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ABSTRACT. The goal of this work is to construct, for a smooth variety
X over a perfect field k of finite characteristic p > 0, an overconvergent
de Rham-Witt complex WTQ x/k as a suitable subcomplex of the de
Rham-Witt complex of Deligne-Illusie. This complex, which is functo-
rial in X, is a complex of étale sheaves and a differential graded algebra
over the ring WT(Ox) of overconvergent Witt-vectors. If X is affine
one proves that there is an isomorphism between Monsky-Washnitzer
cohomology and (rational) overconvergent de Rham-Witt cohomology.
Finally we define for a quasiprojective X an isomorphism between the
rational overconvergent de Rham-Witt cohomology and the rigid coho-
mology.
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RESUME. Le but de ce travail est de construire, pour X une variété
lisse sur un corps parfait k de charactéristique finie, un complexe de
de Rham-Witt surconvergent WiQy /k comme un sous-complexe conve-
nable du complexe de de Rham-Witt de Deligne-Illusie. Ce complexe qui
est fonctoriel en X est un complexe des faisceaux étales et une algebre
différentielle graduée sur I'anneau W' (Ox) des vecteurs de Witt surcon-
vergents. Lorsque X est affine, on démontre qu’il existe un isomorphisme
canonique entre la cohomologie de Monsky-Washnitzer et la cohomolo-
gie (rationelle) de de Rham-Witt surconvergente. Finalement on définit
pour X quasiprojectif un isomorphisme entre la cohomologie rigide de
X et la cohomologie de de Rham-Witt surconvergente rationelle.

Mots-clefs : cohomologie rigide, complexe de de Rham-Witt.
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INTRODUCTION

Let X be a smooth variety over a perfect field k of finite characteristic.
The purpose of this work is to define an overconvergent de Rham-Witt com-
plex WTQ'X Ik of sheaves on X. This complex is a differential graded algebra
contained in the de Rham-Witt complex W Ik of Ilusie and Deligne.

If X is quasiprojective we define a canonical isomorphism from rigid co-
homology of X in the sense of Berthelot:

HLy (X)W (k) ® Q) — HI (X, Wiy ) © Q.

In particular these are finite dimensional vector spaces over W (k) ® Q by
[3]. We conjecture that the image of the morphism

HY (X, WiQy ) = H(X, Wy ) @ Q

is a finitely generated W (k)-module. If X is projective we expect that
the image of H(X, WTQ'X /k;) under the comparison isomorphism between
rigid cohomology and crystalline cohomology coincides with the image of
crystalline cohomology.

In the case where X = Spec A is affine we obtain more precise results.

The cohomology groups of the individual sheaves WTQJ)‘( /i re zero for i >

0. The complex H°(X, WTQ')(/k) will be denoted by WTQA/,C. Let A be

a lifting of A to a smooth algebra A over W (k). We denote by Af the
weak completion of A in the sense of Monsky-Washnitzer. The absolute
Frobenius endomorphism on A lifts (non canonically) to Af. This defines a
homomorphism AT — W(A). We show that the image of this map lies in
WT(A). This defines morphisms
(1) Hi(QZT/W(k)) — H'(WTQ, ), fori>0.

We show that the kernel and cokernel of this map is annihilated by p?*,
where x = |log,dim A|. If we tensor the morphism (1) by Q it becomes
independent of the lift of the absolute Frobenius chosen.

We note that Lubkin [15] used another growth condition on Witt vectors.
His bounded Witt vectors are different from our overconvergent Witt vectors.

Let A = k[Ty,...,Ty] be the polynomial ring. For each real ¢ > 0 we
defined ([7]) the Gauss norm ~. on W(A). We extend them to the de
Rham-Witt complex W2, Ik A Witt differential from W', /k is called
overconvergent if its Gauss norm is finite for some ¢ > 0. We denote the
subcomplex of all overconvergent Witt differentials by VVTQ;4 Ik Follow-
ing the description in [13], W2, Jk decomposes canonically into an integral
part and an acyclic fractional part and this decomposition continues to hold
for the complex of overconvergent Witt differentials. The integral part is
easily identified with the de Rham complex associated to the weak com-
pletion of the polynomial algebra W (k)[T1,...,T,] in the sense of Monsky
and Washnitzer. This explains the terminology “overconvergent” for Witt
differentials. For an arbitrary smooth k-algebra B we choose a presenta-
tion A — B. We define the complex of overconvergent Witt differentials
WTQ‘B/k as the image of W‘LQ'A/k. This is independent of the presentation.
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It is a central result that the functor which associates to a smooth affine
scheme Spec B the group WTQg/k is a sheaf for the étale topology, and
that H}, (Spec B, WTQgL/k) = 0 for 7 > 1. For this we generalize ideas of
Meredith [16]. One also uses that the ring of overconvergent Witt vectors is
weakly complete in the sense of Monsky-Washnitzer [7] and the complex of
overconvergent Witt differentials satisfies a similar property of weak com-
pleteness. The étale sheaf property depends on an explicit description - for
a finite étale extension C'/B - of WTQ'C/k in terms of WTQ'B/k. The result is
as nice as one can hope for. By a result of Kedlaya [12] any smooth variety
can be covered by affines which are finite étale over a localized polynomial
algebra. It then remains to show a localization property of overconvergence;
namely a Witt differential of a localized polynomial algebra which becomes
overconvergent after further localization is already overconvergent. This re-
quires a detailed study of suitable Gauss norms (that are all equivalent) on
the truncated de Rham-Witt complex of a localized polynomial algebra.

In the final section we globalize the comparison with rigid cohomology
from the affine case. In our approach it is essential to use Grosse-Klonne’s
dagger spaces [8]. Let Z be an affine smooth scheme over k. Let Z — F a
closed embedding in a smooth affine scheme over W (k). We call (Z, F) a
special frame. To a special frame we associate canonically a dagger space
1Z [} Its de Rham cohomology coincides with the rigid cohomology of Z:

T o — 4
RF(]Z[F’Q}Z[}) = RI',i4(2).
If F' Xgpecw (k) Speck = Z the dagger space |Z [TF is affinoid. Therefore the
hypercohomology is not needed

r(z%, o) =Rr(z[L, o

]Z[TA)'

1) :

We show that the latter is true for a big enough class of special frames.
Then simplicial methods allow a globalization to the quasiprojective case.

0. DEFINITION OF THE OVERCONVERGENT DE RHAM-WITT COMPLEX

Let R be an [Fj-algebra which is an integral domain. We consider the
polynomial algebra A = R[T1,...,T4]. Before we recall the de Rham-Witt
complex, we review a few properties of the de Rham complex Q4.

There is a natural morphism of graded rings

F: QA/R—)QA/R,

which is the absolute Frobenius on Q% /R and such that ¥dT; = Tip _1dTi.
As shown in [13], 4/ has an R-basis of so called basic differentials. Their
definition depends on certain choices which we will fix now in a more special
way than in loc. cit.

We consider functions k : [1,d] — Z>¢ called weights. On the support
Supp k = {i1,...,i,} we fix an order iy, ..., i, with the following properties:

(i) ordp ks <ordpki, <...<ord,k;,.

(ii) If ordy k;, = ordp k;,,, ,, then 4, <.
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Let P = {lo, I1,...,I;} be apartition of Supp k as in [13]. A basic differential
is a differential of the form:

dT*n dr*n
— 7k ). =
(01) e(k, P) = T"o <p0rdp kll ) (pordp k[l > .

It is shown in [13] Proposition 2.1 that the elements (0.1) form a basis of
the de Rham complex €4/ as an R-module. The de Rham-Witt complex
W4 g has a similar description, but now fractional weight functions are in-
volved. More precisely, an element w € W' /R has a unique decomposition

as a sum of basic Witt differentials [13]

(02) W= Ze(gk,Pak7p) 5
k,P
where k : [1,d] — Zzo[%] is any weight ([13], 2.2) and P = {Io, [1,...,I;}
runs through all partitions of Suppk. Moreover, the coefficients {,p €
W (R) satisfy a certain convergence condition ([13], Theorem 2.8).
For each real number € > 0 we define the Gauss norm of w:

(0.3) 7e(w) = inffordy&yp — ek}
We will also use the truncated Gauss norms for a natural number n > 0:
Ye[n](w) = Lng{ordvﬁk,p —¢elk| | ordy&rp < n}.

The truncated Gauss norms factor over Wy11€24,z. We note that in the
truncated case the inf is over a finite set.

If v.(w) > —o0, we say that w has radius of convergence e.

We call w overconvergent, if there is an ¢ > 0 such that w has radius of
convergence €. It follows from the definitions that

(0.4) Ye(wi + w2) > min (e (w1), 7= (w2)) -

This inequality shows that the overconvergent Witt differentials form a
subgroup of W€, g which is denoted by WTQA/R. We have WTQA/R =
UWe=Qy/r where W=Q/p are the overconvergent Witt differentials with
&

radius of convergence .

If R = RU{co}U{—00}, then an R-valued function ¢ on an abelian group
M which satisfies (0.4), so that ¢(a+b) > min{c(a), ¢(b)}, is called an order
function.

Definition 0.5. We say that w is homogeneous of weight k if in the sum
w=> e(&p,k,P) the weight k is fixed. We write weight(w) = k.

If g € Q, then we can consider sums which are homogeneous of degree g,
i.e.

W= Z e(&k,'ka7,P) .

|k|=g,P

Then we define deg(w) = g. If w is homogeneous of a fized degree, we define

ordy w = minordy & p.
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It is easy to see that v.(w) > —oo if and only if there are real constants
C1,Cy, with (7 > 0 such that for all weights k£ occurring in w we have

(0.6) |k’ < C7ordy fk;p + Cs.

1
One can take C; = —.

€
Using this equivalent definition one can show that the product of two
overconvergent Witt differentials is again overconvergent, as follows: For two
homogeneous forms wi, ws one has ordy (w1 Aws) > max (ordy wi, ordy ws).
This follows from a (rather tedious) case by case calculation with basic Witt
differentials.
We have deg(wi A we) = degw; + degws.
Assume now that
degw < Cjordy w—+ Cy
and
degw’ < Clordy ' + C
for two homogeneous forms w,w’ of fixed degrees. Then
deg(w A w') = degw + degw’ < (C1 + Cf) ordy (w1 A wa) + Co + C5,.

This implies that if w and w’ are overconvergent Witt differentials with radii
of convergence ¢ and ¢’ then w A w’ is overconvergent with radius of conver-
gence ==;. In the special case e = ¢/ we get that w A W’ is overconvergent

ete’” ,
%(w)—;%(w). This shows

that WtQ, /r is a differential graded algebra over the ring WT(A) of over-
convergent Witt vectors.

We recall from [7] the definition of a pseudovaluation. An order function
c on a ring M is called a pseudovaluation if in addition it satisfies: (i)
c(1) = 0 and ¢(0) = o0; (ii) ¢(m) = ¢(—m) for all m € M; (iii) ¢(mimsa) >
c(my) + c(ma) if c¢(my) # —o0, c(ma) # —oo.

In general, the Gauss norms 7, form a set of pseudovaluations on the ring

5
with radius of convergence 2 and g (w A W) >

of Witt vectors, i.e. in degree zero; however, from the formula v [TP~1d" [T] =
pd[T] and

ordy (V [Tp—l]) — ordy (dV[T]) = ordy (pd[T]) = 1,
we see that we cannot expect a formula
Ve(wr Awz) = Ye(wr) + Ye(w2).
Hence the Gauss norms do not extend to pseudovaluations in higher degrees.

Proposition 0.7. Let R be an integral domain such that p- R = 0. Let
¢: R[Th,...,Ty] = R[U,...,U| be a homomorphism. It induces a map
o« WQpgmr, .. /r = WRW,,...00/R

Then there is a constant a > 0, such that for any € > 0 and any natural
number n:

Yae[n](psw) > ye[n](w).



6 CHRISTOPHER DAVIS, ANDREAS LANGER, AND THOMAS ZINK

The same inequality holds if [n] is removed. In particular, if w is overcon-
vergent with radius of convergence € then p.w is overconvergent with radius
of convergence ae.

Proof. We set Y; = [U;] and X; = [I;]. From Lemma 2.23 in [7] we obtain
an expansion:

0u(Xi) = [Qi(Un,.... D)) = D auY,
|k|<e
where a;; € W(R). More generally we obtain for a monomial X! = X il .. Xé’i,
l; € Z>( an expansion:
pu(X) = D Y, b e W(R).
|k <cll]

Since ¢, commutes with the action of V' we find for I not necessarily
integral

. (VunX’> = Vu(w* (UX“”“»

V’ll,
/ Vvu
K <ell|p Jkl<c-1]

From this we see immediately the following fact: Let w € WQg, . 1,/R
be a Witt differential which is homogeneous of degree [, and such that
ordy w = m. Then ¢,w is a V—convergent sum »_ 7 of homogeneous Witt
differentials of degree |k| < c|l| and such that ordy nmx > m. Assume that
w =Y wj is a sum of homogeneous differentials such that

ordel - €|l| > D.

Then p.w; = Y 11k, where 1, is homogeneous of degree k, such that |k| <
c|l] and ordy m; 1 > m. Therefore for § > 0,

ordy . — 0|k| > m — oc|l].
If § < = the last expression is bounded below by D. This proves the propo-
sition V?/'ith a=1/c O
By the proposition we obtain a map:
(0.8) WeQprn,,..m/r = W Qgru,.,...01)/R-

Proposition 0.9. Let ¢ : R[T},...,T;] — R[U1,...,U;] be an R—algebra
homomorphism. Then the induced map

s WQpmy .1/ = WQRW,,...0/R

maps WiQgir, /5 to WIQgu, _v1/8-
If, moreover, ¢ is surjective then

WiQrm, my/r = WIQru,, v/

18 surjective too.
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Proof. Only the last statement needs a verification. If ¢ is surjective we find
a homomorphism

1/) : R[Ul,...,Ul] — R[Tl,...,Td},
such that ¢ o1 = id. Then for n € WTQR[U17._.7UZ]/R, 1¥n is overconvergent

and therefore a preimage of 7. O

We have seen that . fails to be a pseudovaluation on the ring Wy g.
However we will face a situation where we will need an inequality

Ye(fw) = Ye(f) +7e(w)
for certain f € W(A) and w € W, . For suitable f and overconvergent

w we can even achieve equality.

From now on, let R = k be a perfect field. Let A = k[T1,...,Ty] be the
polynomial ring. The Teichmiiller of T; in W(A) is denoted by X;. For a
Witt differential w € Wy, we define:

vp(w) =max{a € Z | p™"w € WQy .}
Obviously we have that
vp(wiwz) > vp(wi) + vp(wa)

for arbitrary Witt differentials.
Let w = e(&, k, P) be a basic Witt differential. Let p* be the denominator
of the weight k. Then we have:

ordy w = ordy & = vp(w) + u.
For an arbitrary w € W/, we write the expansion:
(0.10) w=>Y_e(&p k7P).
k,P
Let € > 0. We have the Gauss norm ~.:
1e(w) = inf{ordv(e(&p, b, P)) — elK).
We also define the modified Gauss norm:
(0.11) e(w) = inf o (e(Ch.p, b, P)) — <k}
We note that:
Ye(w) Z~ Ve (w).
Consider the polynomial algebra A = W (k)[Xi,...,Xq4]. For each real

number € > 0 we define on A a valuation .. We write f € A. We will use
the vector notation I = (i,...,i) and write

f = ZC[&I, Ccr € W(k)
We write |I| =41 + ...+ 4. Then we set
7e(f) = min{ord,(cr) — elI])}.

We extend ~. to the differential forms (2 ; W (k)" We write a differential
form as of degree 7:

W= faldXay Ao NdXa,, fa €4



8 CHRISTOPHER DAVIS, ANDREAS LANGER, AND THOMAS ZINK

where o = (v, ..., ) runs over vectors with 1 < ay < ... < a, <d. Then
we set:

Ne(w) = min{e(fa) — re}.
We have the following properties:
012 Ye(fw) = %(f) +ew), feA
Ye(wi Awz) > Ye(wi) +7e(w2), wi € Qg prr)-
We may write w as a sum of p-basic elements [13] (2.3):
dx*n dx*n
Pk

Lemma 0.13. Let us write w € QA/W(k) as a sum of p-basic differentials:

W = Z e(ck’p, k?, P)

e(c,k,P) = cXFio

ordp kr, °

Then we have:
Ve (w) = min{ord,(cxp) — |kle}.

Proof. Clearly it is sufficient to consider the case where w belongs to the
free W (k)-module of forms of a given weight k (compare [13] proof of Prop.
2.1). Then w may be written:

w=Y by gy X{ .. Xfndlog Xi A .. A dlog X,
The result follows because b;, .. ;, and ¢, p are related by a unimodular matrix
with coefficients in Z,, [13] 2.1. O
Consider the natural map A — W (A) which sends X; to the Teichmiiller
representative [1;]. It induces a map:

The p-adic completion of the image of this map consists of the integral Witt
differentials. From Lemma 0.13 we obtain:

Proposition 0.15. The map (0.14) is compatible with the Gauss norms 7
on both sides.

Corollary 0.16. Let w,n € W, Then we have:

Yelwn) > ve(w) +:(n) forw integral

Yown) > Fow)+7e(n) forw arbitrary.

We note that for w integral, v.(w) = Fe:(w). Let f € A, then we have
Ye([f) = v([f])- In particular we find for arbitrary w

(0.17) Ye([flw) = e ([f]) + 7 (w).

Proof. We begin with the first inequality. If n is integral too, we can apply
(0.12). For the general case we may assume that n = V"7 or n = dV" 7 where
T is a primitive basic Witt differential. We note that for primitive 7:

’ys(vur) = U+ Ve /pu (7).
For integral w we have

u

’Ys/p“(F w) = 78(("})'
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If w is not integral we have only the inequality:
7€/pu(Fuw) > e (w) — u.
Then we find using the integral case:

Ye(wWVT) = 75( VEE wT)) > u . /pt For) > .
u+’75/p”( )+7€/p (1) = 7e( )+75/p ( w) Z'YE(V T) + Ve (w).

The case n = dV"“r is reduced to the former case by the Leibniz rule:
wdV ' =d(Ww""T) — (dw)V" 1
VU

Now we verify the second inequality. We may assume that w = ¥ 7 or
w=d""7 for a primitive basic Witt differential. Then we have:

ﬁs(w) = Ve/pv (7-)> and

() = () 2 ut (T )
>+ ey (1) +79=(F'0) = Fe (W) 4+ + 72 (F1) = Fe(w) + 7).
Finally we have to show that v:([f]) = ¥:([f]). We denote by m =

(mq,...,mq) a vector of non negative integers and write:
(0.18) F=YamT™ - TP = anT™
m m

Let g be the total degree of f. Then we have

"e([f]) = —eg.
We enumerate the m with a,, # 0:

m(1),...,m(t).
By Lemma 2.23 in [7] we find:

f] = Z Qo [T]P D1t
ki4...+ki=1

If we take 5. of one summand it is bigger than the degree of this summand
times —e:
Ve (k... o [T] (DT m(D)he) —e(|m(1)|k1 + ... + [m(t)|ke)
—e(gk1 + ...+ gkt) = —eg.
This shows that ¥-([f]) > —eg = v-([f]). The other inequality is obvious.
O

Proposition 0.19. Let f € W(A), f = (fo, f1,-..) be a Witt vector, such
that fo #0. Let w € Wy, be an element, whose decomposition into basic
Witt differentials has the following form:

(0.20) w=>Y_e(&p k7P).
We assume that all weights k appearing in this decomposition have the same
denominator p* with u > 0, and the same degree k = |k|. Moreover we

assume that only partitions P with Iy # () appear and that there is a weight
k and a partition P such that ordy § p = u. The last condition says that
there is k and P such that (& p,k,P) = V"7, for a primitive basic Witt
differential T.
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We can write fw as a sum of basic Witt differentials:

(0.21) fw=>"e(& phP).

Then there is a summand e(&}, p, h, P) such that ordy (&, p) = u, such that
h has denominator p*, and such that Iy # 0. Moreover if g is the degree of
the polynomial fy, then the degree of h is |h| = g + k.

In particular we have the inequality:

Ye(fw) < 7e(w) — e deg fo.
Proof. We write:
f=r+Yp,
where f is a polynomial in X; = [T1],..., Xy = [T}] with coefficients in
W(kz), which are not divisible by p. The degrees of the polynomials fy and
f are the same.

We set w = V"7, where 7 is an integral Witt differential with v,(7) = 1.
Then we have:

(0.22) fo=(F+Vp)" T =""(""F4p™ pr).

We write f = > f; as a sum of homogeneous polynomials of different degree
gi. The maximum of the g; is g. Then the Witt differential n; = " fir is
for each ¢ an integral homogeneous Witt differential of degree p“g; + p“x.
By assumption the reduction of this Witt differential in €4/, is not closed.
The basic Witt differentials which appear in the decomposition of 7; have
weights which are not divisible by p, because the weights appearing in f
are divisible by p but those appearing in 7 are not divisible by p. This shows
that primitive basic Witt differentials appear in the decomposition of each
1;. These can’t be destroyed by basic Witt differentials which appear in the
decomposition of the last summand in the brackets of (0.22), because of the
factor p. If we apply V* we obtain the desired basic Witt differential in the
decomposition of fw. O

Corollary 0.23. With the notations of the proposition consider a Witt dif-
ferential of the form w1 = w + dn, and write

fpwl = Z e(é}}"pa i:L7 P)

Then there is a summand e(fh o ﬁ, P) in the above sum, such that ordy é;l p=

u, such that h has denominator p* and such that Iy # 0. Moreover the degree
of h is |h| = pg + k.

Proposition 0.24. Let fy € A =Kk[T},...,Ty] be a polynomial of degree g.
Let w € WQyp, i, Then we have for the Gauss norm on A:

(0.25) Ve ([folw) = e ([fo]) +7=(w).

Proof. We write w as a sum of basic Witt differentials:

(0.26) w=>Y e
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By continuity we may assume that the sum is finite. By Corollary 0.16 we
have the inequality:

(0.27) e ([folw) = = ([fo]) +7=(w).
We may therefore assume that in the sum (0.26)
(0.28) Ye(w) = 7e(es)

for all i € I. We may further assume that v,(w) = 0.

Let us first consider the case where there is an integral basic Witt differ-
ential e;, in the sum (0.26) such that v,(e;,) = 0. Then we decompose w
into three parts:

w=n+ W+ w//’
where 7 is the sum of those Witt differentials e; in (0.26) which are integral
and such that vp,(e;) = 0, where w’ is the sum of those Witt differentials e;
in (0.26) which are integral and such that vp(e;) > 0, and where w” is the
sum of those Witt differentials in (0.26) which are not integral.

Let e; be a summand in 1 and let k be its degree. By assumption we find:

Ye(w) = Ve(ei) = Vp(ei) — ER = —€R.

It follows that all these e; have the same degree k.

Consider the differential fon € €4/, which is the reduction of [fo]n. If we
write the reduction as a sum of basic differentials in €24/, it must clearly
contain a basic Witt differential of degree g 4+ x. In the decomposition of
[fo]n appears therefore an integral basic Witt differential é of degree g + &
such that v,(€) = 0. On the other hand all basic Witt differentials which
appear in the decomposition of [fo](w' + w") € VIWQ,, +dVIWQ ), are
either integral with v, > 0 or nonintegral. Therefore they can’t destroy
completely €. We found in the decomposition of [fy)w an integral basic Witt
differential ¢’ of degree g + &, such that v,(¢’) = 0. We conclude that

Ye([folw) < 7e(€') = —e(g + &) = 7e([fo]) + 1= ().

Since we know the opposite inequality we obtain the equation (0.25) in the
first case.

Let w be a Witt differential which doesn’t belong to the first case. Then
we write:
(0.29) w=wu) +w(du) + ' + "
where ' is the sum of all e; in (0.26), such that v,(e;) > 0. There is a
natural number u such that the following holds:
(0.30) W' € VW QU 4+ dV T W QY i

and each basic Witt differential appearing in the decomposition of w(u) is
of the form V"7 for a primitive basic Witt differential 7 and any basic Witt
differential which appears in w(du) is of the form d""7. By our assumption
(0.28) we find that for each of these 7:

’YE(W) =u-+ Ve /pv (7—) =U—ER,

where k is obviously independent of 7.
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Before proceeding we make a general remark: It suffices to show the
equality (0.25) in the case where fj is a p-th power fy = gf. Indeed assuming
this we have for arbitrary fo:

Ve ([f51w) = (1)) + 7= (w) = pre(lfo] + e (w).
On the other hand we already know the inequality:

75([fg]w) > (p - 1)'76([f0]) + '76([f0]w)'
We conclude:

Ve ([foD)=(w) = 2=([folw).

Since we already know the opposite the inequality (0.25) follows.

We consider now the second case where w(u) # 0. By Proposition 0.19
the product [fo]w(u) contains a basic Witt differential e(&, k, P), where k is
a weight of denominator v > 0, such that |k| = g + k and ordy £ = u. This
basic Witt differential can’t be destroyed by any basic Witt differential ap-
pearing in [fo]w’, because v, > 0, or by any basic Witt differential appearing
in [fo]w”, because those have reduction 0 in W,,Q4/k. It can also not cancel
with an exact basic Witt differential appearing in [fy]w(du). Indeed since
fo is a p-th power those basic Witt differentials are either exact or have
vp > 0. Therefore [fylw contains as a summand a basic Witt differential
e(n, k,P) where k is a weight of denominator v > 0, such that |k| = g + &
and ordy & = u. This proves the inequality:

e([folw) <u—elg+ k) = 1e([fol) + 7e(w).

This gives the desired equality in the second case.
Let us now consider the third and last case, where w(u) = 0 in (0.29).
Then we rewrite (0.29) in the form:

w=d""oc+uw +u",
where ¢ is a sum of primitive basic Witt differentials of the same degree
p“r, where 7. (w) = u — ex. We assume as above that fo = gf. We find:
(0.31) [fold"" o = d((g5)"" o) — plhol?~ (d[ho])"" o

By Proposition 0.19 we know that [hh]"" o contains a non-closed basic Witt
differential e(§, k, P), where k is a weight of denominator u > 0, such that
|k| = g+~ and ordy € = u. As before we see that the basic Witt differential
de(&,k,P) can’t be destroyed by any basic Witt differential which appears
in [fo]w' or [fo]lw”. It can’t also be destroyed by a basic Witt differential
which appears in the last summand of (0.31), because for them v, is positive.
From this we conclude as before the desired equality (0.25). (|

Corollary 0.32. Let f € W(k[Ty,...,Ty)) = W(A) be an integral Witt
vector with radius of convergence €. Let w € Wy, be an arbitrary Witt
differential of radius of convergence €. Then we have:

'76(];(*)) = '75(];) + Ve (w).
Proof. By Corollary 0.16 we have the inequality:
(0.33) Ye(fw) = 7e(f) + 7o (w).
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For the opposite inequality we may assume that f is a polynomial by con-
sidering the truncations in Wy, 4,,. We write f => ﬁ as a sum of homo-
geneous polynomials f, of different degrees g;. By the inequality (0.33) we
may assume that . ( f ) =7 ( f,) for each i. Moreover we may clearly assume
that vp( f) = 0. With these remarks the proof works in the same way as
above. O

1. SHEAF PROPERTIES OF THE OVERCONVERGENT DE RHAM-WITT
COMPLEX

Let A = Ek[t1,...,t;] be a smooth finitely generated k-algebra, S =
k[Th,...,T,] apolynomial algebra. Then S — A, T; — t; induces a canonical
epimorphism

of de Rham-Witt complexes.

Definition 1.1. We set WTQ;‘/k = image (WTQ:Q/k) under \.

We have seen in Proposition 0.9 that this definition is independent from
the choice of generators and the representation S — A. The same propo-
sition shows that the assignment A — W10, /k 1s functorial. Indeed, given
smooth finitely generated k-algebras A, B as above, and a presentation
k[T,...,T,] - A, we extend this to a presentation k[T, ..., T, Uy, ..., U] —
B such that the following diagram commutes:

A - B

K[Ty,...,T,] — k[Ty,..., T, Ur,...,Uj].

Then it is clear that the induced map WQ,, — Wp/, sends WTQA/k —
WiQpy.

For w € WQ$% Ik @ convergent sum of images of basic Witt differentials in
Wﬂg/k, SO

w=Ye(p.kP)

(k,P)
we know that w is overconvergent iff there exist constants C7 > 0,Cy € R
such that

(0.6) |k| < Chordy, &k p + Co for all (K, P).

We can also express overconvergence on WQ% Ik by using the Gauss norms
{7e }e>0 obtained as quotient norms of the canonical Gauss norms on Wy Ik
that we defined before. An w € Wy, is overconvergent if there exist
e > 0,C € R such that v.(w) > C. If we use another presentation S’ =
k[Uy,...,Us] — A, then the associated set of quotient norms {d.}.~¢ on
W4y, is equivalent to the set {7e}e>0. Here, the notion of equivalence is
defined in the same way as for Witt vectors ([7] Definition 2.12).
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Proposition 1.2. (a) We denote by f € A an arbitrary element. Let d € Z
be nonnegative. The presheaf

WTQCSlpec A/k(SpeC Af) = WTQiif/k‘

is a sheaf for the Zariski topology on Spec A (compare [10] 0, 3.2.2).
(b) The Zariski cohomology of these sheaves vanishes in degrees j > 0,
i.e.
H, (Spec A, WTQCSlpeCA/k) =0.

We fix generators ti, . .., ¢, of A and denote by [t1], ..., [t,] the Teichmiiller
representatives in W(A). An elementary Witt differential in the variables
[t1],- .., [tr] is the image of a basic Witt differential in variables [T1], ..., [T}]

under the map .
Before we prove the proposition, we need a special description of an over-
convergent element z in WTfolf s Let [f] € W(A) be the Teichmiiller

1 1 1
representative. Hence — = | —| is the Teichmiiller of 7 in W(Ay). For the
element z we have the following description.
Proposition 1.3. The element z € VVTfo1 can be written as a convergent
i1k

[e%¢] 1 B
ST

=0

series

where m; is a finite sum of elementary Witt differentials ﬁl(t) in the variables

[t1], ..., [tr], images of basic Witt differentials nl(t) in variables [T1], ..., [Ty]

with weights k} satisfying the following growth condition:
3C1 > 0,C5 € R such that for each summand nl(t) we have

r;+ ]kﬂ < C’lordpnl(t) + O,
Furthermore we require that for a given K > 0,
mtin ordpnl(t) > K for almost all l.
Proof. We use here an extended version of basic Witt differentials to the
localized polynomial algebra k[T1y,...,T},Y,Y '] (compare [11]). A basic
Witt differential o in W, 7, y,y—1)/ has one of the following shapes:

I) a is a classical basic Witt differential in variables [T1], ..., [T;], [Y].
II) Let e(&k,p, k, P) be a basic Witt differential in variables [T1],. .., [T}].
Then

1) a=e(p,k,P)dloglY]
II12) a=1[Y]"e(&p,k,P) for some r >0,r € N
113) a=FdY] (& p,k,P) for some ! >0,pfl, s> 0.

u w w Vu(ll) w
M) a =" (EYPerrpee)d [P e FrtU)grp @ (com-

pare [13], (2.15)).
In particular, for each such o we have a weight function k£ on variables

1
[T1],...,[T;] with partition [y U...Ul; =P,u>0,ky € Z [] ,
Pl<o

u(ky) < u=max{u(lp),u(ky)} (notations as in [13]).
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If Iy = 0, we require v = max{u(l1),u(ky)}.

IV) a = do’ when ¢ is as in III).
It follows from loc.cit. that each w € WQ;[Tl,...,TT,KY-l]/k is in a unique way
a convergent sum of basic Witt differentials. Here convergent is meant with
respect to the canonical filtration on the de Rham-Witt complex.
It is straightforward to show that w is overconvergent iff there exists
C1 > 0,05 € R, such that the basic Witt differentials o appearing in the
decomposition of w have the following properties.

— If « of type I) or of type II 1) occurs as a summand in w, we require

|k < Crord, & p + Co.
— If a is of type II 2) or II 3) occurs as a summand in w then
r+ k| < /C\'Iordpfkp +Cy (with r =1 - p® in case II 3).
— If « is of type III) or IV), then

d
|ky | + Z |kr,| < Crordy, (V¥E) + Cy
j=0
(here) ‘kY| = _kY)‘kIj| = Z k’b)
iE[j
We have a surjective map of complexes:

77777

We may represent the z of the proposition as the image of an overconvergent
w, which is a sum of basic Witt differentials as decribed above. To obtain
the representation of z in the proposition, we expand the images of the basic
Witt differentials o separately.

In case of condition III) we consider the first factor V* (([Y]P"™ [T [P*k1o ).
For simplicity we assume Iy = {J); this does not affect the following calcula-

tions. Let —ky = Lu and [ < I% < [+ 1 for an integer [. We have
p

v (er) = v (e ) = v (et )

- oV () = <fmm+l>

Now consider the image of « in Wfo‘f Ik where

Y=, N U=U" [W - [
1 u U . 1 u U
The factor WV (f[Y](lH)p ) is mapped to 7 1% (f[f](Hl)p )
Represent f as a polynomial of degree ¢ in t1,...,t.. Then it is easy

1 - _
to see that the image of « in WQdAf/k is of the form ———7 where 7] is a

[f]l-l—l
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(possibly infinite) sum of images of basic Witt differentials 7! in variables
[T1],...,[T] with weights k' satisfying

d
.
g<l+1—u> + 3 |k
) =

d
g + Z |k1j|‘
7=0

The case da (type IV) is deduced from the case III by applying d to « and
the Leibniz rule to the image of da in WQdAf Ik So if the image of o as

K|

IN

IA

1 -
above is ———7 then the image of do is

[F]HT
= s LU = s (U1~ L)
_ 1=
"
where 77 is a sum of images of basic Witt differentials 77" in variables T1],...,[T]
with weights k! satisfying
d
t
K <29+ [kl
j=0

We can also compute the images of o in W4 ;. /k Where o is of type I or 11
and obtain again a representation

1~
——1n for r > 0.

71

These cases are easier and omitted.
Now we return to the original element z € WTQ‘f‘f Ik We may write z as

a convergent sum
o0
z= E Wins
m=0

where w;, is an elementary Witt differential being the image of a basic Witt
differential a, iIn Wyp, 1, v,y—1% of type I, I, IIT or IV.
In all cases we have a representation
~ 1 =

Wi = mn

an

where %m is the sum of images of basic Witt differentials 7, in variables
[T1],...,[T] with weights k!, such that

rom + kL] < Crord,, (i) + Ca + 2(g + 1).

Now consider - for a given integer N - the element z modulo Fil"V, so the
image z\N) of z in

1
WN e = W @ Wa(4) {U’J '
Wi (A)
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b(N)
One then finds a lifting z(N) of Z™) in W4, /k such that 2N = 3w, is
m=0
a finite sum, i.e.

oo Lo
™

where now 7,,, is a finite sum of images of basic Witt differentials 1!, in
variables [T1],...,[T;] satisfying the growth condition

T+ [ky,| < Crordy(ny,) + Co

with C7 := CN'l, Cy = CN'Q +2(g+1).

The elements ) can be chosen to be compatible for varying N and we
have z = lim z(N). Tt is clear that the second condition of the lemma is also
satisfied, this finishes the proof of Proposition 1.3. O

Remark. It will later be convenient to express the assertion in Proposition
1.3 using Gauss norms. Let {V:}e>o be the set of Gauss norms on Wy,
obtained as quotient norms from the canonical Gauss norms on Wlg . using
the presentation S — A. Let {:}e>0 be the set of Gauss norms on WQAf/k

obtained as quotient norms using the presentation S = kTy,...,T,,U] —
Ap, Ty =, U = % We now define another set of Gauss norms as follows.
Forw e WQAf/k we consider the collection of all possible representations

(%) w = Z[f]_lnb Jorm € WQa s,
1>0

such that for a given t, almost all m; are zero in Wi11€Q /.. We set
7 (w) = sup{inf{rz(m) — le}},

where the sup is taken over all possible representations (*). Then Proposi-
tion 1.8 is equivalent to the assertion that the set {7§u°t}€>0 is equivalent
to the set {0c}es0. Equally, we will obtain an equivalent set of Gauss norms
{VL}es0 if in the above definition we only allow representations such that the
exponents of f are all divisible by p.

Now we are ready to prove Proposition 1.2.

As WQ* is a complex of Zariski sheaves we need to show—in order to prove
part (a) of the proposition—the following claim:

Let z € WQ9 Ik for some fixed d, let {f;}; be a collection of finitely many
elements in A that generate A as an ideal. Assume that for each ¢ the image
z; of z in WQifi/k is already in WTQiiqfi/k' Then z € WTfol/k.

Let [f;] be the Teichmiiller of f; with inverse ﬁ = [%]

Lemma 1.4. There are elements r; € W1(A) such that > ri[f;] = 1.
i=1
Proof. Consider a relation Y a;fi = 1 in A. Then Y [a][fi] = 1+ "y €
i=1 i=1
WT(A). By Lemma 2.25 in [7],
(1+Vn) e Wi(A).

Define r; = (1 + V)™ - [ay). O
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Lemma 1.5. For each t there are polynomials Q;[Th, ..., Tey] in 2n vari-
ables such that

(1) degree Qi < 3-nt
(2) lnlei,t ([fl]v"'7[fn]7r17"'7rn) [fi]tzl

For the proof of this lemma, compare [16].
We know that Spec A = U {D(f;). For a tuple 1 <i; < -+ < iy, <,
let 84, ;. = ﬂ;”le(fij). Fix d € N and let

C™ = C™(Spec A, WTQ4 )
= O1i<<insnW U, g,
= Bi<iy<-<ipm<nl (Liy i s wt QA/k)
Then consider the Cech complex
0+C'—C'—=C*—
We have C° = WTQZ/k and C° — C' is the restriction map WTQ‘Z‘/,C —
wiqd Ar Ik for all 4. It is then clear that Proposition 1.2 follows from the

followmg
Proposition 1.6. The complex C*® is exact.

Proof. The proof is very similar to the proof of Lemma 7 in [16]. We fix as
before k-algebra generators t1,...,t,. of A. Suppose 0 € C"™,m > 2, is a
cocycle. Then ¢ has components

Tiy.im € F(i’(’i1-..im7 WTQCSlpeCA/k) = WTQfl‘lfil»-»fim/k‘

Applying Proposition 1.3 we see that o;,..;,, has a representation as an
overconvergent sum of Witt differentials as follows: oy, i,, = > o M,
with

o 1
MIZI.“Zm _ - 70 a finite sum

< [Fipan ] 00

where [fi, .17 == [fi,)? - [fzm] 77lZl 4, 1s a sum of images of basic Witt
(]‘) in variables [T1],...,[T,], (T; — t;) and weights )

el liy...im

differentials 7
satisfying

B j+ k9 < C(ord, ndd - +1)

li1...im 1i1...im

ii) lzordpn(A ge) - > —1.

li1...9

Notation: We say that M;" """ has degree < C(l + 1).
We shall construct a cochain 7 so that 7 = 0. The reduced complex

C*/FI*C* = C*({D(fi) }is Wnsy 1)

is exact. We will inductively construct a sequence of cochains

Tk = g Tkit...im—1

1<i1 <+ <tm-1<n



OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 19

such that the sum
o
s
k=0

converges in C™~! to a coboundary of o. The 75, are chosen to satisfy the
following properties:

(1) o( 2;10 7) = o modulo Fil2' -1 cm
ok
(2) T0ir iy € WIQay i and 7iy i,y € FIETIWIQ, oy
for k£ > 1.
(3) Thiy.ipy 1 € Wﬁ%k [fil, - s [fn)smiy ooy T, ﬁ} to be under-

11...im_1]

stood as a polynomial in the “variables” [fi],...,[fn],71,..., 7 and

TE— with the coefficients being finite sums of elementary Witt
741...2",/_1

differentials in [t1], . .., [ty] such that the total degree (with [t1], ..., [t;]
contributing to the degree via possibly fractional weights) is bounded
by 24nC2*. We write degree Thiy i1 < 24nC2F.

k+1 n
(4) (i) hiy iy € WO, [[fﬂ,-..,[fn],ﬁw--ﬂ“mW]
with degree [f;, ]2 i, i, < C26F1 4 24n 02k,

Then (2) implies that all the coefficients 1 of the polynomial representation
(3) satisfy ord,n > 2% — 1. Also (1) implies that O(3 2o, 7x) = o. Using (2)
and (3) we will show that > 7 7 € C™71, i.e. is overconvergent.
Define elements o4, ... i, € WQ%f_ ; for n > 0 by
ig

Jim

2s+t1_1

o i1.eim
O8i1,eyim = E M, .
a=0

19s+1
Then o4, i, = 04y, mod Fil? ™ and degree Oy, iy < C22FL,
Define the cochain 79 € C™ ! by

n
§ : 2

TOiy i1 — ai,ZC[fi] CUOil,...,imi‘
=1

Suppose we have constructed, for some integer s > 0, cochains 7, € C™ 1
for 0 < k < s satisfying (1) — (4). Then we construct 75 as follows: Let
Vsitoimn = Osiroonrima — O 2;%) Tk)iy.im- We see that v, i € Fil>’~ 1 o™ is
a cocycle modulo FilZ 1 ™ and degree Yo, < 24nC251,

Define

n
C2st1
Tsiy i1 = ZQi,CQerl[fi] Vsigrrign_1i-
i=1

Then )y _, 7% satisfies (1) by ([EGA], II1.1.2.4.). We have

s+1 128
197 Asin i vi € WTQAfi1 NFIF T Wi,

flm—]

=Fil* Wiy,
i

”fimfl
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and therefore 75, ; , satisfies (2) (we have used (4) for 7,k < s). More-
Over, Tsi,..i,_, has total degree bounded by

24nC2°~ 1 + 3nC25t + 025 < 24nC2°

and 7, satisfies (3). It is straightforward to show property (4) for 75. There-
fore it remains to show that ) -, 7% is overconvergent. This will be derived
from properties (2) and (3) as follows.

It follows from (3) that 7g;,. 4, , can be written as a finite sum 7, 4, , =
S, rIM; 1, where I runs through a finite set of multi-indices in N2, r/ =

ri‘l . -7'7);" for I = (A1,...,\n) and M, is a finite sum of images of basic
Witt differentials w’ in variables [T1],...,[T;], [Y1],-- ., [Yn], [Z] with
m—1 1
(73] = [t3), Y] = [£1], (21— T]
]:1 [flj]

with weights k! satisfying
[I] + kY| < 24nC2° = C'2°
(C'":=24nC) and

ord,w! >2° — —(C’ 2%) —

Q

(%)
(II\ +[k5l) —

Q \

For fixed I and varying s we get a sum

ZTIMSJ = T‘IZMSJ.
S

S

Because of the condition (*), wy = )" M, is overconvergent with radius of
S

convergence £ = % and

. 1

72, (wr) 2 -1

Here 4 is the quotient norm of the canonical 7. on Wy r, T Yo Yo Z) R
We now look again at the definition of r;. There exist liftings 7, 7; of 1, r;

in W1(S) and @; of a; in S where 7 is a finite sum of homogeneous elements

such that

L
c’

= (1+ ") " [ai]-

1
For § := %, there exists € > 0, Vol > ¢ such that

A ERY
because we have a finite sum of homogeneous elements. By [7] Lemma 2.25,

Ve (r;) > —0 as well.
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Let w; be a lifting of w; in WTQk[Tl,...,Tr,Yl,...,Yn,Z}/k such that 4.(wy) =
Ye(@r). Then we obtain by Corollary 0.16,

Ae(rlwr) > (P @r)
> Ye(@r) + ()
= Fe(wr) +5:(F)
z 9y (wr) + 7=
> ST — 14 |1(=6) = —1.

[o.¢]
As this holds for all I, we see that ) 74,. 4., is overconvergent with radius

of convergence €, and hence Propos?tion 1.6 follows, and so does Proposition
1.2. O

Remark. The above final arguments in the proof of Proposition 1.2 are very
similar to the proof that WT(A) is weakly complete in the sense of Monsky-
Washnitzer (compare [17] and Proposition 2.28 of [7]). Hence WTQdA/k sat-

isfies a certain property of weak completeness in positive degrees as well.

Corollary 1.7. The complex WTQSpecA/k; defined for each affine scheme

as above, extends to a complex of Zariski sheaves WTQX/kon any variety
X/k.

In the remainder of this section and the next, we prove the following.

Theorem 1.8. Let X be a smooth variety. Then WTQB(/k: defines a complex
of étale sheaves on X.

Proof. As WTQB( Ik is a complex of Zariski sheaves on X, the problem of

being a sheaf on the étale site is local on X. By a result of Kedlaya [12] any
smooth variety X has a covering by affine smooth schemes Spec A which
are finite étale over distinguished opens in an affine space Ajl. It therefore
suffices to show that if A is a finite étale extension over a localized polynomial
algebra, A’ a standard étale extension of A, then an element z in WQdA Jk

that becomes overconvergent in Win, Ik is already overconvergent over A.
By localizing further we may assume first that there is an element f in A
such that A’ is finite étale over Ay, of the form A’ = A;[X]/(p(X)) for
some monic irreducible polynomial p(X). The following proposition reduces
the argument to the case Ay = A'f; hence we will need to show

Proposition 1.9. Let B be a finite étale and monogenic A—algebra, where
A is smooth over a perfect field of char p > 0. Let B = A[X]|/(f(X))
for a monic irreducible polynomial f(X) of degree m = [B : A] such that
f/(X) is invertible in B. Let [x] be the Teichmiiller of the element X mod
f(X) in W(B). Then we have for each d > 0 a direct sum decomposition of
WT(A)—modules

wiog . = wiog , e Wiag 4l e... e WiQg [z "
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Proof. From Corollary 2.46 in [7] we know that this proposition is true for
d=0:

WH(B) is a finite WT(A)-module with basis 1, [z], ..., [z]™"!. There is a
unique lifting f(X) € WT(A)[X] of f(X) such that WT(B) = WT(4)[X]/f(X)
and f'([x]) is invertible in WT(B). In particular WT(B) étale over WT(A).

Let f(X)=X"+a, 1 X™ 1 +...+a1X + ag, with a; € WT(A) and

1
— = 12| 4+ e[z] 4 co,

f'([x])
with ¢; € WT(A).
When we consider an element z in WTQ% Jk with radius of convergence

e > 0 we will always assume that e is small enough such that all aj, cj,
j=0,...,m—1arein W¢(A).
The equation

f([:v]) = [2]™ 4 a1z .. Farz] Fag =0

(note that f(X) is the minimal polynomial of [z] over WT(A)) implies that

d f([z]) = 0.
Hence we get
F([=)d[z] + dam—1[z]"" + ... + dai[z] + dag = 0.
As (]?’([:U]))_l has coefficients in W¢(A) and W¢(A) is a ring we see that

dlz] = _f’(l[m]) (dam—1]z)™ " + ... + das [2] + day)
m—1
— Z Njday[x) with \jj,a; € WE(A).

1,j=0
The elements a; € W¢(A) are homogeneous as they are elementary symmet-
ric function in the [t;], where [t;], 7 = 1,...,m are the roots of f, lifting the
roots t; of f.

We have \jjda; = d(a;\ij) —a;dX;j by the Leibniz rule. The elements a;\;;
are in W¢(A), hence d(a;\;;) € Wsﬂi/k. As a; is homogeneous, the element
ajdXj is in Waﬂh/k as well (Corollary 0.16). So we get

d[z] € Wsﬂh/k D...0 Wsﬂh/k[w]mfl.
One proves similarly that

dlz) € W & ... & WYy [a]™ .
foralli, 1 <i<m-—1.

Let b1,...,b, be generators of the k—algebra A and z € WTQ%/k be an
overconvergent sum of elementary Witt differentials z; in variables [b1], ...,
[br], [x] with 7¢(z;) > C for all 4. If in z; the variable [x] occurs with integral
weight k, we may assume 1 < k, < m — 1. If [x] belongs to the interval I
with underlying partition P corresponding to z;, then evidently z; = n;[x]**

with 7; an elementary Witt differential in the variables [b1],...,[b,] with
Ye(ni) > C. If [x] occurs with integral weight k,, 1 < k, < m — 1 and
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belongs to the interval I, j > [, then after applying the Leibniz rule and
the previous case we see that

zi = w; + mid[z]*
with w; € W‘Eﬂj/k@ .eWwe QA/k[ ™ Landn; € WanA/; with v-(n;) > C.
In addition, all coefficients w(] ) in weQd /i satisfy 7. (w; Y )) > C. We may

also assume that all coefficients Bi(j of d[z]" in WeQ!, g foralll <i<m—1
satisfy vg(ﬁi(j)) > C'. Then,

midlz]* € W2Q4 & .. o WaQ) [z

(

and we have for all coefficients d,’ ) ¢ WiQd Ak that occur in this represen-

tation of n;d[z]* that
vz (67) > C.

m—1 '
Now we use [7] Corollary 2.46. If « = ) &' € We(B) satisfies v.(a) > C

=0
then & € W#(A) with 7.(&) > C’ and C’ only depends on C and ¢; wlog
C'<C.
Assume that in an elementary Witt differential z; occurring in the over-
convergent z we have
=V dw
i

tlg 1 <m — 1. Then
b

and [z] occurs in n with fractional weight k,, k, =

applying the above fact we see that
zzGWQA/k @WQA/k[] m-1

and the coefficients 21( 2 satisfy v.(z; Y )) > (.

If [z] occurs with fractional welght ky in an interval I;, j > 1 of the
underlying partition of z;, then by combining the previous cases we see that

eWEQY L &... & W2 fa]™!

and all coefficients z( 2 satisfy v (2 (j)) > (.

This implies that the original z € WeQ% s With Ye(z) > C has a repre-
sentation

>—‘

m—

Z oil2] € W3Q ... @ WEQY [2] !
=0

with v¢ (07) > C' for all i = 0,...,m — 1.

On the other hand, by possibly applying the Leibniz rule repeatedly, it is
clear that an element in

W4 e ... e Wiy e

can be represented as an overconvergent sum of elementary Witt differentials
in variables [b1],...,[b], [z], and hence lies in WTQY, si- This finishes the
proof of the proposition. O
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Remark. Note that the isomorphism in the proposition is a restriction of
the isomorphism

m—1
WQg, = W(B) Q) W, = @ W la)f
W(A) i=0

for the completed de Rham-Witt complex. As W(B) is finite étale over
W (A) if B is finite étale over A, this latter isomorphism is a consequence of
étale base change for the de Rham-Witt complex of finite level, by passing to
the inverse limit (compare [13] Proposition 1.7 and Corollary 2.46 in [7]).

To prove the theorem, it remains to show that
(1.10) wag , nwtag  =wrag,

for a k—algebra B which is a finite étale extension over a localization Ay
of a polynomial algebra A = k[T},...,T,], and some g € B. After possibly
localizing again, we may assume wlog that ¢ itself is in the polynomial
algebra. After applying Proposition 1.9 again, we reduce the proof of the
étale sheaf property to the case where B = Ay. That is, we need to prove
(1.10) in the special case B = Ay and g € A. This will follow from a further
careful study of the Gauss norm properties on the de Rham-Witt complex
of the polynomial algebra A and a localization Ay, done in the next section.

2. GAUSS NORM PROPERTIES ON THE DE RHAM-WITT COMPLEX OF
LOCALIZED POLYNOMIAL ALGEBRAS

We will consider the Gauss norms on the truncated de Rham-Witt com-
plexes Wi 14/, and Wi1€Q4, /x (and also Wi 11924, /x) and describe over-
convergence on the completed de Rham-Witt complexes via these truncated
Gauss norms. Before we can do this, we need to review a few more properties
of the de Rham complex €2, for the polynomial algebra A = k[T1, ..., Ty
over a perfect field k of characteristic p > 0.

We recall the basic differentials e(k, P) from (0.1):

dT*n dT*n
_ ik [ R
(21) e(k’, P) = T"o <pordp kll ) (pordp k]l > .

A basic differential is called primitive if Iy # () and if the function % is not
divisible by p.
Proposition 2.2. Let ¢(k,P) be a primitive basic differential. Then for all
1<j<d

T7e(k, P)
is a linear combination of primitive basic differentials with coefficients in k.

Proof. Let Iy = {i1,...,it}. Let I} = {i1,...,is} C Ip be the subset of all
indices i, such that ordy k;,, = 0. Let I/ be the complement of I} in .
We have Ij) # () but possibly 1] = 0.

Consider the case where j = ip, € Ij. We define &’ such that k] = k;,, +p
and k; = k; for all other indices. Then Suppk = Supp k' and the chosen
order on these sets is the same. From this we see that

T7e(k, P) = e(K', P).
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Now we consider the case where j doesn’t belong to I). We write

e dT*"
J 0 pordp kr, | pordp kr,

as a linear combination of basic differentials e(h, Q) for possibly different
partitions Q. Let ¢ be the weight such that ¢(j) = p and such that ¢ vanishes
on the remaining indices. Then h = k + ¢.

Consider the subcase where ord, k; = 0. Then j must belong to one of
the sets Iy, ..., I, and therefore j must be bigger than any of the indices
appearing in I{). Then

TG e(h, Q)
is a primitive basic differential for each partition Q. Its weight function k”
is the sum of ks (the restriction of &k to I)) and h. That we obtain a basic
differential follows from the fact that for the order given by k” any element
of Ij) precedes any element in Supp h.

This last sentence is still true in the subcase ord, k; > 0, because this
implies ord, h; > 0. This finishes the proof. O

We consider 24/, throughout this section as an A-module via restriction
of scalars by F': A — A. We will say that we consider {24/, as an A — F-
module.

Proposition 2.3. Let P' C Qi‘/k be the k-subvector space generated by
primitive basic differentials. We have a direct decomposition:

(2.4) Oy, =P @dP™ o FQY ;.

Each summand on the right hand side is a free A — F-module which has a
basis comsisting of basic differentials

Proof. The decomposition (2.4) is direct because the second k-vector space
is generated by basic differentials whose weights are not divisible by p and
such that we have Iy = () in the partition while F’ Qi‘ Ik is generated by basic
differentials whose weights are divisible by p.

It follows from Proposition 2.2 that P! is an A—F-module. Then the other
two summands of (2.4) are clearly A — F-modules. Therefore all summands
are projective A — F-modules. All summands are graded by the absolute
value of weights and are therefore graded A — F-modules. Let a be the ideal
of A generated by Ti,...,Ty. A basis of the A — F-module P! is obtained
by lifting a basis of the (graded) k-vector space P'/FaP!. This proves the
last sentence of the proposition. O

Next we consider the de Rham-Witt complex W, /,. We denote by Fil"
the kernel of the canonical map W/, — W, 4. It is an abelian group
generated by the basic Witt differentials e(, k,P) such that ordy & > n
(compare [13]). We set:

GV =Fil" W,/ FI" T Wl .
We consider it as a W(A) — F-module. Clearly the module structure factors

via W(A) — A. We consider throughout this A-module structure on G".
On G° = Qi‘ Ik it agrees with the A — F-module structure considered above.
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The A-module G™! has a direct decomposition into free A-modules:
Gl = VrPLopV P g - g p P!
(2.5) @dV"Pl @ pdvn TIPSl g - @ phd P!
ep" F QlA Ik
This follows from Proposition 2.3 and the decompositon of W,/ defined

by basic Witt differentials. It is clear that each summand has a basis con-
sisting of basic Witt differentials.

Proposition 2.6. For each n > 0 there is a family wi(n) e Fil" Wﬁg/k
of basic Witt differentials, where i runs through some finite index set J,,
satisfying the following:

For each n the elements wgn) for i € J, form a basis of the A-module
G™t.

A Witt differential w € Wt+1Qf4 Ik has a unique expression

(2.7) w = Z Z F[ng)]wi(n)a

n=0:cJ,
where agn) €A
Moreover the truncated Gauss norm ~.[t] is given by the following formula:

(2.8) Pelf](@) = min {p(a]"”) + e (i)}

)

Proof. For a fixed n and each of the summands of (2.5) we choose basic Witt
differentials in Fil™ which form a basis of this summand as an A-module.
Therefore we obtain a basis wl(n). Then we write:

w = Z Fal(o)wgo) modulo Fil* .
i€Jg

Then we consider the Witt differential

wl)=w—Y Pl e Fil'.

i€Jp
Then we consider w(1) € G and express it by the chosen basis of this
A-module. This process may be continued to obtain the expression (2.7).
Finally we have to prove the assertion about the Gauss norm. We consider

first the case of a differential w € G™ C Wit1Q4/,. We decompose w
according to the decomposition (2.5):

w = E Win.-

Since the decomposition (2.5) is defined by a partition of the set of basic
Witt differentials we deduce the formula:

Ye[n] (Z Wm) = mniln{')’e (wm) }-

Let us denote by S an arbitrary summand of the decomposition (2.5). All
nonzero elements o € S have the same order ordy ¢ = 0g. As explained, S
is a free graded module over A:

S=Eps.,



OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 27

such that S; has a basis of basic Witt differentials whose weights have ab-
solute value . We find that for z € S, such that z # 0:

Ye[n](z) = 05 — et.
Now we assume that z = > ¥ agn)wgn). Since S is free we deduce from this

the formula:
() FalMw™) = min{re (Fal) + 7 (w™)}.

Now we consider the element w € W;11€ 4/, with the expansion (2.7). We
set Y[t](w) = C. Then we have:

C < 9e[0)(w) =% [0) 3 Moy e”) = min{re("af”]) +7e(”)}-
On the other hand we have the inequality:
et Pl = min{ae (") + e (™).
We obtain that
w =" Flaw”) > [l (w) = C.

Applying the same argument to w(1) = w—>_F [ ] ©) ¢ Fil! we find that
in the decomposition (2.7) the following mequahty holds:

e (F1a™)) + 1 ™) > .

But on the other hand we have:
t

O =23 Y Fla™ ™) > min {r.("a”]) + 7).

n.ai€Jp
This proves the last assertion. O

Remark. Let f =Y aTr € A, where ay € k, be a polynomial. We set
f =Y [ax][T)* € W(A). This is an integral Witt vector which lifts f. We
can replace in the proof the Teichmiiller representatives [a, (n )] by a(n), and the

F(n)

. Then we obtain a unique expression:

(2.9) W = Z Z Faz(n)wz(n)7

The Gauss norm is given by the formula (2.8).

element '[a; (n )] by the element 'a;

Our next aim is to prove a similiar proposition for the localization Ay of
the polynomial algebra A = k[T},...,T,| for an element f € A. We write
0 =degf.

Let w € W1y sk We have seen that an admissible pseudovaluation
vL[t] on this de Rham-Witt complex is obtained as follows. We consider all
possible representations:

(2.10) w=Y _(m/If]"), wheremn € Wi1Qupp.
l

Then ~.[t](w) is the maximum over all possible numbers

min{~.[t]m — elp}.
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There is always a representation where this maximum is taken. Such repre-
sentations will be called optimal. The following inequalities are immediate:

Y(w) < ALt —1](w)
Y[tl(w) < 5t (w) for €>6.

We could also consider all representations of the form w = Y=,(m/[f]))
without the extra factor p. Then we denote by 4. (w) the maximum of the
numbers min{~:[t]m — el}. We will use this Gauss norm only for the Witt
ring.

We write Fil}" = Fil™ Wy ;+/k- By ¢étale base change Fil}" is obtained
from Fil™ by localizing with respect to [f].

Lemma 2.11. Letw € Filf". Then there is an optimal representation (2.10)
of w such that n; € Fil™.

Proof. The case m = 0 is trivial. We assume by induction that there is an
optimal representation such that 1, € Fil™ !, Consider the residue classes
of i of m; in G™~ ! = @,Gm L = Film_l/Film. We use the abbreviation
0:(M1) = e[t — 1](n). Clearly we have that d.(7;) > ~:[t](n). Then we have
in G™~! the relation:

M
(2.12) (/111 = 0.

=0

l

We may assume that 775, # 0 and that M is the minimal possible value for
all optimal representations. Then we have to show that M > 1 is impossible.
We see that 77y, is divisible by [f]. Then we write:

v = [f]7.

We obtain that §.(7) —ed = 0.(7ar). We may lift 7 to an element 7 € Fil™ !
such that ~.[t](7) = 0:(T). We write:

ny = [flT+p, where p € Fil™".

Since Y [t]([f]7) = 7e(T) — €0 = 0:(T) — €6 = 0¢(1m) = Ve(nar) we conclude
that 7:(p) > v:(nar). Now we consider the equation:

(mad/LF1M) = (/[0 + (o /LAM).

Inserting this in (2.10) we obtain again an optimal expression, since:

Ye(r) = (M = 1)e > ~e(nm) — Me
Ye(p) — Me > v.(nar) — Me.

Reducing this modulo Fil"™ we see that the number M became smaller. [

Lemma 2.13. Let w € Gt C Wt+1QAf/k. Then w has a unique expression:

w= ZF[Ci]wgt), ci € Ay.

Then we have:
!

L) = min{piL(ei) + (")),
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Proof. Since G! is a free A — F-module it is clear that the localization is a
free Ay — F-module with the same basis. From this it follows that such a
decomposition exists.

We choose an optimal representation:

(2.14) w=Y (m/[f1")
l

By the last lemma we may assume that 17, € G*. Then we find for n; an

expression:
n = ZFaile(t), a; € A.
Therefore we obtain by definition and Proposition 2.6:
(2.15)
2] (w) = minfr (Y aaw)”) - elp} = min{pr(aq) + 7e(w)”) - elp}.

We set

™ =57/ 1h.
l

We can assume that this expression is optimal for 4.. Because in the other
case we could insert the optimal expression in the equation:

(2.16) w="3"(3" Fau/ Ty,
il
This would make the right hand side of (2.15) bigger. But then (2.16) would

again be an optimal expression of the form (2.14).
(n)

We obtain &é(c(n)) = min{v:(a;;’) — el}. This shows the last formula of

i
the lemma. 0

Let ¢ € Ay be an element. We choose an optimal representation:

c= (a/f").
We set:
(2.17) e=Y lal/[f]' € Wi (4y).
We find
ALlEl(e) = A(e).
But the other inequality is obvious since 4.[t](¢) < 4L[1](¢). Therefore we
have an equation:

(2.18) Felt (@) = 42 (e)-
In the same way we obtain:
e[t (@) = vz (e)-
Indeed we have:
(2.19) vL(Fe) = piL(c) force Ay

To see this we can reduce to the case, where f is regular with respect to one
variable. Then one uses that reduced representations are optimal.
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Proposition 2.20. With the same notation as in Proposition 2.6 consider
a Witt differential n € Wt+1QAf/k. Then there is a unique decomposition:

n= ZFégn)wZ(n), cl(.n) € Ay

The truncated Gauss norm is given by the formula:
L[1)(n) = min{p3, (ef") + 7 (")),
Proof. Since t is fixed we will set 7. = ~/[t] Consider an expression in Fil™:
z= Z Fégm)wfm).
We claim that:
(2.21) 7(2) = ALlm](z) = minfsL (™) + 7w}

Indeed, the second equality follows from Lemma 2.13. We see easily that
vL(2) is greater than the right hand side of (2.21). Indeed, we choose optimal

(m)
cgm) = Zail/fl.
l

. m
representations for ¢; ’:

We obtain:
2= laalw™ /1117 = > laalrwi™)/ (1],
1 [
This shows that
Y(z) = mingye (5 laalPw™) — Ipe}
= min{min;{pv-(ay) + ’ya(wl-(m))} — Ipe}.

The last equation follows from Proposition 2.6. By definition we have the
equation:

(m)y
7

p’AYa(C = min{'Ya(ail) - lE}'

This shows the inequality:
1L(2) 2 min{yL (™) + e (™)) = Llm](2).
On the other hand we have v.(z) < 4/[m](z), and this proves the equality

(2.21).
As in the proof of Proposition 2.6 we find an expansion with the desired
properties. U

Remark. Consider the natural map B = k[T, ..., Ty, S] — Ay, which maps
S to f~1. We have defined the overconvergent Witt vectors WTQAf/k as the

image of WTQB/k by the canonical map:
(222) WQB/k: — WQAf/k:-
Assume that we are given w € WQAf/k, such that there is a constant C' with

(2.23) (@) > C
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or allt > 0. We claim that w € WTQ 4, ... By the unicity statement of the
£/
last proposition we have an infinite expansion:

w = Z Fél(n)wi(n).
n
As in the proof above we take optimal representations:
(n) _ (n) /el
¢, = Z a;’/f"
l

Then we find a convergent sum in the Fil-topology:

w= 3> laplrw™) /111",

l i

where py:(al}) — elp + ’Ya(wz(n)) > C. But then

> lanre™)Is) € W,
l 7
is clearly an overconvergent Witt differential which lifts w. Conversely the
condition (2.23) is clearly fullfilled for an overconvergent w, because 7. is
equivalent to the quotient norm induced by (2.22).

Corollary 2.24. Forn € Wt+1QAf/k we have the equation:

Velt + 1] (pm) = 1+ L[] ().
Proof. We note that the proposition holds for each set wgn) € Wy, of
basic Witt differentials which for each given n induce a basis of G™ as A— F-
module. But clearly pwi(n) is part of a basis of G"*! consisting of basic Witt
differentials. This gives with the notations of the proposition:

ALl + 1)(m) = AL T (™)) = min{pe(ef”) 4 e (o)}

This proves the result. O

Proposition 2.25. Let f,g € A be two non-zero elements without common
divisors. There is a constant QQ > 1 with the following property. Let t be a
rational number and let € > 0 a real number. We denote by v. = ~L[t] the
natural Gauss norm on Wt+1QAf/k and by ~” the natural Gauss norm on
Wir1Qa,, k-

We denote the image of a Witt differential w € Wt+1QAf/k in Wt+1QAfg/k
by the same letter. Then the following inequality holds:

Vo) > W)

(220) Vg 2 )

Proof. We begin with the proof of the first inequality, which is the nontrivial
one. We may extend the ground field k£ and assume that k is infinite. After
a coordinate change we may assume that f and g are regular with respect
to T7. Consider an element ¢ € Ay with the reduced representation

c:Zal/fl.
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If we regard c as an element of Ay, it has the reduced representation:

c=> (ag)/(f9)"

We have defined a lifting ¢ € W (Ay) of ¢ (2.17). This coincides with the
lifting ¢ € W (Ayy):

Y lal/If) = (gD /([ f9])'-

We set C' = ~4”(w). By Proposition 2.20 we have the expansion:
(2.27) w=Y MM, e Ay
i,
Since the ¢ with respect to Ay and with respect to Ay, means the same (2.27)

is also the expansion of w with respect to Ay, according to Proposition 2.20.
Therefore we conclude that:

C = min{p’yé’(cgn)) + ’yg(wz-("))}.

By Proposition 1.30 of [7] there are constants which depend only on deg f

and deg g, such that the pseudovaluation 47 on Ay (respectively 47 on Ay)
compare to the p-functions:

Qu'(c) = Aile) = Qopl(c) force Ay,
Qup'(d) < A(d) < Qop(d) forde Agy.

If ¢ € Ay has denominator f", then c regarded as an element of Ay, has
denominator (fg)™. This shows the equality

p'(c) = 1"(c).
We find the inequalities:
F(e) < Qap”(c) = Qap/(c) < (Q2/Q1)7%()-
We set Q = max{1,(Q1/Q2)} and rewrite the above inequality:
A (e) < @;/Q(c), forc e Ay.

From this we find:

PL1o(E™) + 1o j0w™) = pi(e™) + 7: (™) > C.

Using Proposition 2.20 this implies the first inequality (2.26).
The second inequality is straightforward: We choose an optimal represen-
tation of w € Wt+1QAf/k with respect to €

w=n/IfI", m € Wi1Qay.
From the representation
w=mg"?/[fgl", mE Wir1Qap
we obtain that:

WioWw) = vesqmlgl?) — lpe/Q
= Ye/0(m) — Ipe(degg +1)/Q
> ye(m) — elp = vi(w).
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Using the remark before Corollary 2.24, we see that Proposition 2.25
implies the claim in (1.10) and finishes the proof of Theorem 1.8. U

Corollary 2.28. With the notations of the proposition we have the inequal-
1ty:

(2.29) Ye([gfw) < ALge(w) + pe/Q.

Let c € Ay, such that ¢ # 0. Then there are constant C,Q € R,Q > 1 such
that for every w € Wt+1QAf/k.

T2 (elew) < A, () + C.

This shows in particular that an element w € WQAf/k is overconvergent if
for some ¢ € Ay, c # 0 the element [c]w is overconvergent.

Proof. We begin to show the inequalities:
gw) = Yhw) —pe
Y([fPlw) < Al(w) + pe.

To verify the first of these inequalities we choose an optimal representation:

(2.31) w=>Y m/lf".
l

(2.30)

After dividing by [f]P we conclude:

AL () = minfe () = (L4 Dpe} = 2L(w) = pe.

From this we deduce formally the second inequality:
1
Velw) = vé(ﬁ[f]pw) > YL ([fPw) — pe.

Let h € A be arbitrary. If we multiply (2.31) by [h] we obtain the inequality.
(2.32) Ye([hw) = 7e(h) + 72 (w).

As above we obtain from this formally:
(2.33) i) < 2e) =1
Using (2.30) for 47 and the proposition we obtain:
1210(91FPw) < ALg(w) +pe/Q <AL jge(w) + pe/Q-
But on the other hand the proposition shows:

1210(91Fw) > AL([g]Pw).

This shows (2.29).
For the last statement we remark that it is true for [¢], if there is an
h such that the statement is true for [hc]. Indeed this follows from (2.32).

Therefore it suffices to assume that ¢ = g, where g has no common divisor
with f. This case is easily deduced from (2.29) and (2.30). O
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3. COMPARISON WITH MONSKY-WASHNITZER COHOMOLOGY

Let B/k be a finitely generated, smooth algebra over a perfect field k of
char p > 0. Let B be the weak completion (in the sense of [17]) of a smooth
finitely generated W (k)-algebra B lifting B. To begin this section we prove
the existence of a map o : Bt — WT(B) which we call an overconvergent
Witt lift. 1t depends on a choice of Frobenius lift F' and is the same as
the map tp : BT — W(B) described in [11]. We must prove that this map
has image in WT(B). We do this first for the case of a polynomial algebra
(and any choice of Frobenius lift), and deduce the general result easily by
functoriality.

Proposition 3.1. Let A = k[T1,...,Ty] and AT = W (k) (Ty,...,Ty)". Fiz
a Frobenius lift F on AT, Then the map tr defined in [11] p. 509 (and
recalled below) has image in WT(A).

Proof. Let a € AT have the form

DI SRRy
keNd

For € > 0, we define a Gauss norm on At by
Ve(a) = i%f{ordp ar — elk|}.
We define
WH(AY) .= {(ao, a1, ...) € W(AT) | m—l—vﬁ(am) > C, for some ¢ > 0,C € R}.

The projection map pr : W(AT) — W (A) induces a map WT(AT) — WT(A).
For x € W(A"), write = (ag,a1,...) and let w,,(z) € A! denote the
mth ghost component. Then we find

m+ Vp%(am) >(C <= Vp%(wm(x)) > C.
The map tp is defined as the composition
AP Aty B wa),

where for any a € ET, sp(a) is the unique element with ghost components

(a,F(a), F?(a),...). We claim that for any a € AT, there exist &, C’ with

Y= (F™(a)) > C for all m. From the definition of sp and the above equiv-
p

alence, this will immediately show that sp(a) € WT(AT), and so by the
remark in our first paragraph, tr(a) € WT(A).

Abbreviate T for (T,...,Ty). Write F(T;) = TP + pf;(T) for each i. We
can find e sufficiently small such that v.(f;(T)) > —1 for each i, and hence
Ye(pfi(T)) > 0 for each i. From now on abbreviate u; := pf;(T).

Assume 7.(a) > C. For k € N let Opa denote the partial derivative

k k . .
aaTlél a?rgd a. It is clear that v.(#0ka) > 7-(a) > C. It is also clear that

for any h € Zﬂ,

e (h(T{)7 e 7T5>) =% (h(T1,...,Ta)).
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Assuming still v.(a) > C, we prove vz (F'(a)) > C. Theresult y_c_ (F™(a)) >
p p
C then follows by induction. We compute

F(a) = a(T +ur,..., T + uq)

1
— Zﬁaka(Tf,...,Tg)uk;

S0,

i 1
15 (F(a)) 2 inf{ye (- 0kal(TY, .. TH) + s (u)}
> C,
as required. O

Proposition 3.2. For B/k a smooth, finitely generated algebra with lift Bf
and Frobenius lift F', the map

has image in WT(B).

Proof. Take a surjective map from a polynomial algebra ¢ : A — B and
a lift of Frobenius F on Af inducing F’. Then the result follows from
the functoriality of the map ¢r and the fact that the natural projection
W(A) — W(B) sends Wt(A) — WT(B). O

Let B/k be a finitely generated, smooth algebra over a perfect field k of
char p > 0. We have just shown that B admits an overconvergent Witt lift:

o: Bt - wi(B).

If we restrict o to the smooth W (k)-algebra B lifting B, we obtain an
induced map

olg: B — W(B)
which we will call the underlying Witt lift associated to o. Conversely, if
we assume that B admits a Witt lift, 0 : B — W(B) such that image(c) C

WT(B), then o extends canonically to the weak completion of B, i.e. to an
overconvergent Witt lift

(3.3) o: Bt - wWi(B)
because W1(B) is weakly complete (Proposition 2.28 in [7]). We derive from

this a map of complexes, also denoted by o

(3.4) st ywy = W C W),

If B denotes the p—adic completion of B we also have a map

lm 5w = Lawy W
In the following we show that o in (3.4) is a quasi-isomorphism if B
is finite étale and monogenic over a localized polynomial algebra Ay =
E[Ty, ..., Ty

Let f € A := W (k)[Ty,...,T,] bealifting of f and Z}—;:z W(k)[Ty,... 7Tn]f-

B lifts to a finite étale extension B over A 7 B = Ay ], then B = A ]—;[a;]
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We write u = [z] for the Teichmiiller representative of z in W (B). Consider
the canonical map

o:B— WHB)=wWT(Af)[u]
which extends the canonical map g}v — WT(Af). The existence of o is

derived from Hensel’s lemma [7] Proposition 2.30. Hence B has a canonical
overconvergent Witt lift. Let BT,A} be the weak completions of B,Af~.

Then Bt = Av}[l'] is finite étale over ﬁ} Using Proposition 1.9 we see that

o extends to a comparison map

m—1

(35) 0 Qi = B ®Q~T/W - Wiy, = Pwiay
f 1=0
(here m = [B : Ay]).
We want to show that ¢ is a quasi-isomorphism. First we treat the special

case B = Ay = k[T1,...,T,]5. So we need to show:

o QZ}/W(k) — WTQ;‘f/k is a quasi-isomorphism,

We also consider f, = image (f) in Wi(k)[T1,...,T,] =: A;. The A;—module
structure in W;Q2% Ik respects the decomposition

° e.int e frac
Wikl e = Wikty ) © Wity

into integral and fractional part. This follows from [14] Lemma 4.
Hence we have a direct sum decomposition

Wil e = A [f]@’Wl Ak

(3.6) X

1%

AHCLEE @
11 A

where the first isomorphism follows from the étale base change and the

isomorphism
~ |1
A) ) A, [N] =~ Wi(Ay).
i f l
When taking inverse limits, we put

hmAl [ ] ®I/VlQZI/I’1€t Q%N,
f

where g}; is the p—adic completion of ﬁf. Then (3.6) yields a direct sum
decomposition

e int o frac
(3.7) W, = WO o wagh

into two parts which we denote again by the integral and fractional part.

We can identify WQ;‘m/tk with QA and we know that WQ;lfr/a,: is acyclic.

f
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With regards to WTQ;‘f /e We apply Proposition 1.3 and the remark after

Proposition 1.3:
Any z € I/VTQ:4 can be written as a convergent series
£k

1
"

o0
z =
=0

l

where n; is a finite sum of basic Witt differentials nl(t), such that there are

real numbers C and € > 0 with

Ye(m) — erp > C.

The supremum over all C' for all possible representations of z is by definition
7e(2), the Gauss norm on the localization.
We can also define an order function on WQZf Jk by considering repre-

sentations of z of the form
o

(3.8) z = Z in.

= /"

We call z convergent with radius € with respect to f if there is a represen-
tation and a constant C' € R, such that

(3.9) Ye(m) — €erp > C.
We denote the supremum over all C' for all possible representations by

%(f )(z). We will also express the last condition of convergence a little differ-

ently: We extend the function . to WQ;‘/k[l/f] as follows:
’?e(w/.fk) = Ye(w) — k'YE(f)

If z=73", % with z; € Wﬂz/k[l/f], and if we denote by k; the denominator

of z; in this localization, it is easy to see that %(f ) (z) is the supremum over

all constants C' such that for a suitable representation z = > z, we have

1 ~

. < ———— .
(3.10) ka < Ardel (Fe(2a) +O)

We will prove that the notions of overconvergence and overconvergence
with respect to f are the same. We start with representations (3.8) such
that (3.9) holds. We write

f=1fl-r
It is enough to consider the case where € is small enough. Therefore we may
assume that .(p) > e. We show that z is convergent with respect to .:

1 _ 1 1

foo =
1 1 n
a2
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Then = Z am )" k with a,, € Z.
m>k
Then we find

(Z [fT’z Z Z am P

m>r;
We give an estimation for each summand separately:

mfm)

> Ye(mp™ ™) —em > ye(1) + V(P T) —em

2 Ye(n) = me—(m —r)e+ (m—ri—1)7(p) + Je(p)-
The last inequality holds by [7] (2.22). Since v.(p) > € we conclude:

(a L7'
Ve m[f]m P

%(“muﬁvﬂwmw > C+(m—r—1)(ve(p) —€) —e+7e(p) = C—e(1+deg f).

The last inequality was explained at the end of the proof of Corollary 0.13.
Finally we obtain

Ye(z) 27D (z) — e(1 + deg f).
If we interchange the roles of [f] and f in the argument above we see that:

1D (2) 2 7e(z) — e(1 + deg f).

The Gauss norms 7(f ) are appropriate to study overconvergence on the in-
tegral and fractional part of Wy /K separately. More precisely let z €
WQ;‘f Ik and let z = z1 + 29 according to the decomposition (3.7). We have

just seen that v.(z) > —o0 & 'ye(f) (z) > —oo for small e. We claim that

'ye(f)(z) > —oo implies 'ye(f)(zl) > —o0 and ’}/(f)(ZQ) > —00.

€

Let %(f )(z) > (C then there exists a representation
[o¢]
z= —T
5 "
such that
’yg(Tl) — €Ty Z C
Let 7, = Tll + Tl2 be the decomposition in integral and fractional part. Then

o0 oo
Ly L
z] = g —1; and z3 = E =—Ty.
fr fr
1=0 1=0

As ve(1) = min{7ve(1}), 7 (77)} the claim follows. Hence we obtain a direct
sum decomposition

° e.int o frac
(3.11) WS, = WIS @ wWias Ty
We will also consider the truncated Gauss norms *ye(f ) [t] on

-1
A []7] @7, Wer1

~ 1 e.in e 1 ®.Ir.
= At []7} O, WtJrlQA’/kt @ At []?] OFi Wt+IQA5;C'



OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 39

1

We can define the Gauss norm 7. on Ay [~] X Wt+1Q:4’§r; ¢ in the same

A
way as before. We fix ¢ > 0 and C € R.

We define Wy Q;"ir?l:’g’c as the set of finite sums %]z € Wt+1Q:‘1’?71: =

~ 1
A1 [J ® Wt+1Qf§7§; satisfying the following. Let Ky be the largest in-

f A
t+1
teger divisible by p such that

1 [ w
T S A ) )

Then we require the following two conditions:

(i) Ko >0
(ii) k < K.
~ 1
We know that the complex Asyq [N] QR W HQ:{%"C is acyclic. We show
x‘TtJrl

that for € > 0 sufficiently small Wt“Qir‘j(;’Z’c

Let us assume that f is regular in the variable T7. Let ¢ € Ay. Then c
has a unique reduced representation:

(3.12) c=Y alf,
l

is acyclic.

where @; € A. We write a = > apTF € A, with o, € k, and we set
a = [o][T]F € W(A). Then we define

(3.13) =Y _a/f"

l

This is an integral element in W (A¢). In the following we consider still
another admissible Gauss norm on Wt+IQAf/k~ Let w € Wt+1QAf/k- Then
we consider all possible expressions of the type:

w=>"m/f" mE Wi Qap
!

We forget our old notation and denote by 7.[t](w) the maximum over all
possible numbers

min{:[t](m) — elp}.
It is easy to see that the condition +.[t](w) > C for w € Wt+1ij{j‘}k is

frac,e,C
Ap/k
We should remark that ;[1] coincides with the formerly defined function.

As before we define a modified 4.[t]. Then we have 4.[t] = & [t]

We find the equalities:

equivalent to condition w € W12

Feltl(@) =4c(e), L@ = ve(o).
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Indeed we verify the first equation as follows: By the representation (3.13)
we find:

3e[t](8) = min{ye[t](@) — el} = min{rye(ar) — el} = 4z(c) = 42[1](@).
The other inequality is obvious.

Lemma 3.14. Fach w € Wt+1QAf/k has a unique representation:

(3.15) w=Y Farum

This decomposition respects the non integral and the integral part, i.e. if w

(n)

is integral (resp. non integral) then all w,
integral). For the Gauss norm we have:

L[] (w) = min{pAL(e}) + 7 (™)),
Proof. The same as that of Proposition 2.20: The Lemmas 2.11 and 2.13

continue to hold with ¥ 5 ") in place of ¥ [cgn)], because the action of both

elements is the same on the graded part G". We need to verify that for fixed
n:
(3.16) L e wf™) = minfy! I &)+ y ")}

= min{pie(¢;"’) +7e(w;)}-

It is clear from Lemma 2.13 that this is true for v.[n] in place of ~.[t]. We
choose reduced representations:

l

are integral (respectively non

Then we find:
It ZF(”) (n ZZF ”wn)/fpl))

From this we see that'

Z Fg ) > min{~: [ (Fal)w™)) — elp}

= min{y.[)(7a\}) + e (w™) - elp}

= min{7/[#)("&™) + (™)}

This shows the equation (3.16) because ~.[¢ ] < 4L[n]. The rest of the proof
of the lemma is the same. O

Proposition 3.17. Let ¢ € R be sufficiently small. Let w € Wt+1QAf/k be
a closed Witt differential in the non integral part such that v.(w) > C. Then
w = dn, wheren € W14 /K 15 a Witt differential in the non integral part,
such that v.(n) > C.

Proof. The problem does not change if we make a finite extension of the
base field k. Therefore we may assume that f is regular in 77 as above.

Consider the residue class @ € Wy, 1k of w. This is a closed form in
the fractional part, i.e. is contained in the module:

(dvnPl—l)f @ (pdvn—lpl—l)f DB <pn—ldvpl>f
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for n = 2. This means that all basic Witt differentials wz-(l), which appear in
the decomposition (3.15) must be of the form w(l) = dn(l) for some primitive
basic Witt differential 171(1), such that . (wl(l)) Ye(n; (a )) We set:

1) = ZFE(-l)ni

Clearly 7£(n(1)) = min{py.(c;")) +ws< ")} 2 e w).

We will verify that for small
(3.18) 72((177(1)) > 7e(w).
Then we consider w(l) = w — dn(l). We conclude that 7. (w(1) > ~.(w)
and that w(1) € Fil? Wit1Q4, k- Then we expand w(1) in the form (3.15)
and consider the reduction in W30 4 /6 We apply the same argument and

ﬁgd n(2) with 7/(n(2)) = 7Z(w(1)) and 7z(dn(2)) = 7z (w(1)). Continuing we
obtain:

w=dn(1) +dn(2) + dn(3) +
This proves the result if we verify (3.18).
We set C' = 7.(w). By definition 62(") is a sum of expressions [u]?/f'P
such that:
pr=([u]) — elp + :(n") > C.
Here u is a monomial in the variables T'. We have to verify that

Fo(d([ulrn /F7)) >

We write:

d([u]Pnz(l)/JFlp) = (d([U]pngl)))/flp * lp([u]pni(l)fpfldf)/f(ﬂrl)p'
Clearly +. of the first summand is greater than C. We have:

VLl P F/ FE) 2 pre(fu) = e+ Dp+ () + () + 1.
The last expression is bigger C' if

py(f) +1—pe > 0.

But this is clearly fullfilled for small €. (]
Hence Wt+1Qia?ZC is acyclic. As the notions of overconvergence on

Wy 1k and overconvergence with respect to f are the same we can apply
frac,e

the remark preceding Corollary 2.24. We see that the complex WQ Ak

frac

consisting of elements w € W ATk satisfying ~.[t](w) > C for some C
independently of ¢ is exact as well. Hence

t e frac tfrac,e
Wiy ik —glj%w 0y ik

is exact, as desired.
Now we can prove the following comparison result.

Theorem 3.19. Let f € k[Ty,...,T;] = A. Let B be finite étale and
monogenic over Ay.
Then the map o, explicitly given in 3.5, of complezes

g . QET/W(IC) = I/VTQB/]C
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18 a quasi-isomorphism.

Proof. We consider a lift A jof Ay over W(k) and a finite monogenic ¢tale
algebra B over A 7 which lifts B. We write B=A jlz]. We denote by BT the

weak completion of B. By choosing a Frobenius on the weak completions
we find morphisms

B—W(B), Aj—W(Ay).

The elements
Lax,.. ™t
form a basis of the free A f—module B. For any power p" the elements
1P 22" g he”

form also a basis of B over A 7
We have the isomorphism of modules (not of complexes):

m—1
(320) WQB/k:B®Af~ WQAf/k: @xlpWQAf/k.
i=0
Let 4/ be the of Gauss norms on W4 ;/k considered in Lemma 3.14. We

consider the product norms on the right hand side of 3.20. We write w €
WQB/kZ

(3.21) w= anxjp.
Then we set
Ye(w) = min{y/(n;)}.
According to (3.20) we find:
dz™ = piz dx = Z 2Py,
j=0
where the 9;; € QAf/W(k) - WQAf/k are integral differentials. We restrict

our attention to small e. Then we may assume that
7e(95) > 0.

This is possible because the 1J;; are divisible by p and 7.(p) = 1. The last
assumption ensures that

Ye(dw) = ye(w).
We define the fractional part of Wp

WO, = Bog WO,
This is a subcomplex of W2 ;. We denote by WTQ%% the overconvergent

differentials in WQg/a,:. By the decompositions (3.5), (3.7), and (3.11), it
remains to show that this complex of overconvergent fractional differentials
is acyclic.
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From (3.20) we obtain decompositions for the filtrations:
m—1 '
(3.22) Fil" WO, = @D 2/ Fil' WO,
j=0

Consider a closed overconvergent Witt differential w € WQ%%:

dw =10, 7 (w)>-C.
We will show that w = dn for n € WQ%"}% with v.(n) > —C. This implies
that the complex I/VTQf}lff’/ﬁC is acyclic.

We note that w € Filt WQ%"}% = V[/ijg’/“;C We set wy; = w. We construct
inductively fractional differentials w;,n; € Fil* WQfgﬁ, such that ~ve(w;) >
—C, Ye(n;) > —C and

wi = wiy1 + d;.
We consider w; modulo Fil‘*! WQ%% i.e. as an element of griWQg‘ﬁ C

Wi+1Qfé7‘;€. Then, using (3.22), we may write:
w; = ijp(viaj + dvipj).
Since griVVQf,_if;}‘;f is annihilated by p we have
0=dw; = Za:jpdviaj.

This shows that Viaj =0, for j =0,...,m — 1. We find for the truncated
norms:

min{y/[i](d"" p;)} = 7eli)(wi) = ~C.
Using Proposition 3.17 we may assume after a possible modification of the
p; that v/[i](V" p;) > —C. We choose liftings V' j; € WQZ?C/,C, such that

7 (" 5y) = Al py) = —C.
Since d increases the product norm we find
Ye(dY eV py) 2 7e(Y 2 ) = —C.

We set _

m=Y PV pi wipn = w; — dn.
This ends the induction and the proof of the proposition. O

For an arbitrary smooth algebra A, consider an overconvergent Witt lift

(3.23) ¢ AT wi(A)

which is uniquely determined by a lifting of the Frobenius to At (Compare
Proposition 3.2.) It induces a map of complexes, also denoted by 1,

Y Q0w — W Qake

Passing to cohomology we will prove the following comparison result.
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Proposition 3.24. Let k = |log,dim A|. Then the kernel and cokernel of
the induced homomorphism

(G Hi(Q,ZT/W(k)) - Hi(WTQA/k)

are annihilated by p**.

Corollary 3.25. (a) Let dim A < p. Then 1, is an isomorphism.
(b) In general, there is a (rational) isomorphism
Hinw(A/K) = H* (WQ4 5 Qw ) K)
between Monsky- Washnitzer cohomology and overconvergent de Rham- Witt

cohomology. (Here K = W(k)[%])

We will reduce the proof of the proposition to a local homotopy argument.
The map v induces a map of complexes of Zariski sheaves on Spec A :

Y QZT/W(k) - WTQSpeCA/k'

As HY. (Spec A, Q%T/W(k)) = H%ar(WTQgpecA/k) = 0 for all d > 0 and all

i > 0 (Proposition 1.2 and [16] Lemma 7), we have

RT'(Spec A, Q,.Zf/w(k)) = QE{T/W(]C) and

RT(Spec A, WiQgpec ak) = W4,
hence we can reconstruct 1 from J by applying RI'(Spec A,.). Let {U;};

be a finite affine covering of Spec A such that each Uj is finite étale and
monogenic over a localized polynomial algebra. By a result of Kedlaya [12],

such a covering always exists. Let U; = Spec B; and /BE?L the Monsky-
Washnitzer lift of B;. Then we consider the “localization” 1; of ¥ to Uj:

Q/)j 1 Q — WTQB]./k.

We compare the map v; with the explicitly given comparison map o in (3.5)
from which we know it is a quasi-isomorphism and show the following.

B, /W (k)

Proposition 3.26. The maps p™); and p~o are homotopic, hence induce
the same map on cohomology.

Before proving the proposition we finish the proof of Proposition 3.24.
We know that the kernel and cokernel of (p";), are annihilated by p*. As
Ker(v;)« C Ker(p®;), and Coker (1), is a subquotient of Coker (p"1;).,
Ker(v;), and Coker (¢;). are annihilated by p* as well.

Define C* as the complex of Zariski sheaves obtained by taking the cok-
ernel of 1. Then one has an exact sequence of complexes of Zariski sheaves

O° tOe .
0— QZH/W(k) = WQGecay, = C* = 0.

The cohomology sheaves H'(C®) are annihilated by p?®. Hence the map
2K
C* %5 C* induces the zero map on cohomology. Therefore it is zero in the

. 2K
derived category. Applying the functor RI' we see that R'T'(Spec A, C*) 7,
R'T'(Spec A, C*) is the zero map. This finishes the proof of Proposition 3.24.
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We now prove Proposition 3.26. It is implied by the following more general
result. Let B,C denote smooth k-algebras which are finite and étale over
localized polynomial algebras, with smooth lifts E, C and corresponding
weak completions ET, Ct.

Proposition 3.27. Let ¢1,¢o : Bf — WT(C) denote two lifts of a map
¢: B — C. Then the induced maps

pnélapﬁib : QE*/W([f) — WTQC/k
are chain homotopic, where k = |log, dim B].
We will closely follow the argument on pages 205-206 of [17].

Proof. The chain homotopy we produce will factor through the following
algebra.

Definition 3.28. Denote by D" (C) the differential graded algebra with ith
graded piece

D"(C) = Wiy (U] & W1 QU A dU.
Denote by D'(C) the sub-differential graded algebra of D"(C') generated in

degree zero by terms
o0
f=)Y Ulw
=0

for which w; € p~'VWH(C) for i > 1 and such that there exist ,G with
Ye(w;) > G for alli. For such a term f, we define

7e(f) = mf{ye(wi)}-

Note that D'(C)" is an algebra. The only non-obvious fact is that it is
closed under multiplication, and this follows from the property V (wq)V (wp) =
pV (we).

We now define a map

p:Q

Bt /w(k) D'(0)

as follows. Fix a presentation

~ 1

BY =W (k)(x1,... 2, ;)T[z}/(P(z))
Our map will send

@ xi = 1(wi) + Ulda(wi) — ().

Because we have for a,b € D'(C)°, v.(ab) > v.(a) + 7-(b) and ~.(a + b) >
min(vz(a),7:(b)), the proof of Proposition 2.28 in [7] can be mimicked to
show that D’(C)° is weakly complete. This immediately shows that ¢ ex-
tends to W (k){(z1,...,z,)0.

As g € W(k)(x1,...,2,)T, we have just shown go(g) € D'(C), and we
must show this element is invertible. Write ¢(g) = ¢1(g) + U f, some f such
that Uf € D'(C). Because ¢;(g) is invertible in W(C),

I P1(9)7!

el9)  1-U(=¢i(9)~'f)
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so to show ¢(g) is invertible it suffices to show that any 1 —Ug € D'(C)° is
invertible. Write

G=Vwy+UpVw, +U*p*Vwy + - .

It follows by a simple induction on k, starting with the base case k = 1, that

o0

gk _ Z Uipk+iflvwi’
=0

with v (pFt" =1V w;) > 0, same ¢ as above. Hence
1+ UG+ U3 +--- € D'(0),

as required.
Next we prove that ¢ extends to z.

Lemma 3.29. There exists
o
> Ule; € D'(C)
i=0

which is a root of p(P)(2) = 2" + o(f1)2" "t + -+ o(f).

Proof. Because D'(C) is weakly complete (with respect to (p)), by Hensel’s
Lemma (Proposition 2.30 in [7]) it suffices to find a root modulo p. Because
the ideal (U?) C (p), it will suffice for us to find a root modulo U?. Thus we

need only find the terms ¢y and ¢;. As usual, ¢g = gzgl(z). For ¢, we simply
set z =32 Ulc; in o(P)(z) = 2" +¢(f1)z" ' +--- + ¢(fr) = 0 and check
that this forces
e1 = =(Gu(PY () (B2(f) = bl -+ dalf) = b1() -
O

We have now shown the existence of a map ¢ : B — D/(C)°. We extend
it to a map, also denoted by ¢, of complexes,

The chain homotopy promised in our proposition will factor through its
image. This motivates the following.

Definition 3.30. Let D(C) C D'(C) denote the image of .

We give now a more explicit description of what terms in D(C') look like.

. d .
Lemma 3.31. (i) Let x denote some element of QET/W(k)' Write
o(x) =+ U + UdUw" + - --

max(i—

d,O)Mi and w'" = pmax(i—d-l—l,[))

where i > 0. Then we may write w' = p
with pi,n; € Fil' WiQeo 4.
(ii) We may find ,G depending only on x such that v.(w) > G for each

coefficient w.

i
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Proof. (i) We prove this by induction on d. The base case d = 0 has already
been shown.

Inductively assume the result for = of degree d — 1.

A term z in degree d may be written as a finite sum of terms bdx;, - - - dx;,
with b € BT and z;; one of the generators of the polynomial algebra of which
we have taken an étale extension. We will show the result for bdxq - - - dxy.
Extending to other index sets is trivial, and extending to finite sums is easy.

We are assuming the result for ¢(bdx; - - dxg—1), which is possibly just
©(b). And we know

o(dzqg) = doy(xq) + AUV (wq) + UdV (wg).

The result concerning the form of the coefficients now follows easily.

(ii) We again may restrict to the case of a term bdx;, - - - dz;,. Concerning
©(b), we already know the result. There are only finitely many nonzero
terms of the form dz;, - - - dwx;, (varying d allowed). Thus we can find &/, G’
such that every coefficient w appearing in some term ¢p(dz;, - - - dx;,) satisfies
Yer(w) > G'. The result now follows from the fact that there exist £’ G”
such that for any 7.(n) > G, 7= (w) > G’ we have vy (n Aw) > G”. O

Let hg, h1 denote the maps of differential graded algebras D'(C) — WTQgq Ik
which send U + 0 and U + 1, respectively. Our definition of D’(C)? im-
mediately implies that the image in degree zero really does land in WT(C),
and hence the image lands there in every degree. We also let hg, h; denote
their restrictions to D(C).

Clearly we have hgo ¢ = q~51 and hjop = ég, because both sides agree in
degree zero. We define p*L : D(C)®* — WTQE,_/i by setting

p"wj

j+1

and then extending to all of D(C') in the obvious way. Of course, it is not
at all clear that our map has image where we claim.

p"L(U7w;) = 0 and p"L(U/dU A w;) =

Lemma 3.32. The map p*L has image in WTQC/k.

Proof. We first show it maps to W/, and then establish overconvergence.
For an arbitrary = € QET/W(k)’ write

p(x) =+ UIdU Aw; + -+
as in the previous lemma. From the lemma, it suffices that
k + max(j —dim B +1,0) > [log,(j +1)].
For the case j —dim B 4+ 1 > 0, check the specific case j = dim B, then note
that the left hand side grows faster with j than the right hand side. For the
case j < dim B — 1, we want to prove |log,dim B] > [log,(j + 1)], which
in this case is obvious.
Now we must check overconvergence. We are done if we verify the ex-
istence of ¢/, G’ independent of j such that %,(1; flf ) > G'. For arbitrary
wj € WTQC/k with 7¢(w;) > G this is not true. But as before we know that

K

1, PWjg . . .
p™ | jTJl, where m' > j —dimB+xk+ 1 — [log, (5 + 1)].
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There exists N depending only on dim B such that for j > N, m’ > [log,(j+
1)]. So the following claim applies to all but finitely many terms in ¢(z).
Claim. Let w; € WiQc . If pllogpG+D] | % and V. (p*w;j) > G, then

there exist ', G' depending only on €, G with 75/(’;1”{) > G

Proof. Tt suffices to prove this for the equivalent norm + of page 27. We shall
prove the result for (¢/,G') = (5, ). Let l := log,(j+1). Pick an 7 such that
¥ = pfw;. Write C := ~.(n). From Corollary 2.24 or rather its evident
generalisation to finite étale extensions over A; we know 7. (p?'n) = C + 21,

so from our assumption C' + 21 > G. We also have % (n) > %, and so
2

as claimed. O

This proves that for all but finitely many terms a in p"L(¢(z)), 75 (a) 2

%. For the other terms b in p"L(¢(x)), we know v-(b(j + 1)) > G, with
j+ 1< N+1. Thus we can find &”, G” with v.»(a) > G” and ~.»(b) > G”
for all a, b as above, which covers everything. This completes the proof that
p"L(p(z)) is indeed overconvergent. O

Now we are basically done. It is trivial to check that p*L is a homotopy
between p~hy and p~h;. Thus p*L o ¢ is a homotopy between p™~hgo ¢ = (51
and p®hip = q;g. For the convenience of the reader, we state explicitly the
sign convention:

dwAn) =dwAn+(=1)wAdn,

where w is in degree 1. U

4. COMPARISON WITH RIGID COHOMOLOGY

Let X = SpecA be a smooth affine scheme over a perfect field k£ of
characteristic p > 0. In this section we define a canonical morphism from
the rigid cohomology of X to the de Rham-Witt cohomology.

Let W = W (k) be the ring of Witt vectors and K = W (k) ® Q.

Definition 4.1. A special frame is a pair (X, F) such that F = Spec B is
a smooth affine scheme over W and X = Spec A is a smooth affine scheme
over k which is a closed subscheme of F'. The comorphism of this embedding
is an epimorphism B — A. We will also say that (A, B) is a special frame.

Assume moreover that we are given a homomorphism » : B — W(A)
which lifts B — A. Then we call (X, F, ) a Witt frame. If the image of »
is contained in W1(A) the Witt frame is called overconvergent.

Let (X, F, ) be a Witt frame. We denote by F the formal scheme which
is the completion of F' in the ideal sheaf generated by p. Let | X[ be the

tubular neighbourhood (Berthelot [2]) of X in the rigid analytic space Fi
associated to the formal scheme F'. We will construct a natural map

(4.2) DX [z Qx(.) = W © Q.
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It is enough to define a map
(4.3) F(]X[ﬁ, O}X[ﬁ) — W(A)® Q.

From this we can deduce (4.2) by the universal property of Kahler differen-
tials. Let I'/x be the formal completion of F' along X. By [2] 1.1.4 (ii) the
tubular neighbourhood ] X[ coincides with the rigid analytic space associ-

ated with the formal scheme F’ 7x- Let I be the kernel of the homomorphism
B — A. We denote by R the completion of B in the ideal I. We have
3 7x = Spf R. The associated rigid analytic space is defined as follows: We
choose a set of generators f1,..., fi, of I. For a natural number n we denote
by R/ the p-adic completion of

R, = R[Ty,....T,|/(f{' = pTh, ..., f1 —pTn).

Then R/ ® Q is an affinoid algebra and we have by definition
L(X[z Ox,) = lim Ry, ® Q.
To define (4.3) it suffices to define a compatible system of maps
(4.4) R, — W(A).
for n large enough. The homomorphism s maps I to VW (A). Since W(A) is
complete in the ideal VIV (A) the homomorphism s extends to a morphism
R — W(A).
Since #(f;) € VW (A) for i = 1,..., m we obtain for n > 2:
=(fI') € "IV (A).

Since p is not a zero divisor in W(A) the element (1/p)s(f]') € W(A) is
well defined. Mapping 7; to this element we obtain the desired compatible
system of maps (4.4). This finishes the definition of (4.3).

This construction is clearly functorial in the following sense: Assume

we have a second special frame (X1, F1,5). We set X; = Spec A; and
Fy = Spec By. Assume that we are given a morphism of Witt frames

(4.5) (X, F, ) — (Xy, F1, ).
This induces a morphism of formal schemes F X — Fy /x, and therefore a

morphism of the tubular neighbourhoods | X[z—]X1[z. Our construction
gives a commutative diagram

L(Xilg, Ohxfy,, —— W(A)©Q

(4.6) | |

P(X[;Ox,) —— W(A) Q.

This also establishes the functoriality of the morphism (4.2).
Let (X, F') be a special frame. We choose an embedding F' C Ajj, in the
affine space with comorphism

Wi[Xi,...,X,] = B.
We write ' = Ajj,. Let Ajj, C P = P, be the canonical embedding.
X —-F—=P
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We see easily that | X[;=]X[s. We denote by Q the closure of F' in P. Let
Y be the closure of X in P. Let Q be the completion in the ideal p. Then

(4.7) XY =Q

is a frame in the sense of rigid cohomology. By this we mean that the
embeddings X — Y and Y — Q satisfy the assumptions for the definition
of the rigid cohomology groups of X in [3] 1.3.

Our aim is to give an explicit description of a fundamental system of strict
neighbourhoods (2] (1.2.1) of | X [5=]X[z in [Y,.

Let us denote by Fy* the rigid analytic space associated to the scheme
Fr. We have F&' C Q% = Q. It is clear that Ff'O]Y[, is a strict
neighbourhood of | X[z. We propose to give an intrinsic description of the
strict neighbourhoods which doesn’t depend on the particular embedding
F CA}y.

It is enough to describe a fundamental system of strict neighbourhoods of
| X[=]X[p in [Y[=]Y[5. The strict neighbourhoods above are then obtained
by intersecting with Qx C Px.

Let X = Speck[X1,...,Xn]/(f1,---, fm). Let f; € W[Xy,...,X,] for
j =1,...,mbeliftings of the polynomials f;, such that d; = deg f; = deg f;.
We take homogeneous coordinates X; = T;/Ty for i« = 1,...,n. Consider
the homogeneous polynomials for j =1,...,m:

A
FJ(TO>7T7L) = Tojfj(Tl/TOa'-' >Tn/T0)

We denote by F j the residue class modulo p. Then Y C P} is given by the
equations:

Fy(Ty, ..., T,) = 0.

We write a point (g, ..., t,) of Py = P always in such a way that |t;] <1
for all ¢ = 1,...,n and such that we have equality for at least one index.
The tubular neighbourhood of Y is:

]Y[: {(t(]v-'-atn) € pK | ‘F‘j(to,.‘.,tn” < 1}
For n <1 we write:
}Y[U: {(to"'-vtn) € pK | |Fj(t0,...,tn)| < 77}

Let Z C Y denote the intersection of Y with the hyperplane {1 = 0}. We
have disjoint decompositions

Y=XUZ Y[=X[U]Z].
We follow the notations of [2] 1.2. For A < 1 we have
[Z=1Y [N{[to] < A}
Then U =]Y[\]Z], is a strict neighbourhood of | X[. Weset US , =]Y'[,NU].
We have the inclusions
U;m C U;,m, forl1>X> )N >0,
Uy CUL, forl>n>n>0.

Let A = {\;} and = {7;} two monotonically increasing sequences of real
numbers which converge to 1. Then we set

(4.8) C%:wa
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By [2] the sets Uy, form a fundamental system of strict neighbourhoods of
JXT. .

Let E" C Px = P = (P%)* be the analytic variety associated to
A, We have Uj C E®". If B(0,1/)) denotes the closed ball of radius 1/X

around 0 in £ we can write
(4.9) UL =IYINB(0,1/A), U}, =IY[,NB(0,1/X).

We describe |Y[NE“" in affine coordinates. Consider a point (tg,...,t,) €
P with tg # 0 and let (z1,...,xy) be the affine coordinates. We find:

1/|t0’ = ma‘X{17 ‘.1'1’, AR ‘xn‘}

Therefore the defining inequalities for Y[ respectively |Y[,, become

(4.10) iG] < max{l, |z, [za|bY,
‘f](x17;xn)’ S nma’X{17’x1‘dJ77‘xn‘dj}7
for j=1,...,m.
We set

Ur={(z1,...,2,) € B0, 1/A) | | fj(z1,...,25)| <1, forj =1,...,m}.

We find Uy C Uj. We set Uy, = U\N]Y[,. These are affinoid subsets of
U;\ n

(4.11) Uy ={(x1,...,2,) € B0, 1/A) | | f(21,...,20)] <0}
Lemma 4.12. For each real n < 1 there are reals \g < 1 and ng < 1 such
that

U;\}n C Un,ys for X > Ao, 0’ > np.

Proof. We choose )\ in such a way that |n| < )\gj for each index d;. Then
we find for A > \g and |z;| < 1/X that

nlail < /A < /NG <o <1
for a suitable 7. This proves the assertion. U

Lemma 4.13. We define Uxn for monotonic sequences A and n by replac-
ing U by U in (4.8). Then the Uyy are a fundamental system of strict
neighbourhoods of | X[ in Y.

Proof. Because of the inclusions Uy, ,,, C Uimi it is enough to show that Uy,
is a strict neighbourhood of | X[. For each i € N we set 7j; = n;(1+(1/4))"! <

1;. We choose 1 > 5\1 > )\; such that ﬁi/jxfj < n; for each index d;. The
proof of the last lemma shows that

!
Uxiih' C Usimi
Since 7; < 1 and N\ < 1 are sequences which converge to 1 the set Uﬁ _isa

FAS)

strict neighbourhood of | X|[. The inclusion above shows that Upy is a strict
neighbourhood of | X|. O
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Proposition 4.14. Let (X, F) be a special frame. Let F' C E = Ay, be an
embedding in an affine space. Let Uy, C E¥" be defined by (4.11).

Let X — Y — Q be associated to the embedding F C E (4.7). Then
Van = Uxy N FE" is a fundamental system of strict neighbourhoods of]X[é2
Y-

Proof. We just proved this in the case where F' = E is an affine space and

P = (@ is the projective space. In general one obtains the strict neighbour-
hoods of | X[ in Y[ by intersecting with the strict neighbourhoods of | X5

in Y

in |Y[s. This proves the proposition. O

It is easy to see that we end up with a cofinal system of neighbourhoods if
we replace in the definition of the U , the polynomials f; by f;+ph;, where
hj € W[Xq,..., X,] are arbitrary polynomials. In other words, we may take
for f; arbitrary liftings of f] and drop the condition that deg f; = deg f]

Corollary 4.15. With the notations of the proposition let F C E = A%A/ be
a second embedding which gives rise to a second frame X —Y — Q. Then
the two systems of neighbourhoods Vy, and Vy, of | X[z in Fi* are cofinal.

Proof. We begin with a special case. Assume we are given a closed immersion
E — E whose comorphism is of the form

W[X1,... Xn, Z] = W[X1,... Xa],

where Z is mapped to a polynomial g(Xi,...,X,). Moreover we assume
that the embedding F' — FE' is the composite F' - F — FE.
We consider the morphism of frames in the sense of rigid cohomology

X Y Q
(4.16) l l l
X Y P.

We obtain a fundamental system of strict neighbourhoods of | X[z in Fg"
by intersecting a fundamental system of strict neighbourhoods of | X[z in
EF with F*. A similar remark applies for E.

We will now compare strict neighbourhoods with respect to the frames

(4.17) XY P
and
(4.18) XV P

Let f1,..., fm € W[X1,...,X,] be polynomials whose reductions modulo p
define the closed subscheme X C A} = FEj.
For positive real numbers A\, n < 1 we have considered the affinoid subsets:

(4.19) Uxy C B(0,1/X) C ER,
which are given by the inequalities

(4.20) Ifi(x1,...,zp)| <, forj=1,...,m.
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Next we consider strict neighbourhoods V' C E$* with respect to (4.18).
We will show that V' N E% is a strict neighbourhood of | X[, with respect to
(4.17). Moreover for each strict neighbourhood V' of | X[ there is a strict

neighbourhood V' of ] X [E such that V N E$* C V. By the remark after
(4.16) this would imply that the strict neighbourhoods of | X[z  in F" are

the same with respect to the frames X — Y — Q and X — Y — Q. This
would prove the proposition in the special case above.
Let us consider the open sets (4.19) for the frame (4.18):

Us,y = B(0,1/)\) C E¢".
They are given by the following inequalities
[filzy, .. @) <,
|z —g(z1,...,2n)|] <.
This shows immediately that
Ury D Un,y NEE.

Therefore for each strict neighbourhood V' = U, ;, we have found the strict
neighbourhood V = ﬁA,g such that V N E7 C V. We have to show that

YN/HE}I(" is a strict neighbourhood. Let ¢ be the total degree of the polynomial
g. Let p > 1 be some real number. If |z;| < p,...,|z,| < p then we have

’g(‘xl: see 7xn>‘ < pt'
This shows that
UA%W C U/\»77'

We see that V' N E%" is a strict neighbourhood. This proves the proposition
for the special case we started with.

Now we consider an arbitrary second closed immersion F — Al We
obtain a diagonal embedding F' — A" Xspecw Al We take coordinates
Y1,...,Y; on Al. We compare the comorphisms of the diagonal embedding
with the comorphism of F' — A™:

W[Xy,...Xn, Y1,...,Y]
/B.

W(Xi,...,Xn]

We find an epimorphism W[Xy,... X, Y1,...,Y]] - W[Xy,..., X,], which
maps X; to X; which makes this diagram commutative. We obtain a diagram

F — A"

| |

F —— A" Xgpecw A
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where the vertical arrow on the right hand side is the closed immersion
defined above. But then the independence of strict neighbourhoods in F%"
follows by induction from the case done above. O

As a second corollary we prove the functoriality of strict neighbourhoods.

Corollary 4.21. Let (X1, F1) — (Xa, F») be a morphism of special frames.
Let Vo C Fy' be a strict neighbourhood of | X [152. Then the inverse image
of Vo by the map F'"y — Fi'ic contains a strict neighbourhood of | X1 [151 n
Proof. We may restrict to the case where the morphism of frames is of the
following type:

X1 — A{/LV X A%/V =F

1 s

XQ e A%:Fg

Consider the corresponding comorphisms

A1 — W[Ul,...,Un,Sl,...,Sl]

I I

Ay —— WUy, ..., U]

We choose polynomials f1,. .., f, € W[Ui,...,U,] whose reductions mod-
ulo p generate the kernel of k[Uq,...,U,] — As. Then we choose g1,...,gx €
WUy, ..., Uy, S1,...,S]] such that the reductions of fi,..., fm, 91,9k
modulo p generate the kernel of k[Uy, ..., Up, S1,..., 8] = Ai. Then Uy, C
B"*!(1/)) is the subset of this closed ball given by the inequalities |f;| < n
and gj <nfor j=1,...mand ¢ =1,...,k. From this we conclude imme-
diately that

p’roj (Ul,)\,n) - U2,)x,777
where proj : (A%)™ x (AL,)" — (A%L)?" is the projection. This proves the
functoriality. O

Let (X, F, ) be an overconvergent Witt frame. Let V C F¥"* be a strict
neighbourhood of | X[;. For a sheaf of abelian groups F on V' Berthelot
defines j1F. If W C V is an open and quasicompact subset

LW, 5T F) = lim T(V' 0N W, F).
vicv

The rigid cohomology of X is by definition
(4.22) RTyig(X) = RI(V, j103).

In particular this is independent of the chosen V' ([3] (1.2.5)).
We will now define a map

L(V,j1y) = Wiy, @ Q.
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This will be compatible with the morphism (4.2)
L(V,j1y) —— Wix, 2Q

l l

DXz Ox) —— Wk ®Q.

We begin with the case where F' = FE is the affine space. We use on W
the p-adic absolute value, such that |p| = 1/p. For n = p~%/" the affinoid
algebra of Uy, is

T:K<)\X1,...,)\Xn,Tl,...Tm>/(f{—pTl,‘..,fTTn—me).

It consists of all power series
p= ZCH,JXIIJ, ar,g € K,

such that lim7| 4| 71500 lar.s|(1/A)H] = 0. We have seen that there is a homo-
morphism 7 — W(A) ® Q for r > 2. It maps the X; to § € W(A). Clearly
we have fj(&1,...,&) € VIW(A). We set

filér, .. &) = Vpj, forj=1,...,m.
For r > 3 the variable T} is mapped to

(Vo) /lp=p"2"(p}).
Then the power series p is mapped to

(4.23) Y a2 (V).

We have to show that this power series converges to an element in W (A)®Q.

Almost all coefficients ay j are in W. Therefore we may assume that all these

coefficients are in W. Since WT(A) is a weakly complete 1W-algebra we see

immediately that the series (4.23) represents an element of WT(A).
Altogether we find a homomorphism

(4.24) ['(Usy, Ou,,) = WiHA) @ Q,

which exists for each A and each n with n > p~1/3,

Let V' be a strict neighbourhood of |X[. It contains some Uy, with

n > p~'/3. We have the morphism

r(v,jtov) — lim T(V'NUyy, Ovie,,)-
vicv
For each V' we find A’ > X and 7' > 5 such that Uy ,, C V'. This implies
Uxy CV'NU,,. This gives the canonical map

T(V,570y) = imT'(Ux , Ou,, ) = W(A) ® Q.

>\l
By the universality of the de Rham complex we obtain a map
(4.25) T(V,j'y) = Wi, ®Q,

where V' is any strict neighbourhood of | X[.
Now we consider the case of a general overconvergent Witt frame (X, F, 5).
We choose a closed embedding F' C F in an affine space E. Let

(4.26) WI[X1,..., X, — B
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be the corresponding comorphism as above. We obtain a commutative dia-

gram
X Y
X Y
We have a closed immersion
Y= QN 1Y [p—=]Y[p.

Let Uy, C EY" as above. Then V) ,, = U, ,, NF" are exactly the neighbour-
hoods “U, ;" with respect to the frame X — Y — Q. The closed immersion
of affinoids

—_— Y —>

V0

—_— Y —

Van = Uspm,

is defined by the polynomials in the kernel of(4.26). Therefore we obtain an
epimorphism

L(Uxy, Ouy,,) = T(Vay, Ovy )

whose kernel is generated by the elements in the kernel of (4.26). This shows
that the morphism

I'(Uxy, Ou,,) = WiA) ®Q
factors through a morphism
F(V,\W, OVAJ,) — WT(A) ® Q.

We conclude as above that for each strict neighbourhood V' of | X[ we
obtain a morphism

(4.27) L(V,j'0v) = Wi4) 2 Q,
and a comparison morphism
(4.28) 0(V,i79;) — WTQM ® Q.

We will now show that the last morphism factors canonically through a
morphism

(4.29) RI(V,ji0;,) — WTQ'A/k@JQ.

Let V be a fixed strict neighbourhood of | X[ in Fg" as above. We begin
with the natural restriction map

RI(V, j10y) = RT(Va,, 570, ).

Let V! C V be a strict neighbourhood. We write ay+ : V' NVy, — V), for
the canonical immersion. By definition we have an isomorphism

i1, = limay,Qyny,
V/
Because V), is quasicompact the inductive limit commutes with cohomol-
ogy. We obtain a map:

RI(V, j'Qy) = IimRE(Vy , avrQyey, -
V/
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Again for each V’ we find X' such that Vi, C V' N Vy,. The restriction to
the affinoids V), finally gives a map

RIO(V,j10,) — h%n RT (Vi Dy, ) = 1%[1 (Vo Ry, ) = W @ Q.
This completes the definition of the morphism (4.29). Taking into account
(4.22) we obtain for each overconvergent Witt frame (X, F, ) a morphism

(4.30) RT,i(X) = Wi, ® Q.

This morphism is functorial in the triple (X, F, ). We note that in the
case where F lifts X, i.e. X = F Xgpecw Speck, the complex F(‘/,jTQ"/) ~
RI'(V, 1) is by [3] (1.10 Proposition) quasi-isomorphic to the Monsky-
Washnitzer complex associated to the weak completion of B.

Proposition 4.31. The comparison morphism (4.29) for overconvergent
Witt frames is an isomorphism in the derived category. The induced iso-
morphism (4.30) is independent of the overconvergent Witt frame we have
chosen.

Proof. We begin to show the independence of (4.30). Let (A, B’,x’) be a
second overconvergent Witt frame. We set /' = Spec B’ and B" = B @y (y,
B’ and F" = Spec B” = F x F’. We obtain an overconvergent Witt frame
B" — W1(A) by taking the product of the overconvergent Witt lifts for B
and B’. We consider the two projections

F F" > F.

We may choose strict neighbourhood V € F&, V! C Fé" V" C Fp* such
that V" is mapped to V respectively V' by the two projections. By the
functoriality (4.29) this induces a commutative diagram

RI(V,j10;) RI(V", j1%,)

\ /

Wi, , ® Q.

This shows that the comparison morphisms (4.30) for the overconvergent
Witt frames F' and F” are the same. Since the same is true for F’ we have
shown the independence.

By Proposition 3.24 there are overconvergent frames (A, A, 1) such that
the associated morphism

R'Tyig(X) = H' Qg © Q) = H' (W) @ Q

is an isomorphism for each ¢ > 0. Therefore (4.29) is an isomorphism for
arbitrarily chosen overconvergent frames. O

To globalize our results we use dagger spaces [8]. We associate a dagger
space to a special frame (X, F'). We choose an embedding F' C E = Ajj,.
We begin to describe the dagger space structure on |.X|[.

We have

]X[E: {(1‘1,...,$m) € B(O, 1) ‘ ’fz<l’1,,$n)‘ < 1},
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with the notations introduced after (4.7). We choose a natural number u
and we set 7, = p~1/*. Then ] X[ is covered by the affinoids
H,, ={(z1,...,2m) € B(0,1) | |fi(z1,...,20n)| < N},
The affinoid algebra of H,, is
Cp, =K < X1,..., X0, 51,....8m > /(... (fi =pSi),-..),
which over a suitable extension K of K becomes isomorphic to
K<Xi,..., X010, ... T > /(.. (fi = pYT0),..).

We consider for ¢ > u the open immersion

Hnu — U/\ﬂ]tv
(compare (4.11)). Over K it is given by a comorphism
K <AX1,..  AX0, T4, T > /(o (fi = pYUT), ) — C,
where A\ = p~1/ for an arbitrary chosen natural number v. The map sends
the variables AXj; to pl/”Xz- and the variables Ti' — p(l/“)*(l/t)Ti. This is

an open immersion of H,, to the interior of Uy ,,, i.e. H,, CC Uy,, in the
sense of [5]. By [8] 2.21 this defines a dagger space structure on each H,,

and hence on |X[.. We denote this dagger space by ] X [E Its completion
is the rigid space | X[z.
From the definition of the dagger space structure H, Tu we conclude that
H(H} ,0) = H(Uy,,,j'0).
We deduce an isomorphism for an arbitrary strict neighbourhood U C E**
of | X[
HO(]X[TE7 O) - HO(UaJTO)a
(compare [8] §5).

Using the closed immersion F7* C E%' we obtain also a dagger space
structure on | X[4. By definition this dagger structure depends only on the
fundamental system of fundamental neighbourhoods V) ; given by Proposi-
ton 4.14. Tt follows that the dagger space ]X[} is functorial in (X, F)). If
U C F¥" we obtain an isomorphism

HO(X[L,0) = H'(U, j70).
By [8] we have moreover that
RI (X[, 2y ) = BLrig(X).
We associate to each special frame (X, F') a specialization map. By [2]
we have a morphism of ringed spaces
where the right hand side is the completion of F' in the closed subscheme X.
If we view this as a morphism of Grothendieck topologies only we obtain a

map

sp: | X [L=] X[~ X.
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(see [8] Thm. 2.19 for the last equality.)
We rewrite the comparison morphism as defined before (4.28) in terms of
dagger spaces

rox[t

Yok Q}X[}‘) — WTQA/k & Qa

where X = Spec A.
We have also a local version of this morphism

(4.32) qnqﬂgavWka®Q.

To see this we consider an open set U = Spec Ay C X, feA Let feBa
lift of f, where Spec B = F. The open set |U[C] X[z inherits the structure
of a dagger space. To define (4.32) it is enough to show that this dagger
space structure coincides with that given by the special frame (U, Spec By).
Indeed, form the commutative diagram

U —— SpecBy —— A" XA —— P"xP

| ! l |

X —— SpecB —— A" —— P

This induces a map of frames in the sense of rigid cohomology

U Yy’ Q'
L
U Y Q.

The last vertical arrow is proper and is an open immersion in a neighbour-
hood of U. We conclude by [2] Thm. 1.3.5 that the strict tubular neighbour-
hoods associated to the two frames are the same. This implies the desired
isomorphism of dagger spaces.

Let now X be a smooth quasiprojective scheme over k. Our next aim is
the definition of a comparison morphism

RT,iy(X) = RI(X, WiQyx ) ® Q.

Definition 4.33. Let R be a ring. We call A a standard smooth algebra
over R if A can be represented in the form

A=R[X1,... X0l /(f1s- - fm)s

where m < n and the determinant

of; .
det(@X])’ ,7=1,...m.

is a unit in A. We call Spec A a standard smooth scheme.

We remark that a localization of a standard smooth algebra by an element
is again standard smooth. Since X is smooth over k it has a covering by
standard smooth neighbourhoods.

We choose an open embedding X — Proj S, where S is a finitely generated
graded algebra over k. We consider finite coverings X = U;er DT (h;), where
the h; € § are homogeneous elements which have all the same degree. If we
choose the covering sufficiently fine we may assume that all X; = Dt (h;)



60 CHRISTOPHER DAVIS, ANDREAS LANGER, AND THOMAS ZINK

are standard smooth schemes over k. For a subset J = {i1,...,i:} C I we
set
X;=X;,N...NX,,.
We write X; = Spec A;. Then Aj; is a localization of A;, by a suitable
element g € A;,.
Let A as in Definition 4.33. We choose arbitrary liftings fl, ey fm €
WI[X1,...,X,]. Let B be a localization of W[X1, ..., X,]/(f1,- .., fm) with

respect to det <g)]§), where 7,7 = 1,...m. Then B is a standard smooth
J

algebra which lifts A over W.

We will choose for each A; a standard smooth lift B; as above. We set
F; = Spec B; and obtain special frames (X;, F;) for i € I. For J C I we
consider the closed embedding

(4.34) xX; =[] F
i€J

This is a special frame.

Proposition 4.35. Let us denote by Q the dagger space which we introduced
on the tubular neighbourhood | X ;| with respect to the special frame (4.54)
and let sp : @ — Xy be the specialization morphism. Then the canonical
map

sp. 2o — Rsp, g

18 a quasiisomorphism.

Proof. We will reduce this to a more special situation. The main ingredient
is the strong fibration theorem of [2] 1.3.5. In terms of dagger spaces it has
the following consequence.

Let (Z, F1) and (Z, F3) be special frames. We denote by Q; and Q; the
corresponding dagger spaces. Let v : F1 — F5 be a morphism of frames
which induces the identity on Z. If v is étale in a neighbourhood of Z in F}
then v induces an isomorphism Q; — Qs.

To see this we choose closed immersions Fy — Afj, and F, — A}j,. We
consider the commutative diagram

Fi —— A7, x AT

‘| |

PR — Ay,
We denote by P; the closure of F7 in PJ;, x PJj; and by P the closure of F3
in P};,. We note that F is open in Py and F3 is open in P%. Let Y7 resp. Yo

be the closure of Z in P; resp. P». Taking the p-adic completions we obtain
a commutative diagram

A > Y1 P1
I
VA > Y2 pQ.

Then u is proper and étale in a neighbourhood of Z in P;. Therefore [2] is
applicable and shows that the obvious isomorphism | Z[z —]Z[p, extends to
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an isomorphism of strict neighbourhoods. In particular the dagger spaces
are the same.

This being said we continue the proof. We fix an index ig € J. If J = {io}
the assertion follows from the proof of [3] Prop. 1.10. By the choice of our
covering A is the localization of A;, by an element g € A;,. We take a lift
g € Bj, and we set B; = (Bj,)z. Then F = Spec B; is a standard smooth
scheme over W which lifts X ;.

We set £ = [],c Jiztio Fi- By the strong fibration theorem above the
special frames (X, F, x E) and (X, Fj, x E) have isomorphic dagger spaces.
It is enough to consider the latter one. Since FE is standard smooth we can
choose an etale morphism E — A}, for some number n. Again by the strong
fibration theorem it is enough to prove our proposition for the special frame
(X, Fj, x Afy).

We may assume the map X ; — A}, induced by the last special frame fac-
tors over the zero section Spec k — Afj,. This is seen by a simple coordinate
change. Consider the comorphism of the closed embedding X ; — FZ-’0 x Ajy:

(4.36) Bl [X1,..., Xn] > Ay

We find elements b; € B;  such that v(b;) = 7(X;). Since we may take X =
X; —b;, i =1,...,n as new indeterminates on the left hand side of (4.36)
we see that our original special frame is isomorphic to one of the required
form. Our proof will be finished by the Corollary 4.38 of the following: U

Proposition 4.37. Let D = {z € K | |2| < 1} the open unit ball with its
natural dagger space structure. Let n be a natural number. Let Q = Sp' A

be a smooth affinoid dagger space, such that ng is a free O-module. Then
the following holds:

(1) H°(Q,Qg) — HY(Q x D",

Qxf)") s a quasiisomorphism of com-

plexes.

2) The complex H'(Q x 15”, Q. ) is acyclic.
Ax D™

(3) HY(Q x Dn’QquDn> =0 fori>2 and all q.

This Proposition is inspired by [3] Thm. 1.4. We postpone its proof to
the end.

Corollary 4.38. Let Z = Spec A be a smooth affine scheme over k. Let
F = Spec B be a smooth affine scheme which lifts A. Let Q :]Z[;; be
the tubular neighbourhood with its dagger space structure. We consider the
constant map to the origin Z — Aj;.

The dagger space associated to the special frame (Z, F x Ay,) is Q x D,
Let

OQx D" = Z

be the specialization map.

Then the natural morphism

oxDn

Sp*Q Qan

— Rsp, Q)

18 a quasiisomorphism.
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Proof. We consider the spectral sequence of hypercohomology
(4.39) HI(RP sp, ngén) = RP"sp, Qoo
For an affine subset U C Z the inverse image U C Q by sp: @ — Z is an
affinoid dagger space. Choose U sufficiently small, such that ), is free.

By Proposition 4.37 the complex HP (U x Dr o ) is acyclic for p > 1.

UxDm

It follows that the complexes R? sp, {2 ., are acyclic. Therefore the spec-

Qxﬁ
tral sequence (4.39) degenerates. This proves the Corollary and Propositon
4.35. O

Theorem 4.40. Let X be a smooth quasiprojective scheme over k. Then
we have a natural quasiisomorphism

RT,iy(X) = RI(X, WiQy,) ®Q

Proof. We choose a covering {X;}ier as above. We consider the simplicial
scheme X, = {X;} s and its natural augmentation € : X, — X. We set
Fj =1l,c; Fi- Then we obtain a simplicial object of frames (X7, F)y) which
gives rise to a simplicial dagger space Qo = {Qs}. For each J C I we have
the comparison morphism (4.32)

sp, g, = Wiy, 1 ®Q
This glues to a morphism of simplicial sheaves
sp, g, — I/VTQ%./;~C ® Q.
By Proposition 4.35 and Proposition 4.31 this gives a quasiisomorphism

Rsp, Qn, — VVTQ%.//g ®Q

(4.41) ReRspQq, TRe. Wiy, @ Q2 WQy), ®Q.

We will verify that the left hand side of (4.41) is a complex on X whoose
hypercohomology is rigid cohomology. We consider a frame P : X — X — P
which gives the rigid cohomology of X. If P’ : X — X’ — P’ is a second
frame we may form the product as follows: We consider the closure X" of
X in X’ x X”. The we obtain a new frame X — X” — P x P’. We denote
this frame by P x P’.

By [6] we find a simplicial frame {P ;} where P ; is a frame for X ; with an
augmentation to P. To the frames (X, F)y) we may associate functorially
frames Q. We obtain a commutative diagram of simplicial schemes

P;xQ; —— Qy

! l

PJ e Xj

Consider the corresponding diagram of dagger spaces. Since each of these
dagger space gives the rigid cohomology of X ; we obtain quasiisomorphisms

R sp,flq, «+—— Rsp,OQr, —— Rsp,Qp,
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Here R ; denotes the dagger space associated with P ; x Q. But this implies
that we obtain quasiisomorphisms of simplicial sheaves too:
(4.42) R sp,Qq, +—— R sp,Qr, —— R sp, Op,

If we apply RT(Re,,?) to the last complex in (4.42) we obtain a quasi-
isomorphism with RI';;4(X) by [6]. Together with (4.41) this proves the
theorem. 0

It remains to prove Proposition 4.37. Let Q = Sp' A be a reduced affinoid
dagger space. Recall that A is a weakly complete finitely generated algebra
tensored with Q [17]. We represent A as a quotient

kK < X1,... Xm >T— A

The algebra on the left hand side is the union of the algebras for real numbers
e>0

K<Xy,... Xpm>={) e X' CK[[X1,... Xp]] | ordyer — elI| = oo}
I

This is a Tate algebra if e € Q [5] 6.1.5. We denote by 4, the Gauss norm
on this ring:

16(213 erX") = inf{ord, c; — e[1]}.

Let Ac be the image of K < Xi,...X,, > by k. We denote by 7. the
quotient norm on A.. Since A, is reduced by assumption . is equivalent to
the spectral norm o, on A..

Let D = Sp! K < X > be the closed dagger disc. We write

A<Ty,....,T, >":=T(Q x D", 0).

It follows from the definitions that A < T7,...,T, > consists of all power
series > ;a,T7 € (A® Q)[[T1,...,Ty]] such that there is an ¢ > 0 and a
number C with ay € A, for all J € Z%y and such that

(4.43) oay) —e€lJ| > C.
In this condition we could replace o, by ..

Lemma 4.44. Let Q = Sp' A and let D be the open dagger disc. Then the
algebra T'(Q x D™) consists of all power series

S a1’ € (A0 Q)T ... T
J

such that for each § > 0 there is an € > 0 and a constant C such that for
all J we have that ay € Ac and that

oclay)+o|J| > C.

Proof. Indeed, let Ds = {z € K | ord,z > §} be the closed dagger disc.
Then I'(Q x D}, O) consists of all power series ) ;a JT7 such that there is
an € > 0 and a constant C' with

oc(ay) +o|J| —€lJ| > C.
This implies the result. O
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Lemma 4.45. Let Q = Sp' A and let D be the closed dagger disc. Let
(4.46) An= @B T(QxD")dT;, A...NdT;,

11 <...<ip

be the complex with the obvious differential.
Then the complex A — A, is acyclic.

Proof. We consider A, as a multicomplex with the partial differentials 0,
i=1,...,n. Let A,, C A,, be the direct summands of 4.46 with i < n.
It suffices to show that the following complex is exact:

O—>An_1—>Kn&$1~Xn—>0.

The only nontrivial thing to show is that an expression fdX,, with f €
I'(Q x D™) is the partial differential of some g € I'(Q x D™). We set f =
> a;T7. We denote by e the vector (0,...,0,1) € Z", and we denote by
Jn the last entry of the vector J. We have to show that the power series
>

7 Jnt
is in I'(Q x D™).

By (4.43) we find € > 0 and C such that

oay) —e€lJ| > C.

We take 0 < ¢ < e. We note that A. C Ao and that o > o.. Since o, is
multiplicative we find
00 (3247) — €|J + e| = gu(ay) —ordy(jn + 1) — €(|J] + 1) >
oe(ay) —e(|lJ]+ 1)+ (e = €)(|J| + 1) —ordy(jn, + 1) >
C—e+(e—€)jn+1) —ordy(jn+1)

It is clear that the last expression is bounded below independent of J. [

We have the same for the open disc D.
Lemma 4.47. With the same notations as before let
(4.48) An= € T(QxD")dTy, A...AdT;,
11<...<ip

be the complex with the obvious differential.
Then the complex A — A, is acyclic.

Proof. As in the proof of the last Lemma the only nontrivial thing to show is
that an expression fdX,, with f € T'(Q x D™) may be written fdX, = 0,¢
for some g € T'(Q x D™). We have to show that the power series

Z .aJ TJ+e
~ Jnt1

is in I'(Q x b”) We apply Lemma 4.44. Assume § > 0 is given. We take
any ¢’ < . Then we find € > 0 and a constant C' such that

oe(ay) +0'|J| > C.
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We see that the following expression is bounded below:

oe(57) (1 +el) =
oc(ay) —ordy(jn + 1) + (6 — &) (|J| + 1) (|J] + 1).

We come now to the proof of Proposition 4.37. We write
oo
pr=Ju
i=1

as a union of dagger balls of ascending radius. For an abelian sheaf F on D
we define the sheaves C°(F) = C(F):

CFRV)=]]FU.nV).
t=1
We obtain a resolution of F
0—+F— CUF) — CH(F) -0

[Ise = Tl(st — st41)

If F is a coherent OQX pn-module the cohomology groups HP(Q x Uy, F)
vanish for p > 1 by Tate-acyclicity for affinoid dagger spaces [8]. Therefore
RI'(Q x D", F) is represented by the global sections of the complex (4.49)

[[2, F@xU) — T2 F(QxUr)
[1st = [I(st — st41)-

This proves already the third assertion of Proposition 4.37.
Let m: Q@ x Uy — Q be the projection. We write

(4.49)

(4.50)

GP = (7" %) (Q x Uy).

This is a free module over H°(Q x U, O) by assumption. With this notation
the complex H°(Q x Uy, QQxUt) is represented by the double complex with
the components

CPIU) = @iy <..i, GYdT;, A ... AdT;,.

The map (4.50) induces a morphism of complexes

(4.51) [[crewy) - [ cawv).
t=1 t=1
The kernel resp. the cokernel of the induced map of total complexes are the

complexes H°(Q x Dn’QQan) resp. H'(Q x Dn’QQan)'

By Lemma 4.45 the complex CP"(Uy) for fixed p is quasiisomorphic to
H°(Q, QpQ) regarded a a complex concentrated in degree zero. Therefore

the total complex of CP4(U;) is quasiisomorphic to the complex HY(Q, Qo)
We consider the projection 7 : Q X D" Q and write

GP = (7" Q) (Q x D).

By assumption these are free modules over H(Q x D", O).
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Then we may represent H°(Q x D”, Q Ox pn) by the double complex with
components
BP = @, < GPTiy A ... ANdT;,.
Lemma 4.47 asserts that the total complex of BP-? is quasiisomorphic to the
complex H°(Q, Qo). This proves the first assertion of Proposition 4.37.

We deduce finally that the complex H'(Q x D", Q'QX [)n) is quasiisomor-

phic to the total complex of the triple complex

oo oo
BP1 — HC’p’q(Ut) — HCp’q(Ut).
t=1 t=1
By what we already proved the last complex is quasiisomorphic to the total
complex of the double complex

HO(Q’QQ)_) HtoilHO(Q7QQ) - H?ilHO(Q’Q.Q)v
H St — H(St — St_|_1).

where the first embedding is diagonal. But the total complex is acyclic
because the double complex is already acyclic with respect to the horizon-
tal differential. This proves the second assertion and finishes the proof of
Proposition 4.37.
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