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Abstract. We continue the study of the (a, b,m)-copartition function cpa,b,m(n), which arose
as a combinatorial generalization of Andrews’ partitions with even parts below odd parts. The

generating function of cpa,b,m(n) has a nice representation as an infinite product. In this paper,

we focus on the parity of cpa,b,m(n). As with the ordinary partition function, it is difficult to show

positive density of either even or odd values of cpa,b,m(n) for arbitrary a, b, and m. However, we

find specific cases of a, b,m such that cpa,b,m(n) is even with density 1. Additionally, we show

that the sequence {cpa,m−a,m(n)}∞n=0 takes both even and odd values infinitely often.

1. Introduction

In [4], the authors introduce and develop the theory of copartitions, which have connections to
mock theta functions, Rogers-Ramanujan partitions, the capsids of Garvan and Schlosser [6], and
many other classical partition-theoretic objects. Each (a, b,m)-copartition is comprised of three
partitions: a partition into parts ≡ a (mod m), a partition into parts ≡ b (mod m), and a rectan-
gular partition that unites them. Additionally, the (a, b,m)-copartition generating function can be
written as an infinite product, further motivating interest in the copartition counting functions. As
with any type of partitions, one of the first questions one may ask is about how frequently these
counting functions take even and odd values.

For example, Kolberg showed that p(n), the ordinary partition function, takes both even and
odd values infinitely often [7]. Parkin and Shanks studied the parity of p(n) computationally, and
their evidence strongly suggests that p(n) is even about half of the time [8]. Sadly, the best known
results on the parity of p(n) are spectacularly far from proving anything of the sort [2]. In fact, it
is still an open problem to even show that p(n) is even or odd with positive density.
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In this paper, we study the parity of the copartition counting functions. Although we conjecture
that some copartition functions are equally often even and odd, we show that this is not the case
for all such functions. Furthermore, in some special cases, we are able to demonstrate explicit
sets with positive density on which cpa,b,m(n), the number of (a, b,m)-copartitions of n, is always
even. These explicit sets allow us to give infinitely many arithmetic progressions on which certain
copartition functions are always even. For example, we show that for r = 3, 17, 24, 31, 38, 45, we
have

cp3,1,4(49k + r) ≡ 0 (mod 2),

and for s = 9, 14, 19, 24, we have

cp5,1,6(25k + s) ≡ 0 (mod 2)

for every nonnegative integer k.
In Section 2, we recall the definition and generating function for copartitions. In Section 3,

we recall conjugation, discuss self-conjugate copartitions, and give lower bounds on the number of
even values of cpa,a,m(n). In Section 4, we focus on cpa,m−a,m(n); we show that cpa,m−a,m(n) takes
both odd and even values infinitely often, give explicit sets with density one on which cp3,1,4(n) and
cp5,1,6(n) are even, and provide infinitely many congruences modulo two in arithmetic progressions
for each of these functions. Sections 3 and 4 also include several open problems. In Appendix A,
we provide computational data surrounding our open questions and conjectures.

2. Background on Copartitions

In this section, we review (a, b,m)-copartitions and the function cpa,b,m(n), which were first
introduced in [4].

Definition. An (a, b,m)-copartition is a triple of partitions (γ, ρ, σ), where each of the parts of γ
is at least a and congruent to a (mod m), each of the parts of σ is at least b and congruent to b
(mod m), and ρ has the same number of parts as σ, each of which have size equal to m times the
number of parts of γ.
When a, b,m ≥ 1, we let cpa,b,m(n) denote the number of (a, b,m)-copartitions of size n.

Although ρ is completely determined by γ and σ, the graphical representation we use suggests
that the natural way to write the triple is (γ, ρ, σ). We refer to γ as the ground of a copartition
and σ as the sky.

Example 2.1. The (2, 1, 3)-copartitions of size 9 are(
{5, 22}, ∅, ∅

)
, ({5}, {3}, {1}) , ({2}, {3}, {4}) ,

(
∅, ∅, {7 + 12}

)
,(

∅, ∅, {42 + 1}
)
,
(
∅, ∅, {4 + 15}

)
, and

(
∅, ∅, {19}

)
.

Thus, cp2,1,3(9) = 7.

To represent the (a, b,m) copartition (σ, ρ, γ) graphically, we append the m-modular diagram for
σ to the right of the m-modular diagram for ρ. Then, we append the conjugate of the m-modular
diagram for γ below ρ.

Example 2.2. The following diagram represents the (a, b,m)-copartition ({3m+ a, 2m+ a, 2m+
a, a}, {4m, 4m}, {3m+ b, 2m+ b}).
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In [4], we also show that

cpa,b,m(q) :=

∞∑
n=0

cpa,b,m(n)qn =
(qa+b; qm)∞

(qb; qm)∞(qa; qm)∞
.(1)

3. Conjugation, Self-Conjugate Copartitions, and the Parity of cpa,a,m(n)

In this section, we explore the parity of cpa,a,m(n). Many of our results follow from considering
the fixed points of the conjugation involution on cpa,a,m(n). As in [4], we define the conjugate of a
copartition (γ, ρ, σ) as the copartition obtained by reflecting the graphical representation about the
line y = −x. Defining ν(λ) to be the number of parts of a partition λ, the conjugate copartition is
precisely (σ, ρ′, γ), where ρ′ consists of exactly ν(γ) parts of size m×ν(σ) = m×ν(ρ). Equivalently,
ρ′ is the partition obtained by conjugating the m-modular diagram representing ρ.

m m m b m m m

m m m b m

a a a

m m

m m

m

−−−−→

m m a m m m

m m a m m

m m a

b b

m m

m

m

Figure 1. Conjugation of an (a, b,m)-copartition.

Remark. Conjugation is a size-preserving bijection from CPa,b,m to CPb,a,m.

Remark. When a ̸= b, there are no self-conjugate (a, b,m)-copartitions.

Theorem 3.1. Let scpa,m(n) denote the number of self-conjugate (a, a,m)-copartitions of size n.
Then, we have the following generating function:

∞∑
n=0

scpa,m(n) = (−qm+2a; q2m)∞.

Proof. We prove this theorem combinatorially by adapting Sylvester’s proof that self-conjugate
partitions of n are equinumerous with partitions of n into distinct odd parts [9, p. 275]. Consider
the graphical representation of a self-conjugate (a, a,m)-copartition. For each cell on the line
y = −x, there is a corresponding hook that consists of that cell, all the cells directly below it, and
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all the cells directly to the right of it. Note that, because the diagram is self conjugate, each hook
has an odd number of m’s and exactly two a’s. Thus, if we consider the hooks as the parts of a
new partition, this new partition will have distinct parts that are congruent to m+ 2a (mod 2m).
Similarly, given a partition into distinct parts congruent to m + 2a (mod 2m), we can create a
self-conjugate (a, a,m) copartition. Since (−qm+2a; q2m)∞ generates partitions into distinct parts
that are congruent to m+ 2a (mod 2m), our result follows. □

Since conjugation is an involution on (a, a, b)-copartitions, cpa,a,m(n) is odd exactly when there
are an odd number of self-conjugate (a, a,m)-copartitions of size n. Thus, by Theorem 3.1,

(2)

∞∑
n=0

cpa,a,m(n)qn ≡ (−qm+2a; q2m)∞ (mod 2).

This congruence immediately implies the following facts about the parity of cpa,a,m(n).

Corollary 3.2. For even m, cpa,a,m(2n+ 1) ≡ 0 (mod 2).

Corollary 3.3. For even m,

lim inf
n→∞

#{1 ≤ k ≤ n | cpa,a,m(k) is even}
n

≥ 1

2
.

Corollary 3.4. For m ≡ 2 (mod 4) and odd a,

lim inf
n→∞

#{1 ≤ k ≤ n | cpa,a,m(k) is even}
n

≥ 3

4
.

Proof. Note that, because m ≡ 2 (mod 4) and a is odd, m+2a ≡ 0 (mod 4) and 2m ≡ 0 (mod 4).
Thus, all self-conjugate copartitions must be of size 0 (mod 4). □

Corollary 3.5. For a odd,

lim
n→∞

#{1 ≤ k ≤ n | cpa,a,2a(k) is even}
n

= 1.

Moreover, cpa,a,2a(k) is odd if and only if k is 4a times a pentagonal number; that is, if and only
if k = 2an(3n− 1) for some integer n.

Proof. From (2), we see that

∞∑
n=0

cpa,a,2a(n)q
n ≡ (−q4a; q4a)∞ (mod 2)

≡ (q4a; q4a)∞

=

∞∑
n=−∞

(−1)nq2an(3n−1).

The final equality follows from Euler’s pentagonal number theorem:

(q; q)∞ =

∞∑
n=−∞

(−1)nqn(3n−1)/2.

Then, because the final series is lacunary, we have proved that cpa,a,2a(n) is even with density
1. □
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Corollaries 3.3 and 3.4 come from explicit sets upon which cpa,a,m(n) is always even. Outside
of those sets, empirical evidence suggests that the parity is equally balanced, which leads us to the
following conjecture.

Conjecture 3.6. For even m and odd a,

lim
n→∞

#{1 ≤ k ≤ n | cpa,a,m(k) is even}
n

=


1 if m = 2a(3)

3

4
if m ≡ 0 (mod 4)(4)

7

8
otherwise.(5)

Note that (3) is Corollary 3.5.
On the other hand, for m odd, as is the case with p(n), we do not know explicit sets upon which

cpa,a,m(n) is always even, and we make the following conjecture.

Conjecture 3.7. For odd m and gcd(a,m) = 1, cpa,a,m(n) is even (odd) with density 1
2 . That is,

lim
n→∞

#{1 ≤ k ≤ n | cpa,a,m(k) is even (odd)}
n

=
1

2
.

Table 3.1 provides some computational evidence for Conjecture 3.6.

n
#{1≤k≤n|cp3,3,4(k) is even}

n

#{1≤k≤n|cp1,1,6(k) is even}
n

1000 0.765 0.871

3000 0.752 0.875

5000 0.753 0.874

7000 0.749 0.875

9000 0.748 0.873

11000 0.749 0.874

13000 0.750 0.875

15000 0.749 0.875

Table 3.1. The proportion of even values of cpa,a,m(k) for 1 ≤ k ≤ n when (a,m)
is (3, 4) and (1, 6).

4. The Parity of cpa,m−a,m(n)

In this section, we explore the parity of the values of another special family of copartition
functions: cpa,m−a,m(n). Note that

cpa,m−a,m(q) =
(qm; qm)∞

(qa; qm)∞(qm−a; qm)∞
=

(qm; qm)2∞
f(qa, qm−a)

,
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where f(x, y) =
∑∞

n=−∞ xn(n+1)/2yn(n−1)/2 is Ramanujan’s theta function. This form for cpa,m−a,m(q)
suggests that there is a wide range of analytic tools that we can use to study this family of functions.

A very basic question one may ask is simply, for which a,m does the sequence {cpa,m−a,m(n)}∞n=0

take both even and odd values infinitely often?

Theorem 4.1. For all a,m, the sequence {cpa,m−a,m(n)}∞n=0 takes both even and odd values
infinitely often.

Proof. Since cpa,m−a,m(n) = cpm−a,a,m(n), without loss of generality, we assume 0 < a ≤ m/2.
If a = m/2, by (1) we have

cpm/2,m/2,m(q) =
(qm; qm)∞

(qm/2; qm)∞(qm/2; qm)∞
≡ (qm; qm)∞

(qm; q2m)∞
≡ (q2m; q2m)∞ (mod 2).(6)

By Euler’s Pentagonal Number Theorem, we see that the right-hand side of (6) takes both even
and odd values infinitely often.

For a ̸= m/2, by (1) we have

cpa,m−a,m(q) =
(qm; qm)2∞

(qm−a; qm)∞(qa; qm)∞(qm; qm)∞
≡ (q2m; q2m)∞

(qm−a; qm)∞(qa; qm)∞(qm; qm)∞
(mod 2).

(7)

By applying Jacobi’s triple product identity to the denominator of (7), multiplying both sides by
that denominator, and applying Euler’s Pentagonal Number Theorem to the remaining right-hand
side, we have

cpa,m−a,m(q)

∞∑
n=−∞

(−1)nqan+mn(n−1)/2 ≡
∞∑

k=−∞

qmk(3k−1) (mod 2).(8)

Now suppose cpa,m−a,m(n) has finitely many odd values, and let d be the largest integer such
that cpa,m−a,m(d) is odd. Notice that cpa,m−a,m(0) = 1 is also odd. If d = 0, then we have from
(8) that {an+mn(n− 1)/2 | n ∈ Z} = {mn(3n− 1) | n ∈ Z}, which is not possible. For d > 0, we
derive a contradiction by showing that if we go out far enough, the left-hand side of (8) has two
close odd values, but the right-hand side does not. A short computation shows that since a ̸= m/2,
an1 +mn1(n1 − 1)/2 = an2 +mn2(n2 − 1)/2 if and only if n1 = n2. Let N0 be so large that for
|n| ≥ N0, consecutive values of each set {an+mn(n− 1)/2 | n ∈ Z} and {mn(3n− 1) | n ∈ Z} are
more than d apart. LetN1 > N0 be so large that aN1+mN1(N1−1)/2 > mN0(3N0−1). Then, since
cpa,m−a,m(0) and cpa,m−a,m(d) are both odd and N1 > N0, the coefficients of qaN1+mN1(N1−1)/2

and qaN1+mN1(N1−1)/2+d on the left-hand side of (8) are both odd. However, for exponents in that
range, the terms of the right-hand side of (8) with odd coefficients are more than d terms apart, a
contradiction. Thus cpa,m−a,m(n) has infinitely many odd values.

To show cpa,m−a,m(n) is even infinitely often, define Ea,m to be the set of nonnegative integers
n such that cpa,m−a,m(n) is even, and define Ga,m(q) =

∑
n∈Ea,m

qn. Notice

1

1− q
≡ cpa,m−a,m(q) +Ga,m(q) (mod 2).

Multiplying both sides by the denominator in (7) after applying Jacobi’s triple product identity,
we have∑∞

n=−∞(−1)nqan+mn(n−1)/2

1− q
≡ (qm; qm)2∞ +Ga,m(q)

∞∑
n=−∞

(−1)nqan+mn(n−1)/2 (mod 2)(9)
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≡ (q2m; q2m)∞ +Ga,m(q)

∞∑
n=−∞

qan+mn(n−1)/2 (mod 2).(10)

We can rewrite the left-hand side of (9) by pairing summands as

1

1− q

∞∑
n=0

(−1)n[q−an+mn(n+1)/2 − qa(n+1)+mn(n+1)/2] =

∞∑
n=0

(−1)nq−an+mn(n+1)/2 1− qa(2n+1)

1− q

≡
∞∑

n=0

q−an+mn(n+1)/2 + q−an+mn(n+1)/2+1 + · · ·+ qa(n+1)+mn(n+1)/2−1 (mod 2),(11)

where each term of the sum in (11) has been expanded into a finite geometric series, the sum of
a(2n + 1) consecutive powers of q. These finite geometric series do not overlap, and so a short

computation shows that (11) has aN2 odd terms up through the q⌊mN2/2⌋ term, so that the terms
with odd coefficients in (11) and the left-hand side of (9) have density 2a/m.

By Euler’s Pentagonal Number Theorem, the odd values of (q2m; q2m)∞ have density zero, thus
the nonzero values of the product Ga,m(q)

∑∞
n=−∞(−1)nqan+mn(n−1)/2 must have density 2a/m.

Since the nonzero values of
∑∞

n=−∞(−1)nqan+mn(n−1)/2 have density zero, there must be infinitely
many nonzero terms of Ga,m(q). □

Remark. Some of the analysis above is very similar to that of Berndt, Yee, and Zaharescu [3] in
treating the parity of p(r, s;n), the number of partitions of n into parts congruent to r, s, or r + s
modulo r+s. In the second half of the proof above, tracking the number of odd terms as they did, one
can arrive at the quantitative result that #{n < N | cpa,m−a,m(n) is even} > (a/

√
2m− o(1))

√
N

for all a ≤ m/2. In the special case a = m/2, we have #{n < N | cpa,m−a,m(n) is even} >
(1− o(1))N .

Empirical evidence suggests that the parity of cpa,m−a,m(n) may be balanced for many but not
all a,m with gcd(a,m) = 1. This leads us to the following conjecture and question.

Conjecture 4.2. For odd m and gcd(a,m) = 1, the sequence {cpa,m−a,m(n)}∞n=0 takes both even

and odd values with density 1
2 . That is,

lim
n→∞

#{1 ≤ k ≤ n | cpa,m−a,m(k) is even (odd)}
n

=
1

2
.

Question 4.3. For which a,m with gcd(a,m) = 1 is

lim
n→∞

#{1 ≤ k ≤ n | cpa,m−a,m(k) is even}
n

=
1

2
?

Furthermore, when the limit is not 1/2, what is

lim
n→∞

#{1 ≤ k ≤ n | cpa,m−a,m(k) is even}
n

?

When the limit is not 1/2, is it always 1?

In Appendix A, we provide computational data surrounding Conjecture 4.2 and Question 4.3.
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4.1. The parity of cp3,1,4(n) and cp5,1,6(n). In two special cases, we can answer Question 4.3 and
give the exact asymptotic density of n for which cpa,b,m(n) is even. The generating functions for
cp3,1,4(n) and cp5,1,6(n) have nice properties that allow us to apply the classical theory of binary
quadratic forms to show that cp3,1,4(n) and cp5,1,6(n) are even on sets with arithmetic density one.

We now provide an explicit set with arithmetic density one on which cp3,1,4(n) is even.

Theorem 4.4. When a = 3, b = 1, and m = 4,

lim
n→∞

#{1 ≤ k ≤ n | cp3,1,4(k) is even}
n

= 1.

In particular, cp3,1,4(n) is even if the prime factorization of 24n + 5 has a prime ≡ 3 (mod 4)
occurring with an odd exponent.

Remark. Note that 24n + 5 having a prime ≡ 3 (mod 4) occurring with an odd exponent is a
sufficient condition, but is not necessary.

Proof. We can rewrite the generating function for cp3,1,4 in a very useful form. Consider

∞∑
n=0

cp3,1,4(n)q
n =

(q4; q4)∞
(q3; q4)∞(q; q4)∞

=
(q4; q4)∞
(q; q2)∞

=
(q4; q4)∞(q2; q2)∞

(q; q)∞
≡ (q; q)∞(q4; q4)∞ (mod 2).(12)

Applying Euler’s Pentagonal Number Theorem, we then have that

∞∑
n=0

cp3,1,4(n)q
n ≡

 ∞∑
j=−∞

qj(3j+1)/2

( ∞∑
k=−∞

q2k(3k+1)

)
(mod 2).

Thus, cp3,1,4(n) must be even unless n = j(3j + 1)/2 + 2k(3k + 1) for some integers j and k, or

equivalently, unless 24n+ 5 = (6j + 1)2 + 4(6k + 1)2. Analyzing this modulo 24, this occurs if and
only if 24n+ 5 is represented by the form A2 + B2. From the classical theory of binary quadratic
forms, we know that the integers 24n+5 representable by the form A2+B2 are precisely those with
prime factorizations having all powers of primes ≡ 3 (mod 4) occurring with an even exponent.
Since that set of representable (24n+ 5)s has density zero, we have

lim
n→∞

#{1 ≤ k ≤ n | cp3,1,4(k) is even}
n

= 1

as desired. □

Considering the set of even values of cp3,1,4 guaranteed by Theorem 4.4, it is straightforward to
write down arithmetic progressions on which cp3,1,4 is always even.

Corollary 4.5. For any prime p > 3, p ≡ 3 (mod 4), let 24δ ≡ 1 (mod p2). Then

cp3,1,4(p
2k + pt− 5δ) ≡ 0 (mod 2)

for t = 1, 2, . . . , p− 1 and every nonnegative integer k.

Below we give two specific examples.
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Corollary 4.6. For r = 3, 17, 24, 31, 38, 45, we have

cp3,1,4(49k + r) ≡ 0 (mod 2)

for every nonnegative integer k.

Corollary 4.7. For r = 3, 14, 36, 47, 58, 69, 80, 91, 102, 113, we have

cp3,1,4(121k + r) ≡ 0 (mod 2)

for every nonnegative integer k.

In order to treat cp5,1,6(n), we use the same techniques, but the argument is slightly more
complicated. We first require a lemma showing the relationship between two binary quadratic
forms.

Lemma 4.8. An integer N ≡ 1 (mod 6) is representable by the binary quadratic form A2 + 3B2

if and only if 4N is representable by the binary quadratic form (6J + 1)2 + 3(6K + 1)2.

Proof. Suppose N ≡ 1 (mod 6) is representable by the form A2 + 3B2. Then there exist a, b ∈ Z
such that

(13) N = a2 + 3b2.

Specifically, because a2 = (−a)2 and a ̸≡ 0 (mod 3), if a ≡ b (mod 3), let us instead choose a to
be −a in (13) to obtain a representation where a ̸≡ b (mod 3). Now notice

(a+ 3b)2 + 3(a− b)2 = 4a2 + 12b2 = 4N

(a+ 3b)2 + 3(b− a)2 = 4a2 + 12b2 = 4N

(−a− 3b)2 + 3(a− b)2 = 4a2 + 12b2 = 4N, and

(−a− 3b)2 + 3(b− a)2 = 4a2 + 12b2 = 4N.(14)

Since a and b must be of opposite parity by (13), we have one representation of 4N in (14) of the
form (6J + 1)2 + 3(6K + 1)2.

Now instead suppose N is any positive integer such that 4N = (6j + 1)2 + 3(6k + 1)2. If j ≡ k
(mod 2), let a = (3j + 9k)/2 + 1 and b = (3j − 3k)/2. Then

(15) a2 + 3b2 =
36j2 + 12j + 1

4
+ 3

36k2 + 12k + 1

4
=

(6j + 1)2

4
+ 3

(6k + 1)2

4
= N.

Otherwise, if j ̸≡ k (mod 2), let a = (3j − 9k − 1)/2 and b = (3j + 3k + 1)/2. Then

(16) a2 + 3b2 =
36j2 + 12j + 1

4
+ 3

36k2 + 12k + 1

4
=

(6j + 1)2

4
+ 3

(6k + 1)2

4
= N.

In either case, we see that N is of the form A2 + 3B2, and the lemma follows.
□

We now provide an explicit set with arithmetic density one on which cp5,1,6(n) is even.

Theorem 4.9. When a = 5, b = 1, and m = 6,

lim
n→∞

#{1 ≤ k ≤ n | cp5,1,6(k) is even}
n

= 1.

In particular, cp5,1,6(n) is even if the prime factorization of 6n+1 has a prime ≡ 2 (mod 3) occurring
with an odd exponent.
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Remark. Note that 6n + 1 having a prime ≡ 2 (mod 3) occurring with an odd exponent is a
sufficient condition, but is not necessary. For example, cp5,1,6(5) = 2 is even, even though 6(5)+1 =
31.

Proof. We can rewrite the generating function for cp5,1,6 in a very useful form. Consider

(q2; q2)∞(q3; q3)∞
(q; q)∞(q6; q6)∞

=
(q2; q2)∞(q3; q6)∞(q6; q6)∞
(q; q2)∞(q2; q2)∞(q6; q6)∞

=
(q3; q6)∞
(q; q2)∞

=
1

(q; q6)∞(q5; q6)∞
.

(17)

Thus,
∞∑

n=0

cp5,1,6(n)q
n =

(q6; q6)∞
(q5; q6)∞(q; q6)∞

=
(q2; q2)∞(q3; q3)∞

(q; q)∞

= (−q; q)∞(q3; q3)∞ ≡ (q; q)∞(q3; q3)∞ (mod 2).(18)

Applying Euler’s Pentagonal Number Theorem, we then have that

∞∑
n=0

cp5,1,6(n)q
n ≡

 ∞∑
j=−∞

qj(3j+1)/2

( ∞∑
k=−∞

q3k(3k+1)/2

)
(mod 2).

Thus, cp5,1,6(n) must be even unless n = j(3j + 1)/2 + 3k(3k + 1)/2 for some integers j and k,

or equivalently, unless (6j + 1)2 + 3(6k + 1)2 = 24n+ 4. By Lemma 4.8, this occurs if and only if
6n + 1 is represented by the form A2 + 3B2. From the classical theory of binary quadratic forms
[5, Chapter 1], we know that the integers 6n+ 1 representable by the form A2 + 3B2 are precisely
those with prime factorizations having all powers of primes ≡ 2 (mod 3) occurring with an even
exponent. Since that set of representable (6n+ 1)s has density zero, we have

lim
n→∞

#{1 ≤ k ≤ n | cp5,1,6(k) is even}
n

= 1

as desired. □

Considering the set of even values of cp5,1,6 guaranteed by Theorem 4.9, it is straightforward to
write down arithmetic progressions on which cp5,1,6 is always even.

Corollary 4.10. For any prime p > 2, p ≡ 2 (mod 3), let 6δ ≡ 1 (mod p2). Then

cp5,1,6(p
2k + pt− δ) ≡ 0 (mod 2)

for t = 1, 2, . . . , p− 1 and every nonnegative integer k.

Below we give two specific examples.

Corollary 4.11. For r = 9, 14, 19, 24, we have

cp5,1,6(25k + r) ≡ 0 (mod 2)

for every nonnegative integer k.
10



Corollary 4.12. For r = 9, 31, 42, 53, 64, 75, 86, 97, 108, 119, we have

cp5,1,6(121k + r) ≡ 0 (mod 2)

for every nonnegative integer k.

5. Conclusion

Conjectures 3.6, 3.7, and 4.2 and Question 4.3 remain open. Although we treat the parity
of cpa,a,m(n) and cpa,m−a,m(n) in some detail above, the parity of cpa,b,m(n) when a ̸= b, and
a + b ̸= m is largely unexplored. With only a small amount of evidence, we make the following
somewhat bold conjecture.

Conjecture 5.1. When gcd(a, b,m) = 1, a ̸= b, and a + b ̸= m, cpa,b,m(n) is even (odd) with

density 1
2 . That is,

lim
n→∞

#{1 ≤ k ≤ n | cpa,b,m(k) is even}
n

=
1

2
.

In another direction, we give several congruences modulo 2 in Corollaries 4.5-4.7 and 4.10-4.12, In
[1], Andrews gave a congruence modulo 5, namely EO∗(10n+8) ≡ 0 (mod 5), which, when written
in the language of copartitions, becomes cp1,1,2(5n + 4) ≡ 0 (mod 5). Additionally, he defined an
even-odd partition crank that witnesses this congruence. The equivalent copartition crank is the
number of ground parts minus the number of sky parts, and the copartition crank witnesses the
congruence cp1,1,2(5n + 4) ≡ 0 (mod 5). A combinatorial proof of these congruences would be a
welcome addition to the literature.

References

1. George E. Andrews, Integer partitions with even parts below odd parts and the mock theta func-
tions, Ann. Comb. 22 (2018), no. 3, 433–445.
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Appendix A. Data tables

For readers interested in thinking about Conjecture 4.2 and Question 4.3, we tabulate the pro-
portion of even values of cpa,m−a,m(k) for k up to 32000 for several values of a and m. In general,
we find that the growth/behavior of the proportion seems roughly consistent when fixing m and
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varying a. For example, in Table A.1, we see that the behavior in each column is roughly the same.

Since this is the case, in Table A.2 below, we just give
#{1 ≤ k ≤ n | cp1,m−1,m(k) is even}

n
for

n
#{1≤k≤n|cp1,11,14(k) is even}

n

#{1≤k≤n|cp3,11,14(k) is even}
n

#{1≤k≤n|cp5,9,14(k) is even}
n

1000 0.535 0.543 0.530

2000 0.536 0.545 0.536

4000 0.549 0.552 0.543

8000 0.557 0.553 0.554

16000 0.568 0.564 0.565

32000 0.576 0.572 0.573

Table A.1. The proportion of even values of cpa,14−a,14(k) for 1 ≤ k ≤ n when a
is 1, 3, and 5.

several m between 3 and 32.
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n\m 3 4 5 6 7 8 9 10 12

1000 0.504 0.602 0.503 0.581 0.500 0.632 0.519 0.553 0.498

2000 0.495 0.630 0.511 0.599 0.505 0.657 0.500 0.577 0.495

4000 0.495 0.656 0.509 0.623 0.500 0.681 0.505 0.593 0.499

8000 0.506 0.681 0.509 0.641 0.493 0.700 0.497 0.608 0.494

16000 0.503 0.701 0.508 0.653 0.496 0.719 0.497 0.625 0.499

32000 0.507 0.720 0.501 0.671 0.496 0.736 0.502 0.638 0.498

n\m 14 16 18 20 22 24 26 28 30 32

1000 0.535 0.480 0.543 0.523 0.540 0.489 0.465 0.490 0.484 0.488

2000 0.536 0.488 0.550 0.502 0.544 0.508 0.507 0.498 0.495 0.501

4000 0.549 0.497 0.547 0.499 0.550 0.503 0.517 0.502 0.503 0.503

8000 0.557 0.501 0.551 0.494 0.566 0.496 0.513 0.502 0.507 0.504

16000 0.568 0.504 0.554 0.496 0.566 0.499 0.509 0.501 0.509 0.502

32000 0.576 0.504 0.556 0.498 0.575 0.501 0.505 0.500 0.506 0.500

Table A.2. The proportion of even values of cp1,m−1,m(k) for 1 ≤ k ≤ n.
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