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Abstract. Let p be an odd prime and R a p-torsion-free commutative Z(p)-algebra. We compute the

periodic cyclic homology over R of the universal differential graded algebra R//p which is obtained from R

by universally killing p. We furthermore compute the cyclic and negative cyclic homologies of R//p over R

in infinitely many degrees.

1. Introduction

For a fixed prime p, we can consider the ring Z[u]/(u(u− p)). It is an interesting problem to compute the
algebraic K-theory K(Z[u]/(u(u−p))) of this ring. It follows from a result of Land and Tamme [8, Theorem
1.1 and Example 4.31] that there is a homotopy pullback square of algebraic K-theory spectra

K(Z[u]/(u(u− p)))

��

// K(Z)

��
K(Z) // K(Z//p),

where Z//p is the universal differential graded algebra with one generator x in degree 1 satisfying dx = p.
The differential graded algebra Z//p has a different behaviour depending on whether the prime p is even

or odd. For p = 2, it follows from unpublished results of Krause and Nikolaus and [8, Example 4.32] that
the algebra Z//p is formal over the sphere spectrum. For p odd, the results of the second author [6] imply
that Z//p is not formal as an E1-ring spectrum and hence also not as a differential graded algebra.

More generally, one can consider any p-torsion-free commutative Z(p)-algebra R and the differential graded
algebra R//p. The underlying graded algebra of R//p is R[x] such that x is in degree 1 and dx = p. It follows
from the Dundas-McCarthy theorem [5, 10] that the commutative diagram

K(R//p) //

��

TC(R//p)

��
K(R/p) // TC(R/p)

is a homotopy pullback after p-adic completion, where TC denotes the topological cyclic homology and the
horizontal maps are given by the cyclotomic trace map (see [3]). If one assumes the knowledge of K(R/p)
and TC(R/p), then using the latter square in order to compute K(R//p), it suffices to compute TC(R//p).
One can try to calculate TC(R//p) using the approach of Nikolaus-Scholze [11]. Recall that the topological
Hochschild homology spectrum THH(R//p) has a circle action, and one denotes the homotopy fixed points
with respect to this action by TC−(R//p) and the Tate construction by TP(R//p). Using [11, Proposition
II.1.9 and Lemma II.4.2.1], we know that after p-completion there exists a fiber sequence of spectra

TC(R//p) // TC−(R//p)
can−ϕ// TP(R//p),

where can is the canonical map and ϕ the Frobenius. Thus in order to compute the topological cyclic
homology TC(R//p), one should compute TC−(R//p) and TP(R//p) as well as the maps can and ϕ.

The ultimate goal of this project is to compute the p-completion of the spectrum K(R//p) for R a p-torsion-
free perfectoid ring in the sense of [1]. In this case it follows by [4] and the Dundas-McCarthy theorem [5, 10],
that the p-completion of K(R//p) is the connective cover of the p-completion of TC(R//p). Hence we need to
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compute TC−(R//p) and TP(R//p) and eventually also TC(R//p) for R a p-torsion-free perfectoid ring. We
do not recall here perfectoid rings since the definition of these will not be relevant in this paper. However,
we do wish to recall that by [2], for any perfectoid ring R, there is a circle equivariant fiber sequence after
p-completion:

THH(R//p)[2] −→ THH(R//p)→ HHR(R//p),

where HHR(R//p) denotes the Hochschild homology of R//p over R. By applying either the homotopy fixed
points or Tate construction, one gets fiber sequences after p-completion:

TC−(R//p)[2]→ TC−(R//p)→ HCR,−(R//p), TP(R//p)[2]→ TP(R//p)→ HPR(R//p),

where HCR,−(R//p) and HPR(R//p) denotes the negative and periodic cyclic homology over R, respectively
[9, Chapter 5].

The goal of this paper is to compute HCR,−(R//p) and HPR(R//p) for any p-torsion-free commutative
Z(p)-algebra R which is not necessarily perfectoid. Having the above fiber sequences in mind, the hope is

that we can solve extension problems and compute TC−(R//p) and TP(R//p).
For simplicity we denote by HCi(R//p), HC−i (R//p) and HPi(R//p), the cyclic, negative cyclic and periodic

cyclic homology modules of R//p over R, respectively. We can now formulate the main results of this paper:

Theorem 1.1. Let p be an odd prime and R a p-torsion-free commutative Z(p)-algebra. Then HPi(R//p) = 0
for i odd and for any even i, the R-module HPi(R//p) is isomorphic to

R∧ ×R/1×R/3×R/5× · · · ,
where R∧ denotes the p-adic completion of R.

Note that all the factors R/n with n coprime to p vanish, and more generally, for any odd positive integer
n, we have R/n ∼= R/pνp(n), where νp denotes the p-adic valuation.

To formulate the next result on the cyclic homology we need to define the following numbers: Let A1 := p,

and for each odd integer j ≥ 3, we recursively define Aj ∈ Q as Aj :=
p2Aj−2

j . Corollary 3.6 below shows

that these numbers belong to Z(p) and hence the p-adic valuations ai = νp(Ai) are non-negative integers.

Theorem 1.2. Let p be an odd prime and R a p-torsion-free commutative Z(p)-algebra. Then HCi(R//p) = 0
for i odd and HC0(R//p) = R/p. There furthermore exists an infinite set Z of positive even integers, such
that for any i ∈ Z, the R-module HCi(R//p) is isomorphic to

R/pai−1+2 ⊕R/1⊕R/3⊕ · · · ⊕R/(i− 1).

The set Z contains all even numbers of the form pa±1
2 + 1 for a > 0.

Finally, we have the following result calculating the negative cyclic homology:

Theorem 1.3. Let p be an odd prime and R a p-torsion-free commutative Z(p)-algebra. Then HC−i (R//p) = 0

for i odd and for any non-positive even i, the R-module HC−i (R//p) is isomorphic to

R∧ ×R/1×R/3×R/5× · · · .
There furthermore exists an infinite set Z ⊂ Z, such that for any i ∈ Z, the R-module HC−i (R//p) is
isomorphic to

R∧ ×R/(i− 1)×R/(i+ 1)×R/(i+ 3)× · · · .
The set Z contains all even numbers of the form pa±1

2 + 1 for a > 0.

Additionally, we also compute the values of HCi−2(R//p) for i ∈ Z and i > 2. This is a consequence of
the proof of the latter theorem from which it follows that for any i ∈ Z and i > 2, we have an isomorphism

HCi−2(R//p) ∼= R/pai−1 ⊕R/1⊕R/3⊕ · · · ⊕R/(i− 3).

The values of HCi(R//p) and HC−i (R//p) for a general i remain still open. However, in the final section of

this paper we estimate the sizes of the sets Z and Z and conclude that for large primes they get asymptotically
close to the set of all positive even integers.
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2. Setup

Fix an odd prime p and let R be a commutative ring without p-torsion. We do not yet require R to be a
Z(p)-algebra.

Definition 2.1. We construct a differential graded algebra R//p over R as follows: It has as its underlying
graded algebra R[x] with x in degree 1, and the differential is given as δx = p.

Remark 2.2. We collect some immediate observations for this algebra:

• Note that while this is strictly commutative, it is not graded commutative.
• The differential in higher degrees is

δxn =

{
pxn−1 n odd

0 n even.

Because R has no p-torsion, the homology is then H∗(R//p) = R/p[u], with u in degree 2.

To justify the notation, we give a more conceptual description of R//p. Let TR : ChR → DGAR denote
the tensor algebra functor that assigns to each chain complex M the free differential graded R-algebra
TR(M) =

⊕
m≥0M

⊗Rm.

Proposition 2.3. There is a pushout square in DGAR given by

TR(R)
p //

��

R

��
TR(CR) // R//p,

where CR is the cone of R in ChR, the left map is induced by the inclusion R ↪→ CR, and the top map is
adjoint to the multiplication p : R→ R.

Proof. A morphism ϕ : R//p → A of dg-R-algebras is precisely a ring homomorphism ϕ̃ : R → A0 and
the choice of an a ∈ A1 such that ϕ̃(p) = δa. By identifying TR(CR) ∼= R〈x, δx〉 with |x| = 1, and
TR(R) ∼= R〈δx〉, this data corresponds precisely to a commutative diagram

R〈δx〉
p //

��

R

��
R〈x, δx〉 // A,

where x is mapped to a.
�

Remark 2.4. This exhibits R//p as the E1-quotient of R with respect to p, i.e. R//p is the initial E1-R-algebra
whose homology has p = 0. More precisely, there is a model structure on DGAR with quasi-isomorphisms as
weak equivalences, under which the left map is a cofibration [7, 12]. Hence the square is a homotopy pushout
of dg-R-algebras. The homotopy theory of dg-R-algebras is equivalent to the homotopy theory of E1-algebras
in the derived ∞-category D(R) (see [13]). The homotopy pushout then corresponds to a pushout in the
∞-category of E1-algebras over R.

The aim of this paper is to understand cyclic, negative cyclic, and periodic homology of R//p over R.
As a first approach, note that there is a Connes long exact sequences connecting cyclic homology with

Hochschild homology: This is obtained by considering the subcomplex of the cyclic bicomplex consisting
only of the 0th and 1st column which is quasi-isomorphic to the Hochschild complex [9, 2.2.1]. The quotient
complex then computes cyclic homology shifted by degree 2. The resulting long exact sequence for any
algebra A is therefore

· · · −→ HHi(A) −→ HCi(A) −→ HCi−2(A) −→ · · ·
3



In our setting, HC∗ vanishes in odd degrees, so we obtain for i > 0 even short exact sequences

0 −→ R/p2 −→ HCi(R//p) −→ HCi−2(R//p) −→ 0,

and we recover HC0(R//p) ∼= R/p.
Similarly, one gets a long exact sequence for negative cyclic homology:

· · · −→ HC−i+2(A) −→ HC−i (A) −→ HHi(A) −→ · · · .
Below in our setting, we obtain for even i > 0 short exact sequences

0 −→ HC−i+2(R//p) −→ HC−i (R//p) −→ R/p2 −→ 0.

and for i = 0
0 −→ HC−2 (R//p) −→ HC−0 (R//p) −→ R/p −→ 0.

This looks innocent enough, but these extension problems will occupy the rest of this paper.
To get started, we will need a better understanding of the Hochschild bicomplex:

Proposition 2.5. The Hochschild bicomplex of R//p is quasi-isomorphic to

R

0 ��

R
poo

2 ��

R
0oo

0 ��

R
poo

2 ��

· · ·0oo

R R
poo R

0oo R
poo R

0oo · · ·
poo

Proof. Note that the underlying graded algebra of R//p is a tensor algebra TR(V ) over the free graded
R-module V = 〈x〉 with x in degree 1. For dg-R-algebras A with underlying graded tensor algebra TR(V ),
the Hochschild bicomplex has a simplified description, [9, 5.3.8]: It is quasi-isomorphic to

(A⊗ V )0

b
��

(A⊗ V )1
δ̃oo

b
��

(A⊗ V )2
δ̃oo

b
��

· · ·δ̃oo

A0 A1
δoo A2

δoo · · · ,δoo

where all tensor products are over R, and the maps are as follows: δ is the differential of A and b(a⊗v) = [a, v].

(Note that this is a graded commutator!) For δ̃, consider first the map

ϕ : A⊗A −→ A⊗ V

a⊗ (v1 ⊗ · · · ⊗ vn) 7−→
n∑
i=1

± (vi+1 ⊗ · · · ⊗ vn ⊗ a⊗ v1 ⊗ · · · ⊗ vi−1)⊗ vi

a⊗ 1 7−→ 0,

with the sign determined by the Koszul convention. Then δ̃ is given by

δ̃(a⊗ v) = δa⊗ v + (−1)|a|ϕ(a⊗ δv).

In our case, V = 〈x〉 with |x| = 1. Hence An = 〈xn〉, and for n > 0, (A⊗ V )n = 〈xn−1 ⊗ x〉. One can then
easily identify the maps: We already know δ. For b, we have

b(xn−1 ⊗ x) = [xn−1, x] = xn − (−1)n−1xn =

{
2xn n even

0 n odd,

and for δ̃,

δ̃(xn−1 ⊗ x) = δxn−1 ⊗ x+ (−1)n−1ϕ(xn−1 ⊗ p) = δxn−1 ⊗ x =

{
pxn−2 ⊗ x n even

0 n odd.

�
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Corollary 2.6. The total complex of the bicomplex of Proposition 2.5 that computes Hochschild homology
is given by

R R
poo R20oo R2

(
p 2
0 p

)
oo R20oo · · · ,

(
p 2
0 p

)
oo

and if R has no 2-torsion, the Hochschild homology is

HHi(R//p) =


R/p i = 0

R/p2 i > 0 even

0 else.

Proof. The total complex is immediate. For the Hochschild homology, note that if there is no 2-torsion and
p is odd, the Smith normal form of

( p 2
0 p

)
is calculated as(

p 2
0 p

)
⇒
(

1 2
−bp2cp p

)
⇒
(

1 0
0 2bp2cp+ p

)
=

(
1 0
0 p2

)
,

Where bp2c = p−1
2 as p is odd.

After dropping the summands that are matched by identities, the total complex becomes

R R
poo R

0oo R
p2oo R

0oo · · · ,
p2oo

so without p-torsion, the result follows. (If p = 2, then the differential instead becomes
( p 0
0 p

)
, and R/p2 is

replaced by R/p⊕R/p.) �

For the cyclic complex, there is again a simplified description based on the simplified Hochschild complex
[9, 5.3.9]: For a dg-R-algebra A with underlying graded tensor algebra TR(V ), the Connes operator can be
identified as

B̃ =

(
0 0
γ 0

)
: An ⊕ (A⊗ V )n−1 −→ An+1 ⊕ (A⊗ V )n

with γ(a) = ϕ(1⊗ a), where ϕ : A⊗A→ A⊗ V is the map from above.
Untangeling definitions for our setting, we obtain

γ : (R//p)n = 〈xn〉 −→ 〈xn−1 ⊗ x〉 = (R//p⊗ 〈x〉)n

xn 7−→
n∑
i=1

(−1)(n−i)ixn−1 ⊗ x =

{
nxn−1 ⊗ x n odd

0 n even.

This lets us describe the cyclic bicomplex for R//p:

Proposition 2.7. Let p be odd, R without p-torsion and 1
2 ∈ R. Then the cyclic bicomplex for the R-algebra

R//p is quasi-isomorphic to

...

p2

��

...

0
��

...

p2

��

...

0
��

...

p
��

R

0 ��

R
3oo

p2 ��

R
0oo

0 ��

R
1oo

p
��

R
0oo

R

p2 ��

R
0oo

0 ��

R
1oo

p
��

R
0oo

R

0 ��

R
1oo

p
��

R
0oo

R
p
��

R
0oo

R

where the bottom R is in bidegree (0, 0). Likewise, one obtains the periodic bicomplex, by continuing this to
the left, and the negative bicomplex, by dropping the positive-degree columns from the periodic complex.
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Proof. By plugging the previous calculations into Loday’s bicomplex, we obtain

...

π
��

...

0 ��

...

π
��

...

0
��

...

p
��

R2

0 ��

R2B3oo

π ��

R20oo

0 ��

R
B1oo

p
��

R
0oo

R2

π ��

R20oo

0 ��

R
B1oo

p
��

R
0oo

R2

0 ��

R
B1oo

p
��

R
0oo

R

p
��

R
0oo

R,

where π =
( p 2
0 p

)
and Bk = ( 0 0

k 0 ) for odd k > 1, and B1 = ( 0
1 ).

From this, we can eliminate an acyclic subcomplex: Consider one of the R2-entries in an odd total degree.
This has generators an = xn and bn = xn−2 ⊗ x. Fix now n odd, and define a new basis in degree n as

αn =
p

2
bn − an, βn =

1

2
bn.

In the even degree n− 1, we define

αn−1 = an−1 +
p

2
bn−1, βn−1 =

1

2
bn−1.

Then the vertical differential becomes

π(αn) =
p

2
π(bn)− π(an) =

p

2
(2an−1 + pbn−1)− pan−1 = p2βn−1,

π(βn) =
1

2
(2an−1 + pbn−1) = αn−1.

The horizontal differential is

Bn(αn) =
p

2
Bn(bn)−Bn(an) = −nbn−1 = −2nβn−1,

Bn(βn) = 0.

In even total degree, all differentials vanish. Therefore all odd-degree βn and even-degree αn−1 split off as
an acyclic subcomplex, and the remaining generators are mapped as described in the proposition, up to a
multiplication by the unit −2. �

This allows for a more explicit description of the cyclic homology, periodic homology, and negative cyclic
homology of R//p over R: Note first that for all three bicomplexes, the total differentials from even to odd
total degrees are 0. If R has no n-torsion for all positive n, the total differentials from odd to even degrees
are injective. Hence we only need to compute the cokernels of the latter differentials. Explicitly, we have
the following:

Proposition 2.8. Let p be odd, R without n-torsion for all positive n, and 1
2 ∈ R. Then HC0(R//p) = R/p,

HCi(R//p) = 0 for odd i, and for even positive i, HCi(R//p) is the cokernel of the map

R
i
2+1 → R

i
2+1

sending (x1, x2, . . . , x i
2+1) to (px1, x1 + p2x2, 3x2 + p2x3, . . . , (i− 1)x i

2
+ p2x i

2+1).

6



This can be identified with the colimit of the following diagram of R-modules:

0 Roo

p2 ��
R R

i−1oo

p2 ��
R R

i−3oo

R R
5oo

p2 ��
R R

3oo

p2 ��
R R

1oo

p
��
R

In the periodic situation, this diagram just continues to the left. However, there is a subtlety: Periodic
and negative cyclic homology are computed by taking the product totalization of the respective bicomplexes
[9, 5.1.2].

Proposition 2.9. Let p be odd, R without n-torsion for all positive n, and 1
2 ∈ R. Then HPi(R//p) = 0 for

odd i, and for even i, HPi(R//p) is the cokernel of the map∏
N
R→

∏
N
R

sending (x1, x2, . . . ) to (px1, x1 + p2x2, 3x2 + p2x3, 5x3 + p2x4, . . . ).
This can be identified with a completion of the colimit of the following diagram of R-modules (see [9,

5.1.9]):

R R
5oo

p2 ��
R R

3oo

p2 ��
R R

1oo

p
��
R

For negative cyclic homology, the periodic diagram is truncated at the other end:

Proposition 2.10. Let p be odd, R without n-torsion for all positive n, and 1
2 ∈ R. Then HC−i (R//p) =

HP0(R//p), for i ≤ 0, and HC−i (R//p) = 0 for odd i, and for even positive i, HC−i (R//p) is the cokernel of
the map ∏

N
R→

∏
N
R

sending (x1, x2, . . . ) to (p2x1, (i+ 1)x1 + p2x2, (i+ 3)x2 + p2x3, (i+ 5)x3 + p2x4, . . . ).
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This can be identified with a completion of the colimit of the following diagram of R-modules (see [9,
5.1.9]):

R R
i+5oo

p2 ��
R R

i+3oo

p2 ��
R R

i+1oo

p2 ��
R

The rest of this paper is entirely devoted to identifying these cokernels.
For readability, we will set up some notation for the staircase diagrams and homology groups:
Let N−1 = HC0(R//p) = R/p and for each odd integer i ≥ 1, and Ni = HCi+1(R//p). By 2.8, Ni is the

colimit of the following diagram of R-modules:

0 Roo

p2 ��
R R

ioo

p2 ��
R R

i−2oo

R R
5oo

p2 ��
R R

3oo

p2 ��
R R

1oo

p
��
R

So that we can refer to the individual copies of R in this diagram more easily, we will use the following
labels:

0 R′i+2
oo

p2

��
Ri R′i

ioo

p2

��
Ri−2 R′i−2

i−2oo

R5 R′5
5oo

p2
��
R3 R′3

3oo

p2
��
R1 R′1

1oo

p
��

R−1

(2.11)

All of the above terms R′1, R
′
3, . . . , R−1, R1, R3, . . . are equal to R.

We note the natural maps between the R-modules Ni and record some of their properties.
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Lemma 2.12. Let k ≥ i ≥ 1 be odd integers, and let Nk and Ni be the colimits defined above. There is a
natural surjective R-module homomorphism πk,i : Nk → Ni, and these are compatible in the sense that for
k′ ≥ k ≥ i, we have πk,i ◦ πk′,k = πk′,i. The kernel of πk,i is the R-submodule of Nk generated by the images
of the natural maps Rj → Nk for all j > i.

Proof. There is a clear map Nk → Ni given by mapping the Rj and R′j+2 factors to zero for all j > i,
and by mapping the remaining factors to themselves via the identity. Using the explicit description of an
(unfiltered) colimit given, for example, in [14, Tag 00D5], we have that Ni is a quotient of the direct sum
R−1 ⊕ R1 ⊕ · · · ⊕ Rk ⊕ · · · ⊕ Ri, and similarly for Nk. The constructed map Nk → Ni is induced by the
obvious projection between these direct sums. The rest of the claims follow easily. �

We let N∞ denote the inverse limit lim←−Ni. We let Ki denote the kernel of the projection N∞ → Ni. It is

immediate from 2.9 and 2.10 that N∞ = HP0(R//p) and Ki = HC−i+3(R//p) (see [9, 5.1.5 and 5.1.9]). Indeed,
this follows since the cyclic homology of R//p is even (Proposition 2.8) and hence by [9, 5.1.5], we have a
short exact sequence

0→ HC−l (R//p)→ HPl(R//p)→ HCl−2(R//p)→ 0

for any even integer l. Our goal is therefore to compute these terms Ni, N∞,Ki as explicitly as possible.
Our explicit description of Ni is quite complicated for general i. (We will see that for certain i, such as

i = pa±1
2 , there is a simple description.) Our strategy for calculating Ni explicitly is to first construct a

related R-module, that we call Mi, and that has a much more regular description in general than Ni.

3. Computation of a related colimit

From now on we will work with p-torsion-free commutative Z(p)-algebras. This will make our formulas
and results easier to formulate. There is no restriction of generality since for any p-torsion-free R, the map

R → R(p) induces an isomorphism HHR(R//p)
∼= // HHR(p)(R(p)//p) by Corollary 2.6. Proposition 2.7

then implies that corresponding relative negative, periodic and cyclic homologies are isomorphic. For the
rest of the paper R will denote a p-torsion-free commutative Z(p)-algebra.

For every odd integer i ≥ 1, we will prove that the R-module Mi := R⊕R/1⊕R/3⊕· · ·⊕R/i is a colimit
of the diagram

Ri R′i
ioo

p2

��
Ri−2 R′i−2

i−2oo

R5 R′5
5oo

p2
��
R3 R′3

3oo

p2
��
R1 R′1

1oo

p
��

R−1

(3.1)

Here, as in diagram (2.11), all these terms Ri and R′i are equal to R. We use the subscripts so we can
refer to specific terms more easily. Note that this is the same as the diagram (2.11) defining Ni, except that
the top row of the Ni diagram has been removed. In particular, we have a surjective map Mi � Ni for every
odd i.

For the proof that Mi is a colimit of diagram (3.1), we first recursively define two sequences aj and bj , and
prove some inequalities related to them. Some of these results will be needed immediately, in the proof that
Mi is a colimit of diagram (3.1), while other of these results will not be needed until later. These sequences
will also be used to describe the kernel of the surjection Mi → Ni.

9

http://stacks.math.columbia.edu/tag/08QQ


Definition 3.2. Define A1 := p and for each odd integer j ≥ 3, recursively define Aj ∈ Q as Aj :=
p2Aj−2

j .

Define B0 := 1 and for each even integer j ≥ 2, define Bj ∈ Q as Bj :=
p2Bj−2

j . Define aj := vp(Aj) and

bj := vp(Bj).

We will see below in Corollary 3.6 that the elements Aj and Bj defined above in fact lie in Z(p)

Note that the sequence bj is not an increasing sequence. We can bound the value of bj as follows.

Lemma 3.3. For every even integer j ≥ 0, the number bj is equal to j minus the p-adic valuation of (j/2)!.
In particular, for every even integer j ≥ 2, we have

j − j

2(p− 1)
< bj .

Proof. The statement about (j/2)! is clear from the recursive definition of the b sequence. From this and
Legendre’s formula, we have for all j ≥ 0 that

bj = j − νp((j/2)!) = j −
∞∑
k=1

⌊
j

2pk

⌋
.

So if j > 0, we have

bj > j −
∞∑
k=1

j

2pk
= j − j

2(p− 1)
.

This proves the inequality. �

The following coarse lower-bound on bj will be very useful.

Lemma 3.4. Assume pe ≤ j
2 + 1, for an integer e ≥ 0 and an even integer j ≥ 0. Then bj ≥ e.

Proof. The claim holds if j = 0 and j = 2, and for j > 2, we have bj > j − j
2(p−1) ≥

j
2 + 1 ≥ pe ≥ e. �

Lemma 3.5. For every odd integer j ≥ 1, we have aj = b2j − bj−1 − 1.

Proof. The claim holds when j = 1. Now, assuming the result for some fixed value of j − 2, we compute
(using that p 6= 2 several times)

aj = 2 + aj−2 − vp(j)
= 2 +

(
b2(j−2) − bj−3 − 1

)
− vp(j)

= 2 + b2(j−2) − vp(2(j − 1)) + vp(j − 1)− bj−3 − 1− vp(j)
= b2j−2 − bj−1 + 1− vp(j)
= b2j − bj−1 − 1,

which completes the induction. �

Corollary 3.6. We have bj ≥ 0 for every even integer j ≥ 0. In particular, the element Bj ∈ Q in fact lies
in Z(p), and so can be viewed as an element of R. Similarly, Aj ∈ Z(p) for every odd integer j ≥ 1.

Proof. The statement about bj is clear from the above results. For the numbers aj , the result holds for
j = 1, and for all values of j ≥ 3, we can use the bounds

aj = b2j − bj−1 − 1 ≥ 2j − 2j

2(p− 1)
− (j − 1)− 1 = j − j

p− 1
.

This completes the proof. �

Our next preliminary result will provide a way to determine the colimit of the diagram (3.1) for a fixed
value of i in terms of the colimit for i− 2.
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Lemma 3.7. Fix an integer k. Assume ψ : R → M is an R-module homomorphism and that there exists
m0 ∈ M such that ψ(1) = km0. Let ι : M → M ⊕ R/k be given by m 7→ (m, 0) and let ψ′ : R → M ⊕ R/k
be given by r 7→ (rm0, r). Then

R

ψ′

��

R
koo

ψ

��
M ⊕R/k M

ιoo

is a pushout diagram.

Proof. It is clear that the given diagram commutes. Assume we have a commutative diagram

R

f1

��

ψ′

��

R
koo

ψ

��
M ⊕R/k M

ιoo

f2
llN

Define a map f : M ⊕R/k → N by (m, r) 7→ f1(r) +f2(m− rm0). This map is well-defined because we have

f1(r + sk) + f2(m− rm0 − skm0) = f1(r) + f2(m− rm0) + kf1(s)− f2(ψ(s)) = f1(r) + f2(m− rm0).

This map is an R-module homomorphism.
It follows directly from the definitions that f1 = f ◦ ψ′ and f2 = f ◦ ι. Hence the diagram

R

f1

��

ψ′

��

R
koo

ψ

��
M ⊕R/k

f

zz

M
ιoo

f2
llN

commutes.
Lastly we check that our map f : M ⊕ R/k → N is the unique map making the diagram commute. Let

g be any map making the diagram commute. We then must have g(m, 0) = f2(m) for all m ∈ M , and
we must have g(rm0, r) = f1(r) for all r ∈ R. Thus we must have g(m, r) = g(rm0, r) + g(m − rm0, 0) =
f1(r) + f2(m− rm0) = f(m, r) for all m ∈M, r ∈ R, as required. �

We now use the above preliminary results to compute the colimit of the diagram (3.1).

Proposition 3.8. For every odd positive integer i, set Mi := R ⊕ R/1 ⊕ R/3 ⊕ · · · ⊕ R/i. Then Mi is a
colimit of the diagram (3.1).

Proof. We prove this using induction on i. For the base case i = 1, consider the diagram of R-modules

R

φ1

��

R
1oo

p

��
R⊕R/1 R,

ιoo

with φ1(1) = (p, 0) and ι(1) = (1, 0). In this case we have that M1, with the indicated maps, is a colimit of
the diagram (3.1). For later use in the induction, we note also that φ1(1) ∈ R⊕R/1 can be represented by
(A1, B0), as defined in Definition 3.2.
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Now assume the result has been proven for some fixed value of i−2, and let φi−2 denote the corresponding
map Ri−2 → Mi−2, where the notation Ri−2 = R refers to the upper-leftmost factor in diagram (3.1).
Further, assume that φi−2(1) can be represented by the element (Ai−2, Bi−2−1, Bi−2−3, . . . , B0).

Consider the diagram of R-modules

R

φi

��

R
ioo

p2φi−2

��
Mi−2 ⊕R/i Mi−2,

ιoo

where ι(m) = (m, 0) and where φi(1) = (Ai, Bi−1, Bi−3, . . . , B2, B0). By Lemma 3.7, to prove that Mi−2 ⊕
R/i (with the above maps) is a colimit of the diagram

R R
ioo

p2φi−2

��
Mi−2,

it suffices to check that iAi = p2Ai−2 ∈ R and that for every odd integer n in the interval 1 ≤ n ≤ i − 2,
we have iBi−n = p2Bi−2−n ∈ R/n. The first equality is clear from the definition of Ai. For the second
equality, it is clear again from the definition that (i−n)Bi−n = p2Bi−2−n, so the desired result follows, since
nBi−n = 0 ∈ R/n. �

We record an important aspect of the proof of Proposition 3.8 in the following corollary.

Corollary 3.9. Fix odd integers i ≥ j ≥ 1. Because R⊕R/1⊕R/3⊕· · ·⊕R/i is a colimit of the diagram (3.1),
we have a corresponding map of R-modules φj,i : Rj → R⊕R/1⊕R/3⊕· · ·⊕R/i. This map has the property
that φj,i(1) can be represented by an element (cj,−1, cj,1, . . . , cj,i), where each cj,n ∈ Z(p), and where these
elements satisfy the following properties (with the A and B sequences defined as in Definition 3.2):

(1) We have cj,−1 = Aj.
(2) If n is an odd integer in the range j < n ≤ i, then cj,n = 0.
(3) If n is an odd integer in the range 1 ≤ n ≤ j, then cj,n = Bj−n ∈ R/n.

Proof. This follows directly from the construction given in the proof of Proposition 3.8. �

Corollary 3.10. Fix an odd positive integer i, and let φi,i : Ri →Mi be as in Corollary 3.9. The R-module
Ni (as defined in Section 2) is isomorphic to the cokernel of p2φi,i : Ri →Mi.

Proof. This follows immediately from comparing the diagrams used to define Mi and Ni. �

4. Computation of Ni for certain i, and the computation of N∞

Recall again that R denotes a p-torsion-free commutative Z(p)-algebra. Our goal in this section is to give
an explicit description of Ni for certain values of i. Namely, we define an infinite set Z1 in Definition 4.4
below, and compute Ni for all i ∈ Z1. This will also enable us to compute the inverse limit lim←−Ni =: N∞.

By Corollary 3.10, to compute Ni, it is equivalent to compute the cokernel of the map p2φi,i : Ri →Mi,
where φi,i is defined as in Corollary 3.9. For certain values of i, this map φi,i turns out to have a particularly
simple form. The description of those values of i will involve the following parameter g(n).

Definition 4.1. Let n ≥ 1 denote an integer which is divisible by p. We define g(n) to be the maximum
even integer j such that bj < vp(n).

The motivation for the definition of g(n) is the following. We will show that the map φi,i : Ri →
R⊕R/1⊕R/3⊕ · · · ⊕R/i is non-zero in the R/n-factor only if i is in the interval [n, n+ g(n)].

Example 4.2. We have g(p) = g(p2) = 0, g(p3) = g(p4) = 2, g(p5) = 4, and g(36) = 6. For example, if φi,i is
non-zero in the R/p4-factor, we will see below that the only possible values for i are i = p4 and i = p4 + 2.

Let ci,n be defined as in Corollary 3.9, and let bj be defined as in Definition 3.2. The following result
follows immediately from Corollary 3.9 and the definitions.
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Lemma 4.3. Let n be an odd positive integer. Assume cj,n 6= 0 ∈ R/n for some j > n (so in particular,
vp(n) ≥ 1). Then j − n ≤ g(n).

Proof. We know vp(cj,n) = bj−n by Corollary 3.9. Since we are assuming that cj,n 6= 0 ∈ R/n, we must have
bj−n < vp(n). So g(n) ≥ j − n by the definition of g(n), as claimed. �

Definition 4.4. Let X denote the set of all odd positive integers, and let X1 denote the set of all odd
positive integers which are divisible by p. Define Z1 to be the set

Z1 := X \
⋃
n∈X1

[n, n+ g(n)].

For all i ∈ Z1, the map φi,i : R→Mi has a particularly simple form.

Lemma 4.5. Assume i ∈ Z1. Then the map φi,i : Ri →Mi = R⊕R/1⊕R/3⊕ · · · ⊕R/i has the property
that φi,i(1) = (Ai, 0, 0, . . . , 0), where Ai is defined as in Definition 3.2. In particular, for each such i we have
an isomorphism of R-modules

Ni ∼= R/pai+2 ⊕R/1⊕R/3⊕ · · · ⊕R/(i− 2)⊕R/i.

Proof. This follows immediately from Lemma 4.3 and the definitions. �

Corollary 4.6. Assume i ∈ Z1 and let k > i be an odd integer. Then the projection map Nk → Ni from
Lemma 2.12 is induced by a map Mk → Ni,

R⊕R/1⊕R/3⊕ · · · ⊕R/i⊕ · · · ⊕R/k → R/pai+2 ⊕R/1⊕R/3⊕ · · · ⊕R/i,

of the form

(r−1, r1, r3, . . . , ri, · · · , rk) 7→ (r−1 + C, r1, r3, . . . , ri),

where C is divisible by pa, for a = minm≥i+2 am and and it only depends on (ri+2, . . . , rk).

Proof. Using the construction and notation from the proof of Lemma 2.12, the projection map Nk → Ni fits
into a commutative diagram

R−1 ⊕R1 ⊕ · · · ⊕Ri ⊕ · · · ⊕Rk //

φ

��

R−1 ⊕R1 ⊕ · · · ⊕Ri

��

Mk = R⊕R/1⊕R/3⊕ · · · ⊕R/i⊕ · · · ⊕R/k

��
Nk // Ni,

where all of the Rj terms are equal to R. In this diagram, the top horizontal map is the obvious projection.
Consider first an element of the form

(r−1, r1, r3, . . . , ri, 0, · · · , 0) ∈ R⊕R/1⊕R/3⊕ · · · ⊕R/i⊕ · · · ⊕R/k ∼= Mk.

Choose elements s−1, s1, . . . , si ∈ R so that the element

(s−1, s1, . . . , si, 0, . . . , 0) ∈ R−1 ⊕R1 ⊕ · · · ⊕Ri ⊕ · · · ⊕Rk
maps under φ to (r−1, r1, r3, . . . , ri, 0, · · · , 0) ∈ Mk. This is possible from the construction of φ (Corollary
3.9), since we can choose

(s−1, s1, . . . , si) ∈ R−1 ⊕R1 ⊕ · · · ⊕Ri
mapping to (r−1, r1, r3, . . . , ri) ∈Mi, and hence also to an element with the same representative in Ni. Thus
our claimed result is true for elements of the form (r−1, r1, r3, . . . , ri, 0, · · · , 0) ∈ Mk. (In fact, for these
special elements, a stronger result is true, because we have showed that in this case, we have C = 0.)

Because the map Mk → Ni is an R-module map, it in particular is additive, so it suffices now to consider
the “complementary” elements, i.e., those of the form

(0, . . . , 0, ri+2, · · · , rk) ∈ R⊕R/1⊕R/3⊕ · · · ⊕R/i⊕ · · · ⊕R/k ∼= Mk.
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We will show that this element is the image under φ of an element

(C, 0, . . . , 0, si+2, . . . , sk) ∈ R−1 ⊕R1 ⊕ · · · ⊕Ri ⊕ · · ·Rk,
where C is as in the statement. Under the top horizontal map, this element (C, 0, . . . , 0, si+2, . . . , sk) maps
to (C, 0, . . . , 0), and this will complete the proof.

We now carry out the construction just described. Let (0, . . . , 0, ri+2, · · · , rk) ∈ Mk, and choose any
pre-image under φ, denoted (y−1, y1, . . . , yi, yi+2, . . . , yk). Because i ∈ Z1, by Corollary 3.9 and Lemma 4.3,
we know ct,l = 0 for 1 ≤ l ≤ i and i ≤ t. Hence the image of (0, . . . , 0, yi+2, . . . , yk) under φ must
be (−C, 0, . . . , 0, ri+2, · · · , rk), for some C ∈ R that is divisible by pa, for a = minm≥i+2 am, and hence
(0, . . . , 0, ri+2, · · · , rk) ∈ Mk is the image under φ of (C, 0, . . . , 0, yi+2, . . . , yk). Under the top horizontal
map in our diagram, this element maps to (C, 0, . . . , 0), which in turn maps to an element in Ni represented
by (C, 0, . . . , 0). This completes the proof. �

Because of the C terms in the above formula, the maps Nj → Ni for i, j ∈ Z1 typically do not correspond
to the obvious projections. (For example, the R/(i + 2)-component will typically contribute something
nonzero under the projection.) This is relevant, as our next goal is to compute the inverse limit lim←−kNk by

restricting to lim←−i∈Z1
Ni, where these maps turn up.

To see that Z1 ⊂ N is indeed cofinal, we first need the following:

Lemma 4.7. For any a > 0, g(pa) < pa−1
2 .

Proof. For a = 1 and 2, this is immediate since there g(pa) = 0.
From Lemma 3.3, we have the linear lower bound

bj >

(
2p− 3

2p− 2

)
j.

This yields an upper bound on g(pa):

g(pa) = max{j : bj < a} ≤ max

{
j :

(
2p− 3

2p− 2

)
j < a

}
<

(
2p− 2

2p− 3

)
a.

After substituting this and rearranging the inequality, it therefore suffices to show

pa − 4p− 4

2p− 3
a > 1.

Note that 4p−4
2p−3 is strictly decreasing in p for p > 2, and pa is strictly increasing in p (assuming a > 1)–hence

it suffices to show this for p = 3. That leaves us with

3a − 8

3
a > 1,

which is true by elementary methods. (For example, it holds for a = 2, and the left hand side is strictly
increasing for a ≥ 2.) �

Corollary 4.8. For every odd n that is divisible by p, |p
a±1
2 − n| > g(n). In particular, all odd numbers of

the form pa±1
2 are contained in Z1, which therefore contains arbitrarily large numbers.

Proof. By the previous lemma, we have

g(n) = g(pνp(n)) <
pνp(n) − 1

2
,

therefore it suffices to show that ∣∣∣∣pa ± 1

2
− n

∣∣∣∣ ≥ pνp(n) − 1

2
.

In the case that νp(n) ≥ a, we have

n− pa ± 1

2
≥ pνp(n) − pνp(n) ± 1

2
≥ pνp(n) − 1

2
.
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Otherwise, we write a = ã+ νp(n), n = mpνp(n), and observe∣∣∣∣pa ± 1

2
− n

∣∣∣∣ =

∣∣∣∣ (pã − 2m)pνp(n) ± 1

2

∣∣∣∣ ≥ ∣∣∣∣pνp(n) ± 1

2

∣∣∣∣ ≥ pνp(n) − 1

2
,

where the first inequality uses that p is odd, hence (pã − 2m) is nonzero. �

Proposition 4.9. The inverse limit N∞ := lim←−kNk is isomorphic to

R∧ ×R/1×R/3×R/5× · · · ,
where R∧ denotes the p-adic completion of R.

Proof. We consider the inverse limit of the final system Ni for i ∈ Z1. Define a map

lim←−
i∈Z1

Ni → R∧ ×R/1×R/3×R/5× · · ·

as follows. Given a compatible sequence in x = (xi)i∈Z1 ∈ lim←−i∈Z1
Ni, define its image to be (y−1, y1, y3, . . .) ∈

R∧ × R/1 × R/3 × · · · , where the coordinates yn are defined as follows. To define yn with n 6= −1, choose
any k ∈ Z1 such that k ≥ n, and then write xk ∈ Nk as (xk,−1, xk,1, . . . , xk,k), and set yn := xk,n. It follows
from Corollary 4.6 that this element yn is independent of the choice of k.

Defining y−1 is more difficult, because of the elements denoted by C in Corollary 4.6. Fix i ∈ Z1 and let
a = minm≥i+2 am. Then in the notation of the previous paragraph, we have that xk,−1 ≡ xi,−1 mod pa for
all k ∈ Z1 such that k ≥ i. We also have that these values minm≥i+2 am approach infinity as i approaches
infinity. In this way, we form a p-adic Cauchy sequence, and we define y−1 to be the limit of this sequence
in R∧.

It is clear that the given map lim←−i∈Z1
Ni → R∧×R/1×R/3×R/5× · · · is an R-module homomorphism.

To see that it is injective, consider a sequence (xi) mapping to 0. By the construction, we have that xi,k = 0
for all i and all k 6= −1. But now in this case, with all other terms being 0, the C term from Corollary 4.6
is also equal to 0, so the terms xi,−1 must also equal 0, for all i ∈ Z1.

For surjectivity, consider any element (y−1, y1, y3, . . .) ∈ R∧ × R/1 × R/3 × · · · . Note first that some
element of the form (∗, y1, y3, . . .) ∈ R∧ × R/1× R/3× · · · is in the image. (All components except for the
xi,−1-components are determined, and the xi,−1 components can be calculated inductively, one at a time,
for i ∈ Z1.) Also, for any element r′ ∈ R∧, the element (r′, 0, 0, . . .) is in the image. Surjectivity now follows
from the fact that the map is additive. �

Example 4.10. When p = 3, the set Z1 from Definition 4.4 contains the following elements: 5, 7, 11, 13, 17,
19, 23, 25, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 85, 89, 91, 95, 97, 101, 103, 107,
109, 113, 115, 119, 121, 125, 127, 131, 133, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175,
179, 181, 185, 187, 193, 197, 199.

In other words, in addition to multiples of 3, it only excludes the elements 29, 83, 137, 191 from the odd
numbers up to 200.

For any odd integers i ≥ j ≥ 1, the map φj,i : Rj → Mi considered in Corollary 3.9 induces a map
ψj,i : Rj → Ni. When i ∈ Z1, then by Lemma 4.5, we have ψj,i(1) = (cj,−1, cj,1, . . . , cj,i), where the values
cj,k are as in Corollary 3.9, with the only difference being that the initial component cj,−1 here is considered
as an element of R/pai+2, rather than as an element of R. These maps ψj,i can also be used to define a map
to the inverse limit, Rj → N∞, as in the following corollary.

Corollary 4.11. For any odd integer j ≥ 1, the maps ψj,i, for varying i ≥ j with i ∈ Z1, determine a
map ψj : Rj → N∞, such that ψj(1) = (cj,−1, cj,1, cj,3, . . .). These values cj,k are the same as described in
Corollary 3.9.

Proof. This follows from the preceding comments, together with Corollary 4.6 and the construction in the
proof of Proposition 4.9. �
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5. Computation of Ki for certain i

Recall from Section 2 that Ki is defined to be the kernel of the projection map

N∞ = lim←−Nj → Ni.

In this section, we compute this kernel for certain values of i in a certain set Z2; this set Z2 is a proper
subset of the set Z1 considered above.

Definition 5.1. Let X denote the set of all odd positive integers, and let X1 denote the set of all odd
positive integers which are divisible by p. Let g(n) be as in Definition 4.1. Define Z2 to be the set

Z2 := X \
⋃
n∈X1

[n− g(n), n+ g(n)].

The maps ψj : Rj → N∞ from Corollary 4.11 can be used to describe the R-modules Km, as in the
following lemma. It turns out the value of m + 2 is more important in the eventual computation than m
itself, so that is why we phrase this lemma in terms of Ki−2.

Lemma 5.2. For any odd integer i > 1, the kernel Ki−2 of the natural projection N∞ → Ni−2 is the closure
(in the inverse limit topology) of the R-submodule of N∞ generated by ψj(1) for all j ≥ i.
Proof. This follows immediately from the definitions and the computations in Lemma 2.12. �

We are interested in identifying values of i for which we can provide an explicit description of the submodule
of N∞ described in Lemma 5.2. The elements

ψi(1), ψi+2(1), ψi+4(1), . . . ∈ N∞ ∼= R∧ ×R/1×R/3× . . .
have first components in R∧ with p-adic valuations ai, ai+2, ai+4, . . ., respectively, where am is defined in
Definition 3.2. It is convenient to know when the initial value ai is the minimum of the set {ai, ai+2, ai+4, . . .}.
The following lemma (in which the parameters g(n) from Definition 4.1 again appear) provides cases where
this value ai is indeed the minimum.

Lemma 5.3. Let i be an odd integer which is not divisible by p. Let aj and bj be defined as in Definition 3.2.
Assume there exists an odd integer n such that i < n and ai > an. Then there exists such an n with vp(n) ≥ 3
and bn−i < vp(n). In particular, n− i ≤ g(n).

Proof. Choose a minimal n such that i < n and ai > an. In particular, we have an−2 > an, so vp(n) ≥ 3.
There cannot exist odd j such that i < j < n and vp(j) ≥ vp(n). Indeed, assume towards contradiction

that there exists such a j. Let e = max{vp(k) : i < k < n,with k odd} and let j = max{k : i < k <
n, with k odd and vp(k) = e}. We will show that aj ≤ an, which contradicts the minimality of n.

For j and n as defined above, by the inductive definition of the ak sequence, we have

an − aj = (2− vp(j + 2)) + (2− vp(j + 4)) + (2− vp(j + 6)) + · · ·+ (2− vp(j + n− j)).
Observe that j + 2 < n. Indeed, if j + 2 = n, then νp(2) = νp(n− j) ≥ νp(n) ≥ 3 which is a contradiction.
Next, by the definition of j, we know that vp(j) > vp(k) for all odd j + 2 ≤ k < n. This implies that
vp(j + 2) = vp(2), vp(j + 4) = vp(4), . . . , vp(n− 2) = vp(n− j − 2). We also have vp(n) ≤ vp(n− j). In total,
we have

an − aj ≥ (2− vp(2)) + (2− vp(4)) + (2− vp(6)) + · · ·+ (2− vp(n− j)).
This latter expression is equal to bn−j , and we have already seen that all terms in the bk sequence are
non-negative. Thus an ≥ aj , which is a contradiction. We conclude that for all odd j in the range i < j < n,
we have vp(j) < vp(n).

Write
∑′

to deduce the sum over the even values in the specified interval. Because ai > an, we deduce
that

n− i−
n−i∑′

k=2

vp(i+ k) < 0.

Rewriting,

n− i−
n−i−2∑′

k=2

vp(n− k) < vp(n).
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By our comments above, we have vp(n− k) = vp(k) for all k in the above range, so we have the inequality

n− i−
n−i−2∑′

k=2

vp(k) < vp(n).

Because i is not divisible by p, we also have that n − i is not divisible by p, so the above inequality is the
same as

bn−i < vp(n).

The result follows. �

Proposition 5.4. For any odd l ≥ 1, let el ∈ N∞ ∼= R∧ × R/1 × R/3 × · · · be the element which is 1 in
the R/l component and which is zero in all other coordinates. Also write e−1 for the element (1, 0, 0, . . .).
Let Z2 be as in Definition 5.1 and assume i ∈ Z2. Let Ai ∈ R be defined as in Definition 3.2. Then the
R-submodule of N∞ generated by

ψi(1), ψi+2(1), ψi+4(1), . . .

is equal to the R-submodule generated by

Aie−1, ei, ei+2, ei+4, . . . .

Proof. We show using induction that for any fixed even j ≥ 0, the R-submodule of N∞ generated by

ψi(1), ψi+2(1), ψi+4(1), . . . , ψi+j(1)

is equal to the R-submodule generated by

Aie−1, ei, ei+2, ei+4, . . . , ei+j .

The claim of the proposition then follows immediately.
For the base case j = 0, note that ψi(1) = Aie−1 (by Lemma 4.5, because Z2 ⊆ Z1) and that ei = 0 ∈ R/i

(because i ∈ Z2, and hence i is not divisible by p).
Now assume the result has been shown for j − 2. We write

ψi+j(1) = Ai+je−1 + ci+j,1e1 + ci+j,3e3 + · · ·+ ci+j,i+j−2ei+j−2 + ei+j .

We must have ci+j,n = 0 for all −1 < n < i. (If not, so ci+j,n 6= 0 for some −1 < n < i, then by Lemma 4.3,
we have i+ j − n ≤ g(n), but then n < i ≤ n+ g(n), which contradicts our assumption that i ∈ Z2.) So we
have

ψi+j(1) = Ai+je−1 + ci+j,iei + ci+j,i+2ei+2 + · · ·+ ci+j,i+j−2ei+j−2 + ei+j .

We have that Ai+j is a multiple of Ai by Lemma 5.3, so ψi+j(1) is in the R-submodule of N∞ generated by

Aie−1, ei, ei+2, ei+4, . . . , ei+j .

Conversely, by the induction hypothesis, we have that Aie−1, ei, . . . , ei+j−2 are in the R-submodule generated
by

ψi(1), ψi+2(1), ψi+4(1), . . . , ψi+j−2(1),

and again note that by Lemma 5.3, the number Ai+j is a multiple of Ai. Therefore

ei+j = ψi+j(1)−Ai+je−1 − ci+j,iei − ci+j,i+2ei+2 − · · · − ci+j,i+j−2ei+j−2
is in the R-submodule generated by

ψi(1), ψi+2(1), ψi+4(1), . . . , ψi+j(1).

This completes the induction. �

Proposition 5.5. Let i > 1 be an odd integer, and assume i ∈ Z2, where Z2 is the set defined in Defini-
tion 5.1. Then Ki−2 is isomorphic as an R-module to

R∧ ×R/(i)×R/(i+ 2)×R/(i+ 4)× · · · .

Proof. It’s clear that the closure in N∞ of the R-submodule generated by Aie−1, ei, ei+2, . . . is isomorphic
to the given module, so the claim follows from Proposition 5.4. �
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Corollary 5.6. Let i > 1 be an odd integer, and assume i ∈ Z2, where Z2 is the set defined in Definition 5.1.
Then Ni−2 is isomorphic as an R-module to

R/pai ⊕R/1⊕R/3⊕ · · · ⊕R/(i− 2).

As a reality check we point out that this matches with Lemma 4.5 and the first short exact sequence on
page 4.

Example 5.7. When p = 3, the set Z2 from Definition 5.1 contains the following elements: 5, 7, 11, 13, 17,
19, 23, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113,
115, 119, 121, 125, 127, 131, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175, 179, 181, 185,
193, 197, 199.

In other words, in addition to multiples of 3, it only excludes the elements 25, 29, 79, 83, 133, 137, 187,
191.

Remark 5.8. It follows from Corollary 4.8 that all odd numbers of the form pa±1
2 for a > 0 are contained in

Z2.

6. The size of the sets Z1 and Z2

We give lower-bounds on the proportion of positive odd integers in the sets Z1 and Z2 from Definition 4.4
and Definition 5.1.

The following lemma should be intuitively clear. It roughly says that 2/pe of odd integers are of the form
cpe ± b, where b is some fixed constant. The point of the lemma is to give a precise version of this claim.

Lemma 6.1. Let X denote the set of all odd positive integers, and for any positive number N , let XN :=

X ∩ [0, N ]. Fix a positive integer e, and an even positive integer b, where b < pe

2 . Let

Ye,N := {x ∈ XN : x = cpe ± b, some c ∈ Z}.
We have

#Ye,N
#XN

<
2

pe
+

2

#XN
.

Proof. Let Ye,N,− := {x ∈ XN : x = cpe − b, some c ∈ Z}. This set contains approximately half of the
elements of Ye,N , and it clearly suffices to prove that

#Ye,N,− <
#XN

pe
+ 1.

To ease notation, write X instead of XN and write Y for the set obtained from Ye,N,− obtained by removing
its minimal element pe − b (we are ignoring the trivial case that Ye,N,− is the empty set). In terms of this
new notation, we must prove that

#Y <
#X

pe
.

Consider the following translates of Y :

Y, Y − 2, Y − 4, . . . , Y − 2pe + 2.

We have listed pe of these sets, and they are pairwise disjoint. Their union is strictly contained in X
(because the minimal element in Y is 3pe − b). Because these sets all have cardinality #Y , we deduce that
pe ·#Y < #X, as required. �

Proposition 6.2. Let X denote the set of all odd positive integers. Let Z1 be as in Definition 4.4 and let
Z2 be as in Definition 5.1. Fix any positive integer N , and write λ := 2p−3

2p−2 . We have

#(Z1 ∩ [0, N ])

#(X ∩ [0, N ])
≥ 1− 1

p
− 1

p3
− 1

p5
−

 ∑
k≥6 even

1

pλk

− logp(N) + 1

λ#(X ∩ [0, N ])
.

and

#(Z2 ∩ [0, N ])

#(X ∩ [0, N ])
≥ 1− 1

p
− 2

p3
− 2

p5
−

 ∑
k≥6 even

2

pλk

− 2 logp(N) + 2

λ#(X ∩ [0, N ])
.
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Proof. We prove the result for Z2. The argument for Z1 is the same.
To obtain Z2, we can proceed as follows:

(1) Begin with the set XN of all odd positive integers up to N .
(2) Remove all multiples of p.
(3) For every even positive integer k, let ek be the minimal positive integer such that g(pek) ≥ k. Remove

all elements of the form cpek ± k, i.e., the set Yek,N .

The second step removes at most #XN

p many elements. For the third step, we explicitly know that e2 = 3

and e4 = 5. The values ej for j ≥ 6 depend on the odd prime p, and instead of finding these values exactly,
we use the bound from Lemma 4.7. From that lemma’s proof, we have

ek >
2p− 3

2p− 2
k.

We can then apply Lemma 6.1 to estimate

Yek,N
#XN

<
2

pek
+

2

#XN
.

While the first summand assembles into a geometric series, the second one is constant in XN . This requires
us to bound the occurrence of k such that Yek,N is nonempty. The smallest possible element in Yek,N is
given by pek − k, which is bounded below by

p
2p−3
2p−2 k − k.

We denote λ = 2p−3
2p−2 , and claim that for λk > logp(N) + 1, the inequality pλk − k > N holds as desired: For

this, note first that N = plogpN+1−1, so it suffices to show that

pλk − k > pλk−1 ⇔ (p− 1)pλk−1 − k > 0.

As k ranges over even positive integers, we first check this manually for k = 2:

(p− 1)pλ2−1 − 2 = (p− 1)p
(2p−3)−(p−1)

p−1 − 2 =

≥2︷ ︸︸ ︷
(p− 1)

>1︷︸︸︷
p

p−2
p−1 −2 > 0.

Next, note that for f(k) = (p− 1)pλk−1 − k, we have the derivative f ′(k) = (p− 1) log(p)pλk−1 − 1. By the
same reason as above, this is non-negative for k ≥ 0, so f(k) > 0 for k ≥ 2.

The upshot is then that we only need to remove the sets Yek,N for k ≤ logp(N)+1

λ . Putting together our
observations, this leaves us with the result:

#(Z2 ∩ [0, N ])

#(X ∩ [0, N ])
≥ 1− 1

p
−

∑
k≥2 even

#Yek,N
#XN

> 1− 1

p
− 2

p3
− 2

p5
−

 ∑
k≥6 even

2

pλk

− 2 logp(N) + 2

λ#XN
.

�

Remark 6.3. The proportion of elements in Z1 and Z2 is larger when the (odd) prime p is larger. For
example, when p = 3, we have

lim inf
#(Z1 ∩ [0, N ])

#(X ∩ [0, N ])
≥ 0.61 and lim inf

#(Z2 ∩ [0, N ])

#(X ∩ [0, N ])
≥ 0.58,

and when p = 101, we have

lim inf
#(Z1 ∩ [0, N ])

#(X ∩ [0, N ])
≥ 0.99 and lim inf

#(Z2 ∩ [0, N ])

#(X ∩ [0, N ])
≥ 0.99.
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