
COPARTITIONS

HANNAH E. BURSON AND DENNIS EICHHORN

Abstract. We develop the theory of copartitions, which are a generalization of partitions with

connections to many classical topics in partition theory, including Rogers-Ramanujan partitions,

theta functions, mock theta functions, partitions with parts separated by parity, and crank statis-
tics. Using both analytic and combinatorial methods, we give two forms of the three-parameter

generating function, and we study several special cases that demonstrate the potential broader

impact the study of copartitions may have.

1. Introduction

In a study of combinatorial interpretations of Watson’s third order mock theta functions, An-
drews [2] introduced the function EO∗(n), which counts the number of integer partitions of n with
all even parts smaller than all odd parts, where the only part appearing an odd number of times
is the largest even part. In introducing this function, Andrews opened the door to a wide array of
further questions about partitions with parts separated by parity, first formalized by Andrews in
[3].

In, [2], Andrews noted many interesting properties of EO∗(n), including that its generating
function is simply 1

2 (ν(q) + ν(−q)), where

ν(q) :=

∞∑
n=0

qn
2+n

(−q; q2)n+1

is one of Watson’s third order mock theta functions. Additionally, Andrews noted that, like the
ordinary partition function, EO∗(n) enjoys divisibility by five in an arithmetic progression:

EO∗(10n+ 8) ≡ 0 (mod 5).

In [6], Chern provided a combinatorial proof of the generating function for EO∗(n). Then, in [7],
Chern studied further properties of EO∗(n), with a special focus on the remainder of the largest
even part modulo 4.

We note that here we have adopted Chern’s notation, rewriting Andrews’ original EO(n) from
[2] as EO∗(n). Chern [6] renamed EO(n) to more easily discuss its overpartition analogs.

In this paper, we generalize EO∗(n) by introducing new partition-theoretic objects called copar-
titions. These objects reveal an inherent symmetry in partitions counted by EO∗(n) that was not
previously obvious. Copartitions are counted by the function cpa,b,m(n) defined in Section 3, where
cp1,1,2(n) = EO∗(2n). Additionally, copartitions are in bijective correspondence with the subset
of partitions called capsids, as defined by Garvan and Schlosser [8] to combinatorially treat the
relationship between Ramanujan’s tau function and t-core partitions.
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We find that cpa,b,m(n) has a beautiful infinite-product generating function (Section 3). Special
cases of cpa,b,m(n) provide a new framework for understanding a surprising number of classical
partition-theoretic objects, including the Rogers-Ramanujan functions, the summatory function of
p(n), the function summing the largest parts over all partitions of n, and the function summing the
perimeters over all partitions of n (Section 4).

2. Background on Partitions

In this paper, we use the language of integer partitions and q-series.
By a partition of a non-negative integer n, we refer to a multiset of positive integers {λ1, λ2, . . . , λr}

such that λ1 ≥ λ2 ≥ . . . ≥ λr and λ1 + λ2 + . . . + λr = n. We call n the size of the partition and
write |λ| = n. When a partition λ has many parts, it is useful to write λ = {1f1 , 2f2 , 3f3 , . . .} where
only finitely many fi are nonzero and λ has fi parts of size i. This notation is called frequency no-
tation. For example, the partition {6, 6, 6, 5, 5, 4, 3, 3, 3, 1, 1, 1} can be written in frequency notation
as {13, 33, 4, 52, 63}. When studying integer partitions, it can be useful to use the q-rising factorial

(a; q)n =

n−1∏
k=0

(1− aqk).

When |q| < 1, we can also write

(a; q)∞ = lim
n→∞

(a; q)n =

∞∏
k=0

(1− aqk).

Integer partitions can be graphically represented as an array of boxes (also called cells), with
each row left-justified and each column top-justified. Due to the justification of the columns, the
rows are in non-increasing order, so we can think of λi as the number of boxes in the ith row of
the diagram. This graphical representation is called a Young diagram (or Ferrers diagram). For a
partition λ, we define the conjugate partition λ′ as the partition obtained by reflecting the Young
diagram of λ about the line y = −x. Equivalently, the part λ′i is equal to the number of boxes in
the ith column of the Young diagram of λ.

Sometimes, especially when studying partitions with parts from a specific arithmetic progression,
it is useful to work with an adaptation of a Young diagram called an m-modular diagram. To obtain
the m-modular diagram for a partition λ, we represent parts of size mk+ r as a box containing an
r followed by k boxes, each containing an m. Note that the first column of an m-modular diagram
shows the remainders modulo m of each part of the partition.

A reoccurring theme throughout this manuscript is the importance of the number of distinct
parts of a partition. Thus, we propose using the term diversity of a partition to mean the number
of different part sizes occurring in that partition. We use dv(λ) to denote the diversity of the
partition λ. In [10], Kim constructs an elaborate generating function for p(k, n), the number of
partitions of n with diversity k, as a sum over partitions of k.

3. Definition, Diagrams, and Generating Function

In this section, we introduce (a, b,m)-copartitions and the function cpa,b,m(n).

Definition. An (a, b,m)-copartition is a triple of partitions (γ, ρ, σ), where each of the parts of γ
is at least a and congruent to a (mod m), each of the parts of σ is at least b and congruent to b
(mod m), and ρ has the same number of parts as σ, each of which have size equal to m times the
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number of parts of γ.
When a, b,m ≥ 1, we let cpa,b,m(n) denote the number of (a, b,m)-copartitions of size n.

Although ρ is completely determined by γ and σ, the graphical representation we use suggests
that the natural way to write the triple is (γ, ρ, σ). We refer to γ as the ground of a copartition
and σ as the sky.

Example 3.1. The (1, 3, 4)-copartitions of size 12 are(
{9, 13}, ∅, ∅

)
,
(
{52, 12}, ∅, ∅

)
,
(
{5, 17}, ∅, ∅

)
,
(
{112}, ∅, ∅

)
,

({5}, {4}, {3}) , ({1}, {4}, {7}) , and
(
∅, ∅, {34}

)
.

Thus, cp1,3,4(12) = 7.

To represent the (a, b,m) copartition (σ, ρ, γ) graphically, we append the m-modular diagram for
σ to the right of the m-modular diagram for ρ. Then, we append the conjugate of the m-modular
diagram for γ below ρ.

Example 3.2. The following diagram represents the (a, b,m)-copartition ({3m+ a, 2m+ a, 2m+
a, a}, {4m, 4m}, {3m+ b, 2m+ b}).

m m m m b m m m

m m m m b m m

a a a a

m m m

m m m

m

It is sometimes useful to fuse the parts of ρ and σ together as parts of size at least m ∗ ν(γ) and
congruent to b (mod m) by appending each part of σ at the end of each part of ρ. We use ρ|σ to
denote the partition obtained by this fusion and call it the enlarged sky. To separate the partition
ρ|σ back to separate partitions ρ and σ, we must know the number of parts of γ.

Example 3.3. If ρ = {4m, 4m, 4m} and σ = {2m+b, 2m+b, b}, then ρ|σ = {6m+b, 6m+b, 4m+b}

m m m m b m m

m m m m b m m

m m m m b

−−−−→ b m m m m m m

b m m m m m m

b m m m m

Example 3.4. If ρ|σ = {5m + b, 4m + b, 4m + b, 4m + b} and there are 3 ground parts, we know
that ρ = {3m, 3m, 3m, 3m} and σ = {2m+ b,m+ b,m+ b,m+ b}.

We now show that cpa,b,m(n) is a generalization of EO∗(n)

Theorem 3.5.

cp1,1,2(n) = EO∗(2n)
3



Proof. We provide a bijective proof here. This theorem may also be proven by applying q-series
techniques to the generating function provided in Section 3.1.

Consider a (1, 1, 2)-copartition (γ, ρ, σ) of size n. Duplicate each part of ρ|σ to obtain a partition
into an even number of odd parts of size ≥ 2ν(γ). Let γ′ be the conjugate partition of γ. Double
the size of each part in γ′ to obtain a partition into even parts of size ≤ 2ν(γ) where only the
largest part appears an odd number of times. By combining the two resulting partitions, we have
a partition of size 2n where all even parts are smaller than all odd parts and the largest even part
is the only part appearing an odd number of times.

The inverse map is defined by taking a partition counted by EO∗(2n), taking the conjugate of the
partition consisting of all the even parts divided by two as the ground and half of the appearances
of each odd part as the enlarged sky. �

3.1. Copartition Generating Function. Next, we explore the generating function for coparti-
tions, showing that it can be written as an infinite product.

Theorem 3.6. Define cpa,b,m(w, s, n) to be the number of (a, b,m)-copartitions of size n that have
w ground parts and s sky parts. Then,

cpa,b,m(x, y, q) :=

∞∑
n=0

∞∑
w=0

∞∑
s=0

cpa,b,m(w, s, n)xsywqn

=
(xyqa+b; qm)∞

(xqb; qm)∞(yqa; qm)∞
.

Analytic proof. We begin by noting that

qmsw+aw+bs

(qm; qm)w(qm; qm)s

generates all copartitions with s sky parts and w ground parts. Then, by summing over w and s
and using the variables x and y to keep track of the number of sky and ground parts, respectively,
we can see that

cpa,b,m(x, y, q) =

∞∑
w=0

∞∑
s=0

xsywqmsw+aw+bs

(qm; qm)w(qm; qm)s
.

Then,

cpa,b,m(x, y, q) =

∞∑
w=0

∞∑
s=0

xsywqmsw+aw+bs

(qm; qm)w(qm; qm)s

=

∞∑
w=0

ywqaw

(qm; qm)w

∞∑
s=0

xsqmsw+bs

(qm; qm)s

=

∞∑
w=0

ywqaw

(qm; qm)w(xqmw+b; qm)∞
(1)

=
1

(xqb; qm)∞

∞∑
w=0

ywqaw(xqb; qm)w
(qm; qm)w

=
(xyqa+b; qm)∞

(xqb; qm)∞(yqa; qm)∞
.(2)

Note that (1) and (2) follow from the q-binomial theorem [14, Eq. 17.2.37]. �
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Combinatorial proof of Theorem 3.6. Consider the following equivalent form of Theorem 3.6.

(3)
1

(xqb; qm)∞(yqa; qm)∞
=

1

(xyqa+b; qm)∞

∞∑
n=0

∞∑
w=0

∞∑
s=0

cpa,b,m(w, s, n)xsywqn.

Let Pr,m be the set of partitions into parts congruent to r (mod m) and let CPa,b,m be the set
of (a, b,m)-copartitions. To prove (3), we define a size-preserving bijection

φ : Pa,m × Pb,m → Pa+b,m × CPa,b,m.
Let (π, λ) ∈ Pa,m × Pb,m. The main idea of the bijection is to pair parts of λ with parts of π

until the remaining parts of λ are all of size at least m times the number of parts remaining in π.
To achieve that goal, we let k be the smallest integer such that

(4) (λk − b)/m+ ν(λ)− k < ν(π).

Then, all the parts λj of λ with j ≥ k are matched with a part of π to form a partition in Pa+b,m
and the remaining parts of π and λ form a copartition. The details lie in our choice of which part of
π to match with each of the final ν(λ)−k+1 parts of λ. Specifically, for each λj with k ≤ j ≤ ν(λ),
combine λj with πν(π)−(ν(λ)−j)−(λj−b)/m to create a part of size a+ b (mod m). This creates a new
partition in Pa+b,m. Next, note that there are ν(π)− (ν(λ)−k+1) parts of π remaining. Moreover,
by (4), the smallest remaining part of λ is larger than m(ν(π) − ν(λ) + k − 1). Therefore, we are
left with a copartition (γ, ρ, σ) ∈ CPa,b,m where the remaining parts of λ form ρ|σ (the enlarged
sky) and the remaining parts of π become γ (the ground).

To see that φ is a bijection, we give the inverse map:

φ−1 : Pa+b,m × CPa,b,m → Pa,m × Pb,m.
Let µ ∈ Pa+b,m and (γ, ρ, σ) ∈ CPa,b,m. For each 0 ≤ k < ν(µ), choose the smallest j such that

(5) µν(µ)−k −m(j)− b ≤ γν(γ)−j
and call it jk (when necessary, we define γ0 = ∞). Then, for each 0 ≤ k < ν(µ), we add a
part of size m(jk) + b to ρ|σ and a part of size µν(µ)−k − (m(jk) + b) to γ. Then, we have
(γ, ρ|σ) ∈ Pa,m × Pb,m. �

Example 3.7. We work through an example of the bijection, starting with the pair (π, λ) =
({9, 54, 13}, {263, 22, 62, 2}) ∈ P1,4 × P2,4. Note that ν(π) = 8 and ν(λ) = 7. First, we find the
smallest k satisfying (4). Note that

(λ4 − 2)/4 + ν(λ)− 4 = 20/4 + 3 ≥ 8 and

(λ5 − 2)/4 + ν(λ)− 5 = 4/4 + 2 < 8,

so 5 is the smallest k satisfying (4).
Then, for each 5 ≤ j ≤ 7, we need to find the correct part of π to match with λj :

j λj ν(π)− (ν(λ)− j)− (λj − b)/m πν(π)−(ν(λ)−j)−(λj−b)/m
5 6 5 5
6 6 6 1
7 2 8 1

Then, by combining the parts in the second and fourth columns, we create {11, 7, 3} ∈ P3,4. The
remaining parts become a copartition with γ = {9, 53, 1} and ρ|σ = {263, 22}, so

φ(({9, 54, 13}, {263, 22, 62, 2})) = ({11, 7, 3}, ({9, 53, 1}, {204}, {63, 2})).
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For the inverse, we start with (µ, (γ, ρ, σ)) = ({11, 7, 3}, ({9, 53, 1}, {204}, {63, 2})) ∈ P3,4 ×
CP1,2,4. Then, for each 0 ≤ k < 3, we must figure out the smallest j satisfying (5):

k µν(µ)−k jk
0 3 0
1 7 1
2 11 1

Then, we add parts of size 4 · 0 + 2 = 2, 4 · 1 + 2 = 6, and 4 · 1 + 2 = 6 to ρ|σ and parts of size
3− 2 = 1, 7− 6 = 1, and 11− 6 = 5 to γ. We obtain φ−1(({11, 7, 3}, ({9, 53, 1}, {204}, {63, 2}))) =
({9, 53,5, 1,12}, {263, 22,62,2}), where the bold parts are those that were created from µ = {11, 7, 3}.

Example 3.8. The graphical representations of the partitions provide an insightful interpretation
of the bijection φ from the proof of Theorem 3.6. We show this graphical interpretation through
an example. For this example, we start with the pair

({4m+ a, 3m+ a, 3m+ a, 2m+ a, a}, {5m+ b, 4m+ b, 2m+ b, 2m+ b}) ∈ Pa,m × Pb,m.

λ:

b b b b b b

b b b b b

b b b

b b b

m m m m m

m m m m

m m

m m

π:

a

a

a

a

a

m m m m

m m m

m m m

m m

(a) Draw λ and π as m-modular diagrams.

b m m m m m

b m m m m

b m m

b m m

a a a a a

m m m m

m m m m

m m m

m

(b) Rotate π clockwise by 90◦ and shift each λi

ν(λ)−i squares to the right. This skewing provides
a graphical interpretation of the left side of (4).

b m m m m m

b m m m m

b m m

b m m

a a a a a

m m m m

m m m m

m m m

m

(c) Combine each part of λ with the part of π lying
below its final cell, if such a part exists.

a b m m m m m

a b m m m m m

m m m b m m

m m m b m

a a a

m m

m m

m

m

(d) Separate into a partition in Pa+b,m and a co-
partition in CPa,b,m.
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Remark. From Theorem 3.6, we can see that (a, b,m)-copartitions are equinumerous with the
(m, a, b)-capsid partitions defined by Garvan and Schlosser in [8].

Remark. From both the graphical representations of copartitions and the generating function, we
can see that

cpsa,sb,sm(sn) = cpa,b,m(n)

for any s, a, b,m ∈ N and n ∈ N0. Thus, we focus our study of cpa,b,m(n) on cases where
gcd(a, b,m) = 1.

By Theorem 3.6, we can see that cpa,b,m(1, 1, q) = cpb,a,m(1, 1, q). One reason copartitions are
a logical combinatorial interpretation of the coefficients of

(qa+b; qm)∞
(qa; qm)∞(qb; qm)∞

is that this symmetry presents itself clearly through conjugation. Recall that all partitions λ have
a conjugate partition λ′, which is obtained by reflecting the Young diagram of λ about the line
y = −x. Similarly, we define the conjugate of a copartition (γ, ρ, σ) as the copartition obtained
by reflecting the graphical representation about the line y = −x. This conjugate copartition is
precisely (σ, ρ′, γ), where ρ′ consists of exactly ν(γ) parts of size mν(σ) = mν(ρ). Equivalently, ρ′

is the partition obtained by conjugating the m-modular diagram representing ρ.

m m m b m m m

m m m b m

a a a

m m

m m

m

−−−−→

m m a m m m

m m a m m

m m a

b b

m m

m

m

Figure 2. Conjugation of an (a, b,m)-copartition.

Remark. Conjugation is a size-preserving bijection from CPa,b,m to CPb,a,m.

Remark. In [8], Garvan and Schlosser introduce an equivalent conjugation operation on capsid
partitions, noting that the symmetry is “not at all combinatorially obvious.” In contrast, the sym-
metry of copartitions is clear.

4. Special Cases

In this section, we explore special cases of (a, b,m)-copartitions, highlighting connections with
the Rogers-Ramanujan Functions, the sum of the partition function, and theta functions.

4.1. Rogers-Ramanujan Functions. Two well-studied functions in the areas of partitions and
q-series are the Rogers-Ramanujan functions [14, Sec. 17.2(vi)]:

G(q) :=

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
(6)
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H(q) :=

∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
.(7)

These functions were originally studied by Rogers [15], independently discovered by Ramanujan
and Schur [17], and further studied in a paper by both Rogers and Ramanujan [16]. Each of
these functions have both a sum and a product representation. The sum representations highlight
the connections to basic hypergeometric series, while the product representations highlight the
connections to modular functions.

Note that qn
2

/(q; q)n is the generating function for partitions into exactly n parts such that ad-
jacent parts have difference at least 2 (otherwise known as 2-distinct partitions), and 1

(q;q5)∞(q4;q5)∞

is the generating function for partitions into parts of size 1, 4 (mod 5). Therefore, we can rephrase
(6) as the following theorem.

Theorem 4.1 (Rogers-Ramanujan). The number of 2-distinct partitions of n is equal to the number
of partitions of n into parts that are congruent to either 1 or 4 modulo 5.

Similarly, we can combinatorially state (7) as follows.

Theorem 4.2 (Rogers-Ramanujan). The number of 2-distinct partitions of n with no parts of size
1 is the same as the number of partitions of n into parts that are congruent to either 2 or 3 modulo
5.

Through Theorem 3.6 and the product sides of (6) and (7), we can see the following connection
between the Rogers-Ramanujan functions and copartitions.

Corollary 4.3. If G(q) and H(q) are the Rogers-Ramanujan functions defined in (6) and (7), then

G(q) =
1

(q5; q5)∞

∞∑
n=0

cp1,4,5(n)qn and

H(q) =
1

(q5; q5)∞

∞∑
n=0

cp2,3,5(n)qn.

Corollary 4.3 motivates directions for future research. For example, a bijective proof of Corollary
4.3 could illuminate Rogers-Ramanujan function combinatorics.

4.2. (1, 1, 1)-copartitions. Another fascinating special case comes from setting a = b = m = 1.
Since the diagrams of (1, 1, 1)-copartitions have a 1 in every cell, they look like the Young diagrams
of ordinary partitions. When a, b, and m are not all equal, the diagram of an (a, b,m)-copartition
uniquely determines the copartition; however, when a = b = m, this is not the case. Since every
(1, 1, 1)-copartition has a specified number of ground parts and sky parts, the Young diagram of an
ordinary partition will appear as the diagram of several different (1, 1, 1)-copartitions.

Example 4.4. The Young diagram of 5 + 5 + 4 + 4 + 4 + 2 + 2 appears as four different (1,1,1)-
copartitions.
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1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

(∅, ∅, 52 + 43 + 22) (22, 25, 32 + 23) (52 + 32, 42, 12) (72 + 52 + 2, ∅, ∅)
Remark. Example 4.4 demonstrates the more general truth that the Young diagram of an ordinary
partition λ can be realized as the diagram of a (1, 1, 1)-copartition in dv(λ) + 1 ways.

At the same time, it is not hard to see that the Young diagram along with the number of
ground parts does completely determine the corresponding (1, 1, 1)-copartition. This leads us to
the following.

Theorem 4.5. For all n ∈ N0,

cp1,1,1(n) =

n∑
k=0

p(k).

Proof. We prove a bijection between the partitions of n− k and the (1, 1, 1)-copartitions of n with
k ground parts.

Let λ be a partition of size n − k. Choose 1 ≤ j ≤ ν(λ) such that λj is the largest part that is
no larger than k or choose j = ν(λ) + 1 if all parts of λ are larger than k. Then, we can define a
(1, 1, 1)-copartition (γ, ρ, σ) such that ρ|σ = {λ1, λ2, . . . , λj−1} and γ′ = {k, λj , λj+1, . . . , λν(λ)}.

To see that this map is a bijection, we note that the inverse map is defined by taking the
graphical representation of a (1, 1, 1)-copartition, subtracting 1 from each ground part, and reading
the remainder of the diagram as an ordinary Young diagram for a partition of size n− k. �

One can also give a simple proof via generating functions using Theorem 3.6. However, the proof
we give above demonstrates that the truth of Theorem 4.5 is much more fundamental, as it relies
only on the definitions.

Example 4.6. For the partition {8, 6, 5, 3} of 22 = 27 − 5, we have j = 3. Thus ρ|σ = 8 + 6 and
γ′ = 5 + 5 + 3, and so we obtain the associated copartition (33 + 22, 52, 3 + 1).

The partition sum in Theorem 4.5 appears in the Online Encyclopedia of Integer Sequences
[12] as sequence A000070. From the equivalent sequences listed there, we obtain the following
corollaries.

Corollary 4.7. The number of (1, 1, 1)-copartitions of n− 1 is exactly the number of parts of size
1 among all ordinary partitions of n.

Corollary 4.8. The number of (1, 1, 1)-copartitions of n− 1 is exactly sum of the diversities of all
ordinary partitions of n.

Remark. To put the size of cp1,1,1(n) in context, Theorem 4.5 and Corollary 4.7 imply that
p(n) ≤ cp1,1,1(n) ≤ spt(n+ 1), where spt(n) is the function that counts the number of appearances
of the smallest part in all partitions of n [1].

One can prove both Corollary 4.7 and 4.8 with direct bijections, although we omit those details
here.

9



4.3. (0, 1, 1)-copartitions. In the definition of a copartition, if we allow parts of size zero in the
ground or sky by letting a or b be zero, there may be infinitely many copartitions of a fixed n. For
example, if we set a = 0, when σ = ∅, for every ordinary partition γ of n the copartition (γ̂, ∅, ∅) is
a copartition of n for every γ̂ equal to γ with arbitrarily many parts of size zero added.

Instead, we define a (0, b,m)-copartition to be a triple of partitions (γ, ρ, σ) as before, but we
add the condition that σ 6= ∅ so that we may allow γ to have parts of size 0. In constructing the
the diagrams of (0, b,m)-copartitions, we include a row of zeros in the same way that we include a
row of as when a 6= 0.

Example 4.9. Below is the diagram of the (0, 1, 2)-copartition (23 + 0, 84, 7 + 3 + 12).

2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

By considering the generating function, we arrive at a nice formula for cp0,1,1(n).

Theorem 4.10. For all n ∈ N0,

(8) cp0,1,1(n) =

n−1∑
k=0

p(k)d(n− k),

where d(n) is the number of divisors of n.

Proof. Redefining cp0,1,1 to match the definition above (nonempty sky), evaluating the generating
function at x = y = 1, and applying the q-binomial theorem twice, we have

cp0,1,1(1, 1, q) =

∞∑
s=1

∞∑
w=0

qsw+s

(q; q)w(q; q)s
=

∞∑
s=1

qs

(q; q)s

∞∑
w=0

qsw

(q; q)w
=

∞∑
s=1

qs

(q; q)s(qs; q)∞

=
1

(q; q)∞

∞∑
s=1

qs(q; q)s−1
(q; q)s

=
1

(q; q)∞

∞∑
s=1

qs

(1− qs)
=

∞∑
n=0

p(n)qn
∞∑
m=1

d(m)qm.

�

It is known that the right-hand side of (8) is equal to the total number of parts among all
partitions of n, which is also equal to the sum of the largest parts among all partitions of n
[13]. Traditionally, this fact has been approached using generating functions [11]. However, the
combinatorics behind this is enlightening and intimately related to the associated copartitions, and
so we now treat the relationship between cp0,1,1(n) and the sum of the largest parts among all
partitions of n directly.

Connecting the diagrams of (0, 1, 1)-copartitions to the Young diagrams of ordinary partitions is
again revealing, as it was in the last subsection. If we disregard the cells containing 0s, the remaining
diagrams of (0, 1, 1)-copartitions have a 1 in every cell, and thus they look like the Young diagrams
of ordinary partitions. However, these remaining Young diagrams do not uniquely determine the

10



(0, 1, 1)-copartition. Instead, we find that the Young diagram of each nonempty ordinary partition
will appear as the diagram of several different (0, 1, 1)-copartitions.

Example 4.11. All three of (0, 16, 7+5+4+4+2+2), (23, 34, 5+3+22), and (23+0, 44, 4+2+12)
yield the same diagram when the cells containing 0s are removed. Below, we show those diagrams
with ρ outlined for each of the three copartitions.

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1

In Theorem 4.12, we quantify how many different (0, 1, 1)-copartitions yield each ordinary Young
diagram when removing the 0s.

Theorem 4.12. For all n ∈ N0, cp0,1,1(n) is the total number of parts among all partitions of n.
Equivalently, cp0,1,1(n) is the sum over all partitions λ of n of the largest part of λ.

Proof. of Theorem 4.12 from Theorem 4.10. The equivalence of the two statements in the theorem
hold by conjugation. Here we show that

∑n−1
k=0 p(k)d(n− k) is the sum over all partitions λ of n of

the largest part of λ.
Notice that the largest part λ1 of any partition λ = λ1+λ2+ · · ·+λj is the sum of the differences

of the consecutive parts of λ, λ1 = (λ1−λ2) + (λ2−λ3) + · · ·+ (λj − 0), where we consider the jth
difference of consecutive parts to be (λj − 0) = λj , and thus the sum over all partitions λ of n of
the largest part of λ is equal to the sum over all consecutive part differences among all partitions
of n.

Notice that increasing the first w parts of an arbitrary unrestricted partition of n − hw by h
produces an arbitrary partition of n with wth difference of consecutive parts greater than or equal
to h. Thus partitions of n that have wth difference of consecutive parts greater than or equal to
h are in bijection with unrestricted partitions of n − hw. Hence if we fix w and sum p(n − hw)
over all h, we count partitions of n that have wth difference of consecutive parts exactly equal to
m m times; in other words, we sum all the wth part differences among all partitions of n. Thus,
summing over all w, we sum all consecutive part differences among all partitions of n. In doing so,
we sum p(n− hw) exactly d(hw) times, and so the sum over all consecutive part differences among

all partitions of n is
∑n−1
k=0 p(k)d(n− k) as desired. �

One may also prove Theorem 4.12 combinatorially without appealing to Theorem 4.10 by con-
structing a direct bijection between the columns of ordinary partitions and (0, 1, 1)-copartitions of
n, although we omit the details here. The key element of the bijection is that each column of an
ordinary partition becomes a column directly to the right of a rectangle ρ of a (0, 1, 1)-copartition.

We also remark that the fact that b = m = 1 does not play an essential role in the proof of
Theorem 4.10. For arbitrary b and m, the same reasoning gives the following formula for cp0,b,m(n).

Theorem 4.13. For all n ∈ N0,

cp0,b,m(n) =
∑

k<n/m

p(k)db,m(n−mk),

where db,m(n) is the number of divisors of n congruent to b (mod m).
11



4.4. (0, 0, 1)-copartitions. Following the reasoning at the beginning of the previous subsection, we
define a (0, 0,m)-copartition to be a triple of partitions (γ, ρ, σ) as before, with the added conditions
that γ 6= ∅ and σ 6= ∅.

Instead of looking at the generating function, in this subsection we start with a direct bijection
that gives us a formula for cp0,0,1(n). Following [18], we define the perimeter of a partition to be
the size of the largest part plus the number of parts minus one, or equivalently, the number of cells
in the first row and first column of the Young diagram.

Theorem 4.14. For all n ∈ N0, cp0,0,1(n) is the sum of the perimeters of the partitions of n.

Proof. Note that the rim of a Young diagram is the collection of cells with no cell diagonally below
and to their right. We give a direct bijection between the cells in rims of the Young diagrams of
the ordinary partitions of n and (0, 0, 1)-copartitions of n.

For any ordinary partition λ and any rim cell c in λ, we construct the diagram of the copartition
(γ, ρ, σ). First take the Young diagram of λ and fill each cell with a 1. Then add a row of cells
containing 0s one row below c and a column of cells containing 0s one column to the right of c.
Thus c becomes the lower-right corner of ρ, each 0 in the row of 0s becomes the beginning of a part
in γ, and each 0 in the column of 0s becomes the beginning of a part in σ. We can see that for
each rim cell c, this generates a distinct copartition, and any (0, 0, 1)-copartition can be generated
uniquely in this way.

Since the number of cells in the rim is equal to the perimeter, our result follows. �

Example 4.15. Here, we show the Young diagram of (8 + 6 + 5 + 5 + 3 + 3) with a marked rim
cell and the corresponding (0, 0, 1)-copartition diagram.

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1

−−−−→

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1 1

Since the perimeter of a partition is equal to the size of the largest part plus the number of parts
minus one, Theorem 4.12 and Theorem 4.14 allow us to express cp0,0,1(n) in terms of cp0,1,1(n) and
p(n), which leads us to the following formulas for cp0,0,1(n).

Theorem 4.16. For all n ∈ N0,

cp0,0,1(n) = 2cp0,1,1(n)− p(n) = −p(n) + 2

n−1∑
k=0

p(k)d(n− k),

where d(n) is the number of divisors of n.

4.5. (a,m− a,m)-copartitions. When b = m− a, cpa,b,m(x, y, q) is related to functions of signifi-
cant analytic and combinatorial interest. Analytically, our interest in this case stems from the fact
that we can write the generating function as a quotient of eta and theta functions.

12



For |ab| < 1, one can define Ramanujan’s theta function as

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2.

Note that, with an appropriate change in variables, Ramanujan’s theta function is equivalent to
the Jacobi theta function. The Jacobi triple product identity tells us that

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Additionally, the Dedekind η function is defined for |q| < 1 as

η(q) = q
1
24 (q; q)∞.

The Dedekind η function is a modular form of weight 1/2 and level 1.
Using these definitions, we can see that

cpa,m−a,m(q) =
(qm; qm)∞

(qa; qm)∞(qm−a; qm)∞

=
(qm; qm)2∞

(qa; qm)∞(qm−a; qm)∞(qm; qm)∞

= q−
m
12

η(qm)2

f(−qa,−qm−a)
.

This connection to eta and theta functions, suggests that it should be possible to find asymptotics
for the case a+ b = m by using similar ideas to those used in [9].

This case is also interesting combinatorially. Specifically, in [8], Garvan and Schlosser used
(m, a)-capsid partitions, which are equinumerous to (a,m − a,m)-copartitions in a combinatorial
interpretation of Ramanujan’s tau function.

5. Conclusion

Our definition of copartitions evolved naturally from a study partitions with parts separated by
parity. Copartitions have connections to a surprising number of other classical topics, including
Roger-Ramanujan partitions, the summatory function of p(n), the total number of parts among all
partitions of n, mock theta functions, the relationship between τ(n) and core partitions, and even
crank statistics. Using the language of copartitions to connect Andrews’ EO∗ partitions with the
capsids of Garvan and Schlosser reveals an inherent symmetry that was previously non-obvious.
Copartitions are already a three-parameter generalizations of Andrews’ EO∗ partitions, and the
potential number of further generalizations created by changing the restrictions on partitions in the
ground and sky is virtually limitless.

Many questions remain open. As a first direction, we explore divisibility properties of cpa,b,m(n)
in [4], but many further questions about congruences and divisibility remain open. In [2], An-
drews defined the even-odd crank of a partition counted by EO∗(n) to be the largest even part
minus the number of odd parts. Strikingly, he found that the even-odd crank witnesses the congru-
ence EO∗(10n + 8) ≡ 0 (mod 5) by separating the relevant partitions into five equinumerous sets.
Translated into the language of copartitions, the even-odd crank of a copartition becomes simply
the number of parts in the ground minus the number of parts in the sky. A combinatorial proof that
this copartition crank witnesses the congruence cp1,1,2(5n+ 4) ≡ 0 (mod 5) is likely quite difficult,
but would be illuminating.
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Additionally, in [5], we find that the difference between (a, b,m)-copartitions with an even number
of ground parts and (a, b,m)-copartitions with an odd number of ground parts is positive surpris-
ingly often. In that same paper, we discuss an overpartition analogue for copartitions. There
are many other directions that an interested reader could explore regarding weighted counts of
copartitions.

The product form of the generating function for cpa,b,m(n) is interesting and worthy of further
study. For example, a combinatorial study of the finite products

(qa+b; qm)n
(qa; qm)n(qb; qm)n

and
(qa+b; qm)2n

(qa; qm)n(qb; qm)n

would be compelling.
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