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Abstract. The goal of this work is to construct, for a smooth variety
X over a perfect field k of finite characteristic p > 0, an overconvergent
de Rham-Witt complex W †ΩX/k as a suitable subcomplex of the de
Rham-Witt complex of Deligne-Illusie. This complex, which is functo-
rial in X, is a complex of étale sheaves and a differential graded algebra
over the ring W †(OX) of overconvergent Witt-vectors. If X is affine
one proves that there is an isomorphism between Monsky-Washnitzer
cohomology and (rational) overconvergent de Rham-Witt cohomology.
Finally we define for a quasiprojective X an isomorphism between the
rational overconvergent de Rham-Witt cohomology and the rigid coho-
mology.
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Résumé. Le but de ce travail est de construire, pour X une variété
lisse sur un corps parfait k de charactéristique finie, un complexe de
de Rham-Witt surconvergent W †ΩX/k comme un sous-complexe conve-
nable du complexe de de Rham-Witt de Deligne-Illusie. Ce complexe qui
est fonctoriel en X est un complexe des faisceaux étales et une algèbre
différentielle graduée sur l’anneau W †(OX) des vecteurs de Witt surcon-
vergents. Lorsque X est affine, on démontre qu’il existe un isomorphisme
canonique entre la cohomologie de Monsky-Washnitzer et la cohomolo-
gie (rationelle) de de Rham-Witt surconvergente. Finalement on définit
pour X quasiprojectif un isomorphisme entre la cohomologie rigide de
X et la cohomologie de de Rham-Witt surconvergente rationelle.

Mots-clefs : cohomologie rigide, complexe de de Rham-Witt.
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Introduction

Let X be a smooth variety over a perfect field k of finite characteristic.
The purpose of this work is to define an overconvergent de Rham-Witt com-
plex W †Ω·X/k of sheaves on X. This complex is a differential graded algebra

contained in the de Rham-Witt complex WΩ·X/k of Illusie and Deligne.

If X is quasiprojective we define a canonical isomorphism from rigid co-
homology of X in the sense of Berthelot:

H i
rig(X/W (k)⊗Q)→ Hi(X,W †Ω·X/k)⊗Q.

In particular these are finite dimensional vector spaces over W (k) ⊗ Q by
[3]. We conjecture that the image of the morphism

Hi(X,W †Ω·X/k)→ Hi(X,W †Ω·X/k)⊗Q

is a finitely generated W (k)-module. If X is projective we expect that
the image of Hi(X,W †Ω·X/k) under the comparison isomorphism between

rigid cohomology and crystalline cohomology coincides with the image of
crystalline cohomology.

In the case where X = SpecA is affine we obtain more precise results.

The cohomology groups of the individual sheaves W †Ωj
X/k are zero for i >

0. The complex H0(X,W †Ω·X/k) will be denoted by W †Ω·A/k. Let Ã be

a lifting of A to a smooth algebra Ã over W (k). We denote by Ã† the

weak completion of Ã in the sense of Monsky-Washnitzer. The absolute
Frobenius endomorphism on A lifts (non canonically) to Ã†. This defines a

homomorphism Ã† → W (A). We show that the image of this map lies in
W †(A). This defines morphisms

(1) H i(Ω·
Ã†/W (k)

)→ H i(W †Ω·A/k), for i ≥ 0.

We show that the kernel and cokernel of this map is annihilated by p2κ,
where κ = blogp dimAc. If we tensor the morphism (1) by Q it becomes
independent of the lift of the absolute Frobenius chosen.

We note that Lubkin [15] used another growth condition on Witt vectors.
His bounded Witt vectors are different from our overconvergent Witt vectors.

Let A = k[T1, . . . , Td] be the polynomial ring. For each real ε > 0 we
defined ([7]) the Gauss norm γε on W (A). We extend them to the de
Rham-Witt complex WΩ·A/k. A Witt differential from WΩ·A/k is called

overconvergent if its Gauss norm is finite for some ε > 0. We denote the
subcomplex of all overconvergent Witt differentials by W †Ω·A/k. Follow-

ing the description in [13], WΩ·A/k decomposes canonically into an integral

part and an acyclic fractional part and this decomposition continues to hold
for the complex of overconvergent Witt differentials. The integral part is
easily identified with the de Rham complex associated to the weak com-
pletion of the polynomial algebra W (k)[T1, . . . , Td] in the sense of Monsky
and Washnitzer. This explains the terminology “overconvergent” for Witt
differentials. For an arbitrary smooth k-algebra B we choose a presenta-
tion A → B. We define the complex of overconvergent Witt differentials
W †Ω·B/k as the image of W †Ω·A/k. This is independent of the presentation.
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It is a central result that the functor which associates to a smooth affine
scheme SpecB the group W †Ωm

B/k is a sheaf for the étale topology, and

that H i
Zar(SpecB,W †Ωm

B/k) = 0 for i ≥ 1. For this we generalize ideas of

Meredith [16]. One also uses that the ring of overconvergent Witt vectors is
weakly complete in the sense of Monsky-Washnitzer [7] and the complex of
overconvergent Witt differentials satisfies a similar property of weak com-
pleteness. The étale sheaf property depends on an explicit description - for
a finite étale extension C/B - of W †Ω·C/k in terms of W †Ω·B/k. The result is

as nice as one can hope for. By a result of Kedlaya [12] any smooth variety
can be covered by affines which are finite étale over a localized polynomial
algebra. It then remains to show a localization property of overconvergence;
namely a Witt differential of a localized polynomial algebra which becomes
overconvergent after further localization is already overconvergent. This re-
quires a detailed study of suitable Gauss norms (that are all equivalent) on
the truncated de Rham-Witt complex of a localized polynomial algebra.

In the final section we globalize the comparison with rigid cohomology
from the affine case. In our approach it is essential to use Grosse-Klönne’s
dagger spaces [8]. Let Z be an affine smooth scheme over k. Let Z → F a
closed embedding in a smooth affine scheme over W (k). We call (Z,F ) a
special frame. To a special frame we associate canonically a dagger space

]Z[†
F̂

. Its de Rham cohomology coincides with the rigid cohomology of Z:

RΓ(]Z[†
F̂
,Ω·

]Z[†
F̂

) = RΓrig(Z).

If F ×SpecW (k) Spec k = Z the dagger space ]Z[†
F̂

is affinoid. Therefore the

hypercohomology is not needed

Γ(]Z[†
F̂
,Ω·

]Z[†
F̂

) = RΓ(]Z[†
F̂
,Ω·

]Z[†
F̂

).

We show that the latter is true for a big enough class of special frames.
Then simplicial methods allow a globalization to the quasiprojective case.

0. Definition of the overconvergent de Rham-Witt complex

Let R be an Fp-algebra which is an integral domain. We consider the
polynomial algebra A = R[T1, . . . , Td]. Before we recall the de Rham-Witt
complex, we review a few properties of the de Rham complex ΩA/R.

There is a natural morphism of graded rings

F : ΩA/R → ΩA/R,

which is the absolute Frobenius on Ω0
A/R and such that FdTi = T p−1

i dTi.

As shown in [13], ΩA/R has an R-basis of so called basic differentials. Their
definition depends on certain choices which we will fix now in a more special
way than in loc. cit.

We consider functions k : [1, d] → Z≥0 called weights. On the support
Supp k = {i1, . . . , ir} we fix an order i1, . . . , ir with the following properties:

(i) ordp ki1 ≤ ordp ki2 ≤ . . . ≤ ordp kir .

(ii) If ordp kin = ordp kin+1 , then in ≤ in+1.
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Let P = {I0, I1, . . . , Il} be a partition of Supp k as in [13]. A basic differential
is a differential of the form:

(0.1) e(k,P) = T kI0

(
dT kI1

pordp kI1

)
· · · · ·

(
dT kIl

pordp kIl

)
.

It is shown in [13] Proposition 2.1 that the elements (0.1) form a basis of
the de Rham complex ΩA/R as an R-module. The de Rham-Witt complex
WΩA/R has a similar description, but now fractional weight functions are in-
volved. More precisely, an element ω ∈WΩr

A/R has a unique decomposition

as a sum of basic Witt differentials [13]

(0.2) ω =
∑
k,P

e (ξk,P , k,P) ,

where k : [1, d] → Z≥0[1
p ] is any weight ([13], 2.2) and P = {I0, I1, . . . , Ir}

runs through all partitions of Supp k. Moreover, the coefficients ξk,P ∈
W (R) satisfy a certain convergence condition ([13], Theorem 2.8).

For each real number ε > 0 we define the Gauss norm of ω:

(0.3) γε(ω) = inf
k,P
{ordV ξk,P − ε|k|}.

We will also use the truncated Gauss norms for a natural number n ≥ 0:

γε[n](ω) = inf
k,P
{ordV ξk,P − ε|k| | ordV ξk,P ≤ n}.

The truncated Gauss norms factor over Wn+1ΩA/R. We note that in the
truncated case the inf is over a finite set.

If γε(ω) > −∞, we say that ω has radius of convergence ε.
We call ω overconvergent, if there is an ε > 0 such that ω has radius of

convergence ε. It follows from the definitions that

(0.4) γε(ω1 + ω2) ≥ min (γε(ω1), γε(ω2)) .

This inequality shows that the overconvergent Witt differentials form a
subgroup of WΩA/R which is denoted by W †ΩA/R. We have W †ΩA/R =⋃
ε
W εΩA/R where W εΩA/R are the overconvergent Witt differentials with

radius of convergence ε.
If R = R∪{∞}∪{−∞}, then an R-valued function c on an abelian group

M which satisfies (0.4), so that c(a+ b) ≥ min{c(a), c(b)}, is called an order
function.

Definition 0.5. We say that ω is homogeneous of weight k if in the sum
ω =

∑
e (ξk,P , k,P) the weight k is fixed. We write weight(ω) = k.

If g ∈ Q, then we can consider sums which are homogeneous of degree g,
i.e.

ω =
∑
|k|=g,P

e (ξk,P , k,P) .

Then we define deg(ω) = g. If ω is homogeneous of a fixed degree, we define

ordV ω = min ordV ξk,P .
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It is easy to see that γε(ω) > −∞ if and only if there are real constants
C1, C2, with C1 > 0 such that for all weights k occurring in ω we have

(0.6) |k| ≤ C1 ordV ξk,P + C2.

One can take C1 =
1

ε
.

Using this equivalent definition one can show that the product of two
overconvergent Witt differentials is again overconvergent, as follows: For two
homogeneous forms ω1, ω2 one has ordV (ω1∧ω2) ≥ max (ordV ω1, ordV ω2).
This follows from a (rather tedious) case by case calculation with basic Witt
differentials.

We have deg(ω1 ∧ ω2) = degω1 + degω2.
Assume now that

degω ≤ C1 ordV ω + C2

and

degω′ ≤ C ′1 ordV ω′ + C ′2

for two homogeneous forms ω, ω′ of fixed degrees. Then

deg(ω ∧ ω′) = degω + degω′ ≤ (C1 + C ′1) ordV (ω1 ∧ ω2) + C2 + C ′2.

This implies that if ω and ω′ are overconvergent Witt differentials with radii
of convergence ε and ε′ then ω ∧ ω′ is overconvergent with radius of conver-
gence ε·ε′

ε+ε′ . In the special case ε = ε′ we get that ω ∧ ω′ is overconvergent

with radius of convergence
ε

2
and γ ε

2
(ω ∧ ω′) ≥ γε(ω) + γε(ω

′)

2
. This shows

that W †ΩA/R is a differential graded algebra over the ring W †(A) of over-
convergent Witt vectors.

We recall from [7] the definition of a pseudovaluation. An order function
c on a ring M is called a pseudovaluation if in addition it satisfies: (i)
c(1) = 0 and c(0) = ∞; (ii) c(m) = c(−m) for all m ∈ M ; (iii) c(m1m2) ≥
c(m1) + c(m2) if c(m1) 6= −∞, c(m2) 6= −∞.

In general, the Gauss norms γε form a set of pseudovaluations on the ring

of Witt vectors, i.e. in degree zero; however, from the formula
V

[T p−1]dV [T ] =
pd[T ] and

ordV

(
V

[T p−1]
)

= ordV (dV [T ]) = ordV (pd[T ]) = 1,

we see that we cannot expect a formula

γε(ω1 ∧ ω2) ≥ γε(ω1) + γε(ω2).

Hence the Gauss norms do not extend to pseudovaluations in higher degrees.

Proposition 0.7. Let R be an integral domain such that p · R = 0. Let
ϕ : R[T1, . . . , Td]→ R[U1, . . . , Ul] be a homomorphism. It induces a map

ϕ∗ : WΩR[T1,...,Td]/R →WΩR[U1,...,Ul]/R.

Then there is a constant α > 0, such that for any ε > 0 and any natural
number n:

γαε[n](ϕ∗ω) ≥ γε[n](ω).
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The same inequality holds if [n] is removed. In particular, if ω is overcon-
vergent with radius of convergence ε then ϕ∗ω is overconvergent with radius
of convergence αε.

Proof. We set Yj = [Uj ] and Xi = [Ti]. From Lemma 2.23 in [7] we obtain
an expansion:

ϕ∗(Xi) = [Qi(U1, . . . , Ul)] =
∑
|k|<c

aikY
k,

where aik ∈W (R). More generally we obtain for a monomialX l = X l1
1 . . . X ld

d ,
li ∈ Z≥0 an expansion:

ϕ∗(X
l) =

∑
|k|<c|l|

bkY
k, bk ∈W (R).

Since ϕ∗ commutes with the action of V we find for l not necessarily
integral

ϕ∗

(
V uηX l

)
=

V u(
ϕ∗

(
ηX l·pu

))
=

V u ∑
k′≤c|l|pu

η · bk′ · Y k′

 =
∑
|k|<c·|l|

V u
(ηbk′) · Y k.

From this we see immediately the following fact: Let ω ∈WΩR[T1,...,Td]/R

be a Witt differential which is homogeneous of degree l, and such that
ordV ω = m. Then ϕ∗ω is a V−convergent sum

∑
ηk of homogeneous Witt

differentials of degree |k| < c|l| and such that ordV ηk ≥ m. Assume that
ω =

∑
ωl is a sum of homogeneous differentials such that

ordV ωl − ε|l| ≥ D.

Then ϕ∗ωl =
∑
ηl,k, where ηl,k is homogeneous of degree k, such that |k| ≤

c|l| and ordV ηl,k ≥ m. Therefore for δ > 0,

ordV ηl,k − δ|k| ≥ m− δc|l|.

If δ <
ε

c
the last expression is bounded below by D. This proves the propo-

sition with α = 1/c. �

By the proposition we obtain a map:

(0.8) W εΩR[T1,...,Td]/R →WαεΩR[U1,...,Ul]/R.

Proposition 0.9. Let ϕ : R[T1, . . . , Td] −→ R[U1, . . . , Ul] be an R−algebra
homomorphism. Then the induced map

ϕ∗ : WΩR[T1,...,Td]/R →WΩR[U1,...,Ul]/R

maps W †ΩR[T1,...,Td]/R to W †ΩR[U1,...,Ul]/R.
If, moreover, ϕ is surjective then

W †ΩR[T1,...,Td]/R →W †ΩR[U1,...,Ul]/R

is surjective too.
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Proof. Only the last statement needs a verification. If ϕ is surjective we find
a homomorphism

ψ : R[U1, . . . , Ul]→ R[T1, . . . , Td],

such that ϕ ◦ ψ = id. Then for η ∈ W †ΩR[U1,...,Ul]/R, ψη is overconvergent
and therefore a preimage of η. �

We have seen that γε fails to be a pseudovaluation on the ring WΩA/R.
However we will face a situation where we will need an inequality

γε(fω) ≥ γε(f) + γε(ω)

for certain f ∈ W (A) and ω ∈ WΩA/R. For suitable f and overconvergent
ω we can even achieve equality.

From now on, let R = k be a perfect field. Let A = k[T1, . . . , Td] be the
polynomial ring. The Teichmüller of Ti in W (A) is denoted by Xi. For a
Witt differential ω ∈WΩA/k we define:

νp(ω) = max{a ∈ Z | p−aω ∈WΩA/k}.
Obviously we have that

νp(ω1ω2) ≥ νp(ω1) + νp(ω2)

for arbitrary Witt differentials.
Let ω = e(ξ, k,P) be a basic Witt differential. Let pu be the denominator

of the weight k. Then we have:

ordV ω = ordV ξ = νp(ω) + u.

For an arbitrary ω ∈WΩA/k we write the expansion:

(0.10) ω =
∑
k,P

e(ξk,P , k,P).

Let ε > 0. We have the Gauss norm γε:

γε(ω) = inf
k,P
{ordV (e(ξk,P , k,P))− ε|k|}.

We also define the modified Gauss norm:

(0.11) γ̆ε(ω) = inf
k,P
{νp(e(ξk,P , k,P))− ε|k|}.

We note that:
γε(ω) ≥ γ̆ε(ω).

Consider the polynomial algebra Ã = W (k)[X1, . . . , Xd]. For each real

number ε > 0 we define on Ã a valuation γε. We write f ∈ Ã. We will use
the vector notation I = (i1, . . . , id) and write

f =
∑

cIX
I , cI ∈W (k).

We write |I| = i1 + . . .+ id. Then we set

γε(f) = min{ordp(cI)− ε|I|)}.
We extend γε to the differential forms ΩÃ/W (k). We write a differential

form as of degree r:

ω =
∑
α

fαdXα1 ∧ . . . ∧ dXαr , fα ∈ Ã,
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where α = (α1, . . . , αr) runs over vectors with 1 ≤ α1 < . . . < αr ≤ d. Then
we set:

γε(ω) = min
α
{γε(fα)− rε}.

We have the following properties:

(0.12)
γε(fω) = γε(f) + γε(ω), f ∈ Ã
γε(ω1 ∧ ω2) ≥ γε(ω1) + γε(ω2), ωi ∈ ΩÃ/W (k).

We may write ω as a sum of p-basic elements [13] (2.3):

e(c, k,P) = cXkI0
dXkI1

pordp kI1
· . . . · dX

kIl

pordp kIl
.

Lemma 0.13. Let us write ω ∈ ΩÃ/W (k) as a sum of p-basic differentials:

ω =
∑

e(ck,P , k,P).

Then we have:
γε(ω) = min{ordp(ck,P)− |k|ε}.

Proof. Clearly it is sufficient to consider the case where ω belongs to the
free W (k)-module of forms of a given weight k (compare [13] proof of Prop.
2.1). Then ω may be written:

ω =
∑

bi1...ilX
k1
1 · . . . ·X

kn
n d logXi1 ∧ . . . ∧ d logXil .

The result follows because bi1...il and ck,P are related by a unimodular matrix
with coefficients in Zp, [13] 2.1. �

Consider the natural map Ã→W (A) which sends Xi to the Teichmüller
representative [Ti]. It induces a map:

(0.14) ΩÃ/W (k) →WΩA/k.

The p-adic completion of the image of this map consists of the integral Witt
differentials. From Lemma 0.13 we obtain:

Proposition 0.15. The map (0.14) is compatible with the Gauss norms γε
on both sides.

Corollary 0.16. Let ω, η ∈WΩA/k. Then we have:

γε(ωη) ≥ γε(ω) + γε(η) for ω integral

γε(ωη) ≥ γ̆ε(ω) + γε(η) for ω arbitrary.

We note that for ω integral, γε(ω) = γ̆ε(ω). Let f ∈ A, then we have
γ̆ε([f ]) = γε([f ]). In particular we find for arbitrary ω

(0.17) γε([f ]ω) ≥ γε([f ]) + γε(ω).

Proof. We begin with the first inequality. If η is integral too, we can apply
(0.12). For the general case we may assume that η = V uτ or η = dV

u
τ where

τ is a primitive basic Witt differential. We note that for primitive τ :

γε(
V uτ) = u+ γε/pu(τ).

For integral ω we have
γε/pu(F

u
ω) = γε(ω).
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If ω is not integral we have only the inequality:

γε/pu(F
u
ω) ≥ γε(ω)− u.

Then we find using the integral case:

γε(ω
V uτ) = γε(

V u(F
u
ωτ)) ≥ u+ γε/pu(F

u
ωτ) ≥

u+ γε/pu(F
u
ω) + γε/pu(τ) = γε(

V uτ) + γε/pu(F
u
ω) ≥ γε(V

u
τ) + γε(ω).

The case η = dV
u
τ is reduced to the former case by the Leibniz rule:

ωdV
u
τ = d(ωV

u
τ)− (dω)V

u
τ.

Now we verify the second inequality. We may assume that ω = V uτ or
ω = dV

u
τ for a primitive basic Witt differential. Then we have:

γ̆ε(ω) = γε/pu(τ), and

γε(
V uτη) = γε(

V u(τF
u
η)) ≥ u+ γε/pu(τF

u
η)

≥ u+ γε/pu(τ) + γε(
Fuη) = γ̆ε(ω) + u+ γε/pu(F

u
η) ≥ γ̆ε(ω) + γε(η).

Finally we have to show that γε([f ]) = γ̆ε([f ]). We denote by m =
(m1, . . . ,md) a vector of non negative integers and write:

(0.18) f =
∑
m

amT
m1
1 · . . . · Tmdd =

∑
m

amT
m.

Let g be the total degree of f . Then we have

γε([f ]) = −εg.
We enumerate the m with am 6= 0:

m(1), . . . ,m(t).

By Lemma 2.23 in [7] we find:

[f ] =
∑

k1+...+kt=1

αk1,...,kt [T ]m(1)k1+...+m(t)kt .

If we take γ̆ε of one summand it is bigger than the degree of this summand
times −ε:

γ̆ε(αk1,...,kt [T ]m(1)k1+...+m(t)kt) ≥ −ε(|m(1)|k1 + . . .+ |m(t)|kt)
≥ −ε(gk1 + . . .+ gkt) = −εg.

This shows that γ̆ε([f ]) ≥ −εg = γε([f ]). The other inequality is obvious.
�

Proposition 0.19. Let f ∈ W (A), f = (f0, f1, . . .) be a Witt vector, such
that f0 6= 0. Let ω ∈WΩA/k be an element, whose decomposition into basic
Witt differentials has the following form:

(0.20) ω =
∑

e(ξk,P , k,P).

We assume that all weights k appearing in this decomposition have the same
denominator pu with u ≥ 0, and the same degree κ = |k|. Moreover we
assume that only partitions P with I0 6= ∅ appear and that there is a weight
k and a partition P such that ordV ξk,P = u. The last condition says that

there is k and P such that e(ξk,P , k,P) = V uτ , for a primitive basic Witt
differential τ .
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We can write fω as a sum of basic Witt differentials:

(0.21) fω =
∑

e(ξ′h,P , h,P).

Then there is a summand e(ξ′h,P , h,P) such that ordV (ξ′h,P) = u, such that

h has denominator pu, and such that I0 6= ∅. Moreover if g is the degree of
the polynomial f0, then the degree of h is |h| = g + κ.

In particular we have the inequality:

γε(fω) ≤ γε(ω)− εdeg f0.

Proof. We write:

f = f̃ + V ρ,

where f̃ is a polynomial in X1 = [T1], . . . , Xd = [Td] with coefficients in
W (k), which are not divisible by p. The degrees of the polynomials f0 and

f̃ are the same.
We set ω = V uτ , where τ is an integral Witt differential with νp(τ) = 1.

Then we have:

(0.22) fω = (f̃ + V ρ)V
u
τ = V u(F

u
f̃ + pF

u−1
ρτ).

We write f̃ =
∑

i f̃i as a sum of homogeneous polynomials of different degree

gi. The maximum of the gi is g. Then the Witt differential ηi = Fu f̃iτ is
for each i an integral homogeneous Witt differential of degree pugi + puκ.
By assumption the reduction of this Witt differential in ΩA/k is not closed.
The basic Witt differentials which appear in the decomposition of ηi have
weights which are not divisible by p, because the weights appearing in Fu f̃
are divisible by p but those appearing in τ are not divisible by p. This shows
that primitive basic Witt differentials appear in the decomposition of each
ηi. These can’t be destroyed by basic Witt differentials which appear in the
decomposition of the last summand in the brackets of (0.22), because of the
factor p. If we apply V u we obtain the desired basic Witt differential in the
decomposition of fω. �

Corollary 0.23. With the notations of the proposition consider a Witt dif-
ferential of the form ω1 = ω + dη, and write

fpω1 =
∑

e(ξ̂ĥ,P , ĥ,P).

Then there is a summand e(ξ̂ĥ,P , ĥ,P) in the above sum, such that ordV ξ̂ĥ,P =

u, such that ĥ has denominator pu and such that I0 6= ∅. Moreover the degree
of ĥ is |ĥ| = pg + κ.

Proposition 0.24. Let f0 ∈ A = k[T1, . . . , Td] be a polynomial of degree g.
Let ω ∈WΩL/k. Then we have for the Gauss norm on A:

(0.25) γε([f0]ω) = γε([f0]) + γε(ω).

Proof. We write ω as a sum of basic Witt differentials:

(0.26) ω =
∑
i∈I

ei.
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By continuity we may assume that the sum is finite. By Corollary 0.16 we
have the inequality:

(0.27) γε([f0]ω) ≥ γε([f0]) + γε(ω).

We may therefore assume that in the sum (0.26)

(0.28) γε(ω) = γε(ei)

for all i ∈ I. We may further assume that νp(ω) = 0.
Let us first consider the case where there is an integral basic Witt differ-

ential ei0 in the sum (0.26) such that νp(ei0) = 0. Then we decompose ω
into three parts:

ω = η + ω′ + ω′′,

where η is the sum of those Witt differentials ei in (0.26) which are integral
and such that νp(ei) = 0, where ω′ is the sum of those Witt differentials ei
in (0.26) which are integral and such that νp(ei) > 0, and where ω′′ is the
sum of those Witt differentials in (0.26) which are not integral.

Let ei be a summand in η and let κ be its degree. By assumption we find:

γε(ω) = γε(ei) = νp(ei)− εκ = −εκ.

It follows that all these ei have the same degree κ.
Consider the differential f0η̄ ∈ ΩA/k which is the reduction of [f0]η. If we

write the reduction as a sum of basic differentials in ΩA/k it must clearly
contain a basic Witt differential of degree g + κ. In the decomposition of
[f0]η appears therefore an integral basic Witt differential ĕ of degree g + κ
such that νp(ĕ) = 0. On the other hand all basic Witt differentials which
appear in the decomposition of [f0](ω′ + ω′′) ∈ VWΩA/k + dVWΩA/k are
either integral with νp > 0 or nonintegral. Therefore they can’t destroy
completely ĕ. We found in the decomposition of [f0]ω an integral basic Witt
differential ĕ′ of degree g + κ, such that νp(ĕ

′) = 0. We conclude that

γε([f0]ω) ≤ γε(ĕ′) = −ε(g + κ) = γε([f0]) + γε(ω).

Since we know the opposite inequality we obtain the equation (0.25) in the
first case.

Let ω be a Witt differential which doesn’t belong to the first case. Then
we write:

(0.29) ω = ω(u) + ω(du) + ω′ + ω′′

where ω′ is the sum of all ei in (0.26), such that νp(ei) > 0. There is a
natural number u such that the following holds:

(0.30) ω′′ ∈ V u+1WΩA/k + dV u+1WΩA/k

and each basic Witt differential appearing in the decomposition of ω(u) is
of the form V uτ for a primitive basic Witt differential τ and any basic Witt
differential which appears in ω(du) is of the form dV

u
τ . By our assumption

(0.28) we find that for each of these τ :

γε(ω) = u+ γε/pu(τ) = u− εκ,

where κ is obviously independent of τ .
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Before proceeding we make a general remark: It suffices to show the
equality (0.25) in the case where f0 is a p-th power f0 = gp0 . Indeed assuming
this we have for arbitrary f0:

γε([f
p
0 ]ω) = γε([f

p
0 ]) + γε(ω) = pγε([f0] + γε(ω).

On the other hand we already know the inequality:

γε([f
p
0 ]ω) ≥ (p− 1)γε([f0]) + γε([f0]ω).

We conclude:

γε([f0])γε(ω) ≥ γε([f0]ω).

Since we already know the opposite the inequality (0.25) follows.
We consider now the second case where ω(u) 6= 0. By Proposition 0.19

the product [f0]ω(u) contains a basic Witt differential e(ξ, k,P), where k is
a weight of denominator u > 0, such that |k| = g + κ and ordV ξ = u. This
basic Witt differential can’t be destroyed by any basic Witt differential ap-
pearing in [f0]ω′, because νp > 0, or by any basic Witt differential appearing
in [f0]ω′′, because those have reduction 0 in WuΩA/k. It can also not cancel
with an exact basic Witt differential appearing in [f0]ω(du). Indeed since
f0 is a p-th power those basic Witt differentials are either exact or have
νp > 0. Therefore [f0]ω contains as a summand a basic Witt differential
e(η, k,P) where k is a weight of denominator u > 0, such that |k| = g + κ
and ordV ξ = u. This proves the inequality:

γε([f0]ω) ≤ u− ε(g + κ) = γε([f0]) + γε(ω).

This gives the desired equality in the second case.
Let us now consider the third and last case, where ω(u) = 0 in (0.29).

Then we rewrite (0.29) in the form:

ω = dV
u
σ + ω′ + ω′′,

where σ is a sum of primitive basic Witt differentials of the same degree
puκ, where γε(ω) = u− εκ. We assume as above that f0 = gp0 . We find:

(0.31) [f0]dV
u
σ = d([gp0 ]V

u
σ)− p[h0]p−1(d[h0])V

u
σ.

By Proposition 0.19 we know that [hp0]V
u
σ contains a non-closed basic Witt

differential e(ξ, k,P), where k is a weight of denominator u > 0, such that
|k| = g+κ and ordV ξ = u. As before we see that the basic Witt differential
de(ξ, k,P) can’t be destroyed by any basic Witt differential which appears
in [f0]ω′ or [f0]ω′′. It can’t also be destroyed by a basic Witt differential
which appears in the last summand of (0.31), because for them νp is positive.
From this we conclude as before the desired equality (0.25). �

Corollary 0.32. Let f̃ ∈ W (k[T1, . . . , Td]) = W (A) be an integral Witt
vector with radius of convergence ε. Let ω ∈ WΩA/k be an arbitrary Witt
differential of radius of convergence ε. Then we have:

γε(f̃ω) = γε(f̃) + γε(ω).

Proof. By Corollary 0.16 we have the inequality:

(0.33) γε(f̃ω) ≥ γε(f̃) + γε(ω).
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For the opposite inequality we may assume that f̃ is a polynomial by con-
sidering the truncations in WnΩA/k. We write f̃ =

∑
i f̃i as a sum of homo-

geneous polynomials f̃i of different degrees gi. By the inequality (0.33) we

may assume that γε(f̃) = γε(f̃i) for each i. Moreover we may clearly assume

that νp(f̃) = 0. With these remarks the proof works in the same way as
above. �

1. Sheaf properties of the overconvergent de Rham-Witt
complex

Let A = k[t1, . . . , tr] be a smooth finitely generated k-algebra, S =
k[T1, . . . , Tr] a polynomial algebra. Then S → A, Ti → ti induces a canonical
epimorphism

λ : WΩ•S/k →WΩ•A/k

of de Rham-Witt complexes.

Definition 1.1. We set W †Ω•A/k = image
(
W †Ω•S/k

)
under λ.

We have seen in Proposition 0.9 that this definition is independent from
the choice of generators and the representation S → A. The same propo-
sition shows that the assignment A 7→ W †ΩA/k is functorial. Indeed, given
smooth finitely generated k-algebras A,B as above, and a presentation
k[T1, . . . , Tr] � A, we extend this to a presentation k[T1, . . . , Tr, U1, . . . , Ul] �
B such that the following diagram commutes:

A - B

k[T1, . . . , Tr]

6

- k[T1, . . . , Tr, U1, . . . , Ul].

6

Then it is clear that the induced map WΩA/k →WΩB/k sends W †ΩA/k →
W †ΩB/k.

For ω ∈WΩ•A/k a convergent sum of images of basic Witt differentials in

WΩ•S/k, so

ω =
∑
(k,P)

e (ξk,P , k,P),

we know that ω is overconvergent iff there exist constants C1 > 0, C2 ∈ R
such that

(0.6) |k| ≤ C1ordp ξk,P + C2 for all (k,P).

We can also express overconvergence on WΩ•A/k by using the Gauss norms

{γε}ε>0 obtained as quotient norms of the canonical Gauss norms on WΩ•S/k
that we defined before. An ω ∈ WΩA/k is overconvergent if there exist
ε > 0, C ∈ R such that γε(ω) ≥ C. If we use another presentation S′ =
k[U1, . . . , Ur′ ] → A, then the associated set of quotient norms {δε}ε>0 on
WΩA/k is equivalent to the set {γε}ε>0. Here, the notion of equivalence is
defined in the same way as for Witt vectors ([7] Definition 2.12).
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Proposition 1.2. (a) We denote by f ∈ A an arbitrary element. Let d ∈ Z
be nonnegative. The presheaf

W †Ωd
SpecA/k(SpecAf ) := W †Ωd

Af/k

is a sheaf for the Zariski topology on SpecA (compare [10] 0, 3.2.2).
(b) The Zariski cohomology of these sheaves vanishes in degrees j > 0,

i.e.
Hj

Zar(SpecA,W †Ωd
SpecA/k) = 0.

We fix generators t1, . . . , tr of A and denote by [t1], . . . , [tr] the Teichmüller
representatives in W (A). An elementary Witt differential in the variables
[t1], . . . , [tr] is the image of a basic Witt differential in variables [T1], . . . , [Tr]
under the map λ.

Before we prove the proposition, we need a special description of an over-
convergent element z in W †Ωd

Af/k
. Let [f ] ∈ W (A) be the Teichmüller

representative. Hence
1

[f ]
=

[
1

f

]
is the Teichmüller of

1

f
in W (Af ). For the

element z we have the following description.

Proposition 1.3. The element z ∈W †Ωd
Af/k

can be written as a convergent

series

z =

∞∑
l=0

1

[f ]rl
ηl

where ηl is a finite sum of elementary Witt differentials η
(t)
l in the variables

[t1], . . . , [tr], images of basic Witt differentials η
(t)
l in variables [T1], . . . , [Tr]

with weights ktl satisfying the following growth condition:

∃C1 > 0, C2 ∈ R such that for each summand η
(t)
l we have

rl + |ktl | ≤ C1ordpη
(t)
l + C2.

Furthermore we require that for a given K > 0,

min
t

ordpη
(t)
l > K for almost all l.

Proof. We use here an extended version of basic Witt differentials to the
localized polynomial algebra k[T1, . . . , Tr, Y, Y

−1] (compare [11]). A basic
Witt differential α in WΩk[T1,...,Tr,Y,Y −1]/k has one of the following shapes:

I) α is a classical basic Witt differential in variables [T1], . . . , [Tr], [Y ].
II) Let e(ξk,P , k,P) be a basic Witt differential in variables [T1], . . . , [Tr].

Then
II 1) α = e(ξk,P , k,P) d log[Y ]
II 2) α = [Y ]−re(ξk,P , k,P) for some r > 0, r ∈ N
II 3) α = F sd[Y ]−le(ξk,P , k,P) for some l > 0 , p - l, s ≥ 0.

III) α =
V u(

ξ[Y ]p
ukY [T ]p

ukI0
)
d
V u(I1)

[T ]p
u(I1)kI1 . . . F−t(Id)d[T ]p

t(Id)kId (com-
pare [13], (2.15)).

In particular, for each such α we have a weight function k on variables

[T1], . . . , [Tr] with partition I0 ∪ . . . ∪ Id = P,u > 0, kY ∈ Z
[

1

p

]
<0

,

u(kY ) ≤ u = max{u(I0), u(kY )} (notations as in [13]).
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If I0 = ∅, we require u = max{u(I1), u(kY )}.
IV) α = dα′ when α′ is as in III).

It follows from loc.cit. that each ω ∈WΩ•k[T1,...,Tr,Y,Y −1]/k is in a unique way

a convergent sum of basic Witt differentials. Here convergent is meant with
respect to the canonical filtration on the de Rham-Witt complex.

It is straightforward to show that ω is overconvergent iff there exists

C̃1 > 0, C̃2 ∈ R, such that the basic Witt differentials α appearing in the
decomposition of ω have the following properties.

– If α of type I) or of type II 1) occurs as a summand in ω, we require

|k| ≤ C̃1ordp ξk,P + C̃2.

– If α is of type II 2) or II 3) occurs as a summand in ω then

r + |k| ≤ C̃1ordp ξk,P + C̃2 (with r = l · ps in case II 3).

– If α is of type III) or IV), then

|kY |+
d∑
j=0

|kIj | ≤ C̃1ordp (V uξ) + C̃2

(here, |kY | = −kY ,|kIj | =
∑
i∈Ij

ki).

We have a surjective map of complexes:

W †Ω•k[T1,...,Tr,Y,Y −1]/k →W †Ω•Af/k.

We may represent the z of the proposition as the image of an overconvergent
ω, which is a sum of basic Witt differentials as decribed above. To obtain
the representation of z in the proposition, we expand the images of the basic
Witt differentials α separately.

In case of condition III) we consider the first factor V u
(
ξ[Y ]p

ukY [T ]p
ukI0

)
.

For simplicity we assume I0 = ∅; this does not affect the following calcula-

tions. Let −kY =
r

pu
and l ≤ r

pu < l + 1 for an integer l. We have

V u
(
ξ[Y ]p

ukY
)

= V u

(
ξ

1

[Y ]r

)
= V u

(
ξ

1

[Y ]lpu
· 1

[Y ]r−lpu

)
=

1

[Y ]l
V u

(
ξ

1

[Y ]r−lpu

)
=

1

[Y ]l
V u

(
ξ

[Y ]p
u−r+lpu

[Y ]pu

)
=

1

[Y ]l+1
V u
(
ξ[Y ](l+1)pu−r

)
.

Now consider the image of α in WΩd
Af/k

where

[Y ]→ [f ], [Y −1]→ [f−1], [Ti]→ [ti].

The factor
1

[Y ]l+1
V u
(
ξ[Y ](l+1)pu−r

)
is mapped to

1

[f ]l+1
V u
(
ξ[f ](l+1)pu−r

)
.

Represent f as a polynomial of degree g in t1, . . . , tr. Then it is easy

to see that the image of α in WΩd
Af/k

is of the form
1

[f ]l+1
η̃ where η̃ is a
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(possibly infinite) sum of images of basic Witt differentials η̂t in variables
[T1], . . . , [Tr] with weights kt satisfying

|kt| ≤ g

(
l + 1− r

pu

)
+

d∑
j=0

|kIj |

≤ g +

d∑
j=0

|kIj |.

The case dα (type IV) is deduced from the case III by applying d to α and
the Leibniz rule to the image of dα in WΩd

Af/k
. So if the image of α as

above is
1

[f ]l+1
η̃ then the image of dα is

1

[f ]l+1
dη̃ − 1

[f ]l+2
· l d[f ]η̃ =

1

[f ]l+2

(
[f ]dη̃ − l d[f ]η̃

)
=

1

[f ]l+2
˜̃η,

where ˜̃η is a sum of images of basic Witt differentials ˜̃η t in variables [T1], . . . , [Tr]
with weights kt satisfying

|kt| ≤ 2g +
d∑
j=0

|kIj |.

We can also compute the images of α in WΩAfi/k
where α is of type I or II

and obtain again a representation

1

[f ]r
η̃ for r ≥ 0.

These cases are easier and omitted.
Now we return to the original element z ∈W †Ωd

Af/k
. We may write z as

a convergent sum

z =

∞∑
m=0

ω̃m,

where ω̃m is an elementary Witt differential being the image of a basic Witt
differential αm in WΩk[T1,...,Tr,Y,Y −1]/k of type I, II, III or IV.

In all cases we have a representation

ω̃m =
1

[f ]rm
η̃m

where η̃m is the sum of images of basic Witt differentials η̃tm in variables
[T1], . . . , [Tr] with weights ktm such that

rm + |ktm| ≤ C̃1 ord p

(
η̃tm
)

+ C̃2 + 2(g + 1).

Now consider - for a given integer N - the element z modulo FilN , so the
image z(N) of z in

WNΩd
Af/k

= WNΩd
A/k

⊗
WN (A)

WN (A)

[
1

[f ]

]
.
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One then finds a lifting z(N) of z(N) in WΩAf/k such that z(N) =
b(N)∑
m=0

ωm is

a finite sum, i.e.

ωm =
1

[f ]rm
ηm

where now ηm is a finite sum of images of basic Witt differentials ηtm in
variables [T1], . . . , [Tr] satisfying the growth condition

rm + |ktm| ≤ C1 ordp(η
t
m) + C2

with C1 := C̃1,C2 = C̃2 + 2(g + 1).

The elements z(N) can be chosen to be compatible for varying N and we
have z = lim z(N). It is clear that the second condition of the lemma is also
satisfied, this finishes the proof of Proposition 1.3. �

Remark. It will later be convenient to express the assertion in Proposition
1.3 using Gauss norms. Let {γε}ε>0 be the set of Gauss norms on WΩA/k

obtained as quotient norms from the canonical Gauss norms on WΩS/k using
the presentation S → A. Let {δε}ε>0 be the set of Gauss norms on WΩAf/k

obtained as quotient norms using the presentation S̃ := k[T1, . . . , Tr, U ] →
Af , Ti 7→ ti, U 7→ 1

f . We now define another set of Gauss norms as follows.

For ω ∈WΩAf/k we consider the collection of all possible representations

(∗) ω =
∑
l≥0

[f ]−lηl, for ηl ∈WΩA/k,

such that for a given t, almost all ηl are zero in Wt+1ΩA/k. We set

γquot
ε (ω) = sup{inf

l
{γε(ηl)− lε}},

where the sup is taken over all possible representations (*). Then Proposi-

tion 1.3 is equivalent to the assertion that the set {γquot
ε }ε>0 is equivalent

to the set {δε}ε>0. Equally, we will obtain an equivalent set of Gauss norms
{γ′ε}ε>0 if in the above definition we only allow representations such that the
exponents of f are all divisible by p.

Now we are ready to prove Proposition 1.2.
As WΩ• is a complex of Zariski sheaves we need to show–in order to prove

part (a) of the proposition–the following claim:
Let z ∈WΩd

A/k for some fixed d, let {fi}i be a collection of finitely many

elements in A that generate A as an ideal. Assume that for each i the image
zi of z in WΩd

Afi/k
is already in W †Ωd

Afi/k
. Then z ∈W †Ωd

A/k.

Let [fi] be the Teichmüller of fi with inverse 1
[fi]

= [ 1
fi

].

Lemma 1.4. There are elements ri ∈W †(A) such that
n∑
i=1

ri[fi] = 1.

Proof. Consider a relation
n∑
i=1

aifi = 1 in A. Then
n∑
i=1

[ai][fi] = 1 + V η ∈

W †(A). By Lemma 2.25 in [7],

(1 + V η)−1 ∈W †(A).

Define ri = (1 + V η)−1 · [ai]. �
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Lemma 1.5. For each t there are polynomials Qi,t[T1, . . . , T2n] in 2n vari-
ables such that

(1) degree Qi,t ≤ 3 · nt

(2)
n∑
i=1

Qi,t ([f1], . . . , [fn], r1, . . . , rn) [fi]
t = 1.

For the proof of this lemma, compare [16].
We know that SpecA = ∪ni=1D(fi). For a tuple 1 ≤ i1 < · · · < im ≤ n,

let Ui1...im = ∩mj=1D(fij ). Fix d ∈ N and let

Cm = Cm(SpecA,W †Ωd
A/k)

= ⊕1≤i1<···<im≤nW
†Ωd

Afi1 ···fim
/k

= ⊕1≤i1<···<im≤nΓ(Ui1...im ,W
†Ωd

A/k).

Then consider the Čech complex

0→ C0 → C1 → C2 → · · · .

We have C0 = W †Ωd
A/k and C0 → C1 is the restriction map W †Ωd

A/k →
W †Ωd

Afi/k
for all i. It is then clear that Proposition 1.2 follows from the

following.

Proposition 1.6. The complex C• is exact.

Proof. The proof is very similar to the proof of Lemma 7 in [16]. We fix as
before k-algebra generators t1, . . . , tr of A. Suppose σ ∈ Cm,m ≥ 2, is a
cocycle. Then σ has components

σi1...im ∈ Γ(Ui1...im ,W
†Ωd

SpecA/k) = W †Ωd
Afi1 ···fim

/k.

Applying Proposition 1.3 we see that σi1...im has a representation as an

overconvergent sum of Witt differentials as follows: σi1...im =
∑∞

l=0M
i1...im
l

with

M i1...im
l =

∑
j

1

[fi1...im ]j
η

(j)
li1...im

a finite sum

where [fi1...im ]j := [fi1 ]j · · · [fim ]j , η
(j)
li1...im

is a sum of images of basic Witt

differentials η
(jt)
di1...im

in variables [T1], . . . , [Tr], (Ti → ti) and weights k
(jt)
li1...im

satisfying

i) j + |k(jt)
li1...im

| ≤ C(ordp η
(jt)
li1...im

+ 1)

ii) l ≥ ordp η
(jt)
li1...im

≥ l − 1.

Notation: We say that M i1...ir
l has degree ≤ C(l + 1).

We shall construct a cochain τ so that ∂τ = σ. The reduced complex

C•/FilnC• = C•({D(fi)}i,WnΩ•A/k)

is exact. We will inductively construct a sequence of cochains

τk =
∑

1≤i1<···<im−1≤n
τki1...im−1



OVERCONVERGENT DE RHAM-WITT COHOMOLOGY 19

such that the sum
∞∑
k=0

τk

converges in Cm−1 to a coboundary of σ. The τk are chosen to satisfy the
following properties:

(1) ∂(
∑l−1

k=0 τk) = σ modulo Fil2
l−1Cm

(2) τ0i1...im−1 ∈ W †ΩAfi1 ···fim
/k, and τki1...im−1 ∈ Fil2

k−1W †ΩAfi1 ···fim
/k

for k ≥ 1.

(3) τki1...im−1 ∈WΩfin
A/k

[
[f1], . . . , [fn], r1, . . . , rn,

1
[fi1...im−1

]

]
to be under-

stood as a polynomial in the “variables” [f1], . . . , [fn], r1, . . . , rn and
1

[fi1...im−1
] with the coefficients being finite sums of elementary Witt

differentials in [t1], . . . , [tr] such that the total degree (with [t1], . . . , [tr]
contributing to the degree via possibly fractional weights) is bounded
by 24nC2k. We write degree τki1...im−1 ≤ 24nC2k.

(4) [fiα ]C2k+1
τki1...im−1 ∈ WΩfin

A/k

[
[f1], . . . , [fn], r1, . . . , rn,

1
[f
i1...îα...im−1

]

]
with degree [fiα ]C2k+1

τki1...im−1 ≤ C2k+1 + 24nC2k.

Then (2) implies that all the coefficients η of the polynomial representation
(3) satisfy ordp η ≥ 2k − 1. Also (1) implies that ∂(

∑∞
k=0 τk) = σ. Using (2)

and (3) we will show that
∑∞

k=0 τk ∈ Cm−1, i.e. is overconvergent.

Define elements σsi1,...,im ∈WΩd
Afi1 ...fim

for n ≥ 0 by

σsi1,...,im =
2s+1−1∑
α=0

M i1...im
α .

Then σsi1,...,im ≡ σi1,...,im mod Fil2
s+1

and degree σsi1,...,im ≤ C22+1.
Define the cochain τ0 ∈ Cm−1 by

τ0i1...im−1 =
n∑
i=1

αi,2C [fi]
2Cσ0i1,...,imi.

Suppose we have constructed, for some integer s > 0, cochains τk ∈ Cm−1

for 0 ≤ k < s satisfying (1) − (4). Then we construct τs as follows: Let

γsi1...im = σsi1,...,im − ∂(
∑s−1

k=0 τk)i1...im . We see that γsi1...im ∈ Fil2
s−1Cm is

a cocycle modulo Fil2
s+1Cm and degree γsi1...im ≤ 24nC2s−1.

Define

τsi1...im−1 =

n∑
i=1

Qi,C2s+1 [fi]
C2s+1

γsi1...im−1i.

Then
∑s

k=0 τk satisfies (1) by ([EGA], III.1.2.4.). We have

[fi]
C2s+1

γsi1...im−1i ∈W †ΩAfi1 ···fim−1
∩ Fil2

s−1W †Ωfi1 ···fim/k

= Fil2
s−1W †ΩAfi1 ···fim−1
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and therefore τsi1...im−1 satisfies (2) (we have used (4) for τk, k < s). More-
over, τsi1...im−1 has total degree bounded by

24nC2s−1 + 3nC2s+1 + C2s+1 ≤ 24nC2s

and τs satisfies (3). It is straightforward to show property (4) for τs. There-
fore it remains to show that

∑∞
k=0 τk is overconvergent. This will be derived

from properties (2) and (3) as follows.
It follows from (3) that τsi1...im−1 can be written as a finite sum τsi1...im−1 =∑
I r

IMs,I , where I runs through a finite set of multi-indices in Nn0 , rI =

rλ11 · · · rλnn for I = (λ1, . . . , λn) and Ms,I is a finite sum of images of basic
Witt differentials ωts in variables [T1], . . . , [Tr], [Y1], . . . , [Yn], [Z] with

[Tj ] 7→ [tj ], [Yj ] 7→ [fj ], [Z] 7→
m−1∏
j=1

1

[fij ]

with weights kts satisfying

|I|+ |kts| ≤ 24nC2s = C ′2s

(C ′ := 24nC) and

(∗)
ordp ω

t
s ≥ 2s − 1 =

1

C ′
(C ′2s)− 1

≥ 1

C ′
(|I|+ |kts|)− 1.

For fixed I and varying s we get a sum∑
s

rIMs,I = rI
∑
s

Ms,I .

Because of the condition (*), ωI =
∑
s
Ms,I is overconvergent with radius of

convergence ε = 1
C′ and

γ̂ 1
C′

(ωI) ≥
1

C ′
|I| − 1.

Here γ̂ε is the quotient norm of the canonical γε on WΩk[T1,...,Tr,Y1,...,Yn,Z]/k.
We now look again at the definition of ri. There exist liftings η̃, r̃i of η, ri

in W †(S) and ãi of ai in S where η̃ is a finite sum of homogeneous elements
such that

r̃i = (1 + V η̃)−1[ãi].

For δ := 1
C′ , there exists ε > 0,

1

C ′
> ε such that

γ̆ε

(
V η̃
)
≥ −δ,

because we have a finite sum of homogeneous elements. By [7] Lemma 2.25,

γ̆ε(r̃i) ≥ −δ as well.
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Let ω̃I be a lifting of ωI in W †Ωk[T1,...,Tr,Y1,...,Yn,Z]/k such that γ̂ε(ωI) =
γε(ω̃I). Then we obtain by Corollary 0.16,

γ̂ε(r
IωI) ≥ γε(r̃

I ω̃I)

≥ γε(ω̃I) + γ̆ε(r̃
I)

= γ̂ε(ωI) + γ̆ε(r̃
I)

≥ γ̂ 1
C′

(ωI) + γ̆ε(r̃
I)

≥ δ|I| − 1 + |I|(−δ) = −1.

As this holds for all I, we see that
∞∑
s=0

τsi1...im−1 is overconvergent with radius

of convergence ε, and hence Proposition 1.6 follows, and so does Proposition
1.2. �

Remark. The above final arguments in the proof of Proposition 1.2 are very
similar to the proof that W †(A) is weakly complete in the sense of Monsky-
Washnitzer (compare [17] and Proposition 2.28 of [7]). Hence W †Ωd

A/k sat-

isfies a certain property of weak completeness in positive degrees as well.

Corollary 1.7. The complex W †ΩSpecA/k, defined for each affine scheme

as above, extends to a complex of Zariski sheaves W †ΩX/kon any variety
X/k.

In the remainder of this section and the next, we prove the following.

Theorem 1.8. Let X be a smooth variety. Then W †Ω•X/k defines a complex

of étale sheaves on X.

Proof. As W †Ω•X/k is a complex of Zariski sheaves on X, the problem of

being a sheaf on the étale site is local on X. By a result of Kedlaya [12] any
smooth variety X has a covering by affine smooth schemes SpecA which
are finite étale over distinguished opens in an affine space Ank . It therefore
suffices to show that if A is a finite étale extension over a localized polynomial
algebra, A′ a standard étale extension of A, then an element z in WΩd

A/k

that becomes overconvergent in WΩd
A′/k is already overconvergent over A.

By localizing further we may assume first that there is an element f in A
such that A′f is finite étale over Af , of the form A′f = Af [X]/(p(X)) for

some monic irreducible polynomial p(X). The following proposition reduces
the argument to the case Af = A′f ; hence we will need to show

WΩd
A/k ∩W

†Ωd
Af/k

= W †Ωd
A/k.

Proposition 1.9. Let B be a finite étale and monogenic A−algebra, where
A is smooth over a perfect field of char p > 0. Let B = A[X]/ (f(X))
for a monic irreducible polynomial f(X) of degree m = [B : A] such that
f ′(X) is invertible in B. Let [x] be the Teichmüller of the element X mod
f(X) in W (B). Then we have for each d ≥ 0 a direct sum decomposition of
W †(A)−modules

W †Ωd
B/k = W †Ωd

A/k ⊕W
†Ωd

A/k[x]⊕ . . .⊕W †Ωd
A/k[x]m−1.
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Proof. From Corollary 2.46 in [7] we know that this proposition is true for
d = 0:
W †(B) is a finite W †(A)-module with basis 1, [x], . . . , [x]m−1. There is a

unique lifting f̃(X) ∈W †(A)[X] of f(X) such thatW †(B) = W †(A)[X]/f̃(X)

and f̃ ′([x]) is invertible in W †(B). In particular W †(B) étale over W †(A).

Let f̃(X) = Xm + am−1X
m−1 + . . .+ a1X + a0, with ai ∈W †(A) and

1

f̃ ′([x])
= cm−1[x]m−1 + . . .+ c1[x] + c0,

with ci ∈W †(A).
When we consider an element z in W †Ωd

B/k with radius of convergence

ε > 0 we will always assume that ε is small enough such that all aj , cj ,
j = 0, . . . ,m− 1 are in W ε(A).

The equation

f̃([x]) = [x]m + am−1[x]m−1 + . . .+ a1[x] + a0 = 0

(note that f̃(X) is the minimal polynomial of [x] over W †(A)) implies that

d f̃([x]) = 0.

Hence we get

f̃ ′([x])d[x] + dam−1[x]m−1 + . . .+ da1[x] + da0 = 0.

As (f̃ ′([x]))−1 has coefficients in W ε(A) and W ε(A) is a ring we see that

d[x] = − 1

f̃ ′([x])

(
dam−1[x]m−1 + . . .+ da1[x] + da0

)
=

m−1∑
l,j=0

λljdal[x]j with λlj , al ∈W ε(A).

The elements al ∈W ε(A) are homogeneous as they are elementary symmet-

ric function in the [ti], where [ti], i = 1, . . . ,m are the roots of f̃ , lifting the
roots ti of f .

We have λljdal = d(alλlj)−aldλlj by the Leibniz rule. The elements alλlj
are in W ε(A), hence d(alλlj) ∈W εΩ1

A/k. As al is homogeneous, the element

aldλlj is in W εΩ1
A/k as well (Corollary 0.16). So we get

d[x] ∈W εΩ1
A/k ⊕ . . .⊕W

εΩ1
A/k[x]m−1.

One proves similarly that

d[x]i ∈W εΩ1
A/k ⊕ . . .⊕W

εΩ1
A/k[x]m−1.

for all i, 1 ≤ i ≤ m− 1.
Let b1, . . . , br be generators of the k−algebra A and z ∈ W †Ωd

B/k be an

overconvergent sum of elementary Witt differentials zi in variables [b1], . . .,
[br], [x] with γε(zi) > C for all i. If in zi the variable [x] occurs with integral
weight kx we may assume 1 ≤ kx ≤ m− 1. If [x] belongs to the interval I0

with underlying partition P corresponding to zi, then evidently zi = ηi[x]kx

with ηi an elementary Witt differential in the variables [b1], . . . , [br] with
γε(ηi) > C. If [x] occurs with integral weight kx, 1 ≤ kx ≤ m − 1 and
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belongs to the interval Ij , j ≥ l, then after applying the Leibniz rule and
the previous case we see that

zi = ωi + ηid[x]kx

with ωi ∈W εΩd
A/k⊕ . . .⊕W

εΩd
A/k[x]m−1 and ηi ∈W εΩd−1

A/k with γε(ηi) > C.

In addition, all coefficients ω
(j)
i in W εΩd

A/k satisfy γε(ω
(j)
i ) > C. We may

also assume that all coefficients β
(j)
i of d[x]i in W εΩ1

A/k for all 1 ≤ i ≤ m−1

satisfy γε(β
(j)
i ) > C. Then,

ηid[x]kx ∈W
ε
2 Ωd

A/k ⊕ . . .⊕W
ε
2 Ωd

A/k[x]m−1

and we have for all coefficients δ
(j)
i ∈ W

ε
2 Ωd

A/k that occur in this represen-

tation of ηid[x]kx that

γ ε
2
(δ

(j)
i ) > C.

Now we use [7] Corollary 2.46. If α =
m−1∑
i=0

ξix
i ∈W ε(B) satisfies γε(α) > C

then ξi ∈ W ε(A) with γε(ξi) > C ′ and C ′ only depends on C and ε; wlog
C ′ < C.

Assume that in an elementary Witt differential zi occurring in the over-
convergent z we have

zi = V tη · dω

and [x] occurs in η with fractional weight kx, kx =
i

pt
, 1 ≤ i ≤ m− 1. Then

applying the above fact we see that

zi ∈W εΩd
A/k ⊕ . . .⊕W

εΩd
A/k[x]m−1

and the coefficients z
(j)
i satisfy γε(z

(j)
i ) > C ′.

If [x] occurs with fractional weight kx in an interval Ij , j ≥ 1 of the
underlying partition of zi, then by combining the previous cases we see that

zi ∈W
ε
2 Ωd

A/k ⊕ . . .⊕W
ε
2 Ωd

A/k[x]m−1

and all coefficients z
(j)
i satisfy γ ε

2
(z

(j)
i ) > C ′.

This implies that the original z ∈ W εΩd
B/k with γε(z) > C has a repre-

sentation

z =

m−1∑
i=0

σi[x]i ∈W
ε
2 Ωd

A/k ⊕ . . .⊕W
ε
2 Ωd

A/k[x]m−1

with γ ε
2
(σi) > C ′ for all i = 0, . . . ,m− 1.

On the other hand, by possibly applying the Leibniz rule repeatedly, it is
clear that an element in

W †Ωd
A/k ⊕ . . .⊕W

†Ωd
A/k[x]m−1

can be represented as an overconvergent sum of elementary Witt differentials
in variables [b1], . . . , [br], [x], and hence lies in W †Ωd

B/k. This finishes the

proof of the proposition. �
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Remark. Note that the isomorphism in the proposition is a restriction of
the isomorphism

WΩd
B/k
∼= W (B)

⊗
W (A)

WΩd
A/k
∼=

m−1⊕
i=0

WΩd
A/k[x]i

for the completed de Rham-Witt complex. As W (B) is finite étale over
W (A) if B is finite étale over A, this latter isomorphism is a consequence of
étale base change for the de Rham-Witt complex of finite level, by passing to
the inverse limit (compare [13] Proposition 1.7 and Corollary 2.46 in [7]).

To prove the theorem, it remains to show that

(1.10) WΩd
B/k ∩W

†Ωd
Bg/k

= W †Ωd
B/k

for a k−algebra B which is a finite étale extension over a localization Af
of a polynomial algebra A = k[T1, . . . , Td], and some g ∈ B. After possibly
localizing again, we may assume wlog that g itself is in the polynomial
algebra. After applying Proposition 1.9 again, we reduce the proof of the
étale sheaf property to the case where B = Af . That is, we need to prove
(1.10) in the special case B = Af and g ∈ A. This will follow from a further
careful study of the Gauss norm properties on the de Rham-Witt complex
of the polynomial algebra A and a localization Af , done in the next section.

2. Gauss norm properties on the de Rham-Witt complex of
localized polynomial algebras

We will consider the Gauss norms on the truncated de Rham-Witt com-
plexes Wt+1ΩA/k and Wt+1ΩAf/k (and also Wt+1ΩAfg/k) and describe over-
convergence on the completed de Rham-Witt complexes via these truncated
Gauss norms. Before we can do this, we need to review a few more properties
of the de Rham complex ΩA/k for the polynomial algebra A = k[T1, . . . , Td]
over a perfect field k of characteristic p > 0.

We recall the basic differentials e(k,P) from (0.1):

(2.1) e(k,P) = T kI0

(
dT kI1

pordp kI1

)
· · · · ·

(
dT kIl

pordp kIl

)
.

A basic differential is called primitive if I0 6= ∅ and if the function k is not
divisible by p.

Proposition 2.2. Let e(k,P) be a primitive basic differential. Then for all
1 ≤ j ≤ d

T pj e(k,P)

is a linear combination of primitive basic differentials with coefficients in k.

Proof. Let I0 = {i1, . . . , it}. Let I ′0 = {i1, . . . , is} ⊂ I0 be the subset of all
indices im, such that ordp kim = 0. Let I ′′0 be the complement of I ′0 in I0.
We have I ′0 6= ∅ but possibly I ′′0 = ∅.

Consider the case where j = im ∈ I ′0. We define k′ such that k′im = kim+p
and k′j = kj for all other indices. Then Supp k = Supp k′ and the chosen
order on these sets is the same. From this we see that

T pj e(k,P) = e(k′,P).
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Now we consider the case where j doesn’t belong to I ′0. We write

T pj T
kI′′0

(
dT kI1

pordp kI1

)
· · · · ·

(
dT kIl

pordp kIl

)
as a linear combination of basic differentials e(h,Q) for possibly different
partitions Q. Let ι be the weight such that ι(j) = p and such that ι vanishes
on the remaining indices. Then h = k + ι.

Consider the subcase where ordp kj = 0. Then j must belong to one of
the sets I0, . . . , Ir and therefore j must be bigger than any of the indices
appearing in I ′0. Then

T
kI′0 e(h,Q)

is a primitive basic differential for each partition Q. Its weight function k′′

is the sum of k|I′0 (the restriction of k to I ′0) and h. That we obtain a basic

differential follows from the fact that for the order given by k′′ any element
of I ′0 precedes any element in Supph.

This last sentence is still true in the subcase ordp kj > 0, because this
implies ordp hj > 0. This finishes the proof. �

We consider ΩA/k throughout this section as an A-module via restriction
of scalars by F : A → A. We will say that we consider ΩA/k as an A − F -
module.

Proposition 2.3. Let P l ⊂ Ωl
A/k be the k-subvector space generated by

primitive basic differentials. We have a direct decomposition:

(2.4) Ωl
A/k = P l ⊕ dP l−1 ⊕ FΩl

A/k.

Each summand on the right hand side is a free A − F -module which has a
basis consisting of basic differentials

Proof. The decomposition (2.4) is direct because the second k-vector space
is generated by basic differentials whose weights are not divisible by p and
such that we have I0 = ∅ in the partition while FΩl

A/k is generated by basic

differentials whose weights are divisible by p.
It follows from Proposition 2.2 that P l is an A−F -module. Then the other

two summands of (2.4) are clearly A−F -modules. Therefore all summands
are projective A − F -modules. All summands are graded by the absolute
value of weights and are therefore graded A−F -modules. Let a be the ideal
of A generated by T1, . . . , Td. A basis of the A − F -module P l is obtained
by lifting a basis of the (graded) k-vector space P l/FaP l. This proves the
last sentence of the proposition. �

Next we consider the de Rham-Witt complex WΩA/k. We denote by Filn

the kernel of the canonical map WΩA/k → WnΩA/k. It is an abelian group
generated by the basic Witt differentials e(ξ, k,P) such that ordV ξ ≥ n
(compare [13]). We set:

Gn,l = FilnWΩl
A/k/Filn+1WΩl

A/k.

We consider it as a W (A)−F -module. Clearly the module structure factors
via W (A) → A. We consider throughout this A-module structure on Gn.
On G0 = Ωl

A/k it agrees with the A−F -module structure considered above.
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The A-module Gn,l has a direct decomposition into free A-modules:

(2.5)

Gn,l = V nP l ⊕ pV n−1P l ⊕ · · · ⊕ pnP l
⊕dV nP l−1 ⊕ pdV n−1P l−1 ⊕ · · · ⊕ pndP l
⊕pnFΩl

A/k.

This follows from Proposition 2.3 and the decompositon of WΩA/k defined
by basic Witt differentials. It is clear that each summand has a basis con-
sisting of basic Witt differentials.

Proposition 2.6. For each n ≥ 0 there is a family ω
(n)
i ∈ FilnWΩl

A/k

of basic Witt differentials, where i runs through some finite index set Jn,
satisfying the following:

For each n the elements ω
(n)
i for i ∈ Jn form a basis of the A-module

Gn,l.
A Witt differential ω ∈Wt+1Ωl

A/k has a unique expression

(2.7) ω =

t∑
n=0

∑
i∈Jn

F [a
(n)
i ]ω

(n)
i ,

where a
(n)
i ∈ A.

Moreover the truncated Gauss norm γε[t] is given by the following formula:

(2.8) γε[t](ω) = min
n,i∈Jn

{pγε(a(n)
i ) + γε(ω

(n)
i )}.

Proof. For a fixed n and each of the summands of (2.5) we choose basic Witt
differentials in Filn which form a basis of this summand as an A-module.
Therefore we obtain a basis ω

(n)
i . Then we write:

ω =
∑
i∈J0

Fa
(0)
i ω

(0)
i modulo Fil1 .

Then we consider the Witt differential

ω(1) = ω −
∑
i∈J0

F [a
(0)
i ]ω

(0)
i ∈ Fil1 .

Then we consider ω(1) ∈ G1,l and express it by the chosen basis of this
A-module. This process may be continued to obtain the expression (2.7).

Finally we have to prove the assertion about the Gauss norm. We consider
first the case of a differential ω ∈ Gn,l ⊂ Wn+1ΩA/k. We decompose ω
according to the decomposition (2.5):

ω =
∑

ωm.

Since the decomposition (2.5) is defined by a partition of the set of basic
Witt differentials we deduce the formula:

γε[n](
∑

ωm) = min
m
{γε(ωm)}.

Let us denote by S an arbitrary summand of the decomposition (2.5). All
nonzero elements σ ∈ S have the same order ordV σ = oS . As explained, S
is a free graded module over A:

S =
⊕

St,
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such that St has a basis of basic Witt differentials whose weights have ab-
solute value t. We find that for z ∈ St, such that z 6= 0:

γε[n](z) = oS − εt.

Now we assume that z =
∑

Fa
(n)
i ω

(n)
i . Since S is free we deduce from this

the formula:

γε[n](
∑

Fa
(n)
i ω

(n)
i ) = min{γε(Fani ) + γε(ω

(n)
i )}.

Now we consider the element ω ∈ Wt+1ΩA/k with the expansion (2.7). We
set γε[t](ω) = C. Then we have:

C ≤ γε[0](ω) = γε[0](
∑

F [a
(0)
i ]ω

(0)
i ) = min

i
{γε(F [a

(0)
i ]) + γε(ω

(0)
i )}.

On the other hand we have the inequality:

γε[t](
∑

F [a
(0)
i ]ω

(0)
i ) ≥ min

i
{γε(F [a

(0)
i ]) + γε(ω

(0)
i )}.

We obtain that

γε[t](ω −
∑

F [a
(0)
i ]ω

(0)
i ) ≥ γε[t](ω) = C.

Applying the same argument to ω(1) = ω−
∑

F [a
(0)
i ]ω

(0)
i ∈ Fil1 we find that

in the decomposition (2.7) the following inequality holds:

γε(
F [a

(n)
i ]) + γε(ω

(n)
i ) ≥ C.

But on the other hand we have:

C = γε(
t∑

n=0

∑
i∈Jn

F [a
(n)
i ]ω

(n)
i ) ≥ min

n.i∈Jn
{γε(F [a

(n)
i ]) + γε(ω

(n)
i )}.

This proves the last assertion. �

Remark. Let f =
∑
αkT

k ∈ A, where αk ∈ k, be a polynomial. We set

f̃ =
∑

[ak][T ]k ∈ W (A). This is an integral Witt vector which lifts f . We

can replace in the proof the Teichmüller representatives [a
(n)
i ] by ã

(n)
i , and the

element F [a
(n)
i ] by the element F ã

(n)
i . Then we obtain a unique expression:

(2.9) ω =
t∑

n=0

∑
i∈Jn

F ã
(n)
i ω

(n)
i ,

The Gauss norm is given by the formula (2.8).

Our next aim is to prove a similiar proposition for the localization Af of
the polynomial algebra A = k[T1, . . . , Td] for an element f ∈ A. We write
δ = deg f .

Let ω ∈ Wt+1ΩAf/k. We have seen that an admissible pseudovaluation

γ′ε[t] on this de Rham-Witt complex is obtained as follows. We consider all
possible representations:

(2.10) ω =
∑
l

(ηl/[f ]lp), where ηl ∈Wt+1ΩA/k.

Then γ′ε[t](ω) is the maximum over all possible numbers

min{γε[t]ηl − εlp}.
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There is always a representation where this maximum is taken. Such repre-
sentations will be called optimal. The following inequalities are immediate:

γ′ε[t](ω) ≤ γ′ε[t− 1](ω)
γ′ε[t](ω) ≤ γ′δ[t](ω) for ε ≥ δ.

We could also consider all representations of the form ω =
∑

l(ηl/[f ]l)
without the extra factor p. Then we denote by γ̂′ε(ω) the maximum of the
numbers min{γε[t]ηl − εl}. We will use this Gauss norm only for the Witt
ring.

We write Filmf = FilmWΩAf/k. By étale base change Filmf is obtained

from Film by localizing with respect to [f ].

Lemma 2.11. Let ω ∈ Filmf . Then there is an optimal representation (2.10)
of ω such that ηl ∈ Film.

Proof. The case m = 0 is trivial. We assume by induction that there is an
optimal representation such that ηl ∈ Film−1. Consider the residue classes
of η̄l of ηl in Gm−1 = ⊕lGm−1,l = Film−1/Film. We use the abbreviation
δε(η̄l) = γε[i− 1](η). Clearly we have that δε(η̄l) ≥ γε[t](ηl). Then we have
in Gm−1 the relation:

(2.12)
M∑
l=0

(η̄l/[f ]l) = 0.

We may assume that η̄M 6= 0 and that M is the minimal possible value for
all optimal representations. Then we have to show that M ≥ 1 is impossible.
We see that η̄M is divisible by [f ]. Then we write:

η̄M = [f ]τ̄ .

We obtain that δε(τ̄)−εδ = δε(η̄M ). We may lift τ̄ to an element τ ∈ Film−1

such that γε[t](τ) = δε(τ̄). We write:

ηM = [f ]τ + ρ, where ρ ∈ Film .

Since γε[t]([f ]τ) = γε(τ) − εδ = δε(τ̄) − εδ = δε(η̄m) ≥ γε(ηM ) we conclude
that γε(ρ) ≥ γε(ηM ). Now we consider the equation:

(ηM/[f ]M ) = (τ/[f ]M−1) + (ρ/[f ]M ).

Inserting this in (2.10) we obtain again an optimal expression, since:

γε(τ)− (M − 1)ε ≥ γε(ηM )−Mε
γε(ρ)−Mε ≥ γε(ηM )−Mε.

Reducing this modulo Film we see that the number M became smaller. �

Lemma 2.13. Let ω ∈ Gt ⊂Wt+1ΩAf/k. Then ω has a unique expression:

ω =
∑

F [ci]ω
(t)
i , ci ∈ Af .

Then we have:

γ′ε[t](ω) = min
i∈Jn
{pγ̂′ε(ci) + γε(ω

(t)
i )}.
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Proof. Since Gt is a free A − F -module it is clear that the localization is a
free Af − F -module with the same basis. From this it follows that such a
decomposition exists.

We choose an optimal representation:

(2.14) ω =
∑
l

(ηl/[f ]pl)

By the last lemma we may assume that ηl ∈ Gt. Then we find for ηl an
expression:

ηl =
∑

Failω
(t)
i , ail ∈ A.

Therefore we obtain by definition and Proposition 2.6:
(2.15)

γ′ε[t](ω) = min
il
{γε[t](

∑
Failω

(t)
i )− εlp} = min

il
{pγε(ail) + γε(ω

(t)
i )− εlp}.

We set

c
(n)
i =

∑
l

(a
(n)
il /f

l).

We can assume that this expression is optimal for γ̂′ε. Because in the other
case we could insert the optimal expression in the equation:

(2.16) ω =
∑
i

(
∑
l

Fail/f
lp)ω

(t)
i .

This would make the right hand side of (2.15) bigger. But then (2.16) would
again be an optimal expression of the form (2.14).

We obtain γ̂′ε(c
(n)
i ) = minl{γε(a

(n)
il )− εl}. This shows the last formula of

the lemma. �

Let c ∈ Af be an element. We choose an optimal representation:

c =
∑

(al/f
l).

We set:

(2.17) ĉ =
∑

[al]/[f ]l ∈Wt+1(Af ).

We find

γ̂′ε[t](ĉ) ≥ γ̂′ε(c).
But the other inequality is obvious since γ̂′ε[t](ĉ) ≤ γ̂′ε[1](ĉ). Therefore we
have an equation:

(2.18) γ̂′ε[t](ĉ) = γ̂′ε(c).

In the same way we obtain:

γ′ε[t](ĉ) = γ′ε(c).

Indeed we have:

(2.19) γ′ε(
F c) = pγ̂′ε(c) for c ∈ Af .

To see this we can reduce to the case, where f is regular with respect to one
variable. Then one uses that reduced representations are optimal.
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Proposition 2.20. With the same notation as in Proposition 2.6 consider
a Witt differential η ∈Wt+1ΩAf/k. Then there is a unique decomposition:

η =
∑
i,n

F ĉ
(n)
i ω

(n)
i , c

(n)
i ∈ Af .

The truncated Gauss norm is given by the formula:

γ′ε[t](η) = min
i,n
{pγ̂′ε(c

(n)
i ) + γε(ω

(n)
i )}.

Proof. Since t is fixed we will set γ′ε = γ′ε[t] Consider an expression in Film:

z =
∑
i

F ĉ
(m)
i ω

(m)
i .

We claim that:

(2.21) γ′ε(z) = γ′ε[m](z) = min
i
{γ′ε(F ĉ

(m)
i ) + γε(ω

(m)
i )}.

Indeed, the second equality follows from Lemma 2.13. We see easily that
γ′ε(z) is greater than the right hand side of (2.21). Indeed, we choose optimal

representations for c
(m)
i :

c
(m)
i =

∑
l

ail/f
l.

We obtain:

z =
∑
l,i

[ail]
pω

(m)
i /[f ]lp =

∑
l

(
∑
i

[ail]
pω

(m)
i )/[f ]lp.

This shows that

γ′ε(z) ≥ minl{γε(
∑

i[ail]
pω

(m)
i )− lpε}

= minl{mini{pγε(ail) + γε(ω
(m)
i )} − lpε}.

The last equation follows from Proposition 2.6. By definition we have the
equation:

pγ̂ε(c
(m)
i ) = min{γε(ail)− lε}.

This shows the inequality:

γ′ε(z) ≥ min{γ′ε(F ĉ
(m)
i ) + γε(ω

(m)
i )}. = γ′ε[m](z).

On the other hand we have γ′ε(z) ≤ γ′ε[m](z), and this proves the equality
(2.21).

As in the proof of Proposition 2.6 we find an expansion with the desired
properties. �

Remark. Consider the natural map B = k[T1, . . . , Td, S]→ Af , which maps

S to f−1. We have defined the overconvergent Witt vectors W †ΩAf/k as the

image of W †ΩB/k by the canonical map:

(2.22) WΩB/k →WΩAf/k.

Assume that we are given ω ∈WΩAf/k, such that there is a constant C with

(2.23) γ′ε[t](ω) ≥ C
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for all t ≥ 0. We claim that ω ∈W †ΩAf/k. By the unicity statement of the
last proposition we have an infinite expansion:

ω =
∑
i,n

F ĉ
(n)
i ω

(n)
i .

As in the proof above we take optimal representations:

c
(n)
i =

∑
l

a
(n)
il /f

l.

Then we find a convergent sum in the Fil-topology:

ω =
∑
l

(
∑
i

[anil]
pω

(n)
i )/[f ]lp,

where pγε(a
n
il)− εlp+ γε(ω

(n)
i ) ≥ C. But then∑

l

(
∑
i

[anil]
pω

(n)
i )[S]lp ∈WΩB/k

is clearly an overconvergent Witt differential which lifts ω. Conversely the
condition (2.23) is clearly fullfilled for an overconvergent ω, because γ′ε is
equivalent to the quotient norm induced by (2.22).

Corollary 2.24. For η ∈Wt+1ΩAf/k we have the equation:

γ′ε[t+ 1](pη) = 1 + γ′ε[t](η).

Proof. We note that the proposition holds for each set ω
(n)
i ∈ WΩA/k of

basic Witt differentials which for each given n induce a basis of Gn as A−F -

module. But clearly pω
(n)
i is part of a basis of Gn+1 consisting of basic Witt

differentials. This gives with the notations of the proposition:

γ′ε[t+ 1](η) = γ′ε(
∑
i,n

F ĉ
(n)
i (pω

(n)
i )) = min{pγ̂ε(c(n)

i ) + γε(pω
(n)
i )}.

This proves the result. �

Proposition 2.25. Let f, g ∈ A be two non-zero elements without common
divisors. There is a constant Q > 1 with the following property. Let t be a
rational number and let ε > 0 a real number. We denote by γ′ε = γ′ε[t] the
natural Gauss norm on Wt+1ΩAf/k and by γ′′ε the natural Gauss norm on
Wt+1ΩAfg/k.

We denote the image of a Witt differential ω ∈Wt+1ΩAf/k in Wt+1ΩAfg/k

by the same letter. Then the following inequality holds:

(2.26)
γ′ε/Q(ω) ≥ γ′′ε (ω)

γ′′ε/Q(ω) ≥ γ′ε(ω).

Proof. We begin with the proof of the first inequality, which is the nontrivial
one. We may extend the ground field k and assume that k is infinite. After
a coordinate change we may assume that f and g are regular with respect
to T1. Consider an element c ∈ Af with the reduced representation

c =
∑

al/f
l.
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If we regard c as an element of Afg it has the reduced representation:

c =
∑

(alg
l)/(fg)l.

We have defined a lifting ĉ ∈ W (Af ) of c (2.17). This coincides with the
lifting ĉ ∈W (Afg): ∑

[al]/[f ]l =
∑

([alg
l])/([fg])l.

We set C = γ′′ε (ω). By Proposition 2.20 we have the expansion:

(2.27) ω =
∑
i,n

ĉ
(n)
i ω

(n)
i , cni ∈ Af .

Since the ĉ with respect to Af and with respect to Afg means the same (2.27)
is also the expansion of ω with respect to Afg according to Proposition 2.20.

Therefore we conclude that:

C = min{pγ̂′′ε (c
(n)
i ) + γε(ω

(n)
i )}.

By Proposition 1.30 of [7] there are constants which depend only on deg f
and deg g, such that the pseudovaluation γ̂′ε on Af (respectively γ̂′′ε on Afg)
compare to the µ-functions:

Q1µ
′(c) ≤ γ̂′ε(c) ≤ Q2µ

′(c) for c ∈ Af ,
Q1µ

′′(d) ≤ γ̂′′ε (d) ≤ Q2µ
′′(d) for d ∈ Afg.

If c ∈ Af has denominator fn, then c regarded as an element of Afg has
denominator (fg)n. This shows the equality

µ′(c) = µ′′(c).

We find the inequalities:

γ̂′′ε (c) ≤ Q2µ
′′(c) = Q2µ

′(c) ≤ (Q2/Q1)γ̂′ε(c).

We set Q = max{1, (Q1/Q2)} and rewrite the above inequality:

γ̂′′ε (c) ≤ γ̂′ε/Q(c), for c ∈ Af .

From this we find:

pγ̂′ε/Q(c
(n)
i ) + γε/Q(ω

(n)
i ) ≥ pγ̂′′ε (c

(n)
i ) + γε(ω

(n)
i ) ≥ C.

Using Proposition 2.20 this implies the first inequality (2.26).
The second inequality is straightforward: We choose an optimal represen-

tation of ω ∈Wt+1ΩAf/k with respect to ε

ω = ηl/[f ]lp, ηl ∈Wt+1ΩA/k.

From the representation

ω = ηlg
lp/[fg]lp, ηl ∈Wt+1ΩA/k

we obtain that:

γ′′ε/Q(ω) ≥ γε/Q(ηl[g]lp)− lpε/Q
= γε/Q(ηl)− lpε(deg g + 1)/Q
≥ γε(ηl)− εlp = γ′ε(ω).

�
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Using the remark before Corollary 2.24, we see that Proposition 2.25
implies the claim in (1.10) and finishes the proof of Theorem 1.8. �

Corollary 2.28. With the notations of the proposition we have the inequal-
ity:

(2.29) γ′ε([g]pω) ≤ γ′ε/Q2(ω) + pε/Q.

Let c ∈ Af , such that c 6= 0. Then there are constant C,Q ∈ R, Q > 1 such
that for every ω ∈Wt+1ΩAf/k.

γ′ε([c]ω) ≤ γ′ε/Q2(ω) + Cε.

This shows in particular that an element ω ∈ WΩAf/k is overconvergent if

for some c ∈ Af , c 6= 0 the element [c]ω is overconvergent.

Proof. We begin to show the inequalities:

(2.30)
γ′ε(

1
[fp]ω) ≥ γ′ε(ω)− pε

γ′ε([f
p]ω) ≤ γ′ε(ω) + pε.

To verify the first of these inequalities we choose an optimal representation:

(2.31) ω =
∑
l

ηl/[f ]lp.

After dividing by [f ]p we conclude:

γ′ε(
1

[fp]
ω) ≥ min

l
{γε(ηl)− (l + 1)pε} = γ′ε(ω)− pε.

From this we deduce formally the second inequality:

γ′ε(ω) = γ′ε(
1

[fp]
[f ]pω) ≥ γ′ε([f ]pω)− pε.

Let h ∈ A be arbitrary. If we multiply (2.31) by [h] we obtain the inequality.

(2.32) γ′ε([h]ω) ≥ γε(h) + γ′ε(ω).

As above we obtain from this formally:

(2.33) γ′ε(
1

[fp]
ω) ≤ γ′ε(ω)− γε([f ]p).

Using (2.30) for γ′′ε and the proposition we obtain:

γ′′ε/Q([g]pω) ≤ γ′′ε/Q(ω) + pε/Q ≤ γ′ε/Q2(ω) + pε/Q.

But on the other hand the proposition shows:

γ′′ε/Q([g]pω) ≥ γ′ε([g]pω).

This shows (2.29).
For the last statement we remark that it is true for [c], if there is an

h such that the statement is true for [hc]. Indeed this follows from (2.32).
Therefore it suffices to assume that c = fmg, where g has no common divisor
with f . This case is easily deduced from (2.29) and (2.30). �
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3. Comparison with Monsky-Washnitzer cohomology

Let B/k be a finitely generated, smooth algebra over a perfect field k of

char p > 0. Let B̃† be the weak completion (in the sense of [17]) of a smooth

finitely generated W (k)-algebra B̃ lifting B. To begin this section we prove

the existence of a map σ : B̃† → W †(B) which we call an overconvergent
Witt lift. It depends on a choice of Frobenius lift F and is the same as

the map tF : B̃† → W (B) described in [11]. We must prove that this map
has image in W †(B). We do this first for the case of a polynomial algebra
(and any choice of Frobenius lift), and deduce the general result easily by
functoriality.

Proposition 3.1. Let A = k[T1, . . . , Td] and Ã† = W (k) 〈T1, . . . , Td〉†. Fix

a Frobenius lift F on Ã†. Then the map tF defined in [11] p. 509 (and
recalled below) has image in W †(A).

Proof. Let a ∈ Ã† have the form∑
k∈Nd

αkT
k1
1 · · ·T

kd
d .

For ε > 0, we define a Gauss norm on Ã† by

γε(a) = inf
k
{ordp αk − ε|k|}.

We define

W †(Ã†) := {(a0, a1, . . .) ∈W (Ã†) | m+γ ε
pm

(am) ≥ C, for some ε > 0, C ∈ R}.

The projection map pr : W (Ã†)→W (A) induces a map W †(Ã†)→W †(A).

For x ∈ W (Ã†), write x = (a0, a1, . . .) and let wm(x) ∈ Ã† denote the
mth ghost component. Then we find

m+ γ ε
pm

(am) ≥ C ⇐⇒ γ ε
pm

(wm(x)) ≥ C.

The map tF is defined as the composition

Ã†
sF→W (Ã†)

pr→W (A),

where for any a ∈ Ã†, sF (a) is the unique element with ghost components

(a, F (a), F 2(a), . . .). We claim that for any a ∈ Ã†, there exist ε, C with
γ ε
pm

(Fm(a)) ≥ C for all m. From the definition of sF and the above equiv-

alence, this will immediately show that sF (a) ∈ W †(Ã†), and so by the
remark in our first paragraph, tF (a) ∈W †(A).

Abbreviate T for (T1, . . . , Td). Write F (Ti) = T pi + pfi(T ) for each i. We
can find ε sufficiently small such that γε(fi(T )) > −1 for each i, and hence
γε(pfi(T )) > 0 for each i. From now on abbreviate ui := pfi(T ).

Assume γε(a) ≥ C. For k ∈ Nd, let ∂ka denote the partial derivative
∂k1

∂T
k1
1

· · · ∂kd
∂T

kd
d

a. It is clear that γε(
1
k!∂ka) ≥ γε(a) ≥ C. It is also clear that

for any h ∈ Ã†,

γ ε
p
(h(T p1 , . . . , T

p
d )) = γε(h(T1, . . . , Td)).
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Assuming still γε(a) ≥ C, we prove γ ε
p
(F (a)) ≥ C. The result γ ε

pm
(Fm(a)) ≥

C then follows by induction. We compute

F (a) = a(T p1 + u1, . . . , T
p
d + ud)

=
∑ 1

k!
∂ka(T p1 , . . . , T

p
d )uk;

so,

γ ε
p
(F (a)) ≥ inf{γ ε

p
(

1

k!
∂ka(T p1 , . . . , T

p
d )) + γ ε

p
(uk)}

≥ C,
as required. �

Proposition 3.2. For B/k a smooth, finitely generated algebra with lift B̃†

and Frobenius lift F ′, the map

tF ′ : B̃† →W (B)

has image in W †(B).

Proof. Take a surjective map from a polynomial algebra φ : A → B and

a lift of Frobenius F on Ã† inducing F ′. Then the result follows from
the functoriality of the map tF and the fact that the natural projection
W (A)→W (B) sends W †(A)→W †(B). �

Let B/k be a finitely generated, smooth algebra over a perfect field k of
char p > 0. We have just shown that B admits an overconvergent Witt lift:

σ : B̃† →W †(B).

If we restrict σ to the smooth W (k)-algebra B̃ lifting B, we obtain an
induced map

σ|
B̃

: B̃ →W †(B)

which we will call the underlying Witt lift associated to σ. Conversely, if

we assume that B admits a Witt lift, σ : B̃ →W (B) such that image(σ) ⊆
W †(B), then σ extends canonically to the weak completion of B̃, i.e. to an
overconvergent Witt lift

(3.3) σ : B̃† →W †(B)

because W †(B) is weakly complete (Proposition 2.28 in [7]). We derive from
this a map of complexes, also denoted by σ

(3.4) Ω
B̃†/W (k)

→W †Ω•B/k ⊂WΩ•B/k.

If B̂ denotes the p−adic completion of B̃ we also have a map

lim
←−

Ω•
B̃n/Wn(k)

=: Ω•
B̂/W (k)

→WΩ•B/k.

In the following we show that σ in (3.4) is a quasi-isomorphism if B
is finite étale and monogenic over a localized polynomial algebra Af =
k[T1, . . . , Tn]f .

Let f̃ ∈ Ã := W (k)[T1, . . . , Tn] be a lifting of f and Ã
f̃

:= W (k)[T1, . . . , Tn]
f̃
.

B lifts to a finite étale extension B̃ over Ã
f̃
. If B = Af [x], then B̃ = Ã

f̃
[x].
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We write u = [x] for the Teichmüller representative of x in W (B). Consider
the canonical map

σ : B̃ →W †(B) = W †(Af )[u]

which extends the canonical map Ã
f̃
→ W †(Af ). The existence of σ is

derived from Hensel’s lemma [7] Proposition 2.30. Hence B has a canonical

overconvergent Witt lift. Let B̃†, Ã†
f̃

be the weak completions of B̃, Ã
f̃
.

Then B̃† = Ã†
f̃
[x] is finite étale over Ã†

f̃
. Using Proposition 1.9 we see that

σ extends to a comparison map

(3.5) σ : Ω
B̃†/W (k)

= B̃†
⊗
Ã†
f̃

Ω•
Ã†
f̃
/W (k)

→W †Ω•B/k =
m−1⊕
i=0

W †Ω•Af/kx
i

(here m = [B : Af ]).
We want to show that σ is a quasi-isomorphism. First we treat the special

case B = Af = k[T1, . . . , Tn]f . So we need to show:

σ : Ω
Ã†
f̃
/W (k)

→W †Ω•Af/k is a quasi-isomorphism,

We also consider f̃l = image (f̃) in Wl(k)[T1, . . . , Tn] =: Ãl. The Ãl−module
structure in WlΩ

•
A/k respects the decomposition

WlΩ
•
A/k = WlΩ

•,int
A/k ⊕WlΩ

•,frac
A/k

into integral and fractional part. This follows from [14] Lemma 4.
Hence we have a direct sum decomposition

(3.6)

WlΩ
•
Af/k

∼= Ãl

[
1

f̃l

] ⊗̃
Al

WlΩ
•
A/k

∼= Ãl

[
1

f̃l

] ⊗̃
Al

WlΩ
•,int
A/k

⊕
Ãl

[
1

f̃ l

]⊗̃
Al

WlΩ
•,frac
A/k

where the first isomorphism follows from the étale base change and the
isomorphism

Wl(A)
⊗
Ãl

Ãl

[
1

f̃l

]
∼= Wl(Af ).

When taking inverse limits, we put

lim
←−

Ãl

[
1

f̃l

]⊗
Ãl

WlΩ
•,int
A/k = Ω•̂̃

A
f̃

,

where
̂̃
A
f̃

is the p−adic completion of Ã
f̃
. Then (3.6) yields a direct sum

decomposition

(3.7) WΩ•Af/k
∼= WΩ•,int

Af/k
⊕WΩ•,frac

Af/k

into two parts which we denote again by the integral and fractional part.

We can identify WΩ•,int
Af/k

with Ω•̂̃
A
f̃

and we know that WΩ•,frac
Af/k

is acyclic.
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With regards to W †Ω•Af/k we apply Proposition 1.3 and the remark after

Proposition 1.3:
Any z ∈W †Ω•Af/k can be written as a convergent series

z =

∞∑
l=0

1

[f ]rl
ηl

where ηl is a finite sum of basic Witt differentials η
(t)
l , such that there are

real numbers C and ε > 0 with

γε(ηl)− εrl ≥ C.
The supremum over all C for all possible representations of z is by definition
γε(z), the Gauss norm on the localization.

We can also define an order function on WΩ•Af/k by considering repre-

sentations of z of the form

(3.8) z =
∞∑
l=0

1

f̃ rl
τl.

We call z convergent with radius ε with respect to f̃ if there is a represen-
tation and a constant C ∈ R, such that

(3.9) γε(τl)− εrl ≥ C.
We denote the supremum over all C for all possible representations by

γ
(f̃)
ε (z). We will also express the last condition of convergence a little differ-

ently: We extend the function γε to WΩ•A/k[1/f̃ ] as follows:

γ̃ε(ω/f̃
k) = γε(ω)− kγε(f̃)

If z =
∑

l zl with zl ∈WΩ•A/k[1/f̃ ], and if we denote by kl the denominator

of zl in this localization, it is easy to see that γ
(f̃)
ε (z) is the supremum over

all constants C such that for a suitable representation z =
∑
zα we have

(3.10) kα ≤
1

ε(1 + deg f̃)
(γ̃ε(zα) + C) .

We will prove that the notions of overconvergence and overconvergence
with respect to f̃ are the same. We start with representations (3.8) such
that (3.9) holds. We write

f̃ = [f ]− ρ.
It is enough to consider the case where ε is small enough. Therefore we may
assume that γε(ρ) ≥ ε. We show that z is convergent with respect to γε:

1

f̃
=

1

[f ]

1

1− 1
[f ]ρ

=
1

[f ]

1 +
∑
n≥1

1

[f ]n
(ρ)n


=

∑
n≥1

1

[f ]n
(ρ)n−1.
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Then
1

f̃k
=
∑
m≥k

am
1

[f ]m
(ρ)m−k with am ∈ Z.

Then we find

γε(
∑
l

1

[f̃ rl ]
τl) = γε(

∑
l

∑
m≥rl

am
1

[f ]m
τlρ

m−rl).

We give an estimation for each summand separately:

γε(am
1

[f ]m
τlρ

m−rl) ≥ γε(τlρ
m−rl)− εm ≥ γε(τl) + γ̆ε(ρ

m−rl)− εm

≥ γε(τl)− rlε− (m− rl)ε+ (m− rl − 1)γε(ρ) + γ̆ε(ρ).

The last inequality holds by [7] (2.22). Since γε(ρ) ≥ ε we conclude:

γε(am
1

[f ]m
τlρ

m−rl) ≥ C+(m−rl−1)(γε(ρ)−ε)−ε+γ̆ε(ρ) ≥ C−ε(1+deg f).

The last inequality was explained at the end of the proof of Corollary 0.13.
Finally we obtain

γε(z) ≥ γ(f̃)
ε (z)− ε(1 + deg f).

If we interchange the roles of [f ] and f̃ in the argument above we see that:

γ(f̃)
ε (z) ≥ γε(z)− ε(1 + deg f).

The Gauss norms γ
(f̃)
ε are appropriate to study overconvergence on the in-

tegral and fractional part of WΩAf/k separately. More precisely let z ∈
WΩ•Af/k and let z = z1 + z2 according to the decomposition (3.7). We have

just seen that γε(z) > −∞⇔ γ
(f̃)
ε (z) > −∞ for small ε. We claim that

γ(f̃)
ε (z) > −∞ implies γ(f̃)

ε (z1) > −∞ and γ(f̃)
ε (z2) > −∞.

Let γ
(f̃)
ε (z) ≥ C then there exists a representation

z =

∞∑
l=0

1

f̃ rl
τl

such that
γε(τl)− εrl ≥ C.

Let τl = τ1
l + τ2

l be the decomposition in integral and fractional part. Then

z1 =
∞∑
l=0

1

f̃ rl
τ1
l and z2 =

∞∑
l=0

1

f̃ rl
τ1

2 .

As γε(τl) = min{γε(τ1
l ), γε(τ

2
l )} the claim follows. Hence we obtain a direct

sum decomposition

(3.11) W †Ω•Af/k = W †Ω•,int
Af/k

⊕
W †Ω•,frac

Af/k
.

We will also consider the truncated Gauss norms γ
(f̃)
ε [t] on

Ãt+1

[
1

f̃

]
⊗
Ãt+1

Wt+1Ω•A/k

= Ãt+1

[
1

f̃

]
⊗
Ãt+1

Wt+1Ω•,int
A/k ⊕ Ãt+1

[
1

f̃

]
⊗
Ãt+1

Wt+1Ω•,frac
A/k .
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We can define the Gauss norm γ̃ε on Ãt+1

[
1

f̃

] ⊗̃
At+1

Wt+1Ω•,frac
A/k in the same

way as before. We fix ε > 0 and C ∈ R.

We define Wt+1Ω•,frac,ε,C
Af/k

as the set of finite sums
∑

k

ηk

f̃k
∈Wt+1Ω•,frac

Af/k
=

Ãt+1

[
1

f̃

]⊗
Ãt+1

Wt+1Ωfrac
A/k satisfying the following. Let K0 be the largest in-

teger divisible by p such that

(3.10.1) K0 ≤
1

ε(1 + deg f̃)

(
γ̃ε

(
w

f̃kl

)
+ C

)
.

Then we require the following two conditions:

(i) K0 ≥ 0

(ii) k ≤ K0.

We know that the complex Ãt+1

[
1

f̃

] ⊗̃
At+1

Wt+1Ω•,frac
A/k is acyclic. We show

that for ε > 0 sufficiently small Wt+1Ωfrac,ε,C
Af/k

is acyclic.

Let us assume that f is regular in the variable T1. Let c ∈ Af . Then c
has a unique reduced representation:

(3.12) c =
∑
l

al/f
l,

where al ∈ A. We write a =
∑
αkT

k ∈ A, with αk ∈ k, and we set
ã =

∑
[αk][T ]k ∈W (A). Then we define

(3.13) c̃ =
∑
l

ãl/f̃
l.

This is an integral element in W (Af ). In the following we consider still
another admissible Gauss norm on Wt+1ΩAf/k. Let ω ∈ Wt+1ΩAf/k. Then
we consider all possible expressions of the type:

ω =
∑
l

ηl/f̃
lp, ηl ∈Wt+1ΩA/k.

We forget our old notation and denote by γ′ε[t](ω) the maximum over all
possible numbers

min{γε[t](ηl)− εlp}.

It is easy to see that the condition γ′ε[t](ω) ≥ C for ω ∈ Wt+1Ωfrac
Af/k

is

equivalent to condition ω ∈Wt+1Ωfrac,ε,C
Af/k

.

We should remark that γ′ε[1] coincides with the formerly defined function.

As before we define a modified γ̂′ε[t]. Then we have γ̂′ε[t] = γ
(f̃)
ε [t]

We find the equalities:

γ̂′ε[t](c̃) = γ̂′ε(c), γ′ε[t](c̃) = γ′ε(c).
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Indeed we verify the first equation as follows: By the representation (3.13)
we find:

γ̂′ε[t](c̃) ≥ min{γε[t](ãl)− εl} = min
l
{γε(al)− εl} = γ̂′ε(c) = γ̂′ε[1](c̃).

The other inequality is obvious.

Lemma 3.14. Each ω ∈Wt+1ΩAf/k has a unique representation:

(3.15) ω =
∑

F c̃
(n)
i ω

(n)
i .

This decomposition respects the non integral and the integral part, i.e. if ω

is integral (resp. non integral) then all ω
(n)
i are integral (respectively non

integral). For the Gauss norm we have:

γ′ε[t](ω) = min{pγ̂′ε(cni ) + γε(ω
(n)
i )}.

Proof. The same as that of Proposition 2.20: The Lemmas 2.11 and 2.13

continue to hold with F c̃
(n)
i in place of F [c

(n)
i ], because the action of both

elements is the same on the graded part Gn. We need to verify that for fixed
n:

(3.16)
γ′ε[t](

∑
i
F c̃

(n)
i ω

(n)
i ) = min{γ′ε[t](F c̃

(n)
i ) + γε(ω

(n)
i )}

= min{pγ̂ε(c(n)
i ) + γε(ω

(n)
i )}.

It is clear from Lemma 2.13 that this is true for γ′ε[n] in place of γ′ε[t]. We
choose reduced representations:

c
(n)
i =

∑
l

a
(n)
i,l /f

l.

Then we find:

γ′ε[t](
∑
i

F c̃
(n)
i ω

(n)
i ) = γ′ε[t](

∑
l

(
∑
i

F ã
(n)
i,l ω

(n)
i /f̃pl)).

From this we see that:

γ′ε[t](
∑
i

F c̃
(n)
i ω

(n)
i ) ≥ min{γε[t](

∑
(F ã

(n)
i,l ω

(n)
i ))− εlp}

= min{γε[t](F ã(n)
i,l ) + γε(ω

(n)
i )− εlp}

= min{γ′ε[t](F c̃
(n)
i ) + γε(ω

(n)
i )}.

This shows the equation (3.16) because γ′ε[t] ≤ γ′ε[n]. The rest of the proof
of the lemma is the same. �

Proposition 3.17. Let ε ∈ R be sufficiently small. Let ω ∈ Wt+1ΩAf/k be

a closed Witt differential in the non integral part such that γ′ε(ω) ≥ C. Then
ω = dη, where η ∈Wt+1ΩAf/k is a Witt differential in the non integral part,

such that γ′ε(η) ≥ C.

Proof. The problem does not change if we make a finite extension of the
base field k. Therefore we may assume that f is regular in T1 as above.

Consider the residue class ω̄ ∈ W2ΩAf/k of ω. This is a closed form in
the fractional part, i.e. is contained in the module:

(dV nP l−1)f ⊕ (pdV n−1P l−1)f ⊕ · · · ⊕ (pn−1dV P l)f
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for n = 2. This means that all basic Witt differentials ω
(1)
i , which appear in

the decomposition (3.15) must be of the form ω
(1)
i = dη

(1)
i for some primitive

basic Witt differential η
(1)
i , such that γε(ω

(1)
i ) = γε(η

(1)
i ). We set:

η(1) =
∑

F c̃
(1)
i η

(1)
i .

Clearly γ′ε(η(1)) = min{pγ̂′ε(c
(1)
i ) + γε(ω

(1)
i )} ≥ γε(ω).

We will verify that for small ε:

(3.18) γ′ε(dη(1)) ≥ γ′ε(ω).

Then we consider ω(1) = ω − dη(1). We conclude that γ′ε(ω(1) ≥ γ′ε(ω)
and that ω(1) ∈ Fil2Wt+1ΩAf/k. Then we expand ω(1) in the form (3.15)
and consider the reduction in W3ΩAf/k. We apply the same argument and

find η(2) with γ′ε(η(2)) ≥ γ′ε(ω(1)) and γ′ε(dη(2)) ≥ γ′ε(ω(1)). Continuing we
obtain:

ω = dη(1) + dη(2) + dη(3) + . . . .

This proves the result if we verify (3.18).

We set C = γ′ε(ω). By definition F c̃
(n)
i is a sum of expressions [u]p/f̃ lp

such that:
pγε([u])− εlp+ γε(η

(1)
i ) ≥ C.

Here u is a monomial in the variables T . We have to verify that

γ′ε(d([u]pη
(1)
i /f̃ lp)) ≥ C.

We write:

d([u]pη
(1)
i /f̃ lp) = (d([u]pη

(1)
i ))/f̃ lp

+
− lp([u]pη

(1)
i f̃p−1df̃)/f̃ (l+1)p.

Clearly γ′ε of the first summand is greater than C. We have:

γ′ε(pl[u]pη
(1)
i f̃p−1df̃/f̃ (l+1)p) ≥ pγε([u])− ε(l + 1)p+ γε(ω

(1)
i ) + pγε(f̃) + 1.

The last expression is bigger C if

pγε(f̃) + 1− pε ≥ 0.

But this is clearly fullfilled for small ε. �

Hence Wt+1Ωfrac,ε,C
Af/k

is acyclic. As the notions of overconvergence on

WΩAf/k and overconvergence with respect to f̃ are the same we can apply

the remark preceding Corollary 2.24. We see that the complex W †Ωfrac,ε
Af/k

consisting of elements ω ∈ WΩfrac
Af/k

satisfying γ′ε[t](ω) ≥ C for some C

independently of t is exact as well. Hence

W †Ω•,frac
Af/k

= lim
ε→0

W †Ωfrac,ε
Af/k

is exact, as desired.
Now we can prove the following comparison result.

Theorem 3.19. Let f ∈ k[T1, . . . , Td] = A. Let B be finite étale and
monogenic over Af .

Then the map σ, explicitly given in 3.5, of complexes

σ : Ω
B̃†/W (k)

∼= W †ΩB/k
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is a quasi-isomorphism.

Proof. We consider a lift Ãf̃ of Af over W (k) and a finite monogenic étale

algebra B̃ over Ãf̃ which lifts B. We write B̃ = Ãf̃ [x]. We denote by B̃† the

weak completion of B̃. By choosing a Frobenius on the weak completions
we find morphisms

B̃ →W (B), Ãf̃ →W (Af ).

The elements

1, x, . . . , xm−1

form a basis of the free Ãf̃ -module B̃. For any power pn the elements

1, xp
n
, x2pn . . . , x(n−1)pn

form also a basis of B̃ over Ãf̃ .

We have the isomorphism of modules (not of complexes):

(3.20) WΩB/k = B̃ ⊗Ãf̃ WΩAf/k =
m−1⊕
i=0

xipWΩAf/k.

Let γ′ε be the of Gauss norms on WΩAf/k considered in Lemma 3.14. We
consider the product norms on the right hand side of 3.20. We write ω ∈
WΩB/k:

(3.21) ω =
∑

ηjx
jp.

Then we set

γε(ω) = min{γ′ε(ηj)}.
According to (3.20) we find:

dxip = pixip−1dx =

m−1∑
j=0

xjpϑij ,

where the ϑij ∈ ΩÃf̃/W (k) ⊂ WΩAf/k are integral differentials. We restrict

our attention to small ε. Then we may assume that

γ′ε(ϑij) > 0.

This is possible because the ϑij are divisible by p and γε(p) = 1. The last
assumption ensures that

γε(dω) ≥ γε(ω).

We define the fractional part of WΩB/k:

WΩfrac
B/k = B̃ ⊗Ãf̃ WΩfrac

Af/k
.

This is a subcomplex of WΩB/k. We denote by W †Ωfrac
B/k the overconvergent

differentials in WΩfrac
B/k . By the decompositions (3.5), (3.7), and (3.11), it

remains to show that this complex of overconvergent fractional differentials
is acyclic.
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From (3.20) we obtain decompositions for the filtrations:

(3.22) FilnWΩfrac
B/k =

m−1⊕
j=0

xjp FilnWΩfrac
Af/k

.

Consider a closed overconvergent Witt differential ω ∈WΩfrac
B/k:

dω = 0, γε(ω) ≥ −C.

We will show that ω = dη for η ∈ WΩfrac
B/k with γε(η) ≥ −C. This implies

that the complex W †Ωfrac
B/k is acyclic.

We note that ω ∈ Fil1WΩfrac
B/k = WΩfrac

B/k. We set ω1 = ω. We construct

inductively fractional differentials ωi, ηi ∈ FiliWΩfrac
B/k, such that γε(ωi) ≥

−C, γε(ηi) ≥ −C and

ωi = ωi+1 + dηi.

We consider ωi modulo Fili+1WΩfrac
B/k i.e. as an element of griWΩfrac

B/k ⊂
Wi+1Ωfrac

B/k. Then, using (3.22), we may write:

ωi =
∑

xjp(V
i
σj + dV

i
ρj).

Since griWΩfrac
B/k is annihilated by p we have

0 = dωi =
∑

xjpdV
i
σj .

This shows that V iσj = 0, for j = 0, . . . ,m − 1. We find for the truncated
norms:

min{γ′ε[i](dV
i
ρj)} = γε[i](ωi) ≥ −C.

Using Proposition 3.17 we may assume after a possible modification of the

ρj that γ′ε[i](
V iρj) ≥ −C. We choose liftings V i ρ̃j ∈WΩfrac

Af/k
, such that

γ′ε(
V i ρ̃j) = γ′ε[i](

V iρj) ≥ −C.

Since d increases the product norm we find

γε(d
∑

xjpV
i
ρ̃j) ≥ γε(

∑
xjpV

i
ρ̃j) ≥ −C.

We set

ηi =
∑

xjpV
i
ρ̃j , ωi+1 = ωi − dηi.

This ends the induction and the proof of the proposition. �

For an arbitrary smooth algebra A, consider an overconvergent Witt lift

(3.23) ψ : Ã† →W †(A)

which is uniquely determined by a lifting of the Frobenius to Ã†. (Compare
Proposition 3.2.) It induces a map of complexes, also denoted by ψ,

ψ : Ω
Ã†/W (k)

→W †ΩA/k.

Passing to cohomology we will prove the following comparison result.
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Proposition 3.24. Let κ = blogp dimAc. Then the kernel and cokernel of
the induced homomorphism

ψ∗ : H i(Ω
Ã†/W (k)

)→ H i(W †ΩA/k)

are annihilated by p2κ.

Corollary 3.25. (a) Let dimA < p. Then ψ∗ is an isomorphism.
(b) In general, there is a (rational) isomorphism

H∗MW(A/K) ∼= H∗(W †ΩA/k ⊗W (k) K)

between Monsky-Washnitzer cohomology and overconvergent de Rham-Witt
cohomology. (Here K = W (k)[1

p ].)

We will reduce the proof of the proposition to a local homotopy argument.
The map ψ induces a map of complexes of Zariski sheaves on SpecA :

ψ̃ : Ω̃
Ã†/W (k)

→W †ΩSpecA/k.

As H i
Zar(SpecA, Ω̃d

Ã†/W (k)
) = H i

Zar(W
†Ωd

SpecA/k) = 0 for all d ≥ 0 and all

i > 0 (Proposition 1.2 and [16] Lemma 7), we have

RΓ(SpecA, Ω̃•
Ã†/W (k)

) = Ω•
Ã†/W (k)

and

RΓ(SpecA,W †ΩSpecA/k) = W †ΩA/k,

hence we can reconstruct ψ from ψ̃ by applying RΓ(SpecA, .). Let {Uj}j
be a finite affine covering of SpecA such that each Uj is finite étale and
monogenic over a localized polynomial algebra. By a result of Kedlaya [12],

such a covering always exists. Let Uj = SpecBj and B̃j
†

the Monsky-
Washnitzer lift of Bj . Then we consider the “localization” ψj of ψ to Uj :

ψj : Ω
B̃j
†
/W (k)

→W †ΩBj/k.

We compare the map ψj with the explicitly given comparison map σ in (3.5)
from which we know it is a quasi-isomorphism and show the following.

Proposition 3.26. The maps pκψj and pκσ are homotopic, hence induce
the same map on cohomology.

Before proving the proposition we finish the proof of Proposition 3.24.
We know that the kernel and cokernel of (pκψj)∗ are annihilated by pκ. As
Ker(ψj)∗ ⊆ Ker(pκψj)∗ and Coker (ψj)∗ is a subquotient of Coker (pκψj)∗,
Ker(ψj)∗ and Coker (ψj)∗ are annihilated by pκ as well.

Define C• as the complex of Zariski sheaves obtained by taking the cok-

ernel of ψ̃. Then one has an exact sequence of complexes of Zariski sheaves

0→ Ω̃•
Ã†/W (k)

→W †Ω•SpecA/k → C• → 0.

The cohomology sheaves H i(C•) are annihilated by p2κ. Hence the map

C•
p2κ→ C• induces the zero map on cohomology. Therefore it is zero in the

derived category. Applying the functor RΓ we see that RiΓ(SpecA,C•)
p2κ→

RiΓ(SpecA,C•) is the zero map. This finishes the proof of Proposition 3.24.
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We now prove Proposition 3.26. It is implied by the following more general
result. Let B,C denote smooth k-algebras which are finite and étale over

localized polynomial algebras, with smooth lifts B̃, C̃ and corresponding

weak completions B̃†, C̃†.

Proposition 3.27. Let φ̃1, φ̃2 : B̃† → W †(C) denote two lifts of a map
φ : B → C. Then the induced maps

pκφ̃1, p
κφ̃2 : Ω

B̃†/W (k)
→W †ΩC/k

are chain homotopic, where κ = blogp dimBc.

We will closely follow the argument on pages 205-206 of [17].

Proof. The chain homotopy we produce will factor through the following
algebra.

Definition 3.28. Denote by D′′(C) the differential graded algebra with ith
graded piece

D′′(C)i = W †Ωi
C/k[[U ]]⊕W †Ωi−1

C/k[[U ]] ∧ dU.

Denote by D′(C) the sub-differential graded algebra of D′′(C) generated in
degree zero by terms

f =
∞∑
i=0

U iωi

for which ωi ∈ pi−1VW †(C) for i ≥ 1 and such that there exist ε,G with
γε(ωi) ≥ G for all i. For such a term f , we define

γε(f) = inf
i
{γε(ωi)}.

Note that D′(C)0 is an algebra. The only non-obvious fact is that it is
closed under multiplication, and this follows from the property V (wa)V (wb) =
pV (wc).

We now define a map

ϕ : Ω
B̃†/W (k)

→ D′(C)

as follows. Fix a presentation

B̃† = W (k)〈x1, . . . , xn,
1

g
〉†[z]/(P (z)).

Our map will send

ϕ : xi 7→ φ̃1(xi) + U(φ̃2(xi)− φ̃1(xi)).

Because we have for a, b ∈ D′(C)0, γε(ab) ≥ γε(a) + γε(b) and γε(a + b) ≥
min(γε(a), γε(b)), the proof of Proposition 2.28 in [7] can be mimicked to
show that D′(C)0 is weakly complete. This immediately shows that ϕ ex-
tends to W (k)〈x1, . . . , xn〉†.

As g ∈ W (k)〈x1, . . . , xn〉†, we have just shown ϕ(g) ∈ D′(C), and we

must show this element is invertible. Write ϕ(g) = φ̃1(g) +Uf , some f such

that Uf ∈ D′(C). Because φ̃1(g) is invertible in W †(C),

1

ϕ(g)
=

φ̃1(g)−1

1− U(−φ̃1(g)−1f)
,
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so to show ϕ(g) is invertible it suffices to show that any 1−Ug̃ ∈ D′(C)0 is
invertible. Write

g̃ = V w0 + UpV w1 + U2p2V w2 + · · · .

It follows by a simple induction on k, starting with the base case k = 1, that

g̃k =
∞∑
i=0

U ipk+i−1V wi,

with γε(p
k+i−1V wi) ≥ 0, same ε as above. Hence

1 + Ug̃ + U2g̃2 + · · · ∈ D′(C),

as required.
Next we prove that ϕ extends to z.

Lemma 3.29. There exists
∞∑
i=0

U ici ∈ D′(C)

which is a root of ϕ(P )(z) = zr + ϕ(f1)zr−1 + · · ·+ ϕ(fr).

Proof. Because D′(C) is weakly complete (with respect to (p)), by Hensel’s
Lemma (Proposition 2.30 in [7]) it suffices to find a root modulo p. Because
the ideal (U2) ⊆ (p), it will suffice for us to find a root modulo U2. Thus we

need only find the terms c0 and c1. As usual, c0 = φ̃1(z). For c1, we simply
set z =

∑∞
i=0 U

ici in ϕ(P )(z) = zr + ϕ(f1)zr−1 + · · ·+ ϕ(fr) = 0 and check
that this forces

c1 = −(φ̃1(P )′(z))−1
(

(φ̃2(f1)− φ̃1(f1))cr−1
0 + · · ·+ φ̃2(fr)− φ̃1(fr)

)
.

�

We have now shown the existence of a map ϕ : B̃† → D′(C)0. We extend
it to a map, also denoted by ϕ, of complexes,

ϕ : Ω
B̃†/W (k)

→ D′(C).

The chain homotopy promised in our proposition will factor through its
image. This motivates the following.

Definition 3.30. Let D(C) ⊆ D′(C) denote the image of ϕ.

We give now a more explicit description of what terms in D(C) look like.

Lemma 3.31. (i) Let x denote some element of Ωd
B̃†/W (k)

. Write

ϕ(x) = · · ·+ U i+1w′ + U idUw′′ + · · ·

where i ≥ 0. Then we may write w′ = pmax(i−d,0)µi and w′′ = pmax(i−d+1,0)ηi
with µi, ηi ∈ Fil1W †ΩC/k.

(ii) We may find ε,G depending only on x such that γε(w) ≥ G for each
coefficient w.
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Proof. (i) We prove this by induction on d. The base case d = 0 has already
been shown.

Inductively assume the result for x of degree d− 1.
A term x in degree d may be written as a finite sum of terms bdxi1 · · · dxid

with b ∈ B̃† and xij one of the generators of the polynomial algebra of which
we have taken an étale extension. We will show the result for bdx1 · · · dxd.
Extending to other index sets is trivial, and extending to finite sums is easy.

We are assuming the result for ϕ(bdx1 · · · dxd−1), which is possibly just
ϕ(b). And we know

ϕ(dxd) = dφ̃1(xd) + dUV (wd) + UdV (wd).

The result concerning the form of the coefficients now follows easily.
(ii) We again may restrict to the case of a term bdxi1 · · · dxid . Concerning

ϕ(b), we already know the result. There are only finitely many nonzero
terms of the form dxi1 · · · dxid (varying d allowed). Thus we can find ε′, G′

such that every coefficient w appearing in some term ϕ(dxi1 · · · dxid) satisfies
γε′(w) ≥ G′. The result now follows from the fact that there exist ε′′, G′′

such that for any γε(η) ≥ G, γε′(w) ≥ G′ we have γε′′(η ∧ w) ≥ G′′. �

Let h0, h1 denote the maps of differential graded algebrasD′(C)→W †ΩC/k

which send U 7→ 0 and U 7→ 1, respectively. Our definition of D′(C)0 im-
mediately implies that the image in degree zero really does land in W †(C),
and hence the image lands there in every degree. We also let h0, h1 denote
their restrictions to D(C).

Clearly we have h0 ◦ ϕ = φ̃1 and h1 ◦ ϕ = φ̃2, because both sides agree in
degree zero. We define pκL : D(C)• →W †Ω•−1

C/k by setting

pκL(U jωj) = 0 and pκL(U jdU ∧ ωj) =
pκωj
j + 1

,

and then extending to all of D(C) in the obvious way. Of course, it is not
at all clear that our map has image where we claim.

Lemma 3.32. The map pκL has image in W †ΩC/k.

Proof. We first show it maps to WΩC/k, and then establish overconvergence.
For an arbitrary x ∈ Ω

B̃†/W (k)
, write

ϕ(x) = · · ·+ U jdU ∧ ωj + · · ·
as in the previous lemma. From the lemma, it suffices that

κ+ max(j − dimB + 1, 0) ≥ blogp(j + 1)c.
For the case j−dimB+ 1 > 0, check the specific case j = dimB, then note
that the left hand side grows faster with j than the right hand side. For the
case j ≤ dimB − 1, we want to prove blogp dimBc ≥ blogp(j + 1)c, which
in this case is obvious.

Now we must check overconvergence. We are done if we verify the ex-

istence of ε′, G′ independent of j such that γε′(
pκωj
j+1 ) ≥ G′. For arbitrary

ωj ∈W †ΩC/k with γε(ωj) ≥ G this is not true. But as before we know that

pm
′ | p

κωj
j + 1

, where m′ ≥ j − dimB + κ+ 1− blogp(j + 1)c.
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There exists N depending only on dimB such that for j ≥ N , m′ ≥ blogp(j+
1)c. So the following claim applies to all but finitely many terms in ϕ(x).

Claim. Let ωj ∈ W †ΩC/k. If pblogp(j+1)c | p
κωj
j+1 and γε(p

κωj) ≥ G, then

there exist ε′, G′ depending only on ε,G with γε′(
pκωj
j+1 ) ≥ G′.

Proof. It suffices to prove this for the equivalent norm γ′ of page 27. We shall
prove the result for (ε′, G′) = ( ε2 ,

G
2 ). Let l := logp(j+1). Pick an η such that

p2lη = pκωj . Write C := γ′ε(η). From Corollary 2.24 or rather its evident

generalisation to finite étale extensions over Af we know γ′ε(p
2lη) = C + 2l,

so from our assumption C + 2l ≥ G. We also have γ′ε
2
(η) ≥ C

2 , and so

γ′ε
2
(plη) ≥ C

2
+ l ≥ G

2
,

as claimed. �

This proves that for all but finitely many terms a in pκL(ϕ(x)), γ ε
2
(a) ≥

G
2 . For the other terms b in pκL(ϕ(x)), we know γε(b(j + 1)) ≥ G, with
j + 1 ≤ N + 1. Thus we can find ε′′, G′′ with γε′′(a) ≥ G′′ and γε′′(b) ≥ G′′

for all a, b as above, which covers everything. This completes the proof that
pκL(ϕ(x)) is indeed overconvergent. �

Now we are basically done. It is trivial to check that pκL is a homotopy
between pκh0 and pκh1. Thus pκL ◦ϕ is a homotopy between pκh0 ◦ϕ = φ̃1

and pκh1ϕ = φ̃2. For the convenience of the reader, we state explicitly the
sign convention:

d(ω ∧ η) = dω ∧ η + (−1)iω ∧ dη,
where ω is in degree i. �

4. Comparison with rigid cohomology

Let X = SpecA be a smooth affine scheme over a perfect field k of
characteristic p > 0. In this section we define a canonical morphism from
the rigid cohomology of X to the de Rham-Witt cohomology.

Let W = W (k) be the ring of Witt vectors and K = W (k)⊗Q.

Definition 4.1. A special frame is a pair (X,F ) such that F = SpecB is
a smooth affine scheme over W and X = SpecA is a smooth affine scheme
over k which is a closed subscheme of F . The comorphism of this embedding
is an epimorphism B → A. We will also say that (A,B) is a special frame.

Assume moreover that we are given a homomorphism κ : B → W (A)
which lifts B → A. Then we call (X,F,κ) a Witt frame. If the image of κ
is contained in W †(A) the Witt frame is called overconvergent.

Let (X,F,κ) be a Witt frame. We denote by F̂ the formal scheme which
is the completion of F in the ideal sheaf generated by p. Let ]X[F̂ be the

tubular neighbourhood (Berthelot [2]) of X in the rigid analytic space F̂K
associated to the formal scheme F̂ . We will construct a natural map

(4.2) Γ(]X[F̂ ,Ω]X[F̂
)→WΩX/k ⊗Q.
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It is enough to define a map

(4.3) Γ(]X[F̂ ,O]X[F̂
)→W (A)⊗Q.

From this we can deduce (4.2) by the universal property of Kähler differen-

tials. Let F̂/X be the formal completion of F along X. By [2] 1.1.4 (ii) the
tubular neighbourhood ]X[F̂ coincides with the rigid analytic space associ-

ated with the formal scheme F̂/X . Let I be the kernel of the homomorphism
B → A. We denote by R the completion of B in the ideal I. We have
F̂/X = Spf R. The associated rigid analytic space is defined as follows: We
choose a set of generators f1, . . . , fm of I. For a natural number n we denote
by R∧n the p-adic completion of

Rn = R[T1, . . . , Tm]/(fn1 − pT1, . . . , f
n
m − pTm).

Then R∧n ⊗Q is an affinoid algebra and we have by definition

Γ(]X[F̂ ,O]X[F̂
) = lim←−R

∧
n ⊗Q.

To define (4.3) it suffices to define a compatible system of maps

(4.4) Rn →W (A).

for n large enough. The homomorphism κ maps I to VW (A). Since W (A) is
complete in the ideal VW (A) the homomorphism κ extends to a morphism

R→W (A).

Since κ(fi) ∈ VW (A) for i = 1, . . . ,m we obtain for n ≥ 2:

κ(fni ) ∈ pn−1VW (A).

Since p is not a zero divisor in W (A) the element (1/p)κ(fni ) ∈ W (A) is
well defined. Mapping Ti to this element we obtain the desired compatible
system of maps (4.4). This finishes the definition of (4.3).

This construction is clearly functorial in the following sense: Assume
we have a second special frame (X1, F1,κ1). We set X1 = SpecA1 and
F1 = SpecB1. Assume that we are given a morphism of Witt frames

(4.5) (X,F,κ)→ (X1, F1,κ1).

This induces a morphism of formal schemes F̂/X → F̂1/X1
and therefore a

morphism of the tubular neighbourhoods ]X[F̂→]X1[F̂ . Our construction
gives a commutative diagram

(4.6)

Γ(]X1[F̂1
,O)]X1[F̂1

−−−−→ W (A1)⊗Qy y
Γ(]X[F̂ ,O]X[F̂

) −−−−→ W (A)⊗Q.

This also establishes the functoriality of the morphism (4.2).
Let (X,F ) be a special frame. We choose an embedding F ⊂ AnW in the

affine space with comorphism

W [X1, . . . , Xn]→ B.

We write E = AnW . Let AnW ⊂ P = PnW be the canonical embedding.

X → E → P.
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We see easily that ]X[Ê=]X[P̂ . We denote by Q the closure of F in P . Let

Y be the closure of X in P . Let Q̂ be the completion in the ideal p. Then

(4.7) X → Y → Q̂

is a frame in the sense of rigid cohomology. By this we mean that the
embeddings X → Y and Y → Q̂ satisfy the assumptions for the definition
of the rigid cohomology groups of X in [3] 1.3.

Our aim is to give an explicit description of a fundamental system of strict
neighbourhoods [2] (1.2.1) of ]X[Q̂=]X[F̂ in ]Y [Q̂.

Let us denote by F anK the rigid analytic space associated to the scheme

FK . We have F anK ⊂ QanK = Q̂K . It is clear that F anK ∩]Y [Q̂ is a strict

neighbourhood of ]X[F̂ . We propose to give an intrinsic description of the
strict neighbourhoods which doesn’t depend on the particular embedding
F ⊂ AnW .

It is enough to describe a fundamental system of strict neighbourhoods of
]X[=]X[P̂ in ]Y [=]Y [P̂ . The strict neighbourhoods above are then obtained

by intersecting with Q̂K ⊂ P̂K .
Let X = Spec k[X1, . . . , Xn]/(f̄1, . . . , f̄m). Let fj ∈ W [X1, . . . , Xn] for

j = 1, . . . ,m be liftings of the polynomials f̄j , such that dj = deg f̄j = deg fj .
We take homogeneous coordinates Xi = Ti/T0 for i = 1, . . . , n. Consider
the homogeneous polynomials for j = 1, . . . ,m:

Fj(T0, . . . , Tn) = T
dj
0 fj(T1/T0, . . . , Tn/T0).

We denote by F̄j the residue class modulo p. Then Y ⊂ Pnk is given by the
equations:

F̄j(T0, . . . , Tn) = 0.

We write a point (t0, . . . , tn) of P̂K = P anK always in such a way that |ti| ≤ 1
for all i = 1, . . . , n and such that we have equality for at least one index.
The tubular neighbourhood of Y is:

]Y [= {(t0, . . . , tn) ∈ P̂K | |Fj(t0, . . . , tn)| < 1}.
For η < 1 we write:

]Y [η= {(t0, . . . , tn) ∈ P̂K | |Fj(t0, . . . , tn)| ≤ η}.
Let Z ⊂ Y denote the intersection of Y with the hyperplane {T0 = 0}. We
have disjoint decompositions

Y = X t Z, ]Y [=]X[ t ]Z[.

We follow the notations of [2] 1.2. For λ < 1 we have

]Z[λ=]Y [∩{|t0| < λ}.
Then U ′λ =]Y [ \ ]Z[λ is a strict neighbourhood of ]X[. We set U ′λ,η =]Y [η∩U ′λ.
We have the inclusions

U ′λ,η ⊂ U ′λ′,η, for 1 > λ > λ′ > 0,

U ′λ,η′ ⊂ U ′λ,η, for 1 > η > η′ > 0.

Let λ = {λi} and η = {ηi} two monotonically increasing sequences of real
numbers which converge to 1. Then we set

(4.8) U ′λ,η =
⋃
U ′λi,ηi .
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By [2] the sets U ′λ,η form a fundamental system of strict neighbourhoods of

]X[.

Let Ean ⊂ P̂K = P an = (PnK)an be the analytic variety associated to
AnK . We have U ′λ ⊂ Ean. If B(0, 1/λ) denotes the closed ball of radius 1/λ
around 0 in Ean we can write

(4.9) U ′λ =]Y [∩B(0, 1/λ), U ′λ,η =]Y [η∩B(0, 1/λ).

We describe ]Y [∩Ean in affine coordinates. Consider a point (t0, . . . , tn) ∈
P anK with t0 6= 0 and let (x1, . . . , xn) be the affine coordinates. We find:

1/|t0| = max{1, |x1|, . . . , |xn|}.

Therefore the defining inequalities for ]Y [ respectively ]Y [η become

(4.10)
|fj(x1, . . . , xn)| < max{1, |x1|dj , . . . , |xn|dj},
|fj(x1, . . . , xn)| ≤ ηmax{1, |x1|dj , . . . , |xn|dj},

for j = 1, . . . ,m.
We set

Uλ = {(x1, . . . , xn) ∈ B(0, 1/λ) | |fj(x1, . . . , xn)| < 1, forj = 1, . . . ,m}.

We find Uλ ⊂ U ′λ. We set Uλ,η = Uλ∩]Y [η. These are affinoid subsets of
U ′λ,η:

(4.11) Uλ,η = {(x1, . . . , xn) ∈ B(0, 1/λ) | |f(x1, . . . , xn)| ≤ η}.

Lemma 4.12. For each real η < 1 there are reals λ0 < 1 and η0 < 1 such
that

U ′λ,η ⊂ Uλ,η′ , for λ > λ0, η
′ > η0.

Proof. We choose λ0 in such a way that |η| < λ
dj
0 for each index dj . Then

we find for λ > λ0 and |xi| ≤ 1/λ that

η|xi|dj ≤ η/λdj < η/λ
dj
0 < η0 < 1

for a suitable η0. This proves the assertion. �

Lemma 4.13. We define Uλ,η for monotonic sequences λ and η by replac-

ing U ′ by U in (4.8). Then the Uλ,η are a fundamental system of strict

neighbourhoods of ]X[ in ]Y [.

Proof. Because of the inclusions Uλi,ηi ⊂ U ′λi,ηi it is enough to show that Uλ,η
is a strict neighbourhood of ]X[. For each i ∈ N we set η̃i = ηi(1+(1/i))−1 <

ηi. We choose 1 > λ̃i > λi such that η̃i/λ̃
dj
i < ηi for each index dj . The

proof of the last lemma shows that

U ′
λ̃i,η̃i
⊂ Uλi,ηi .

Since η̃i < 1 and λ̃i < 1 are sequences which converge to 1 the set U ′
λ̃,η̃

is a

strict neighbourhood of ]X[. The inclusion above shows that Uλ,η is a strict

neighbourhood of ]X[. �
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Proposition 4.14. Let (X,F ) be a special frame. Let F ⊂ E = AnW be an
embedding in an affine space. Let Uλ,η ⊂ EanK be defined by (4.11).

Let X → Y → Q̂ be associated to the embedding F ⊂ E (4.7). Then
Vλ,η = Uλ,η ∩ F anK is a fundamental system of strict neighbourhoods of ]X[Q̂
in ]Y [Q̂.

Proof. We just proved this in the case where F = E is an affine space and
P = Q is the projective space. In general one obtains the strict neighbour-
hoods of ]X[Q̂ in ]Y [Q̂ by intersecting with the strict neighbourhoods of ]X[P̂
in ]Y [P̂ . This proves the proposition. �

It is easy to see that we end up with a cofinal system of neighbourhoods if
we replace in the definition of the Uλ,η the polynomials fj by fj+phj , where
hj ∈W [X1, . . . , Xn] are arbitrary polynomials. In other words, we may take
for fj arbitrary liftings of f̄j and drop the condition that deg fj = deg f̄j .

Corollary 4.15. With the notations of the proposition let F ⊂ Ẽ = AlW be

a second embedding which gives rise to a second frame X → Ỹ → Q̃. Then
the two systems of neighbourhoods Vλ,η and Ṽλ,η of ]X[F̂ in F anK are cofinal.

Proof. We begin with a special case. Assume we are given a closed immersion
E → Ẽ whose comorphism is of the form

W [X1, . . . Xn, Z]→W [X1, . . . Xn],

where Z is mapped to a polynomial g(X1, . . . , Xn). Moreover we assume

that the embedding F → Ẽ is the composite F → E → Ẽ.
We consider the morphism of frames in the sense of rigid cohomology

(4.16)

X −−−−→ Y −−−−→ Q̂y y y
X −−−−→ Y −−−−→ P̂ .

We obtain a fundamental system of strict neighbourhoods of ]X[F̂ in F anK
by intersecting a fundamental system of strict neighbourhoods of ]X[Ê in

EanK with F anK . A similar remark applies for Ẽ.
We will now compare strict neighbourhoods with respect to the frames

(4.17) X → Y → P̂

and

(4.18) X → Ỹ → ˆ̃P.

Let f1, . . . , fm ∈W [X1, . . . , Xn] be polynomials whose reductions modulo p
define the closed subscheme X ⊂ Ank = Ek.

For positive real numbers λ, η < 1 we have considered the affinoid subsets:

(4.19) Uλ,η ⊂ B(0, 1/λ) ⊂ EanK ,

which are given by the inequalities

(4.20) |fj(x1, . . . , xn)| ≤ η, for j = 1, . . . ,m.
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Next we consider strict neighbourhoods Ṽ ⊂ ẼanK with respect to (4.18).

We will show that Ṽ ∩EanK is a strict neighbourhood of ]X[Ê with respect to
(4.17). Moreover for each strict neighbourhood V of ]X[Ê there is a strict

neighbourhood Ṽ of ]X[ ˆ̃E
such that Ṽ ∩ EanK ⊂ V . By the remark after

(4.16) this would imply that the strict neighbourhoods of ]X[F̂K in F anK are

the same with respect to the frames X → Y → Q̂ and X → Ỹ → ˆ̃Q. This
would prove the proposition in the special case above.

Let us consider the open sets (4.19) for the frame (4.18):

Ũλ,η = B(0, 1/λ) ⊂ ẼanK .

They are given by the following inequalities

|fj(x1, . . . , xn)| ≤ η,
|z − g(x1, . . . , xn)| ≤ η.

This shows immediately that

Uλ,η ⊃ Ũλ,η ∩ EanK .

Therefore for each strict neighbourhood V = Uλ,η we have found the strict

neighbourhood Ṽ = Ũλ,η such that Ṽ ∩ EanK ⊂ V . We have to show that

Ṽ ∩EanK is a strict neighbourhood. Let t be the total degree of the polynomial
g. Let ρ > 1 be some real number. If |x1| ≤ ρ, . . . , |xn| ≤ ρ then we have

|g(x1, . . . , xn)| ≤ ρt.

This shows that

U
λ

1
t ,η
⊂ Ũλ,η.

We see that Ṽ ∩EanK is a strict neighbourhood. This proves the proposition
for the special case we started with.

Now we consider an arbitrary second closed immersion F → Al. We
obtain a diagonal embedding F → An ×SpecW Al. We take coordinates

Y1, . . . , Yl on Al. We compare the comorphisms of the diagonal embedding
with the comorphism of F → An:

W [X1, . . . Xn, Y1, . . . , Yl]

((RRRRRRRRRRRRRR

B.

W [X1, . . . , Xn]

66llllllllllllll

We find an epimorphism W [X1, . . . Xn, Y1, . . . , Yl]→ W [X1, . . . , Xn], which
mapsXi toXi which makes this diagram commutative. We obtain a diagram

F −−−−→ An

id

y y
F −−−−→ An ×SpecW Al,
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where the vertical arrow on the right hand side is the closed immersion
defined above. But then the independence of strict neighbourhoods in F anK
follows by induction from the case done above. �

As a second corollary we prove the functoriality of strict neighbourhoods.

Corollary 4.21. Let (X1, F1)→ (X2, F2) be a morphism of special frames.
Let V2 ⊂ F an2,K be a strict neighbourhood of ]X2[F̂2

. Then the inverse image

of V2 by the map F an1,K → F an2,K contains a strict neighbourhood of ]X1[F̂1
in

F an1,K .

Proof. We may restrict to the case where the morphism of frames is of the
following type:

X1 −−−−→ AnW × AlW = F1y yproj
X2 −−−−→ AnW = F2.

Consider the corresponding comorphisms

A1 ←−−−− W [U1, . . . , Un, S1, . . . , Sl]x x
A2 ←−−−− W [U1, . . . , Un].

We choose polynomials f1, . . . , fm ∈W [U1, . . . , Un] whose reductions mod-
ulo p generate the kernel of k[U1, . . . , Un]→ A2. Then we choose g1, . . . , gk ∈
W [U1, . . . , Un, S1, . . . , Sl] such that the reductions of f1, . . . , fm, g1, . . . , gk
modulo p generate the kernel of k[U1, . . . , Un, S1, . . . , Sl]→ A1. Then U1,λ,η ⊂
Bn+l(1/λ) is the subset of this closed ball given by the inequalities |fi| ≤ η
and gj ≤ η for j = 1, . . .m and i = 1, . . . , k. From this we conclude imme-
diately that

proj (U1,λ,η) ⊂ U2,λ,η,

where proj : (AnK)an× (AlK)an → (AnK)an is the projection. This proves the
functoriality. �

Let (X,F,κ) be an overconvergent Witt frame. Let V ⊂ F anK be a strict
neighbourhood of ]X[F̂ . For a sheaf of abelian groups F on V Berthelot

defines j†F . If W ⊂ V is an open and quasicompact subset

Γ(W, j†F) = lim
−→

V ′⊂V
Γ(V ′ ∩W,F).

The rigid cohomology of X is by definition

(4.22) RΓrig(X) = RΓ(V, j†Ω·V ).

In particular this is independent of the chosen V ([3] (1.2.5)).
We will now define a map

Γ(V, j†ΩV )→W †ΩX/k ⊗Q.
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This will be compatible with the morphism (4.2)

Γ(V, j†ΩV ) −−−−→ W †ΩX/k ⊗Qy y
Γ(]X[F̂ ,Ω]X[F̂

) −−−−→ WΩX/k ⊗Q.

We begin with the case where F = E is the affine space. We use on W
the p-adic absolute value, such that |p| = 1/p. For η = p−1/r the affinoid
algebra of Uλ,η is

T = K〈λX1, . . . , λXn, T1, . . . Tm〉/(f r1 − pT1, . . . , f
r
m − pTm).

It consists of all power series

p =
∑

aI,JX
IT J , aI,J ∈ K,

such that lim|I|+|J |→∞ |aI,J |(1/λ)|I| = 0. We have seen that there is a homo-
morphism T →W (A)⊗Q for r ≥ 2. It maps the Xi to ξi ∈W (A). Clearly
we have fj(ξ1, . . . , ξn) ∈ VW (A). We set

fj(ξ1, . . . , ξn) = V ρj , for j = 1, . . . ,m.

For r ≥ 3 the variable Tj is mapped to

( V ρj)
r/p = pr−2 V (ρrj).

Then the power series p is mapped to

(4.23)
∑

aI,Jp
(r−2)|J |ηI( V (ρr))J .

We have to show that this power series converges to an element inW †(A)⊗Q.
Almost all coefficients aI,J are in W . Therefore we may assume that all these

coefficients are in W . Since W †(A) is a weakly complete W -algebra we see
immediately that the series (4.23) represents an element of W †(A).

Altogether we find a homomorphism

(4.24) Γ(Uλ,η,OUλ,η)→W †(A)⊗Q,

which exists for each λ and each η with η ≥ p−1/3.
Let V be a strict neighbourhood of ]X[. It contains some Uλ,η with

η ≥ p−1/3. We have the morphism

Γ(V, j†OV )→ lim
−→

V ′⊂V
Γ(V ′ ∩ Uλ,η,OV ′∩Uλ,η).

For each V ′ we find λ′ > λ and η′ > η such that Uλ′,η′ ⊂ V ′. This implies
Uλ′,η ⊂ V ′ ∩ Uλ,η. This gives the canonical map

Γ(V, j†OV )→ lim
−→
λ′

Γ(Uλ′,η,OUλ′,η)→W †(A)⊗Q.

By the universality of the de Rham complex we obtain a map

(4.25) Γ(V, j†ΩV )→W †ΩA/k ⊗Q,
where V is any strict neighbourhood of ]X[Ê .

Now we consider the case of a general overconvergent Witt frame (X,F,κ).
We choose a closed embedding F ⊂ E in an affine space E. Let

(4.26) W [X1, . . . , Xn]→ B
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be the corresponding comorphism as above. We obtain a commutative dia-
gram

X //

��

Y //

��

Q

��
X // Y // P.

We have a closed immersion

]Y [Q̂= Q̂K∩ ]Y [P̂→]Y [P̂ .

Let Uλ,η ⊂ EanK as above. Then Vλ,η = Uλ,η∩F anK are exactly the neighbour-
hoods “Uλ,η” with respect to the frame X → Y → Q. The closed immersion
of affinoids

Vλ,η → Uλ,η,

is defined by the polynomials in the kernel of(4.26). Therefore we obtain an
epimorphism

Γ(Uλ,η,OUλ,η)→ Γ(Vλ,η,OVλ,η)

whose kernel is generated by the elements in the kernel of (4.26). This shows
that the morphism

Γ(Uλ,η,OUλ,η)→W †(A)⊗Q

factors through a morphism

Γ(Vλ,η,OVλ,η)→W †(A)⊗Q.

We conclude as above that for each strict neighbourhood V of ]X[F̂ we
obtain a morphism

(4.27) Γ(V, j†OV )→W †(A)⊗Q,

and a comparison morphism

(4.28) Γ(V, j†Ω·V ) → W †Ω·A/k ⊗Q.

We will now show that the last morphism factors canonically through a
morphism

(4.29) RΓ(V, j†Ω·V ) → W †Ω·A/k ⊗Q.

Let V be a fixed strict neighbourhood of ]X[F̂ in F anK as above. We begin
with the natural restriction map

RΓ(V, j†Ω·V )→ RΓ(Vλ,η, j
†Ω·Vλ,η).

Let V ′ ⊂ V be a strict neighbourhood. We write αV ′ : V ′ ∩ Vλ,η → Vλ,η for
the canonical immersion. By definition we have an isomorphism

j†Ω·Vλ,η
∼= lim
−→
V ′
αV ′∗Ω

·
V ′∩Vλ,η .

Because Vλ,η is quasicompact the inductive limit commutes with cohomol-
ogy. We obtain a map:

RΓ(V, j†Ω·V )→ lim
−→
V ′

RΓ(Vλ,η, αV ′∗Ω
·
V ′∩Vλ,η).
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Again for each V ′ we find λ′ such that Vλ′,η ⊂ V ′ ∩ Vλ,η. The restriction to
the affinoids Vλ′,η finally gives a map

RΓ(V, j†Ω·V )→ lim
−→
λ′

RΓ(Vλ′,η,Ω
·
Vλ′,η

) ∼= lim
−→
λ′

Γ(Vλ′,η,Ω
·
Vλ′,η

)→W †Ω·A/k ⊗Q.

This completes the definition of the morphism (4.29). Taking into account
(4.22) we obtain for each overconvergent Witt frame (X,F,κ) a morphism

(4.30) RΓrig(X)→W †ΩA/k ⊗Q.

This morphism is functorial in the triple (X,F,κ). We note that in the
case where F lifts X, i.e. X ∼= F ×SpecW Spec k, the complex Γ(V, j†Ω·V ) ∼=
RΓ(V, j†Ω·V ) is by [3] (1.10 Proposition) quasi-isomorphic to the Monsky-
Washnitzer complex associated to the weak completion of B.

Proposition 4.31. The comparison morphism (4.29) for overconvergent
Witt frames is an isomorphism in the derived category. The induced iso-
morphism (4.30) is independent of the overconvergent Witt frame we have
chosen.

Proof. We begin to show the independence of (4.30). Let (A,B′, κ′) be a
second overconvergent Witt frame. We set F ′ = SpecB′ and B′′ = B⊗W (k)

B′ and F ′′ = SpecB′′ = F × F ′. We obtain an overconvergent Witt frame
B′′ → W †(A) by taking the product of the overconvergent Witt lifts for B
and B′. We consider the two projections

F ←−−−− F ′′ −−−−→ F ′.

We may choose strict neighbourhood V ⊂ F anK , V ′ ⊂ F ′anK , V ′′ ⊂ F ′′anK such
that V ′′ is mapped to V respectively V ′ by the two projections. By the
functoriality (4.29) this induces a commutative diagram

RΓ(V, j†Ω·V )

''PPPPPPPPPPPP
// RΓ(V ′′, j†Ω·V ′′)

vvmmmmmmmmmmmm

W †Ω·A/k ⊗Q.

This shows that the comparison morphisms (4.30) for the overconvergent
Witt frames F and F ′′ are the same. Since the same is true for F ′ we have
shown the independence.

By Proposition 3.24 there are overconvergent frames (A, Ã, ψ) such that
the associated morphism

RiΓrig(X) ∼= H i(Ω·
Ã†/W

⊗Q)→ H i(W †Ω·A/k)⊗Q

is an isomorphism for each i ≥ 0. Therefore (4.29) is an isomorphism for
arbitrarily chosen overconvergent frames. �

To globalize our results we use dagger spaces [8]. We associate a dagger
space to a special frame (X,F ). We choose an embedding F ⊂ E = AnW .
We begin to describe the dagger space structure on ]X[Ê .

We have

]X[Ê= {(x1, . . . , xm) ∈ B(0, 1) | |fi(x1, . . . , xn)| < 1},
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with the notations introduced after (4.7). We choose a natural number u

and we set ηu = p−1/u. Then ]X[Ê is covered by the affinoids

Hηu = {(x1, . . . , xm) ∈ B(0, 1) | |fi(x1, . . . , xn)| ≤ ηu},
The affinoid algebra of Hηu is

Cηu = K < X1, . . . , Xn, S1, . . . , Sm > /(. . . , (fui − pSi), . . .),

which over a suitable extension K̃ of K becomes isomorphic to

K̃ < X1, . . . , Xn, T1, . . . , Tm > /(. . . , (fi − p1/uTi), . . .).

We consider for t > u the open immersion

Hηu → Uλ,ηt ,

(compare (4.11)). Over K̃ it is given by a comorphism

K̃ < λX1, . . . , λXn, T
′
1, . . . , T

′
m > /(. . . , (fi − p1/tT ′i ), . . .)→ Cηu

where λ = p−1/v for an arbitrary chosen natural number v. The map sends
the variables λXi to p1/vXi and the variables T ′i → p(1/u)−(1/t)Ti. This is
an open immersion of Hηu to the interior of Uλ,ηt , i.e. Hηu ⊂⊂ Uλ,ηt in the
sense of [5]. By [8] 2.21 this defines a dagger space structure on each Hηu

and hence on ]X[Ê . We denote this dagger space by ]X[†
Ê

. Its completion

is the rigid space ]X[Ê .

From the definition of the dagger space structure H†ηu we conclude that

H0(H†ηu ,O) = H0(Uλ,ηt , j
†O).

We deduce an isomorphism for an arbitrary strict neighbourhood U ⊂ Ean

of ]X[Ê
H0(]X[†

Ê
,O) = H0(U, j†O),

(compare [8] §5).
Using the closed immersion F anK ⊂ EanK we obtain also a dagger space

structure on ]X[F̂ . By definition this dagger structure depends only on the
fundamental system of fundamental neighbourhoods Vλ,η given by Proposi-

ton 4.14. It follows that the dagger space ]X[†
F̂

is functorial in (X,F ). If

U ⊂ F anK we obtain an isomorphism

H0(]X[†
F̂
,O) = H0(U, j†O).

By [8] we have moreover that

RΓ(]X[†
F̂
,Ω

]X[†
F̂

) = RΓrig(X).

We associate to each special frame (X,F ) a specialization map. By [2]
we have a morphism of ringed spaces

]X[F̂→ F̂/X ,

where the right hand side is the completion of F in the closed subscheme X.
If we view this as a morphism of Grothendieck topologies only we obtain a
map

sp : ]X[†
F̂

=]X[F̂→ X.
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(see [8] Thm. 2.19 for the last equality.)
We rewrite the comparison morphism as defined before (4.28) in terms of

dagger spaces

Γ(]X[†
F̂
,Ω

]X[†
F̂

)→W †ΩA/k ⊗Q,

where X = SpecA.
We have also a local version of this morphism

(4.32) sp∗Ω
]X[†

F̂

→W †ΩX/k ⊗Q.

To see this we consider an open set U = SpecAf̄ ⊂ X, f̄ ∈ A. Let f ∈ B a

lift of f̄ , where SpecB = F . The open set ]U [F̂⊂]X[F̂ inherits the structure
of a dagger space. To define (4.32) it is enough to show that this dagger
space structure coincides with that given by the special frame (U,SpecBf ).
Indeed, form the commutative diagram

U −−−−→ SpecBf −−−−→ An × A −−−−→ Pn × Py y y y
X −−−−→ SpecB −−−−→ An −−−−→ Pn.

This induces a map of frames in the sense of rigid cohomology

U −−−−→ Y ′ −−−−→ Q̂′y y y
U −−−−→ Y −−−−→ Q̂.

The last vertical arrow is proper and is an open immersion in a neighbour-
hood of U . We conclude by [2] Thm. 1.3.5 that the strict tubular neighbour-
hoods associated to the two frames are the same. This implies the desired
isomorphism of dagger spaces.

Let now X be a smooth quasiprojective scheme over k. Our next aim is
the definition of a comparison morphism

RΓrig(X)→ RΓ(X,W †ΩX/k)⊗Q.

Definition 4.33. Let R be a ring. We call A a standard smooth algebra
over R if A can be represented in the form

A = R[X1, . . . Xn]/(f1, . . . fm),

where m ≤ n and the determinant

det

(
∂fi
∂Xj

)
, i, j = 1, . . .m.

is a unit in A. We call SpecA a standard smooth scheme.

We remark that a localization of a standard smooth algebra by an element
is again standard smooth. Since X is smooth over k it has a covering by
standard smooth neighbourhoods.

We choose an open embeddingX → ProjS, where S is a finitely generated
graded algebra over k. We consider finite coverings X = ∪i∈ID+(hi), where
the hi ∈ S are homogeneous elements which have all the same degree. If we
choose the covering sufficiently fine we may assume that all Xi = D+(hi)
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are standard smooth schemes over k. For a subset J = {i1, . . . , it} ⊂ I we
set

XJ = Xi1 ∩ . . . ∩Xit .

We write XJ = SpecAJ . Then AJ is a localization of Ai1 by a suitable
element ḡ ∈ Ai1 .

Let A as in Definition 4.33. We choose arbitrary liftings f̃1, . . . , f̃m ∈
W [X1, . . . , Xn]. Let B be a localization of W [X1, . . . , Xn]/(f̃1, . . . , f̃m) with

respect to det
(
∂f̃i
∂Xj

)
, where i, j = 1, . . .m. Then B is a standard smooth

algebra which lifts A over W .
We will choose for each Ai a standard smooth lift Bi as above. We set

Fi = SpecBi and obtain special frames (Xi, Fi) for i ∈ I. For J ⊂ I we
consider the closed embedding

(4.34) XJ →
∏
i∈J

Fi.

This is a special frame.

Proposition 4.35. Let us denote by Q the dagger space which we introduced
on the tubular neighbourhood ]XJ [ with respect to the special frame (4.34)
and let sp : Q → XJ be the specialization morphism. Then the canonical
map

sp∗Ω·Q → R sp∗Ω·Q
is a quasiisomorphism.

Proof. We will reduce this to a more special situation. The main ingredient
is the strong fibration theorem of [2] 1.3.5. In terms of dagger spaces it has
the following consequence.

Let (Z,F1) and (Z,F2) be special frames. We denote by Q1 and Q1 the
corresponding dagger spaces. Let ν : F1 → F2 be a morphism of frames
which induces the identity on Z. If ν is étale in a neighbourhood of Z in F1

then ν induces an isomorphism Q1 → Q2.
To see this we choose closed immersions F1 → AmW and F2 → AnW . We

consider the commutative diagram

F1 −−−−→ AnW × AmW
ν

y pr

y
F2 −−−−→ AnW

We denote by P1 the closure of F1 in PnW × PmW and by P2 the closure of F2

in PnW . We note that F1 is open in P1 and F2 is open in P2. Let Y1 resp. Y2

be the closure of Z in P1 resp. P2. Taking the p-adic completions we obtain
a commutative diagram

Z −−−−→ Y1 −−−−→ P̂1

‖
y y yu
Z −−−−→ Y2 −−−−→ P̂2.

Then u is proper and étale in a neighbourhood of Z in P̂1. Therefore [2] is
applicable and shows that the obvious isomorphism ]Z[F̂1

→]Z[F̂2
extends to
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an isomorphism of strict neighbourhoods. In particular the dagger spaces
are the same.

This being said we continue the proof. We fix an index i0 ∈ J . If J = {i0}
the assertion follows from the proof of [3] Prop. 1.10. By the choice of our
covering AJ is the localization of Ai0 by an element g ∈ Ai0 . We take a lift
g̃ ∈ Bi0 and we set B′i0 = (Bi0)g̃. Then F ′i0 = SpecB′i0 is a standard smooth
scheme over W which lifts XJ .

We set E =
∏
i∈J,i6=i0 Fi. By the strong fibration theorem above the

special frames (XJ , Fi0×E) and (XJ , F
′
i0
×E) have isomorphic dagger spaces.

It is enough to consider the latter one. Since E is standard smooth we can
choose an etale morphism E → AnW for some number n. Again by the strong
fibration theorem it is enough to prove our proposition for the special frame
(XJ , F

′
i0
× AnW ).

We may assume the map XJ → AnW induced by the last special frame fac-
tors over the zero section Spec k → AnW . This is seen by a simple coordinate
change. Consider the comorphism of the closed embedding XJ → F ′i0×AnW :

(4.36) B′i0 [X1, . . . , Xn]
γ→ AJ .

We find elements bi ∈ B′i0 such that γ(bi) = γ(Xi). Since we may take X ′i =
Xi − bi, i = 1, . . . , n as new indeterminates on the left hand side of (4.36)
we see that our original special frame is isomorphic to one of the required
form. Our proof will be finished by the Corollary 4.38 of the following: �

Proposition 4.37. Let D̆ = {z ∈ K̄ | |z| < 1} the open unit ball with its
natural dagger space structure. Let n be a natural number. Let Q = Sp†A
be a smooth affinoid dagger space, such that Ω1

Q is a free O-module. Then
the following holds:

(1) H0(Q,Ω·Q) → H0(Q × D̆n,Ω·Q×D̆n) is a quasiisomorphism of com-

plexes.

(2) The complex H1(Q× D̆n,Ω·Q×D̆n) is acyclic.

(3) H i(Q× D̆n,Ωq

Q×D̆n
) = 0 for i ≥ 2 and all q.

This Proposition is inspired by [3] Thm. 1.4. We postpone its proof to
the end.

Corollary 4.38. Let Z = SpecA be a smooth affine scheme over k. Let

F = SpecB be a smooth affine scheme which lifts A. Let Q =]Z[†
F̂

be

the tubular neighbourhood with its dagger space structure. We consider the
constant map to the origin Z → AnW .

The dagger space associated to the special frame (Z,F ×AnW ) is Q× D̆n.
Let

Q× D̆n → Z

be the specialization map.
Then the natural morphism

sp∗Ω·Q×D̆n → R sp∗Ω·Q×D̆n

is a quasiisomorphism.
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Proof. We consider the spectral sequence of hypercohomology

(4.39) Hq(Rp sp∗Ω·Q×D̆n)⇒ Rp+q sp∗Ω·Q×D̆n .

For an affine subset U ⊂ Z the inverse image U ⊂ Q by sp : Q → Z is an
affinoid dagger space. Choose U sufficiently small, such that Ω·U is free.

By Proposition 4.37 the complex Hp(U × D̆n,Ω·U×D̆n) is acyclic for p ≥ 1.

It follows that the complexes Rp sp∗Ω·Q×D̆n are acyclic. Therefore the spec-

tral sequence (4.39) degenerates. This proves the Corollary and Propositon
4.35. �

Theorem 4.40. Let X be a smooth quasiprojective scheme over k. Then
we have a natural quasiisomorphism

RΓrig(X)→ RΓ(X,W †ΩX/k)⊗Q

Proof. We choose a covering {Xi}i∈I as above. We consider the simplicial
scheme X• = {XJ}J⊂I and its natural augmentation ε : X• → X. We set
FJ =

∏
i∈J Fi. Then we obtain a simplicial object of frames (XJ , FJ) which

gives rise to a simplicial dagger space Q• = {QJ}. For each J ⊂ I we have
the comparison morphism (4.32)

sp∗Ω·QJ →W †ΩXJ/k ⊗Q

This glues to a morphism of simplicial sheaves

sp∗ΩQ• →W †ΩX•/k ⊗Q.

By Proposition 4.35 and Proposition 4.31 this gives a quasiisomorphism

R sp∗ΩQ• →W †ΩX•/k ⊗Q

(4.41) R ε∗R sp ΩQ•
∼= R ε∗W

†ΩX•/k ⊗Q ∼= W †ΩX/k ⊗Q.

We will verify that the left hand side of (4.41) is a complex on X whoose

hypercohomology is rigid cohomology. We consider a frame P : X → X̄ → P̂
which gives the rigid cohomology of X. If P′ : X → X̄ ′ → P̂ ′ is a second
frame we may form the product as follows: We consider the closure X̄ ′′ of
X in X̄ ′ × X̄ ′′. The we obtain a new frame X → X̄ ′′ → P̂ × P̂ ′. We denote
this frame by P×P′.

By [6] we find a simplicial frame {PJ} where PJ is a frame for XJ with an
augmentation to P. To the frames (XJ , FJ) we may associate functorially
frames QJ . We obtain a commutative diagram of simplicial schemes

PJ ×QJ −−−−→ QJy y
PJ −−−−→ XJ

Consider the corresponding diagram of dagger spaces. Since each of these
dagger space gives the rigid cohomology of XJ we obtain quasiisomorphisms

R sp∗ΩQJ
←−−−− R sp∗ΩRJ

−−−−→ R sp∗ΩPJ
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Here RJ denotes the dagger space associated with PJ×QJ . But this implies
that we obtain quasiisomorphisms of simplicial sheaves too:

(4.42) R sp∗ΩQ• ←−−−− R sp∗ΩR• −−−−→ R sp∗ΩP•

If we apply R Γ(Rε∗, ?) to the last complex in (4.42) we obtain a quasi-
isomorphism with RΓrig(X) by [6]. Together with (4.41) this proves the
theorem. �

It remains to prove Proposition 4.37. Let Q = Sp†A be a reduced affinoid
dagger space. Recall that A is a weakly complete finitely generated algebra
tensored with Q [17]. We represent A as a quotient

κ : K < X1, . . . Xm >†→ A.

The algebra on the left hand side is the union of the algebras for real numbers
ε > 0

K < X1, . . . Xm >ε= {
∑
I

cIX
I ⊂ K[[X1, . . . Xm]] | ordp cI − ε|I| → ∞}

This is a Tate algebra if ε ∈ Q [5] 6.1.5. We denote by γ̃ε the Gauss norm
on this ring:

γ̃ε(
∑
I

cIX
I) = inf

I
{ordp cI − ε|I|}.

Let Aε be the image of K < X1, . . . Xm >ε by κ. We denote by γε the
quotient norm on Aε. Since Aε is reduced by assumption γε is equivalent to
the spectral norm σε on Aε.

Let D = Sp†K < X >† be the closed dagger disc. We write

A < T1, . . . , Tn >
†:= Γ(Q×Dn,O).

It follows from the definitions that A < T1, . . . , Tn >
† consists of all power

series
∑

J aJT
J ∈ (A ⊗ Q)[[T1, . . . , Tn]] such that there is an ε > 0 and a

number C with aJ ∈ Aε for all J ∈ Zn≥0 and such that

(4.43) σε(aJ)− ε|J | ≥ C.

In this condition we could replace σε by γε.

Lemma 4.44. Let Q = Sp†A and let D̆ be the open dagger disc. Then the
algebra Γ(Q× D̆n) consists of all power series∑

J

aJT
J ∈ (A⊗Q)[[T1, . . . , Tn]],

such that for each δ > 0 there is an ε > 0 and a constant C such that for
all J we have that aJ ∈ Aε and that

σε(aJ) + δ|J | ≥ C.

Proof. Indeed, let Dδ = {z ∈ K̄ | ordp z ≥ δ} be the closed dagger disc.
Then Γ(Q×Dn

δ ,O) consists of all power series
∑

J aJT
J such that there is

an ε > 0 and a constant C with

σε(aJ) + δ|J | − ε|J | ≥ C.

This implies the result. �
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Lemma 4.45. Let Q = Sp†A and let D be the closed dagger disc. Let

(4.46) Λn =
⊕

i1<...<ik

Γ(Q×Dn)dTi1 ∧ . . . ∧ dTik

be the complex with the obvious differential.
Then the complex A→ Λn is acyclic.

Proof. We consider Λn as a multicomplex with the partial differentials ∂i,

i = 1, . . . , n. Let Λ̃n ⊂ Λn be the direct summands of 4.46 with ik < n.
It suffices to show that the following complex is exact:

0→ Λn−1 → Λ̃n
∂n→ Λ̃n → 0.

The only nontrivial thing to show is that an expression fdXn, with f ∈
Γ(Q × Dn) is the partial differential of some g ∈ Γ(Q × Dn). We set f =∑

J aJT
J . We denote by e the vector (0, . . . , 0, 1) ∈ Zn, and we denote by

jn the last entry of the vector J . We have to show that the power series∑
J

aJ
jn + 1

T J+e

is in Γ(Q×Dn).
By (4.43) we find ε > 0 and C such that

σε(aJ)− ε|J | ≥ C.

We take 0 < ε′ < ε. We note that Aε ⊂ Aε′ and that σε′ ≥ σε. Since σε is
multiplicative we find

σε′(
aJ
jn+1)− ε′|J + e| = σε′(aJ)− ordp(jn + 1)− ε′(|J |+ 1) ≥

σε(aJ)− ε(|J |+ 1) + (ε− ε′)(|J |+ 1)− ordp(jn + 1) ≥
C − ε+ (ε− ε′)(jn + 1)− ordp(jn + 1)

It is clear that the last expression is bounded below independent of J . �

We have the same for the open disc D̆.

Lemma 4.47. With the same notations as before let

(4.48) Λ̆n =
⊕

i1<...<ik

Γ(Q× D̆n)dTi1 ∧ . . . ∧ dTik

be the complex with the obvious differential.
Then the complex A→ Λ̆n is acyclic.

Proof. As in the proof of the last Lemma the only nontrivial thing to show is
that an expression fdXn, with f ∈ Γ(Q× D̆n) may be written fdXn = ∂ng

for some g ∈ Γ(Q× D̆n). We have to show that the power series∑
J

aJ
jn + 1

T J+e

is in Γ(Q × D̆n). We apply Lemma 4.44. Assume δ > 0 is given. We take
any δ′ < δ. Then we find ε > 0 and a constant C such that

σε(aJ) + δ′|J | ≥ C.
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We see that the following expression is bounded below:

σε(
aJ
jn+1) + δ(|J + e|) =

σε(aJ)− ordp(jn + 1) + (δ − δ′)(|J |+ 1)δ′(|J |+ 1).

�

We come now to the proof of Proposition 4.37. We write

D̆n =

∞⋃
i=1

Ui

as a union of dagger balls of ascending radius. For an abelian sheaf F on D̆
we define the sheaves C0(F) = C1(F):

Ci(F)(V ) =

∞∏
t=1

F(Ut ∩ V ).

We obtain a resolution of F

(4.49)
0→ F → C0(F) → C1(F) → 0∏

st 7→
∏

(st − st+1)

If F is a coherent OQ×D̆n-module the cohomology groups Hp(Q × Ut,F)

vanish for p ≥ 1 by Tate-acyclicity for affinoid dagger spaces [8]. Therefore

RΓ(Q× D̆n,F) is represented by the global sections of the complex (4.49)

(4.50)

∏∞
t=1F(Q× Ut) →

∏∞
t=1F(Q× Ut)∏

st 7→
∏

(st − st+1).

This proves already the third assertion of Proposition 4.37.
Let π : Q× Ut → Q be the projection. We write

Gpt = (π∗Ωp
Q)(Q× Ut).

This is a free module over H0(Q×Ut,O) by assumption. With this notation
the complex H0(Q× Ut,Ω·Q×Ut) is represented by the double complex with
the components

Cp,q(Ut) = ⊕i1<...iqG
p
tdTi1 ∧ . . . ∧ dTiq .

The map (4.50) induces a morphism of complexes

(4.51)

∞∏
t=1

Cp,q(Ut)→
∞∏
t=1

Cp,q(Ut).

The kernel resp. the cokernel of the induced map of total complexes are the
complexes H0(Q× D̆n,Ω·Q×D̆n) resp. H1(Q× D̆n,Ω·Q×D̆n).

By Lemma 4.45 the complex Cp,·(Ut) for fixed p is quasiisomorphic to
H0(Q,Ωp

Q) regarded a a complex concentrated in degree zero. Therefore

the total complex of Cp,q(Ut) is quasiisomorphic to the complex H0(Q,Ω·Q).

We consider the projection π : Q× D̆n → Q and write

G̃p = (π∗Ωp
Q)(Q× D̆n).

By assumption these are free modules over H0(Q× D̆n,O).
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Then we may represent H0(Q× D̆n,ΩQ×D̆n) by the double complex with
components

Bp,q = ⊕i1<...iqG̃pTi1 ∧ . . . ∧ dTiq .
Lemma 4.47 asserts that the total complex of Bp,q is quasiisomorphic to the
complex H0(Q,Ω·Q). This proves the first assertion of Proposition 4.37.

We deduce finally that the complex H1(Q× D̆n,Ω·Q×D̆n) is quasiisomor-

phic to the total complex of the triple complex

Bp,q →
∞∏
t=1

Cp,q(Ut)→
∞∏
t=1

Cp,q(Ut).

By what we already proved the last complex is quasiisomorphic to the total
complex of the double complex

H0(Q,Ω·Q)→
∏∞
t=1H

0(Q,Ω·Q) →
∏∞
t=1H

0(Q,Ω·Q),∏
st 7→

∏
(st − st+1).

where the first embedding is diagonal. But the total complex is acyclic
because the double complex is already acyclic with respect to the horizon-
tal differential. This proves the second assertion and finishes the proof of
Proposition 4.37.
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[2] P. Berthelot, Cohomologie Rigide et Cohomologie Rigide à Support Propres,
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