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Abstract. We describe an alternate construction of some of the basic rings

introduced by Fontaine in p-adic Hodge theory. In our construction, the central

role is played by the ring of p-typical Witt vectors over a p-adic valuation ring,
rather than the Witt vectors over a ring of positive characteristic. This suggests

the possibility of forming a meaningful global analogue of p-adic Hodge theory.

Introduction

For X a smooth projective variety over the complex numbers, there is a canonical
isomorphism

Hi
Betti(X,Z)⊗Z C ∼= Hi

dR(X,C)

of the Betti and (holomorphic) de Rham cohomologies. This isomorphism equips
a single finite dimensional C-vector space with two separate structures, an integral
lattice (from the integral Betti cohomology) and a filtration (from the Hodge fil-
tration on de Rham cohomology). The relationship between these, particularly in
families, is the focus of Hodge theory.

Similarly, p-adic Hodge theory focuses on the relationship between different co-
homology theories associated to varieties over p-adic fields, such as étale, de Rham,
and crystalline cohomology. The most notable difference is that one role of the
ring C in the comparison isomorphism of ordinary Hodge theory, as the common
coefficient ring over which Betti and de Rham cohomology can be compared, is
played by some rather larger big rings constructed by Fontaine.

Fontaine’s rings are usually manufactured as follows. The first step is a field
of norms construction: one forms the inverse limit of OCp

/pOCp
under the Frobe-

nius map, for OCp
the valuation subring of a completed algebraic closure Cp of

Qp. This limit turns out to be the valuation subring of a complete algebraically
closed field of characteristic p. One then returns to mixed characteristic using the
functor of p-typical Witt vectors. The effect of the construction is to separate the
cohomological and geometric functions of the prime number p: the cohomological
functions remain with the number p, while the geometric functions are transferred
to a certain Teichmüller element. By exploiting the relationship between these two
elements (they are not equal, but are in some sense close together), one builds the
various rings used in Fontaine’s theory.

The goal of this paper is not to make any new assertions in p-adic Hodge theory
itself, but to describe an alternate construction of some of Fontaine’s rings. In this
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construction, rather than passing to characteristic p and back, we directly apply the
p-typical Witt vector functor to the mixed-characteristic ring OCp

. In the resulting
construction, one has a natural interpretation of the evaluation map θ occurring
in Fontaine’s theory, in terms of the ghost map on Witt vectors. One also has a
natural interpretation of the Gauss norms appearing in the work of Berger, Colmez,
and others.

We do not have in mind any immediate application of this construction. Our
interest in it is instead based on longer-term considerations (previously hinted at
in [14, §4]). For one, we expect that one can use the p-typical part of the absolute
de Rham-Witt complex of Hesselholt-Madsen [10] to give a simplified description
of the comparison maps in p-adic Hodge theory. For another, we hope that one
can go further, developing an analogue of p-adic Hodge theory encompassing the
infinite place together with all finite places, which would again be related to the
construction of Hesselholt-Madsen. Two necessary steps in the latter process are
replacing p-typical Witt vectors with big Witt vectors, and allowing the use of an
archimedean absolute value in place of the p-adic absolute value. Our presentation
is structured with these ultimate goals in mind.

Notations and conventions. All rings considered will be commutative with unit
unless otherwise specified. A map of rings will not be assumed to be a homo-
morphism (e.g., the Verschiebung map on Witt vectors). For K a field, we write

K, K̂,GK for the algebraic closure, completion, and absolute Galois group of K.
We fix a completed algebraic closure Cp of Qp, and write OCp

for the ring of
integers of Cp. We write | · | for the p-adic norm on Cp with the normalization
|p| = p−1. (We use multiplicative rather than additive notation to emphasize a
potential parallel with the archimedean norm on C.)

The symbol N will denote the positive integers as a set or a multiplicative monoid.
That is, 0 /∈ N.

Acknowledgments. The authors thank Laurent Berger, James Borger, Lars Hes-
selholt, Abhinav Kumar, Ruochuan Liu, Joe Rabinoff, and Liang Xiao for helpful
discussions and suggestions. In particular, Abhinav Kumar read an earlier draft of
this paper and provided many useful comments, including improvements of several
proofs.

1. Big Witt vectors

We begin by recalling the basic properties of the big Witt vector functor. (We will
switch to p-typical Witt vectors in Section 2.) The standard published references are
the book of Hazewinkel [8, §17] and the exercises of [3, Chapter IX]. An additional
unpublished reference, which we found very helpful, is the preprint of Hesselholt
[9].

Definition 1.1. For A a commutative ring with unit, define W(A) to be the set
AN, equipped with the ghost map w : W(A)→ AN defined by the formula

(a1, a2, . . . ) 7→ (w1, w2, . . . ), wn =
∑
d|n

da
n/d
d .

Let wn : W(A) → A be the composition of w with the projection onto the n-th
factor. For a = (a1, a2, . . . ), we refer to an as the n-th Witt component of a and
to wn(a) as the n-th ghost component of a.
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Define the set Λ(A) = 1 + tAJtK and the bijective exponential map E : W(A)→
Λ(A) given by

E((a1, a2, . . . )) =

∞∏
i=1

(1− aiti)−1.

This map satisfies s ◦ E = w, where s : Λ(A)→ AN is given by the formula

s(f) = (s1, s2, . . . ), s1t+ s2t
2 + · · · = tf ′

f
= t

d

dt
log(f).

Equip the target AN of the ghost map with the product ring structure. For n ∈ N,
define the polynomials dn, pn ∈ Q[X1, X2, . . . , Y1, Y2, . . . ] by the formulas

w(a)− w(b) = w((dn(a, b))n∈N), w(a)w(b) = w((pn(a, b))n∈N) (a, b ∈W(A)).

By Proposition 1.2 below, these polynomials have coefficients in Z. We may thus
use them to equip W(A) with a ring structure (functorially in A) for which

(a− b)n = dn(a, b), (ab)n = pn(a, b) (a, b ∈W(A); n ∈ N)

(i.e., the ghost map is a ring homomorphism). We call W(A) the ring of big Witt
vectors, or the big Witt ring, with coefficients in A.

Proposition 1.2. The polynomials dn(Xi, Yi), pn(Xi, Yi) have coefficients in Z.

Proof. This can be checked one prime at a time, directly as in [8, Lemma 17.1.3] or
using the Dwork lemma (Lemma 1.6) as in [9, Proposition 1.2]. Another approach
is as follows. Put A = Z[X1, X2, . . . , Y1, Y2, . . . ] and

X = (X1, X2, . . . ), Y = (Y1, Y2, . . . ) ∈W(A);

it suffices to check that w(X) − w(Y ), w(X)w(Y ) ∈ w(W(A)). We do this using
a “splitting principle” modeled on [16], in the spirit of [7] (but without reference
to Grothendieck groups). Let R be the integral closure of A in some algebraically
closed field. For each n ∈ N, we can then find r1, . . . , rn, s1, . . . , sn ∈ R so that

E(X), E(Y ) ≡
n∏
i=1

(1− rit)−1,
n∏
j=1

(1− sjt)−1 (mod tn+1).

Since s ◦ E = w and s converts series multiplication into addition, we have

s−1(w(X)− w(Y )) ≡
n∏
i=1

(1− rit)−1(1− sit) (mod tn+1)

s−1(w(X)w(Y )) ≡
n∏

i,j=1

(1− risjt)−1 (mod tn+1).

The products on the right side belong to both Λ(R) and Λ(A⊗ZQ), hence to Λ(A)
because A is factorial (and thus integrally closed in its fraction field). Since this
holds for each n ∈ N, we conclude that w(X) − w(Y ), w(X)w(Y ) ∈ w(W(A)), as
desired. �

Remark 1.3. The definition of the ring structure on W(A) also provides a ring
structure on Λ(A); this ring is called the universal λ-ring over A. Beware that there
are at least four reasonable choices for the normalization of the definitions of Λ(A)
and E, depending on the signs on ait

i and on the exponent of 1− aiti.
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Remark 1.4. From the definition of dn and pn, one observes that they only include
the variables Xi, Yi for i | n. Moreover, dn is homogeneous of degree n under the
weighting in which Xi, Yi have degree i (because the same is true of wn).

We now introduce the mechanism for passing from big Witt vectors to p-typical
Witt vectors.

Definition 1.5. A truncation set is a nonempty subset S of N which is closed under
taking divisors; that is, if d | n and n ∈ S, then d ∈ S. For S a truncation set and A
a ring, let WS(A) ∼= AS denote the quotient of W(A) in which only the components
indexed by S are retained. By Remark 1.4, the formulas defining addition and
multiplication of Witt vectors induce ring operations on WS(A) compatible with the
projection W(A)→WS(A).

Because the ring AN has simpler ring operations than W(A), it is helpful to
identify the image of the ghost map inside AN, especially when the ghost map is
injective (i.e., A is torsion-free). The following lemma (also known as the Cartier-
Dwork lemma or the Cartier-Dieudonné-Dwork lemma) does this; as noted earlier,
this is often used as part of the construction of Witt vectors (as part of a proof of
Proposition 1.2).

Lemma 1.6 (Dwork’s lemma). Let A be a commutative ring with unit. Let S
be a truncation set. For every prime number p ∈ S, let φp : A → A be a ring
homomorphism with the property that φp(a) ≡ ap (mod pA) for each a ∈ A. Then
a sequence (wn) is in the image of the ghost map on WS(A) if and only if wn ≡
φp(wn/p) (mod pvp(n)A) for every prime number p and for every n ∈ N with p|n.
(Here vp denotes the p-adic valuation on Z.)

Proof. See [9, Lemma 1.1]. In the case S = N, see also [8, Lemma 17.6.1] or [3,
Exercise IX.1.32]. �

The construction of the ring of Witt vectors also provides some additional oper-
ations. Beware that of these, only Frobenius is a ring homomorphism in general.

Definition 1.7. Fix a ring A and a natural number n ∈ N.

(1) The Teichmüller map [ ] : A → W(A) acts as a 7→ (a, 0, 0, . . .). It is a
multiplicative map.

(2) Define the map F̃n : AN → AN which sends a sequence (w1, w2, . . .) to
(wn, w2n, . . .). There exists a unique functorial construction of a ring ho-
momorphism Fn : W(A) → W(A) (the n-th Frobenius map) such that

w ◦ Fn = F̃n ◦w. (As in the definition of the Witt vectors, this amounts to
checking that certain universal polynomials have integer coefficients. One
derivation uses the splitting principle; another is [8, §17.3].) Note that
Fm ◦ Fn = Fmn for all m,n ∈ N.

(3) The map Vn : W(A) → W(A) which sends (a1, a2, . . .) to the sequence
(b1, b2, . . .), defined by bnj := aj and bi := 0 if n - i, is an additive map
(because it corresponds to the substitution t 7→ tn in Λ(A)). It is called the
n-th Verschiebung map. Note that Vm ◦ Vn = Vmn for all m,n ∈ N.

For S a truncation set, one composes with the projection W(A)→WS(A) to obtain
a Teichmüller map [ ] : A → WS(A). For S, S′ two truncation sets, one obtains
a Frobenius map Fn : WS(A) → WS′(A) for each n ∈ N with nS′ ⊆ S, and a
Verschiebung map Vn : WS(A)→WS′(A) for each n ∈ N with n−1S′ ∩ N ⊆ S.
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Remark 1.8. Another important feature of Witt vectors is the diagonal homomor-
phism ∆ : W(A) → W(W(A)), for which ∆([r]) = [[r]]. See [8, Theorem 17.6.17]
or [3, Exercise IX.1.15(b)].

In terms of the Verschiebung, we have the following useful interpretation of the
Witt components.

Proposition 1.9. Equip W(A) with the product topology induced by the discrete
topology on A. Then for a ∈W(A), there is a unique sequence (b1, b2, . . . ) in A for
which

a =

∞∑
i=1

Vi([bi]),

namely the sequence a itself.

Proof. This is easily seen using the exponential map (see the proof of Proposi-
tion 1.2). See also [9, Lemma 1.5(i)]. �

Here are some useful relations among Frobenius and Verschiebung. (Each rela-
tion also applies to truncated Witt vectors, as long as all operations involved are
valid.)

Proposition 1.10. For any m,n ∈ N and any a, b ∈W(A),

(Fn ◦ Vn)(a) = na

aVn(b) = Vn(Fn(a)b)

(Fm ◦ Vn)(a) = (Vn ◦ Fm)(a) if gcd(m,n) = 1

Vm([a])Vn([b]) = gcd(m,n)Vlcm(m,n)([a
n/ gcd(m,n)bm/ gcd(m,n)])

Fn([a]) = [an]

[a]

∞∑
i=1

Vi([bi]) =

∞∑
i=1

Vi([a
ibi]).

Proof. Each identity can be checked easily on ghost components. (Compare [9,
Lemma 1.5].) �

Lemma 1.11. Put a = n ∈ W(Z) for some n ∈ Z. Then for any d ∈ N, ad is
divisible by n/ gcd(d, n).

Proof. It suffices to check that for each prime p, if we put j = vp(n), then for any
i ≤ j and any d ∈ N divisible by pi, ad is divisible by pj−i. We prove this by
induction on d. Since w(a) = (n, n, . . . ), we have∑

e|d

ead/ee = n.

The right side is divisible by pj . For each e 6= d on the left side, we have vp(e) = k

for some k ≤ i; then e is divisible by pk while a
d/e
e is divisible by p(d/e)(j−k) by the

induction hypothesis. It follows that dad is divisible by pj , so ad is divisible by pj−i

as desired. �
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2. p-typical Witt vectors

Throughout this section, fix a prime number p. We now restrict attention to
the p-typical Witt vectors; although these exhibit special features over a ring of
characteristic p (i.e., in which p · 1 = 0), it is crucial for our work not to restrict to
this case. A useful summary of p-typical Witt vectors appears in Illusie’s article on
the de Rham-Witt complex [11].

Definition 2.1. For A a commutative ring with unit, define the ring of p-typical
Witt vectors, or p-typical Witt ring, with coefficients in A to be the ring W (A) :=
WS(A) for the truncation set S = {1, p, p2, . . . }. (Note the change from boldface W
to roman W .) Similarly, for m a nonnegative integer, define the ring of (p-typical)
Witt vectors of length m+1 with coefficients in A to be the ring Wpm(A) := WS(A)
for the truncation set {1, p, . . . , pm}. (This is often notated Wm+1(A), e.g., in [17].
It might be more consistent to write Wp∞(A) instead of W (A), as is done in [8],
but we will refer to W (A) so often that a more compact notation is desirable.) We
have an isomorphism

W (A) ∼= lim←−Wpm(A),

where the inverse limit is taken over all nonnegative integers m, and the transition
maps are the natural projections Wpm+1(A)→Wpm(A).

The rings W (A) and Wpm(A) again receive a multiplicative Teichmüller map
[·] from A, by projection from W(A). However, we only have Frobenius and Ver-
schiebung maps Fn : W (A) → W (A) if n is a power of p. When we speak of the
Frobenius map F or the Verschiebung map V on W (A), we mean the one with
n = p. Note that F induces a map Wpm(A) → Wpm−1(A) while V induces a map
Wpm(A)→Wpm+1(A).

Remark 2.2. Often in contexts where big Witt vectors do not appear, the compo-
nents of a p-typical Witt vector are indexed a0, a1, a2, . . . instead of a1, ap, ap2 , . . . .
We will not do this.

Dwork’s lemma (Lemma 1.6) specializes to the p-typical case as follows.

Lemma 2.3 (Dwork’s lemma, p-typical case). Let A be a commutative ring with
unit. Suppose that there exists a ring homomorphism φ : A→ A such that φ(a) ≡ ap
(mod pA) for each a ∈ A. Then a sequence (wpi) is in the image of the ghost map

on W (A) if and only if wpi+1 ≡ φ(wpi) (mod pi+1A) for all i ≥ 0.

Proof. This is immediate from Lemma 1.6; see also [3, IX.1, Lemma 2]. �

One rarely considers W (A) in cases where p is a unit in A, as in this case the
ghost map is an isomorphism of rings. Let us now consider the opposite extreme
case, in which A is of characteristic p. Here, we have the following observation,
which explains the name “Frobenius” for the maps Fn.

Proposition 2.4. For A a ring of characteristic p, the Witt vector Frobenius map
F : W (A) → W (A) is the same as the functorially induced map W (ϕ), where
ϕ : a 7→ ap is the usual p-power Frobenius map. In other words, F takes (a1, ap, . . . )
to (ap1, a

p
p, . . . ).

Proof. See [11, Part 0, (1.3.5)], or [9, Lemma 1.8]. �

In characteristic p, we can simplify the relations among F and V from Proposi-
tion 1.10, as follows.
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Proposition 2.5. If A is a characteristic p ring and a ∈W (A), then V F (a) = pa;
consequently, F and V commute.

Proof. See [9, Lemma 1.12], [11, Part 0, (1.3.7) and (1.3.8)], or [8, Proposition 17.3.16].
�

Let us now assume further that A is a ring of characteristic p which is perfect,
i.e., for which the p-th power (Frobenius) homomorphism on A is bijective. (Note
that Frobenius is automatically injective whenever A is a field.) In this case, the
additive description of Witt vectors from Proposition 1.9 specializes quite simply.

Corollary 2.6. Let A be a perfect ring of characteristic p. Then every Witt vector
a = (a1, ap, . . .) ∈W (A) has a unique representation as a sum

∞∑
i=0

pi[bpi ] (bpi ∈ A)

convergent for the p-adic topology, namely with bpi = ap
−i

pi .

Proof. See [11, Part 0, Remark 1.3.24]. Alternatively, note that over any charac-
teristic p ring, we have pi = V iF i, by Proposition 2.5. Then use Proposition 2.4,
Proposition 1.9, and the fact that our ring is perfect. �

Remark 2.7. Using Corollary 2.6, it is not difficult to show that W (A) is an
integral domain whenever A is an integral domain of characteristic p (by reducing
to the perfect case). Conversely, if W (A) is a domain, then A must also be a domain
because the Teichmüller map is multiplicative; moreover, A must be of characteristic
p, or else the equation V (p)(p−V (p)) = 0 (a consequence of Proposition 1.10) would
imply that V (p) is a zero-divisor.

Finally, in the case where A is a perfect field of characteristic p, one has the
following well-known result of Witt, which sparked the development of the whole
theory of Witt vectors. (There is an analogue for perfect rings of characteristic p;
see [17, Chapter II, Section 5].)

Proposition 2.8. Let A be a perfect field of characteristic p. Then every complete
discrete valuation ring with maximal ideal (p) and residue field A is canonically
isomorphic to W (A).

Proof. For the fact that W (A) is indeed a complete DVR with maximal ideal (p)
and residue field A, see [3, Proposition IX.1.8] or [11, Part 0, Corollary 1.3.23].
For the canonical isomorphism of any other such object with W (A), see [17, op.
cit.]. �

3. Submultiplicative seminorms

Recall that given a multiplicative norm | · | on a ring R, for any ρ > 0 one can
define a multiplicative norm | · |ρ on the polynomial ring R[T ] by the formula∣∣∣∣∣∑

i

aiT
i

∣∣∣∣∣
ρ

= max
i
{|ai|ρi}.

These are sometimes called Gauss norms, since the fact that they are multiplicative
generalizes Gauss’s observation that a product of primitive polynomials over the
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integers is primitive. Similarly, given a submultiplicative norm on a ring A, one
can construct submultiplicative norms on certain truncated Witt vector rings with
coefficients in A. However, in most cases these are not multiplicative even if the
original norm is multiplicative.

Definition 3.1. Let G be an abelian group. A seminorm on G is a function | · | :
G→ [0,+∞) satisfying the following conditions.

(a) We have |0| = 0.
(b) For all g, h ∈ G, |g − h| ≤ |g|+ |h|.

If in (a) we have |g| = 0 if and only if g = 0, we say that the seminorm is
a norm. If in (b) we always have |g − h| ≤ max{|g|, |h|}, we also say that the
seminorm is nonarchimedean. We will only consider nonarchimedean seminorms
in this paper, but the reader is encouraged to imagine possible archimedean analogues
of our constructions.

Let A be a nonzero commutative ring with unit. A seminorm on the additive
group on A is submultiplicative if it satisfies the following conditions.

(a) We have |1| = 1.
(b) For all a, b ∈ A, |ab| ≤ |a||b|.

If in (b) we always have |ab| = |a||b|, we also say that the seminorm is multiplica-
tive. (For the zero ring, a reasonable convention seems to be that the zero norm is
submultiplicative but not multiplicative.)

Lemma 3.2. Let A be a commutative ring with unit, equipped with a nonar-
chimedean submultiplicative seminorm | · |. Let S be a truncation set. Choose
a, b ∈WS(A) and put c = a− b. Then for any n ∈ S,

|cn| ≤ max
d|n
{|an/d|d, |bn/d|d}.

Proof. This is immediate from the homogeneity assertion in Remark 1.4. �

Theorem 3.3. Let A be a commutative ring with unit, equipped with a nonar-
chimedean submultiplicative seminorm | · |. Let | · |Z be a multiplicative norm on Z
such that |n| ≤ |n|Z for all n ∈ Z. Let S be a truncation set. For any r ∈ R with

0 ≤ r ≤ inf
n∈S
{n−1},

the function | · |r on WS(A) defined by

(3.3.1) |a|r = sup
n∈S
{|an|1/n|n|rZ}

defines a nonarchimedean submultiplicative seminorm on the subring of WS(A) on
which | · |r is finite (provided that we interpret |n|rZ as 0 in case |n|Z = r = 0).
In particular, if S is a finite truncation set, then | · |r defines a nonarchimedean
submultiplicative seminorm on all of WS(A). Lastly, if | · | is a norm and |n|Z 6= 0
for all n ∈ S, then | · |r is also a norm.

Proof. For a, b, c ∈WS(A) with c = a− b, we have by Lemma 3.2 that

|c|r = sup
n∈S
{|cn|1/n|n|rZ}

≤ sup
n∈S,d|n

{|an/d|d/n|n|rZ, |bn/d|d/n|n|rZ}

≤ max{|a|r, |b|r}.
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Hence |·|r is a nonarchimedean seminorm. Given this plus Proposition 1.9, to check
submultiplicativity it is enough to check that

|Vm([a])Vn([b])|r ≤ |Vm([a])|r|Vn([b])|r
for allm,n ∈ S and all a, b ∈ A. The right side of this equation equals |a|1/m|b|1/n|mn|rZ
because | · |Z is multiplicative. On the left side, we may invoke Proposition 1.10 to
rewrite

Vm([a])Vn([b]) = Vlcm(m,n)(gcd(m,n)[an/ gcd(m,n)bm/ gcd(m,n)]);

using Proposition 1.10 again to pull out [an/ gcd(m,n)bm/ gcd(m,n)], we obtain

|Vm([a])Vn([b])|r ≤ |a|1/m|b|1/n|Vlcm(m,n)(gcd(m,n))|r.
Put d = lcm(m,n), e = gcd(m,n), so that e | d and de = mn. We are then reduced
to checking that

|Vd(e)|r ≤ |de|rZ.
Write e as e = (en). By Lemma 1.11, we have |en| ≤ |e/ gcd(e, n)| for any n ∈ N.
Since r ≤ 1/n for any n ∈ S, we have

|Vd(e)|r = sup
n∈S,d|n

{|en/d|1/n|n|rZ} ≤ sup
n∈S,d|n

{|en/d|r|n|rZ}

≤ sup
n∈S,d|n

{∣∣∣∣ e

gcd(e, n/d)

∣∣∣∣r
Z
|n|rZ

}
= sup
n∈S,d|n

{
|de|rZ

∣∣∣∣ n/d

gcd(e, n/d)

∣∣∣∣r
Z

}
≤ |de|rZ.

This completes the proof that | · |r is submultiplicative. The final statement, con-
cerning when | · |r is a norm, is obvious. �

The seminorms | · |r also behave nicely with respect to Frobenius.

Proposition 3.4. Keep notation as in Theorem 3.3. Choose m ∈ S, and put
S′ = N ∩m−1S, so that there is a Frobenius map Fm : WS(A) → WS′(A). Then
for all a ∈WS(A),

|Fm(a)|mr ≤ |a|mr .

Note that | · |mr is a submultiplicative seminorm because n ∈ S′ implies mn ∈ S,
so infn∈S′{n−1} ≥ m infn∈S{n−1} ≥ mr.

Proof. It suffices to check the case where m is equal to a prime number p. In
this case, pn ∈ S implies r ≤ 1/(pn), so |p|1/n ≤ |p|prZ . Consequently, for any



10 CHRISTOPHER DAVIS AND KIRAN S. KEDLAYA

nonnegative integers ed with
∑
d|pn ded = pn,

|p|1/n|n|prZ
∏
d|pn

|ad|ed/n ≤ |pn|prZ
∏
d|pn

|ad|ed/n

=
∏
d|pn

|ad|ed/n|pn|dedr/nZ

≤
∏
d|pn

|ad|ed/n|d|dedr/nZ

≤
∏
d|pn

|a|ded/nr = |a|pr .

We may write Fp(a)n as a polynomial in the quantities ad for d | pn with integer
coefficients, which is homogeneous of degree pn for the weighting in which ad carries
degree d. Moreover, by Proposition 2.4, the coefficients of Fp(a)n − apn are all
divisible by p. Hence

|Fp(a)n − apn|1/n|n|
pr
Z ≤ max{|p|1/n|n|prZ

∏
d|pn

|ad|ed/n : ed ≥ 0,
∑
d|pn

ded = pn}.

Since the right side of this inequality is bounded above by |a|pr , as is |apn|1/n|n|
pr
Z ,

we conclude that |Fp(a)|pr ≤ |a|pr as desired. �

One cannot hope to define multiplicative norms on WS(R) in general because
Witt rings are usually not domains (see Remark 2.7). However, one does get mul-
tiplicative norms in the p-typical case when |p| = 0.

Proposition 3.5. Let A be a commutative ring with unit, equipped with a nonar-
chimedean multiplicative seminorm | · | for which |p| = 0. Let | · |Z be a multiplicative
norm on Z such that |n| ≤ |n|Z for all n ∈ Z. Then for any r ≥ 0, | · |r is a nonar-
chimedean multiplicative seminorm on the subring of W (A) on which it is finite.

Proof. We may pass immediately to the case where pA = 0, then to the case where
A is perfect. In the proof of Theorem 3.3, the bound on r is only needed to establish
that |en/d|1/n ≤ |en/d|r for en/d ∈ Z; in our setting, the conditions on the norm | · |
imply that |n| ∈ {0, 1} for all n ∈ Z, and so no bound on r is needed. It follows
that for any r ≥ 0, | · |r is a nonarchimedean submultiplicative seminorm on the
subring of W (A) on which it is finite.

By Corollary 2.6, we can write general elements a, b of W (A) in the form

a =

∞∑
m=0

pm[ap
−m

pm ], b =

∞∑
n=0

pn[bp
−n

pn ];

it remains to check that |ab|r ≥ |a|r|b|r. It is harmless to assume that |a|r, |b|r > 0,
as otherwise there is nothing to check.

Since the apm and bpn are the Witt components of a and b, respectively, we have

|a|r = sup
m≥0
{|apm |p

−m

|p|mrZ }, |b|r = sup
n≥0
{|bpn |p

−n

|p|nrZ }.

Assume for the moment that these suprema are achieved, and let m0, n0 be the
smallest values of m,n doing so. Then define

a′ =

∞∑
m=m0

pm[ap
−m

pm ], b′ =

∞∑
n=n0

pn[bp
−n

pn ].
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The pm0+n0-th Witt component of a′b′ equals ap
n0

pm0 b
pm0

pn0 , so |a′b′|r ≥ |a|r|b|r. Since

|a− a′|r < |a|r, |b− b′|r < |b|r, we have |ab− a′b′|r < |a|r|b|r. We thus deduce that
|ab|r = |a|r|b|r.

In case |p|Z < 1, for any given r for which |a|r, |b|r are finite, the suprema are
achieved when r is replaced by any larger value. Since |a|r is continuous as a
function of r for fixed a, we may deduce multiplicativity by continuity.

In case |p|Z = 1, we may as well assume r = 0. We may then replace | · |Z by
another norm under which p has norm strictly less than 1, and argue as above. (See
also [13, Lemma 2.1.7].) �

4. The basic construction

From now on, we will fix a prime number p, and work exclusively with p-typical
Witt vectors. However, we have attempted to set up our work to admit analogues
when the p-typical Witt vectors are replaced by big Witt vectors, and when the
field Cp is replaced by the usual complex field C with its archimedean absolute
value. We plan to pursue such analogies in future work.

The construction of the big rings in Fontaine’s theory begins with the ring Ã+

(in the notation of [1], which we follow here). This ring is usually made by first
passing from OCp

to a ring of characteristic p using an inverse limit construction,
then taking Witt vectors over the result. We will show that one can interchange
these two steps, taking Witt vectors with coefficients in OCp

and then passing to
an inverse limit (Proposition 4.5).

Definition 4.1. For A a ring, let W←−(A) denote the inverse limit of the inverse
system

· · · F→W (A)
F→W (A),

where F denotes (as usual) the Witt vector Frobenius. Applying F term by term
defines a bijective map F : W←−(A) → W←−(A). We express an element x ∈ W←−(A) as

a sequence (x1, xp, . . . ) of elements of W (A) such that F (xpm+1) = xpm for m ≥ 0.
For m,n ≥ 0, let xpmpn denote the pn-th Witt component of xpm . Finally, put

Ã+ := W←−(OCp
).

We next recall Fontaine’s original construction of the ring Ã+. This uses the
following lemma, which quantifies how the p-th power map brings elements of a
ring p-adically closer together. Part (a) is also used in the proof of Dwork’s lemma
(Lemma 1.6); see [9, Lemma 1.1].

Lemma 4.2. (a) Let A be any ring, choose a, b ∈ A, and let m,n be positive inte-
gers. If a ≡ b (mod pmA), then ap

n ≡ bpn (mod pn+mA).
(b) Let m, c be positive real numbers, and let n be a positive integer. If a, b ∈ Cp

satisfy |b| ≤ c, |a− b| ≤ m, and m ≤ cp−1/(p−1), then |apn − bpn | ≤ p−nmcpn−1.

Proof. (a). This follows by induction from the case n = 1, which is obtained by
writing

ap − bp = (a− b)p +

p−1∑
i=1

(
p

i

)
bi(a− b)p−i.

On the right side, the term (a − b)p is divisible by ppm and hence by pm+1, while
each summand is divisible by p (from the binomial coefficient) times pm (from the
factor (a− b)p−i).
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(b) As in part (a), this follows by induction from the case n = 1. Expanding
ap − bp as above, we note that |(a − b)p| ≤ mp ≤ p−1mcp−1, while the summand
of index i has norm at most p−1 (from the binomial coefficient) times ci (from the
factor bi) times mp−i ≤ mcp−1−i (from the factor (a− b)p−i). �

Remark 4.3. The inequality m ≤ cp−1/(p−1) in Lemma 4.2(b) cannot be relaxed,
as shown by the example a = 1, b = ζp. From the above proof, we see that if |b| ≤ c,
|a− b| ≤ m, and m ≥ cp−1/(p−1), then |ap − bp| ≤ mp.

We now recall how to use inverse limits to pass from characteristic 0 to charac-
teristic p. This is an example of the “field of norms” construction introduced by
Fontaine and Wintenberger [6].

Definition 4.4. Let Ẽ+, Ẽ denote the projective limits lim←−OCp
, lim←−Cp of sets with

transition maps x 7→ xp. That is, the elements of Ẽ+ (resp. Ẽ) are sequences
x = (x(0), x(1), . . . ) of elements of OCp

(resp. Cp) for which (x(i+1))p = x(i) for
i ≥ 0. These sets are equipped with a ring structure by declaring that

(x+ y)(i) := lim
j→∞

(x(i+j) + y(i+j))p
j

(xy)(i) := x(i)y(i).

(The limit in the first line exists by Lemma 4.2.) We define the function | · |Ẽ
on Ẽ+, Ẽ by setting |x|Ẽ := |x(0)|; it is not hard to check that this gives a nonar-
chimedean multiplicative norm.

In a few situations (e.g., Proposition 4.5), we will also consider lim←−OCp
/p. This

is again meant to be read as the set of coherent sequences in OCp
/p under the p-th

power map, which in this case is a ring homomorphism.

We now reconcile our construction of Ã+ with Fontaine’s construction; these
are respectively the terms appearing on the far left and far right in the following
proposition.

Proposition 4.5. There are canonical isomorphisms

Ã+ = W←−(OCp
)
π→W←−(OCp

/p)
α→W (lim←−OCp

/p)
β→W (lim←−OCp

) = W (Ẽ+).

Note that the canonicality here includes equivariance with respect to the action
of the absolute Galois group of Qp on every term.

Proof. We first describe the maps π, α, β. The map π is induced by functoriality
of Witt vectors. The map α is defined as follows. For x ∈W←−(OCp

/p), the sequence

y
pi

= (x1pi , xppi , . . . ) defines an element of lim←−OCp
/p because the Witt vector

Frobenius on W (OCp
/p) is induced by the map x 7→ xp (Proposition 2.5). Using

the polynomials defining the ring operations on Witt vectors (Definition 1.1), we
see that setting α(x) = (y

1
, y
p
, . . . ) in W (lim←−OCp/p) defines a ring homomorphism.

The map β is induced by the map lim←−OCp/p → lim←−OCp defined as follows. Given

x = (x(0), x(1), . . . ) ∈ lim←−OCp
/p, let x(i) denote any lift of x(i) to OCp

. We then put

β(x) = y, where y(i) := limj→∞(x(i+j))p
j

. As in Definition 4.4, we see that the limit
exists, does not depend on the choice of lifts, and induces a ring homomorphism.
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We check that π is injective. For any x ∈ lim←−W (OCp), by writing Fn(xpi+n) =
xpi and using the definition of the Witt vector Frobenius, we obtain the equation

(4.5.1) xpi1 =

n∑
j=0

pjxp
n−j

pi+npj (i, n ≥ 0).

Suppose now that π(x) = 0. By (4.5.1), for all i, n ≥ 0, we have |xpi1| ≤ p−n

because j + pn−j ≥ n for 0 ≤ j ≤ n. Hence xpi1 = 0 for all i ≥ 0. If for some n
we have xpipj = 0 for all i and all j < n, then from (4.5.1) we immediately obtain
xpipn = 0 for all i ≥ 0. We thus conclude that xpipj = 0 for all i, j ≥ 0, so π is
injective.

To see that π is surjective, we construct a preimage of x ∈ W←−(OCp
/p). For

each i, j ≥ 0, choose any lift ypipj ∈ OCp
of xpipj ∈ OCp

/p, and put y
pi

=

(ypi1, ypip, . . . ) ∈ W (OCp
). We then argue as in Lemma 4.4 (using the polyno-

mials expressing Frobenius in terms of Witt components, as in [11, p. 507, (1.3.4)])
that for each i, j ≥ 0, as k →∞, the pj-th Witt component of F k(y

pi+k) converges

p-adically to some limit zpipj . These define an element z ∈W←−(OCp) with π(z) = x.

The map α is clearly injective and surjective. To check that β is an isomorphism,
it suffices to check that the map lim←−OCp/p → lim←−OCp inducing β has an inverse

given by the natural projection map lim←−OCp
→ lim←−OCp

/p. That the projection is
a left inverse is clear; to see that it is a right inverse, note that if we start with an
element (x(0), x(1), . . . ) ∈ lim←−OCp

, to evaluate β on the projection (x(0), x(1), . . .),
we may lift using the original sequence. �

To study Ã+ using its description as the inverse limit W←−(OCp), we must better

understand the transition maps in this inverse system. For a perfect ring k of
characteristic p, the Witt vector Frobenius F : W (k) → W (k) is an isomorphism
because it is induced by the Frobenius map on k (Proposition 2.5). On W (OCp

),
however, Frobenius is neither injective nor surjective; the latter is a symptom of
the fact that Cp is not spherically complete.

Proposition 4.6. (i) Given n ≥ 1, suppose that for some x = (x1, . . . , xpn−1) ∈
Wpn−1(OCp

), we have F (x) = 0 ∈ Wpn−2(OCp
). (This condition should be in-

terpreted as an empty condition in case n = 1.) Then x extends to an element
x′ = (x1, . . . , xpn) ∈Wpn(OCp

) for which F (x′) = 0 ∈Wpn−1(OCp
) if and only if

|x1| ≤ p−1/p−···−1/p
n

.

(ii) The Witt vector Frobenius F : W (OCp
) → W (OCp

) is not injective. More
precisely, for w ∈ OCp , there exists x ∈ W (OCp) with x1 = w and F (x) = 0 if and

only if |w| ≤ p−1/(p−1).
(iii) The Witt vector Frobenius F : W (OCp

)→W (OCp
) is not surjective.

Proof. (i) We begin with the “only if” direction. For x′ = (x1, . . . , xpn) ∈Wpn(OCp
),

the condition F (x′) = 0 is equivalent to the conditions wpm(x′) = 0 for m =
1, . . . , n, or in other words,

(4.6.1) xp
m

1 +

m∑
i=1

pixp
m−i

pi = 0 (m = 1, . . . , n).
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We prove that (4.6.1) implies the inequality

(4.6.2) |xpj | ≤ p−1/p−···−1/p
k

for k = 0, . . . , n, j = 1, . . . , n−k, by induction primarily on k and secondarily on j.
The base case k = 0 simply asserts that |xpj | ≤ 1 for all j, which is evidently true.
For a given pair (k, j) with k > 0, we are to prove that (4.6.2) holds for (k, j) given
that it holds for all pairs (k′, j′) with k′ < k and for all pairs (k, j′) with j′ < j. In

the equation (4.6.1) with m = n = j + 1, the norm of the term pixp
n−i

pi for i < j

(including i = 0) is at most

p−ipp
n−i(−1/p−···−1/pk) ≤ p−(j−1)pp

2(−1/p−···−1/pk)

= p−(j−1)p−pp−1/p
0−···−1/pk−2

≤ p−(j+1)−1/p−···−1/pk−1

,

while the norm of the term pixp
n−i

pi for i = j + 1 is at least

p−(j+1)−1/p−···−1/pk−1

.

Hence the term pjxp
n−j

pj has at most this norm, completing the induction.

We next turn to the “if” direction. Suppose now that x = (x1, . . . , xpn−1) ∈
Wpn−1(OCp

) is such that |x1| ≤ p−1/p−···−1/p
n

and F (x) = 0 ∈ Wpn−2(OCp
).

Choose xpn ∈ Cp so that (4.6.1) holds. We claim that

|xpi | ≤ p−1/p−···−1/p
n−i

(i = 0, . . . , n),

where the right side is interpreted as 1 for i = n; this will imply that xpn ∈ OCp

and thus yield the desired result. To check this claim, we induct on i, the case i = 0
being given. If the claim holds for some i < n, then from (4.6.1) with m = i + 1,
we have

p−(i+1)|xpi+1 | ≤ max
0≤j≤i

{p−j |xpj |p
i+1−j

}

≤ max
0≤j≤i

{
p−j+p

i+1−j(−1/p−···−1/pn−j)
}

≤ p−i+p(−1/p−···−1/p
n−i),

yielding the claim for i+ 1.
(ii) This follows from (i) by a straightforward induction argument.
(iii) Let ypi ∈ Fp denote elements in the algebraic closure of Fp. By Proposition

2.8, we have a natural inclusion W (Fp) ⊆ OCp
, so in particular we can consider

[ypi ] ∈ OCp
, which in turn admits a Teichmüller lift [[ypi ]] ∈W (OCp

).
We claim that for fixed i, there exists an element

(4.6.3) x(i) = (p
1
p+···+

1

pi [ypi ], x
(i)
p , x

(i)
p2 , . . . , x

(i)
pi+1) ∈Wpi+1(OCp)

such that F (x(i)) = V i(±[[yp
i+1

pi ]]). (We leave the sign ambiguous to make the

notation slightly less cumbersome.) More precisely, we will choose x(i) to have the
form

x(i) = (p
1
p+···+

1

pi [ypi ], p
1
p+···+

1

pi−1 ap, . . . , p
1
p api−1 , api , api+1) ∈Wpi+1(OCp

)
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with apj ∈ OCp . By (i), we can choose ap, . . . , api so that the ghost components of

x(i) have the form (∗, 0, . . . , 0, ∗); it remains to force the last ghost component to

equal ±[yp
i+1

pi ]. By writing out the definition of the last ghost component, we see

that it suffices to check that appi ≡ ±[yp
i+1

pi ] (mod p); this would follow if we knew

that api ≡ ±[yp
i

pi ] (mod p).

This last congruence will follow from the fact that apj ≡ ±[yp
j

pi ] (mod p) for

each 1 ≤ j ≤ i, which we check by induction on j. The base case follows from the
vanishing of the second ghost component, which yields

p
1+ 1

p+···+
1

pi−1 [yppi ] + p
1+ 1

p+···+
1

pi−1 ap = 0.

For the induction step, we write the equation for the vanishing of the (j + 1)-st
ghost component as

· · ·+ pj−1p
p( 1

p+···+
1

pi−j+1 )
[appj−1 ] + pjp

1
p+···+

1

pi−j [apj ] = 0,

in which each unwritten term has norm at most p−(j+1)−1/p−···−1/pi−j

(as in the
proof of (i)).

Having constructed the x(i), we now show that there exists a sequence y1, yp, . . .

for which y :=
∑∞
i=0 V

i([[yp
i+1

pi ]]) is not in the image of Frobenius. By (i) plus

(4.6.3), if y = F (x) for some x ∈W (OCp), then for every i ≥ 0,

x1 ≡ [y1] + p
1
p [yp] + · · ·+ p

1
p+···+

1

pi [ypi ] (mod p
1
p+···+

1

pi+1 ).

In particular, any two distinct sequences lead to values of x1 which are distinct

modulo p
1

p−1 ; this explains our use of Teichmüller lifts [ypi ] ∈ OCp
, and not arbi-

trary elements in OCp
. Now note that there are uncountably many choices for the

sequence y1, yp, . . . , but only countably many congruence classes in OCp modulo

p
1

p−1 (because each such class contains an element algebraic over Q, by Krasner’s
lemma [15, p. 43]). Thus not every sequence y1, yp, . . . leads to a value of y in the
image of F , proving the desired result. �

Remark 4.7. While the proof of (iii) given above is nonconstructive, it is also
possible to exhibit explicit elements of W (OCp

) which are not in the image of Frobe-
nius. This uses the second author’s description of OCp

in terms of generalized power
series [12].

Note the contrast between the surjectivity behavior of Frobenius at finite versus
infinite levels.

Corollary 4.8. For any n ≥ 0, F : Wpn+1(OCp
)→Wpn(OCp

) is surjective.

Proof. We show this by induction on n. The case n = 0 follows becauseOCp
is closed

under p-th roots, so for instance [a1] = F ([a
1/p
1 ]). For the inductive step, consider an

element y :=
∑n−1
i=0 V

i([api ]) ∈ Wpn−1(OCp
). By the inductive hypothesis, we can

find x ∈ Wpn−1(OCp
) such that F (x) =

∑n−2
i=0 V

i([api ]). Pick any x̃ ∈ Wpn(OCp
)

such that x̃ restricts to x in Wpn−1(OCp
). Then y − F (x̃) = V n−1([b]) for some

b ∈ OCp
. The proof of Proposition 4.6(iii) produces an element z ∈Wpn(OCp

) with

F (z) = V n−1([1]). Let c be a pn-th root of b; then

[cp]V n−1([1]) = V n−1([1]Fn−1([cp])) = V n−1([b])
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by Proposition 1.10, so y = F (x̃+ z[c]). This completes the induction. �

Remark 4.9. Because Fn ◦ V n acts as multiplication by pn (Proposition 1.10),
any element of W (OCp

) divisible by pn belongs to the image of Fn. The element

[pn+1] is divisible by pn, as can be seen easily in Λ(OCp
) (the series (1− pn+1t)−1

has a pn-th root in 1 + tOCpJtK by the binomial expansion). Consequently, if we let
S be the multiplicative subset of W (OCp) consisting of all nonzero Teichmüller lifts,

so in particular [pn+1] ∈ S, then every power of F is surjective on S−1W (OCp
).

(Note that S−1W (OCp
) may be naturally identified with a subring of W (Cp).)

One can similarly let S̃ be the multiplicative subset of Ã+ consisting of sequences
of nonzero Teichmüller lifts; these correspond to Teichmüller elements in W (Ẽ+).

The localization S̃−1Ã+ maps to the inverse limit lim←−S
−1W (OCp), but this map is

not surjective. Rather, one only gets sequences (x1, xp, . . . ) ∈ lim←−S
−1W (OCp

) for

which |xpn |p
n

0 remains bounded as n→∞.

5. Ghost components and the theta map

We now introduce a ghost map for Ã+, and use it to derive some basic proper-
ties of the ring Ã+. Although these properties are well-known, our point of view
suggests a way to make similar analyses in the realm of big Witt vectors. We also
use the ghost map to reinterpret the ring homomorphism θ : Ã+ → OCp

appearing
in p-adic Hodge theory (see again [1]).

Definition 5.1. For i ∈ Z, define wpi : Ã+ → OCp
by the formula wpi(x) =

wpk(xpj ) for any j, k with k − j = i. This does not depend on the choice of j, k
because of how the Witt vector Frobenius interacts with ghost components. Since
the usual ghost map is a ring homomorphism, so too is each wpi . Define the ghost
map

w : Ã+ →
∏
i∈pZ
OCp

as the product of the wpi . This map is injective, as we can recover x from its ghost
components via the formula

(5.1.1) xpmpn =
1

pn

wpn−m −
n−1∑
j=0

pjxp
n−j

pmpj

 .

(Alternatively, it is injective because the usual ghost map is injective whenever the
coefficient ring is p-torsion free.) For every r ∈ pZ, we have a Frobenius homomor-

phism Fr : Ã+ → Ã+ defined as follows. Given x = (x1, xp, . . .) ∈ Ã+, for r = pi,
put

Fr(x) =

{
(F i(x1), F i(xp), . . .) i ≥ 0

(xpi , xpi+1 , . . .) i < 0.

Note that for any i, j ∈ Z,

wpj (Fpi(x)) = wpi+j (x);

consequently, Fpi ◦ Fpj = Fpi+j . In particular, the Fr are all automorphisms.
We similarly obtain an injective ring homomorphism

w : S̃−1Ã+ →
∏
i∈pZ

Cp,
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for S̃ the multiplicative set defined in Remark 4.9. This homomorphism is equivari-
ant with respect to the obvious Frobenius maps Fr for r ∈ pZ on both sides.

Lemma 5.2. Suppose a, b ∈W (OCp) satisfy F (b) = a and p | b1. Then p | a.

Proof. (Thanks to Abhinav Kumar for suggesting the following proof.) Since p | b1,
we can write b = p[b1/p] + V (c) for some c ∈W (OCp). By Proposition 1.10,

a = F (b) = F (p[b1/p] + V (c)) = p[(b1/p)
p] + pc,

so p | a as desired. �

Proposition 5.3. Suppose x ∈ Ã+ satisfies p | wp−i(x) for every i ≥ 0. Then
p | x.

Proof. Write x as a sequence (x1, xp, . . . ) in the inverse limit. By hypothesis, for
each i ≥ 0, we have F (xpi+1) = xpi and p | xpi+11, so p | xpi by Lemma 5.2. Since
W (OCp

) is p-torsion free, this implies p | x as desired. �

Lemma 5.4. The ring Ã+ is separated for the p-adic topology, and p-torsion free.

Proof. From Definition 5.1 we know the ghost map is injective, so the result follows
from the fact that OCp is separated and p-torsion free. �

Lemma 5.5. Fix x ∈ Ã+. If some wpj (x) 6= 0, then wpj−i(x) 6= 0 for all i� 0.

Proof. Because Ã+ is p-torsion free, we may use Proposition 5.3 to reduce to the
case where p - wpj (x) for some j. Because the Frobenius maps are isomorphisms, we

may assume pj = 1. From the definition of the Witt vector Frobenius, xp
i

pi1 ≡ x11
(mod p). Since xpi1 = wp−i(x), we obtain wp−i(x) 6≡ 0 (mod p) for all −i ≤ 0,
proving the desired result. �

Proposition 5.6. The ring Ã+ is a domain.

Proof. This follows from Lemma 5.5 and the fact that OCp is a domain. �

We now recall the map θ used in p-adic Hodge theory, and relate it to the ghost
map.

Definition 5.7. Given x ∈ Ã+, apply Proposition 4.5 to present x as an element
y = (y1, yp, . . . ) of W (lim←−OCp

). Then set

θ(x) =

∞∑
k=0

pk((ypk)(k)).

Proposition 5.8. The map θ coincides with the map w1 from Definition 5.1 (i.e.,
the first ghost component map). In particular, θ is a ring homomorphism.

Proof. (Thanks to Ruochuan Liu for suggesting the following proof.) We use the
notation of Proposition 4.5. Let z := (α ◦ π)(x), so in particular (zpj )(i) = xpipj .

Our definition of β involves choosing lifts of the terms (zpj )(i), for which we may
choose xpipj . Then from the definition of β,

((β ◦ α ◦ π(x))pj )(j) = lim
k→∞

xp
k

pj+kpj
.
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Replacing k by k − j, which does not affect the limit, we have

((β ◦ α ◦ π(x))pj )(j) = lim
k→∞

xp
k−j

pkpj
.

Plugging this into the definition of θ yields

(θ ◦ β ◦ α ◦ π)(x) =

∞∑
j=0

pj lim
k→∞

xp
k−j

pkpj
=

∞∑
j=0

lim
k→∞

pjxp
k−j

pkpj
= lim
i→∞

i∑
j=0

pjxp
i−j

pipj .

Now note that
∑i
j=0 p

jxp
i−j

pipj is precisely the pi-th ghost component of xpi . But by

the definition of the Frobenius map, this term is independent of i. Taking i = 0
completes the proof. �

6. Tails of ghost components

As noted earlier (Definition 5.1), an element of Ã+ is determined by its doubly
infinite sequence of ghost components. In fact, one can explicitly recover an element
of Ã+ just from the ghost components indexed by sufficiently negative powers of
p, i.e., from the tail of the sequence of ghost components. In addition, the multi-
plicative norms | · |r on W (Ẽ) (Proposition 3.5) also admit a direct interpretation
on the space of tails.

Definition 6.1. For A a commutative ring with unit, let W←−∗(A) be the inverse

limit of the inverse system

· · · F→Wp1(A)
F→Wp0(A);

then we have a ghost map

w : W←−∗(A)→
1∏

i=p−∞

A.

If A is p-torsion-free, we can recover x ∈W←−∗(A) from its ghost image (. . . , wp−1 , wp0),

using the formula (5.1.1).

We have the following statement, which refines the statement that the ghost map
on Ã+ is injective (Definition 5.1).

Proposition 6.2. Suppose the ring A is p-torsion free and p-adically separated
and complete. Then the canonical restriction map W←−(A)→W←−∗(A) is bijective. In

particular, we have an isomorphism Ã+ →W←−∗(OCp
).

Proof. Let x ∈W←−∗(A) be an element with ghost sequence (. . . , wp−1 , w1). For each

m, the set of w
(m)
p ∈ A for which (wp−m , . . . , w1, w

(m)
p ) belongs to the image of the

ghost map from Wpm+1(A) is a single congruence class modulo pm+1A, namely the
one containing the image of (xpm1, . . . , xpmpm , 0) under Fm+1. Since A is p-adically
separated and complete, the intersection of these congruence classes over all m is a
single element wp ∈ A. Since A is p-torsion-free, we also obtain a unique element
of W←−∗(A) with ghost sequence (. . . , wp−1 , w1, wp). Repeating this process produces

a unique set of Witt and ghost components of an element of W←−(A) lifting x. �

This leads to some additional structural information concerning Ã+.

Corollary 6.3. The ring Ã+ is complete for the p-adic topology.
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Proof. By Proposition 5.3, the p-adic topology on Ã+ is induced by the supremum
norm on

∏1
i=p−∞ OCp

. Among all sequences (. . . , wp−1 , w1), wp−i ∈ OCp
, we can

distinguish which ones arise from Ã+ by using the equations (5.1.1) with m ≥ n.

In this manner, we see that the image of Ã+ is complete for the supremum norm;
this yields the desired result. �

Corollary 6.4. The ring Ã+ is local, with units consisting of those x such that
vp(x11) = 0.

Proof. Consider the composition

Ã+ θ→ OCp
� Fp.

The kernel of this map is a maximal ideal consisting of the complement of the
elements described above, so it suffices to show that each x with vp(x11) = 0 is a
unit.

Since wp−n(x)p ≡ wp−(n−1)(x) (mod p), for each m ∈ Z, the limit

ypm := lim
n→∞

wp−n+m(x)p
n

exists by Lemma 4.2. This corresponds to a sequence of terms that is in the image
of the ghost map: it is the image of y := ([y1], [yp−1 ], [yp−2 ], . . .) ∈ Ã+.

For each m, we have ypm ≡ wpm(x) (mod p). By Proposition 5.3, we can write

x = y + pz for some z ∈ Ã+. Since vp(x11) = 0, y is a unit in Ã+; since Ã+ is

p-adically complete by Corollary 6.3, 1 + py−1z is also a unit in Ã+. Hence x is a
unit, as desired. �

We now describe how Gauss norms may be read off from tails.

Definition 6.5. Let A be a commutative ring with unit, equipped with a nonar-
chimedean submultiplicative seminorm | · |. For r ∈ [0, 1) and m ≥ 0, the function
| · |rp−m introduced in Theorem 3.3 is a nonarchimedean submultiplicative seminorm
on Wpm(A). (This much also holds for r = 1, but it will be convenient later to have
this case excluded from the outset.) For x = (x1, xp, . . . ) ∈ W←−∗(A), the sequence

|xpm |p
m

rp−m is nondecreasing by Proposition 3.4; it thus has a (possibly infinite) limit,

denoted |x|r. We may also write

(6.5.1) |x|r = sup
0≤n≤m

{|xpmpn |p
m−n

p−rn}

for xpmpn as in (5.1.1). If A is separated and complete under | · |, then the subring
of W←−∗(A) on which | · |r is finite is separated and complete under | · |r. Note that

by definition, we have |F (x)|pr = |x|pr for all r ∈ [0, 1/p).

Example 6.6. The subring of W←−∗(Cp) on which | · |0 is finite is the ring S̃−1Ã+

of Remark 4.9.

Lemma 6.7. Let 0 ≤ n ≤ j ≤ m be integers, and choose r ∈ [0, 1) and c ∈ R.
Suppose a, b ∈ Cp are such that

|a|p
m−n

p−rn ≤ c, |a− b| ≤ p−1+r(n+1)pn−m

cp
n−m

.

Then
|ap

j−n

− bp
j−n

| ≤ p−(j−n+1)+r(j+1)pj−m

cp
j−m

.
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Proof. We may assume j > n, as the case j = n is given. Suppose first that p ≥ 3;

then 1− rpn−m ≥ 1− p−1 ≥ 1/(p− 1), so p−1+rp
n−m ≤ p−1/(p−1). By Lemma 4.2,

we have

|ap
j−n

− bp
j−n

| ≤ p−(j−n+1)+r(n+1)pn−m+(pj−n−1)rnpn−m

cp
j−m

.

Since

j − n+ 1− r(n+ 1)pn−m − (pj−n − 1)rnpn−m

≥ j − n+ 1− r(j + 1)pj−m − (pj−n − 1)r(j + 1)pn−m

= j − n+ 1− r(j + 1)pj−m,

we obtain the desired bound in this case.
Suppose next that p = 2; in this case, p−1/(p−1) ≤ p−1+rp

n−m ≤ p−1/p(p−1). By
Remark 4.3, we have

|ap − bp| ≤ p−p(1−r(n+1)pn−m)cp
n−m+1

;

we may then apply Lemma 4.2 to obtain

|ap
j−n

− bp
j−n

| ≤ p−(j−n−1)−p(1−r(n+1)pn−m)+(pj−n−p)rnpn−m

cp
j−m

.

In this case,

(j − n− 1) + p(1− r(n+ 1)pn−m)− (pj−n − p)rnpn−m

= j − n+ (p− 1)− rpn+1−m − rnpj−m

≥ j − n+ 1− rpj−m − rjpj−m

= j − n+ 1− r(j + 1)pj−m,

so we again obtain the desired bound. �

Theorem 6.8. Let (. . . , wp−2 , wp−1 , w1) be a singly infinite sequence of elements
in Cp, and define xpmpn ∈ Cp for 0 ≤ n ≤ m as in (5.1.1). Then for any r ∈ [0, 1)

and any c ∈ R, there exists an element y ∈W (Ẽ) with |y|r ≤ c for which

(6.8.1) wp−j =

∞∑
i=0

pi(ypi)
(i+j)

for all j ≥ 0 if and only if

(6.8.2) |xpmpn |p
m−n

p−rn ≤ c
for all 0 ≤ n ≤ m (i.e., the xpmpn are the components of some x ∈ W←−∗(Cp)r with

|x|r ≤ c).

Proof. Suppose first that |y|r ≤ c, so that for all i, j ≥ 0,

(6.8.3) |(ypi)(j)|p
j−i

p−ri ≤ c.
We will prove that

(6.8.4)
∣∣∣xpj−n

pmpn − (ypn)(m−j+n)
∣∣∣ ≤ p−(j−n+1)+r(j+1)pj−m

cp
j−m
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for all 0 ≤ n ≤ j ≤ m, by induction on n. Assume that (6.8.4) holds with n
replaced by any smaller value. Then write

xpmpn − (ypn)(m) =
wpn−m − pn(ypn)(m)

pn
−
n−1∑
i=0

pi−nxp
n−i

pmpi

=

n−1∑
i=0

pi−n((ypi)
(i+m−n) − xp

n−i

pmpi) +

∞∑
i=n+1

pi−n(ypi)
(i+m−n).

By the induction hypothesis, each summand in the first sum has norm at most

p−1+r(n+1)pn−m

cp
n−m

. The same is true of each summand in the second sum,
thanks to (6.8.3) and the fact that for i ≥ n+ 1,

(i− n)− ripn−m ≥ (i− n)− r(n+ 1)pn−m − (i− n− 1) = 1− r(n+ 1)pn−m.

This proves (6.8.4) in case j = n; the general case follows from (6.8.3) and Lemma 6.7.
This completes the induction establishing (6.8.4); by taking j = n therein, we de-
duce (6.8.2).

Conversely, assume (6.8.2). We establish the following variant of (6.8.4): for all
0 ≤ n ≤ j ≤ m,

(6.8.5)
∣∣∣xpj−n

pmpn − x
pj−n+1

pm+1pn

∣∣∣ ≤ p−(j−n+1)+r(j+1)pj−m

cp
j−m

.

We again proceed by induction on n. Assume that (6.8.5) holds with n replaced by
any smaller value. From the equalities

wpn−m =

n∑
i=0

pixp
n−i

pmpi =

n+1∑
i=0

pixp
n+1−i

pm+1pi

we deduce that

pn+1xpm+1pn+1 =

n∑
i=0

pi(xp
n−i

pmpi − x
pn+1−i

pm+1pi),

or equivalently

xpmpn − xppm+1pn = pxpm+1pn+1 −
n−1∑
i=0

pi−n(xp
n−i

pmpi − x
pn+1−i

pm+1pi).

By (6.8.2) plus the induction hypothesis, each term on the right side has norm at

most p−1+r(n+1)pn−m

cp
n−m

. This establishes (6.8.5) in case j = n; the general case
follows by (6.8.2) plus Lemma 6.7.

We may rewrite (6.8.5) as

(6.8.6)
∣∣∣xpmpm+jpi − x

pm+1

pm+j+1pi

∣∣∣ ≤ p−(m+1)+r(m+i+1)pi−j

cp
i−j

,

where now m ≥ 0 and j ≥ i ≥ 0. For any fixed i, j, the right side of (6.8.6) is
decreasing in m, so the limit

(ypi)
(j) = lim

m→∞
xp

m

pm+jpi

exists and satisfies (6.8.4); moreover, (6.8.2) implies that the limit satisfies (6.8.3).

For each i, the sequence (ypi)
(j) defines an element ypi ∈ Ẽ. Put y = (ypi) ∈W (Ẽ);

then (6.8.3) implies |y|r ≤ c.
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It remains to check (6.8.1). Given j ≥ 0, for any m ≥ 0 we can write

wp−j −
∞∑
i=0

pi(ypi)
(i+j) =

m∑
i=0

pixp
m−i

pm+jpi −
∞∑
i=0

pi(ypi)
(i+j)

=

m∑
i=0

pi(xp
m−i

pm+jpi − (ypi)
(i+j))−

∞∑
i=m+1

pi(ypi)
(i+j).

On the right side, each summand has norm at most p−(m+1)+r(m+1)p−j

cp
−j

: in the
first sum this follows from (6.8.4), while in the second sum it follows from (6.8.3)
because i− rip−j ≥ m+ 1− r(m+ 1)p−j for i ≥ m+ 1. We conclude that∣∣∣∣∣wp−j −

∞∑
i=0

pi(ypi)
(i+j)

∣∣∣∣∣ ≤ p−(m+1)+r(m+1)p−j

cp
−j

.

Since m was arbitrary, this implies (6.8.1). This completes the proof. �

Corollary 6.9. For r ∈ [0, 1), let W (Ẽ)r denote the subring of W (Ẽ) on which
| · |r is finite, and let W←−∗(Cp)r denote the subring of W←−∗(Cp) on which | · |r is finite.

We then obtain an isomorphism

ψ : W (Ẽ)r →W←−∗(Cp)r

by passing from y ∈W (Ẽ)r to a sequence (. . . , wp−1 , w1) using (6.8.1), then obtain-

ing an element of W←−∗(Cp)r using (5.1.1). Moreover, for any y ∈ W (Ẽ)r, we have

|ψ(y)|r = |y|r.

Remark 6.10. Proposition 3.5 and Corollary 6.9 together imply that for r ∈ [0, 1),
the submultiplicative norm | · |r on W←−∗(Cp)r is in fact multiplicative. It seems

difficult to give a direct proof of this.
On the other hand, for the construction of Fontaine’s rings, one needs not the

full strength of multiplicativity, but only the special case |px|r = p−r|x|r. This may
be established directly as follows. For y = px and c = |x|r, we establish the bound

(6.10.1) |yp
j−n

pm+1pn+1 − xp
j−n

pmpn | ≤ p−(j−n+1)+r(j+1)pj−m

cp
j−m

whenever 0 ≤ n ≤ j ≤ m, by induction on n. Assume that (6.10.1) holds with n
replaced by any smaller value. From the equalities

pwpn−m =

n+1∑
i=0

piyp
n+1−i

pm+1pi =

n+1∑
i=0

pi+1xp
n+1−i

pm+1pi ,

we obtain

ypm+1pn+1 − xppm+1pn = pxpm+1pn+1 − p−n−1yp
n+1

pm+11−
n−1∑
i=0

pi−n(yp
n−i

pm+1pi+1 − xp
n−i+1

pm+1pi).

We claim each term on the right side is bounded above by p−1+r(n+1)pn−m

cp
n−m

.
The bound holds for the first term by (6.8.2), and likewise for the second term

after rewriting it as p−n−1(pwp−m−1)p
n+1

= p−n−1+p
n+1

xp
n+1

pm+11 and noting that

pn+1 − n − 1 ≥ 1 ≥ 1 − r(n + 1)pn−m. The bound for the other summands comes
from the induction hypothesis. This establishes (6.10.1) in case j = n; the general
case follows from Lemma 6.7.
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From (6.10.1) and (6.8.2), we immediately have |ypm+1pn+1 | ≤ prnp
n−m

cp
n−m

(and y11 = px11 has norm at most p−1c ≤ p−rc), so |y|r ≤ p−rc. On the other hand,

for each ε ∈ (0, 1−p−1+r), there exist m,n for which |xpmpn | ≥ (1−ε)prnpn−m

cp
n−m

,

and from (6.10.1) we then have |ypm+1pn+1 | ≥ (1 − ε)prnpn−m

cp
n−m

. Hence |y|r ≥
p−rc, proving the desired equality.

Lemma 6.11. For r ∈ [0, 1), the ring W←−∗(Cp)r is p-adically separated.

Proof. This follows from Corollary 6.9, but can be seen more directly as follows.

Choose any x ∈W←−∗(Cp)r and put c = |x|r. Then |xpm1| ≤ cp
−m

for all m ≥ 0, and

so lim supm→∞ |xpm1| ≤ limm→∞ cp
−m ≤ 1.

If x = pny for some positive integer n and some y ∈ W←−∗(Cp)r, then xpm1 =

pnypm1 for all m ≥ 0. By the previous paragraph, lim supm→∞ |ypm1| ≤ 1, and so
lim supm→∞ |xpm1| ≤ p−n.

If x is divisible by arbitrary powers of p, we now see that limm→∞ |xpm1| = 0.
By induction on n plus the equation

(6.11.1) xpm1 = pnxpm+npn +

n−1∑
i=0

pixp
n−i

pm+npi ,

we see that limm→∞ |xpmpn | = 0 for each nonnegative integer n. By (6.8.6),

|xp
n−i

pm+npi | ≤ p
−(n−i+1)+r(n+1)p−m

cp
−m

whenever m ≥ 0 and n ≥ i ≥ 0. By (6.11.1),

|xpm1| ≤ p−(n+1)+r(n+1)p−m

cp
−m

for any nonnegative integer n. Hence x = 0,
proving the claim. �

We have the following refinement of Proposition 6.2. Here by the tail map, we
mean the composition of the ghost map with the projection onto the space of tails
(the direct limit of the spaces of sequences (. . . , wp−n+1 , wp−n) as n→∞).

Proposition 6.12. For any r ∈ [0, 1), the tail map on W←−∗(Cp)r is injective.

Proof. It suffices to check that a sequence (. . . , wp−1 , w1) with wp−n = 0 for all
n > 0 can only belong to the image of the ghost map on W←−∗(Cp)r if w1 = 0.

Suppose x ∈ W←−∗(Cp)r maps to such a sequence; then xpmpn = 0 whenever n < m,

and xpmpm = p−mw1. But then (6.8.2) would imply

pm|w1| = |xpmpm | ≤ prm|x|r,
which gives a contradiction for m large unless |w1| = 0. Hence w1 = 0 as desired.

�

Definition 6.13. By Proposition 6.12, for r ∈ [0, 1), we may identify W←−∗(Cp)r
with its image under the tail map. We may then formally define W←−∗(Cp)r for

r ≥ 1 by declaring that for each positive integer m, W←−∗(Cp)pmr is the image of the

tail set of W←−∗(Cp)r under Fm, equipped with the norm | · |pmr for which

|Fm(x)|pmr = |x|p
m

r .

With this definition, W←−∗(Cp)r is complete under | · |r for all r ≥ 0.
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7. More rings from p-adic Hodge theory

To conclude, we indicate how to describe some other rings occurring in p-adic
Hodge theory in the style of our description of Ã+. Our notation for these rings dif-
fers somewhat from Fontaine’s original notation; we follow more recent conventions
of Berger, Colmez, et al. (as in [1]).

Definition 7.1. Define Ã† as the union of the rings W←−∗(Cp)r over all r ≥ 0, using

Definition 6.13 to define W←−∗(Cp)r for r ≥ 1. By construction, this ring admits an

injective tail map. By Theorem 6.8 (and the fact that W←−∗(Cp)r is complete under

| · |r), we may identify Ã† with the union over all r ≥ 0 of the completion of

S̃−1Ã+ ∼= S̃−1W (Ẽ+) under vr. That is, our construction Ã† agrees with the
usual definition.

Define B̃† := Ã†[ 1p ]. We may again identify B̃† with a ring of tails satisfying

certain bounds, using the identity |px|r = |p|r|x|r (Remark 6.10).

The following lemma enables us to use the tail of ghost components to determine
when an element x is divisible by p. In rough terms, it says that if the ghost
components have norms approaching at most 1

p , then x is divisible by p.

Lemma 7.2. Let 0 ≤ r < 1 and x ∈W←−∗(Cp)r. Let (. . . , wp−1 , w1) denote the tail of

ghost components corresponding to x. If there exists κ such that |wp−m | ≤ p−1+κp−m

for all m ≥ 0, then there exists x̃ ∈W←−∗(Cp)r with px̃ = x.

Proof. Since the ghost map is injective, we need only check that the sequence
(. . . , w̃p−1 , w̃1) with w̃p−m = 1

pwp−m comprises the ghost components of some x̃ ∈
W←−∗(Cp)r. Define x̃pmpn ∈ Cp for 0 ≤ n ≤ m using w̃p−m as in (5.1.1); we must

show that for some c̃ ≥ 0, we have |x̃pmpn |p
m−n

p−rn ≤ c̃ for all 0 ≤ n ≤ m. We will

prove this for c̃ = max{pκ, pc}, where c = |x|r = sup0≤n≤m{|xpmpn |p
m−n

p−rn}.
We first prove that

(7.2.1) |x̃pmpn − xp
n

pm+n+1pn+1 | ≤ p−1+r(n+1)pn−m

c̃p
n−m

for all 0 ≤ n ≤ m. To prove (7.2.1), we write the ghost component w̃pn−m =
wpn−m

p

in two different ways:

x̃p
n

pm1 + px̃p
n−1

pmp + · · ·+ pnx̃pmpn =

1

p

(
xp

2n+1

pm+n+11 + pxp
2n

pm+n+1p + · · ·

+ pn+1xp
n

pm+n+1pn+1 + · · ·+ p2n+1xpm+n+1p2n+1

)
.(7.2.2)

Consider first the case n = 0. Then the above equation becomes

x̃pm1 =
1

p
(xppm+11 + pxpm+1p).

Equation (7.2.1) holds for n = 0 because

x̃pm1 − xpm+1p =
1

p
xppm+11 =

1

p
wpp−m−1 ,
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and so

|x̃pm1 − xpm+1p| ≤ p(p−1+κp
−m−1

)p = p−(p−1)+κp
−m

≤ p−1+κp
−m

≤ p−1+rp
−m

c̃p
−m

.

The last inequality holds because r ≥ 0 and c̃ ≥ pκ.
Now assume that (7.2.1) holds with n replaced by any smaller value. We will

show that it holds for n. By (7.2.2), it suffices to show the following:

|p−n−1xp
2n+1

pm+n+11| ≤ p
−1+r(n+1)pn−m

c̃p
n−m

,(7.2.3)

|pi−nx̃p
n−i

pmpi − p
i−nxp

2n−i

pm+n+1pi+1 | ≤ p−1+r(n+1)pn−m

c̃p
n−m

for 0 ≤ i < n,(7.2.4)

|pjxp
n−j

pm+n+1pn+1+j | ≤ p−1+r(n+1)pn−m

c̃p
n−m

for 1 ≤ j ≤ n.(7.2.5)

To prove (7.2.3), we note that

|p−n−1xp
2n+1

pm+n+11| ≤ p
n+1

(
p−1+κp

−m−n−1
)p2n+1

= pn+1−p2n+1

pκp
n−m

≤ p−1(pκ)p
n−m

,

and so we are again done because r ≥ 0 and c̃ ≥ pκ.
To prove (7.2.4), we will use the induction hypothesis. This tells us that

|x̃pmpi − xp
i

pm+i+1pi+1 | ≤ p−1+r(i+1)pi−m

c̃p
i−m

.

From the definition of c,

|xp
i

pm+i+1pi+1 |p
m−i

p−ri = |xp
m

pm+i+1pi+1 |p−ri ≤ prc ≤ c̃,
so we may apply Lemma 6.7 to obtain

|x̃p
n−i

pmpi − x
pn

pm+i+1pi+1 | ≤ p−(n−i+1)+r(n+1)pn−m

c̃p
n−m

.

This immediately implies

|pi−nx̃p
n−i

pmpi − p
i−nxp

n

pm+i+1pi+1 | ≤ p−1+r(n+1)pn−m

c̃p
n−m

.

By applying (6.8.5) n− i times, we get

|pi−nxp
n

pm+i+1pi+1 − pi−nxp
2n−i

pm+n+1pi+1 | ≤ p−(i+1)+r(n+i+2)pn−m

c̃p
n−m

.

Combining the last two inequalities yields (7.2.4).
Finally, we prove (7.2.5). From the definition of c,

|pjxp
n−j

pm+n+1pn+1+j | = p−j |xp
m−j

pm+n+1pn+1+j |p
n−m

≤ p−j+r(n+1+j)pn−m

cp
n−m

.

Recalling that c̃ ≥ pc, we are done if we show that −j + rjpn−m ≤ −1 + pn−m.
This holds for all j ≥ 1, because r < 1 and pn−m ≤ 1.

This completes the proof of (7.2.1). Combining (7.2.1) and Lemma 6.7 (the
conditions of which we checked above), we have that

|x̃p
m−n

pmpn − x
pm

pm+n+1pn+1 | ≤ p−(m−n+1)+r(m+1)c̃

= p(r−1)(m+1)+nc̃

≤ p(r−1)n+nc̃
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(because r − 1 < 0 and n ≤ m)

= prnc̃.

Since also |xp
m

pm+n+1pn+1 | ≤ pr(n+1)c ≤ prnc̃ by the definition of c, we have that

|x̃p
m−n

pmpn | ≤ prnc̃. As noted earlier, this proves the desired result. �

Corollary 7.3. Let x ∈W←−∗(Cp)r, for 0 ≤ r < 1. Let (. . . , wp−1 , w1) denote the tail

of ghost components corresponding to x. If limm→∞ wp
m

p−m = 0, then x is divisible

by p in W←−∗(Cp)r.

Proof. Note first that the limit in question always exists; this was shown in the proof
of Theorem 6.8, where the limit was denoted (y1)(0). The proof showed moreover

that |wp−m − (y1)(m)| ≤ p−1+rp
−m

cp
−m

. In our case, (y1)(m) = 0 for every m, so

|wp−m | ≤ p−1+rp−m

cp
−m

. Thus we see that the condition of Lemma 7.2 is satisfied
(with κ = r + logp(c)). �

Proposition 7.4. The ring Ã† is local, with maximal ideal (p). In particular, the

ring B̃† is a field.

Proof. We first check that p belongs to the Jacobson radical of Ã†, i.e., that for
any x ∈ Ã†, 1 + px is a unit in Ã†. Since F is bijective on Ã†, 1 + px is a unit
if and only if 1 + pF (x) is; we may thus assume without loss of generality that

x ∈ W←−∗(Cp)r for some r ∈ [0, 1). Put c = |x|r = supm,n≥0{|xpmpn |p
m−n

p−nr}. For

each nonnegative integer k, we have

|x|pkr = |F−k(x)|r = sup
n,m≥0

{|xpm+kpn |p
m−n

p−nr} ≤ sup
n≥0
{(cpnr)p

−k

p−nr}.

As k → ∞, the term in the final supremum tends to p−nr ≤ 1 unless c = 0, so

lim supk→∞ |x|pkr ≤ 1. By Remark 6.10, |px|pkr = p−p
kr|x|pkr, so we can choose

k so that |px|pkr < 1. Since the set of y ∈ W←−∗(Cp)r with |y|r ≤ |pF−k(x)|r is

p-adically complete, the geometric series (1 + pF−k(x))−1 converges in W←−∗(Cp)r.
We conclude that 1 + pF−k(x) is a unit in Ã†, as then is 1 + px.

We next verify that if x ∈ Ã† is not a multiple of p, then there is a unit y ∈ Ã†

congruent to x modulo p. Once again, we may assume without loss of generality

that x ∈ W←−∗(Cp)r for some r ∈ [0, 1). We choose y with ypm1 = limj→∞ xp
j

pm+j1

and ypmpn = 0 for n ≥ 1 (we saw in the proof of Theorem 6.8 that the limit in
question exists). In other words, we are choosing y to be a sequence of Teichmüller

elements. Because we are assuming x is not divisible by p even in Ã†, we know
by Corollary 7.3 that the element y is nonzero. Clearly any nonzero element of
W←−∗(Cp)r consisting of Teichmüller elements is invertible. So we are done if we

show that x− y is divisible by p in W←−∗(Cp)r. We are done if we can find κ with

|xpm1 − ypm1| ≤ p−1+κp
−m

,

and this is implied by the proof of Theorem 6.8 (see (6.8.4)).
We have just shown that each element in the complement of (p) is a unit. Con-

versely, Ã† is p-adically separated by Lemma 6.11 and the fact that if an element of
W←−∗(Cp)r is divisible by p in Ã†, then it is divisible by p in W←−∗(Cp)r (see the proof
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of Lemma 7.2). In particular, p is not a unit, so it generates the unique maximal

ideal of Ã†. This ring is thus local; again because it is p-adically separated, B̃† is
a field. �

For any finite extension K of Qp, the absolute Galois group GK acts on OCp
and

Cp, and hence on all rings constructed functorially from these. (See for instance [4,
Section 2.1] for some properties of this action.)

Proposition 7.5. Let K ⊇ Qp denote a finite extension, and let K ⊇ K0 ⊇ Qp
denote the maximal unramified subextension. Then (B̃†)GK = K0.

Note that for k0 the residue field of K0, there is a natural identification of
K0
∼= W (k0)[ 1p ] with a subring of Ã+[ 1p ]. This can be seen either using Dwork’s

lemma (Lemma 1.6) or using the diagonal homomorphism W (k0) → W (W (k0))
(Remark 1.8) followed by Witt vector functoriality.

Proof. Suppose x ∈ B̃† is invariant; after multiplying by a power of p and applying
a suitable power of Frobenius, we may reduce to the case x ∈ W←−∗(Cp)r for some

r ∈ [0, 1). The tail of x must be GK-invariant, so by Proposition 6.12, the entire
ghost sequence (. . . , wp−1 , w1) must consist of elements of K.

Since the wp−j are all in K, so are the xpmpn . From the proof of Theorem 6.8,

the y
(j)
pi are p-adic limits of certain powers of the xpmpn , so they also belong to

K. But the only way to obtain a sequence of elements of K which is coherent for
the p-power map is to take a sequence consisting of powers of a fixed Teichmüller
element (since those are the only elements admitting all p-power roots in K). Since
Teichmüller elements of K generate unramified extensions of Qp, this shows that

the terms y
(j)
pi are in fact in K0. The proof of Theorem 6.8 expresses each wp−j

as a p-adic limit of the terms y
(j)
pi , and hence each wp−j is also in K0. Finally, the

particular expressions for the elements wp−j show that ϕ(wp−j−1) = wp−j , where
ϕ is the Frobenius map on K0, hence we can associate such a sequence with the
single element w1 ∈ K0. This completes the proof. �

Definition 7.6. Put B̃+ := Ã+[ 1p ]. Let B̃+
rig denote the Fréchet completion of B̃+

with respect to the norms | · |r for all r ≥ 0. Let B̃†rig denote the union over all

r ≥ 0 of the Fréchet completion of W←−∗(Cp)r[
1
p ] with respect to the norms | · |s for

all s ≥ r.
The ring B̃†rig admits a tail map, while B̃+

rig admits a full ghost map to
∏
pZ Cp.

However, neither of these maps is injective. For example, choose [ε] = ([ε1], [εp], . . . ) ∈
Ã+ with εpn ∈ OCp

a primitive pn-th root of unity. Then the series

t := log([ε]) = −
∞∑
i=1

1

i
(1− [ε])i

defines an element of B̃+
rig for which F (t) = pt. However, since ε1 = 1, we have

w1(t) = 0, and hence wpn(t) = 0 for all n.

Definition 7.7. Let B+
dR be the completion of B̃+ with respect to the kernel of

w1; this gives the usual definition because w1 coincides with the map θ by Proposi-
tion 5.8. It is equivalent to take the completion of S̃−1Ã+ with respect to the kernel
of w1.
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Let Be denote the graded ring whose component at a nonnegative rational number
r/s consists of those x ∈ B̃+

rig for which F s(x) = prx. The rings Be and B+
dR can

be used together to give a very compact description of all of the operations in p-adic
Hodge theory; this was originally done by Berger [2]. More recently, Fargues and
Fontaine [5] have reformulated Berger’s description in a manner that improves the
analogy with certain related constructions in positive characteristic, by using the
language of vector bundles on curves.
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