed (Proposition 5.6), we deduce that the image of β contains

k[[uq
i1 ]], which completes the proof. �

Proposition 7.15 immediately implies our second main theorem from the introduction, Theorem 1.4.

Remark 7.16. Continue to assume L/K is a ϕ-iterate extension. Here we provide a significantly simpler

description of a subring of Wπ(Ẽ+
L/K) ∼= lim←−Wπ(O

L̂
) which lifts E+

L/K . Consider the continuous map

ιπ : Wπ(k)[[u]]→ lim←−Wπ(O
L̂

)

which sends u to (xn)n, where xn is the (unique) Witt vector in Wπ(O
L̂

) with ghost components
(πn, πn−1, . . . , π0, ϕ(π0), . . .). (Such Witt vectors exist by the Dwork Lemma, Proposition 2.5.) We
write Aπ for the image of ιπ. It is a π-Cohen ring for E+

L/K , and it is related to our ring A+
L/K by

ϕi1(Aπ) ⊆ A+
L/K , where i1 is as in Proposition 7.14. The downside to Aπ is that it seems to depend

heavily on the choice of the elements πi, and hence it is not obvious from this point-of-view that A+
L/K

can be canonically associated to the ϕ-iterate extension L/K. In particular, if L/K is Galois, it is not
clear that Aπ is stable under the action of GK on lim←−Wπ(O

L̂
). Also it is not clear how to define an

analogue of Aπ for an arbitrary strictly APF extension L/K (i.e., for extensions other than ϕ-iterate
extensions).

Remark 7.17. Our Proposition 7.15, in conjunction with Proposition 5.14, implies that if L/K is both
a ϕ-iterate extension and Galois, then its Galois group is necessarily abelian. It would be interesting
to prove this fact directly.



28 BRYDEN CAIS AND CHRISTOPHER DAVIS

References

[1] Laurent Berger. Limites de représentations cristallines. Compos. Math., 140(6):1473–1498, 2004.
[2] Laurent Berger. Lifting the field of norms. ArXiv e-prints, July 2013.
[3] Laurent Berger and Christophe Breuil. Sur quelques représentations potentiellement cristallines de GL2(Qp).
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