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Abstract. We prove there is no ring with unit group isomorphic to Sn for

n ≥ 5 and that there is no ring with unit group isomorphic to An for n ≥ 5,
n 6= 8. To prove the non-existence of such a ring, we prove the non-existence of

a certain ideal in the group algebra F2[G], with G an alternating or symmetric

group as above. We also give examples of rings with unit groups isomorphic to
S1, S2, S3, S4, A1, A2, A3, A4, and A8. Most of our existence results are well-

known, and we recall them only briefly; however, we expect the construction
of a ring with unit group isomorphic to S4 to be new, and so we treat it in

detail.

1. Introduction

Throughout this paper, our rings are assumed associative and to have identity
element 1. We will consider a special case of the general question: For what finite
groups G is there a ring with unit group isomorphic to G? We shall see in the
following example that this is a nontrivial condition.

Example 1.1. There does not exist a ring whose unit group is cyclic of order 5.
The proof is by contradiction. A ring R such that R× ∼= C5 would have no units of
order 2, and hence 1 = −1 in R. Thus R is an F2-algebra. By considering the ring
homomorphism

F2[x]/(x5 − 1)→ R

which sends x to a generator of R×, and by identifying F2[x]/(x5−1) with F2×F24 ,
we find that R must contain an isomorphic copy of F24 . Hence R has at least 15
units, and this is a contradiction.

Remark 1.2. The finite groups of odd order which occur as the unit group of a
ring were determined in [2].

In the present paper, we determine which symmetric groups and alternating
groups are unit groups. Our proofs are similar in several ways to the above proof.
For example, although our groups do have elements of order 2 (except in trivial
cases), we exploit the fact that our groups have no central elements of order 2
(except in trivial cases).

The main result proved in this paper is the following.

Theorem 1.3. The only finite symmetric groups and alternating groups which are
unit groups of rings are the groups

S1, S2, S3, S4, A1, A2, A3, A4, A8.
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Proof. The trivial abelian cases of S1, S2 and A1, A2, A3 are treated in Section 7.1.
The well-known case of S3 is discussed in Section 3. An example of a ring with
unit group isomorphic to S4 is given in Theorem 6.3. The fact that Sn does not
occur as the unit group of a ring for any n ≥ 5 is given in Theorem 4.1. The fact
that An does not occur as the unit group of a ring for any n ≥ 5, n 6= 8 is given in
Theorem 5.1. Two examples of rings with unit group isomorphic to A4 are given
in Section 7.2. The classical result that M4×4(F2) has unit group isomorphic to A8

is recalled in Theorem 7.6. �

Remark 1.4. Let G denote a finite group with no non-trivial normal 2-subgroup.
It is possible to reduce the task of finding a ring with unit group G to the task of
finding an isomorphism between G and a finite direct product of groups GLn(F),
where F is a finite field of characteristic 2. In particular, this method can reproduce
our results for Sn and An with n ≥ 5, albeit in a less elementary way. We plan to
describe this result in subsequent work.

Notation and conventions. Our rings are assumed unital but not necessarily
commutative, and ring homomorphisms send 1 to 1. Also, when we say S is a
subring of R, we include the assumption that 1 is the same in both rings. For a
ring R, we let R× denote the unit group of R. The groups G considered in this
paper will be finite. For a group G we let Z(G) denote its center. Following the
convention in [5], for a group ring R[G] and for T a subset of G, we set

T̂ :=
∑
t∈T

t ∈ R[G].

(Here R will be understood from context; for us, R is typically F2.) We also write
〈T 〉 for the subgroup of G generated by T . We write ι for the identity element of
An or Sn. When we discuss a normalizer NG(T ) or a centralizer ZG(T ), we do not
necessarily assume that T is a subgroup. For example, NG(T ) is the set of g ∈ G
such that gTg−1 = T ; in particular, it is not necessarily the same as the normalizer
of 〈T 〉. We write Dn for the dihedral group of order 2n.

2. Unit groups with trivial center

In this section, we describe some general results which will be applied to the
special cases of alternating groups and symmetric groups in the following sections.
Our motivating question is the following.

Question 2.1. Let G denote a group with trivial center. Does there exist a ring
with unit group isomorphic to G?

We begin with an easy exercise.

Proposition 2.2. Let G denote a finite group with trivial center, and let R denote
a ring with unit group R× ∼= G. Then R has characteristic 2.

Proof. The elements 1 and −1 are units in R and are in the center of R, hence are
in the center of R×. Hence 1 = −1. �

The following reduces our Question 2.1 into a question about finite rings.

Proposition 2.3. Let G denote a finite group with trivial center. If there exists a
ring with unit group isomorphic to G, then there exists a two-sided ideal I ⊆ F2[G]
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such that the quotient F2[G]/I has unit group isomorphic to G, and furthermore
such that the natural composition

G ⊆ F2[G]× → (F2[G]/I)× ∼= G

is the identity map.

Proof. Let R denote a ring with unit group isomorphic to G, and fix an isomorphism
R× ∼= G. There exists a unique homomorphism

ϕ : Z[G]→ R,

such that the induced map

ϕ : G→ Z[G]× → R× ∼= G

is the identity map. Because G has trivial center, by Proposition 2.2, we know R
has characteristic 2. Hence our homomorphism ϕ factors through a homomorphism

ϕ : F2[G]→ R.

Let R′ denote the image of ϕ. Because R′ is a subring of R, we know that the unit
group of R′ is a subgroup of G. On the other hand, we checked above that the
image of ϕ contains G. Hence the unit group of R′ is equal to G. Taking I to be
the kernel of ϕ completes the proof. �

Our approach to Question 2.1 will be to consider the restrictions on an ideal
I ⊆ F2[G] as described in Proposition 2.3.

Hypothesis 2.4. Throughout this section, let G denote a finite group with trivial
center and let I denote an ideal as in Proposition 2.3. We also write ϕ for the
natural map F2[G]→ F2[G]/I.

Definition 2.5. The weight of an element x ∈ F2[G] is the number of non-zero
coefficients that appear in the expression

x =
∑
g∈G

agg (ag ∈ F2).

Lemma 2.6. The ideal I contains no elements of weight 2.

Proof. We prove that if g+h ∈ I, then g = h; this implies that I contains no weight
2 elements. If g + h ∈ I, then ϕ(g) = −ϕ(h). Because our ring is characteristic 2,
this implies ϕ(g) = ϕ(h). Because we have assumed that the restriction of ϕ to G
is injective, this can only happen if g = h. �

Lemma 2.7. Let x ∈ F2[G] denote a unit. Then there exists σx ∈ G such that
x+ σx ∈ I.

Proof. This follows from the following remarks:

• ϕ(x) is a unit and so ϕ(x) = ϕ(σx) for some σx ∈ G;
• x ≡ σx mod I for some σx ∈ G;
• x+ σx = x− σx because our ring is characteristic 2.

�

Proposition 2.8. Let T̂ ∈ F2[G] denote a unit, which we view as arising from
a subset T ⊆ G. The element σT̂ described in Lemma 2.7 is in the centralizer of
NG(T ) in G, where NG(T ) is the normalizer of T in G.
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Proof. Because I is a two-sided ideal, for any g ∈ G we have

g(T̂ + σT̂ ) ∈ I

(T̂ + σT̂ )g ∈ I.

In particular, taking g ∈ NG(T ) and adding these last two elements, we find

gT̂ + T̂ g + gσT̂ + σT̂ g ∈ I
gσT̂ + σT̂ g ∈ I.

By Lemma 2.6, the elements gσT̂ and σT̂ g cannot be distinct elements of G. Hence
g and σT̂ commute. Because g ∈ NG(T ) was arbitrary, we deduce that σT̂ is in the
centralizer of NG(T ) in G, as required. �

We are now ready to apply these general results to some specific groups.

3. An example: unit group S3

There is a well-known ring with unit group isomorphic to S3, namely, the matrix
ring M2×2(F2). In this section, we apply the general techniques of the previous
section to the group S3 as a way of illustrating our approach.

The symmetric group S3 has trivial center, and so the results of Section 2 all
apply in the case G ∼= S3. We consider the restrictions on an ideal I ⊆ F2[S3] such
that

(F2[S3]/I)× ∼= S3,

and such that furthermore the induced map

S3 → F2[S3]× → (F2[S3]/I)× ∼= S3

is the identity map.
Consider the element

H1 :=
∑
σ∈S3

σ ∈ F2[S3]

corresponding to the full subgroup S3. It is easy to check that H2
1 = 0 and that

(H1 + ι)2 = ι. Hence H1 + ι is a unit in F2[S3]. If we write T = S3 \ {ι}, then we

can abbreviate this unit by T̂ . By Lemma 2.7, there must exist an element σT̂ ∈ S3

such that T̂ + σT̂ ∈ I. Because the normalizer of T = S3 \ {ι} in S3 is the full

group S3, by Proposition 2.8, we must have σT̂ = ι, and hence T̂ + ι ∈ I, and hence
H1 ∈ I. The reader may check that the 32-element ring F2[S3]/(H1) has unit group
isomorphic to S3.

Let τ ∈ S3 denote a 3-cycle, and let H2 := ι + τ + τ2. Then (H2) = (H1, H2),
and the reader may check that the 16-element ring F2[S3]/(H2) is isomorphic to
M2×2(F2). Hence F2[S3]/(H2) is another example of a ring with unit group iso-
morphic to S3.

4. Unit group Sn

Having analyzed the case of S3 in the previous section, we postpone the case of
S4 and turn our attention to Sn for n ≥ 5. These groups have trivial center, so
again the results of Section 2 apply. Our goal is to prove the following theorem.

Theorem 4.1. There does not exist a ring with unit group isomorphic to Sn for
any n ≥ 5.
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Proof. By way of contradiction, we suppose that we have a ring with unit group
isomorphic to Sn. Let I ⊆ F2[Sn] denote an ideal satisfying the hypotheses of
Proposition 2.3. Our goal is to produce an element of weight 2 in the ideal I and
thus reach a contradiction.

Let τ = (12345) and consider the element T := ι+τ2+τ3 ∈ F2[Sn]. The fact that
T is a unit of order 3 and with inverse 1+τ+τ4 is readily verified1. By Lemma 2.7,
there exists some σ ∈ Sn such that ι + τ2 + τ3 + σ ∈ I. By Proposition 2.8, the
element σ must be in the centralizer of the normalizer of {ι, τ2, τ3} in Sn. One may
check that the normalizer of {ι, τ2, τ3} in Sn is D5 × Sn−5 and that the centralizer
of D5 × Sn−5 is Z(Sn−5).

Thus σ ∈ Z(Sn−5). If σ = ι, then ι + τ2 + τ3 + ι = τ2 + τ3 ∈ I is a weight 2
element in I, which is not allowed. The only remaining case is n = 7 and σ = (67).
Let T = ι+ τ2 + τ3 + σ ∈ I. Raising both sides to the 16-th power, we find that

T 16 = ι16 + (τ2)16 + (τ3)16 + σ16 ∈ I.
(We used here that τ and σ commute, and that our base ring has characteristic 2.)
Because τ has order five and σ has order two, we find

T 16 = ι+ τ2 + τ3 + ι = τ2 + τ3 ∈ I,
which is a contradiction. This completes the proof that there are no rings with unit
group isomorphic to Sn, for n ≥ 5. �

5. Unit group An

The methods of the previous section carry over directly to the case of the alter-
nating groups An. The only substantive difference is that our proof breaks down
in the case A8, essentially because A8−5 = A3 is abelian. This is to be expected,
though, because as we will see in Theorem 7.6, the ring M4×4(F2) has unit group
isomorphic to A8.

Theorem 5.1. There does not exist a ring with unit group isomorphic to An for
any n ≥ 5, n 6= 8.

Proof. The proof is very similar to the proof of Theorem 4.1, so we focus only
on the main steps. Let I ⊆ F2[An] denote an ideal satisfying the hypotheses of
Proposition 2.3. Because the 5-cycle τ = (12345) is in An for any n ≥ 5, we again
have a unit ι + τ2 + τ3, and we again wish to consider possible values of σ ∈ An
such that ι+ τ2 + τ3 + σ ∈ I. One may check that the normalizer of {ι, τ2, τ3} in
An is D5 × An−5. If n ≥ 5, n 6= 8, then the centralizer of this subgroup in An is
trivial, and hence σ = ι, and we are finished as before. �

Remark 5.2. If n = 8, then the element σ described in the previous proof should
be in the centralizer of D5 × A3; this centralizer is a cyclic group of order 3. In
the proof of Theorem 4.1, we at one point considered σ16. In the Sn case, we were
able to prove that σ16 was always trivial. In the A8 case, σ may have order 3, and
so the proof breaks down, as it should because (M4×4(F2))

× ∼= A8; see Theorem 7.6
below.

1The existence of such an order 3 unit T is explained as follows. By the Chinese Remainder

Theorem, F2[τ ] ∼= F2 × F24 . The unit group of F24 is cyclic of order 15 and hence F2[τ ]× has a

cyclic subgroup of order 3.
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6. Unit group S4

The only remaining nonabelian symmetric group to consider is S4. We describe
rings with unit group isomorphic to S4 in this section. We first need some results
similar to the results in Section 2.

Lemma 6.1. Let H ⊆ Sn denote a subgroup of even order. Then Ĥ2 = 0 ∈ F2[Sn]

and Ĥ + ι is a unit in F2[Sn]. (Recall our convention that we write Ĥ for the
element

∑
h∈H h ∈ F2[Sn].)

Proof. For the first assertion, we have

Ĥ2 = |H| · Ĥ = 0,

because |H| is even. For the second assertion, one checks that (Ĥ + ι)2 = ι. �

Proposition 6.2. Let R denote a ring with unit group isomorphic to S4, and let
I ⊆ F2[S4] denote an ideal as in Proposition 2.3.

(1) The ideal I contains Ĥ, for H an isomorphic copy of S3 (and hence for H
any isomorphic copy of S3) inside of S4.

(2) The ideal I contains either

ι+ (24) + (12)(34) + (1234)

or
ι+ (24) + (12)(34) + (1432).

Proof. To prove (1), let H denote an isomorphic copy of S3 contained inside of S4,

and view Ĥ as an element of F2[S4] as usual. Then by Lemma 6.1, Ĥ + ι is a unit
in F2[S4]. Then by Proposition 2.8, we find that

Ĥ + ι+ σ ∈ I
for some σ in the centralizer of H in S4. The only possibility is σ = ι, which
completes the proof of (1).

To prove (2), we again find a unit T ∈ F2[S4] and consider the possible values
of σ such that T + σ ∈ I. Let T = ι+ (24) + (12)(34). The fact that T is a unit of
order 4 with inverse

ι+ (1234) + (1432) + (14)(23) + (13)

is readily verified2. Using Magma, it was verified that σ = (1234) and σ = (1432)
were the only choices for which the two-sided ideal generated by T + σ did not
contain an element of weight 2. �

Theorem 6.3. Let J1 (respectively, J2) denote the two-sided ideal in F2[S4] gen-
erated by the two elements

ι+ (24) + (12)(34) + (1234) (respectively, ι+ (24) + (12)(34) + (1432))

and
ι+ (12) + (23) + (13) + (123) + (132).

Let R1 := F2[S4]/J1 and let R2 := F2[S4]/J2.

2The unit T was found using [4, Theorem 1.2], which shows that (24) + (12)(34) is nilpotent,

because it is an even weight element consisting of elements in a copy of the 2-group D4 ⊂ S4.
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The rings R1 and R2 are nonisomorphic rings with 128 elements and with unit
group isomorphic to S4. Every ring with unit group isomorphic to S4 contains a
subring isomorphic to either R1 or R2.

Proof. It can be verified in Magma that R1 is a ring with 128 elements and with
exactly 24 distinct units corresponding to the cosets σ + J1, for σ ∈ S4. (Sample
Magma code which verifies this claim is given in Appendix A.) The same can be
done for R2, or it can be checked that R2

∼= Rop
1 , from which the claim that

R×2
∼= R×1 follows.

We next check that R1 and R2 are not isomorphic. An isomorphism ψ : R1 → R2

would induce an isomorphism ψ : R×1 → R×2 . Because the only automorphisms of
S4 are inner automorphisms, the restriction of ψ to S4 would have to correspond to
conjugation by some element τ ∈ S4. Consider the image of an arbitrary element
x := σ1 + · · ·+ σn ∈ J1 under the composition

F2[S4]→ F2[S4]/J1
ψ→ F2[S4]/J2.

On one hand, x must map to the coset J2. On the other hand, x must map to

τσ1τ
−1 + · · ·+ τσnτ

−1 + J2.

Thus we have shown that if there is an isomorphism ψ : R1 → R2, then there
exsts an element τ ∈ S4 such that τJ1τ

−1 ⊆ J2 and thus J1 ⊆ τ−1J2τ . Because J2
is a two-sided ideal, this would imply

J1 ⊆ τ−1J2τ ⊆ J2.
However, J1 ⊆ J2 implies that both the elements

ι+ (24) + (12)(34) + (1234) and ι+ (24) + (12)(34) + (1432)

are in J2, and hence so is their sum (1234) + (1432). This contradicts the fact that
the cosets (1234) + J2 and (1432) + J2 are distinct.

We now prove the final assertion, that any ring R with unit group isomorphic to
S4 contains a subring isomorphic to R1 or R2. We know that such a ring R contains
as a subring F2[S4]/I, where I is an ideal as in Proposition 2.3. So it suffices to
show that if I is an ideal as in Proposition 2.3, then I = J1 or J2. It was proven
in Proposition 6.2 that I must contain either J1 or J2. So it remains only to show
that the ideal I cannot be strictly larger than J1 or J2. It was verified in Magma
that for each nonzero principal ideal (x) in R1, the ring R1/(x) has at most 6 units,
and hence cannot have unit group isomorphic to S4. �

7. The remaining cases

7.1. The abelian cases. These cases are trivial, but we include them for the sake
of completeness.

Proposition 7.1. For each group G in the list

S1, S2, A1, A2, A3,

there exists a ring with unit group isomorphic to G.

Proof. The groups S1, S2, A1, A2, A3 are cyclic groups of order 1, 2, 1, 1, 3, respec-
tively. Hence, they are isomorphic to the unit groups of the fields F2,F3,F2,F2,F4,
respectively. �
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7.2. Unit group A4. In this section we give two different rings with unit group
isomorphic to A4. We describe the first ring as an explicit quotient of F2[A4]. We
describe the second ring as a quotient of the ring of Hurwitz quaternions.

Theorem 7.2. Let J ⊆ F2[A4] denote the two-sided ideal generated by the elements

ι+ (12)(34) + (13)(24) + (14)(23)

and
ι+ (132) + (12)(34) + (143).

Then the quotient F2[A4]/J is a ring with 32 elements and with unit group isomor-
phic to A4.

Proof. By adapting the Magma code in Appendix A, this assertion is readily veri-
fied. �

We next use quaternions to give a second example of a ring with unit group
isomorphic to A4. First we set some notation.

Definition 7.3. Let B denote the division algebra Q+Qi+Qj +Qk, where i, j, k
are defined as in the Hamilton quaternions. Let ω = 1+i+j+k

2 and let O ⊂ B denote

Z⊕ Zi⊕ Zj ⊕ Zω ⊆ B;

then O is a subring of B known as the Hurwitz quaternions.

The authors thank Noam Elkies for the following example.

Theorem 7.4. Let O denote the ring of Hurwitz quaternions, as in Definition 7.3.
The quotient ring O/2O is a ring with 16 elements and with unit group isomorphic
to A4.

Proof. By [3, Proposition 3], the unit group O× is isomorphic to the binary tetra-
hedral group; in particular, there is a short exact sequence

1→ {±1} → O× → A4 → 1.

The kernel of the induced map

O× → (O/2O)
×

is exactly O× ∩ (1 + 2O) = {±1}. Hence (O/2O)× contains a subgroup isomorphic
to A4. On the other hand, O/2O is a ring with 16 elements. Hence its unit group
must be precisely A4. �

Remark 7.5. The ring O/2O from Theorem 7.4 is isomorphic to F2[A4]/J , where
J is the ideal generated by ι+ (123) + (132).

7.3. Unit group A8. The only remaining case is A8, which we recall in the fol-
lowing theorem.

Theorem 7.6. The unit group of M4×4(F2) is isomorphic to A8.

Proof. We have

M4×4(F2)× = GL4(F2) = PSL4(F2) ∼= A8.

For this last isomorphism, see [7, Section 3.12.1]. �
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Appendix A. Sample Magma code

To find a ring with unit group isomorphic to S4, we explicitly computed the unit
group of a certain quotient of F2[S4]. The computation was done in Magma, and
we next provide sample code which performs this computation.

Example A.1. The following was used at the beginning of the proof of Theorem 6.3.
It first creates the ring R1 and counts its total number of elements as well as its
number of units. It then ensures that no elements σ1 6= σ2 become equal in R1

∼=
F2[S4]/I.

G:=SymmetricGroup(4);

F2G:=GroupAlgebra(GF(2), G);

x1:= F2G!G!1+F2G!G!(2,4)+F2G!G!(1,2)(3,4)+F2G!G!(1,2,3,4);

x2:=F2G!0;

H1:=sub<G|(1,2),(1,2,3)>;

for h in H1 do

x2:=x2+F2G!h;

end for;

I:=ideal<F2G|x1, x2>;

R1:= F2G/I;

numunits:=0;

for x in R1 do

if IsUnit(x) then

numunits:=numunits+1;

end if;

end for;

#(F2G/I);

numunits;

for y1 in G do

for y2 in G do

if F2G!y1 + F2G!y2 in I then

if y1 ne y2 then

y1;

y2;

end if;

end if;

http://magma.maths.usyd.edu.au/calc/
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end for;

end for;
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