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Abstract

We study cranks for the function p
`

n,m
˘

, enumerating partitions of
n with parts of size at most m by considering “multiplicity-based statis-
tics.” For a known infinite family of partition congruences modulo each
prime `, we give conditions under which a multiplicity-based statistic is
a crank witnessing those congruences. Surprisingly, we find there are al-
ways several cranks witnessing the congruences in this infinite family. In
addition, we show that Dyson’s rank of a partition actually witnesses a
closely related infinite family of partition congruences modulo every prime
`.

1



1 Introduction

Freeman Dyson, in 1944 [4], requested a direct proof of Ramanujan’s [14] cele-
brated congruences for the partition function

pp5n` 4q ” 0 pmod 5q (1)

pp7n` 5q ” 0 pmod 7q (2)

pp11n` 6q ” 0 pmod 11q (3)

[that] will demonstrate by cross-examination of the partitions them-
selves the existence of five exhaustive, and equally numerous sub-
classes [4].

Dyson observed empirically that the largest part of the partition minus the
smallest part, which he called the rank, when considered modulo 5, seemed to
divide the partitions of 5n ` 4 into five equally populated subclasses, thereby
witnessing (1). Similarly, the rank also appeared to divide the partitions of
7n` 5 into seven equally populated subclasses, thereby witnessing (2). Among
the results in this paper, we show that Dyson’s rank actually witnesses infinitely
many congruences for P pn,mq, the number of partitions of n into parts of size
at most m, with at least one part of size m (which are equinumerous with
partitions of n into exactly m parts).

Noticing that the rank does not classify the partitions of 11n`6 into equally
populated subclasses, Dyson conjectured the existence of a similar statistic wit-
nessing (3), which he named the crank of a partition, in case such a statistic
would eventually be discovered. To this day, any such statistic on partitions
that witnesses a divisibility property of a partition function that is not the rank
is referred to as a crank.

Dyson’s conjecture on the rank was proved via q-series in 1954 by Atkin
and Swinnerton-Dyer [2]. It was not until 1988 that Andrews and Garvan [1]
found a crank (often referred to as the crank) for (1), (2) and (3). Two years
later Garvan, Kim, and Stanton [5] finally gave direct combinatorial proofs for
(1), (2), (3), and pp25n` 24q ” 0 pmod 25q by providing new cranks for each of
these congruences, along with explicit bijections for the equally populated crank
classes. However, Dyson’s seemingly simple request for a direct proof that the
rank witnesses Ramanujan’s first two congruences for the partition function has
not yet been resolved.

Our focus here is on the restricted partition function ppn,mq, which enumer-
ates the number of partitions of n into parts from the set rms “ t1, 2, . . . ,mu. It
is well known that the sequence tppn,mq pmod Mquně0 is periodic [6, 11, 13].
Moreover, there are also infinite collections of divisibility patterns in arithmetic
progressions for p

`

n,m
˘

[8, 9, 10]. In this paper, we investigate partition statis-
tics that we call multiplicity-based statistics, which we shorten to MB statistics
throughout this paper. An MB statistic is simply a linear combination of the
multiplicities of the parts of a partition. Working with one key infinite family of
congruences in arithmetic progressions, we provide conditions for an MB statis-
tic to be a crank witnessing these congruences. For infinitely many values of m
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and n and every prime `, we show that these cranks classify partitions of n into
parts from the set rms into ` equally populated subclasses.

In Section 2, we begin by giving the necessary definitions surrounding multiplicity-
based statistics, and we state The Interval Theorem, the family of congruences
we find are witnessed by multiplicity-based cranks. In Section 2.1, we give a
condition for an MB statistic to be a crank for The Interval Theorem, and we
give two cranks that witness these congruences for every prime `. In Section 2.2,
we show that one of these two cranks, when recast in the context of partitions
with largest part m, is actually equivalent to Dyson’s rank, so that Dyson’s
rank actually witnesses partition congruences modulo every prime `. In Section
2.3, we discuss the notion of crank equivalence, where we may actually have
different MB statistics that classify partitions into subclasses in the same way
up to a permutation of the subclasses. In addition, we find many inequivalent
cranks that witness The Interval Theorem, and we count them.

2 Definitions, Congruences, and MB statistics

Here we set forth the notation for the main objects of study in this paper,
partitions into parts of size at most m.

Definition 2.1. Let p be the set of all integer partitions, ppnq be the set of
all integer partitions of n, and ppn,mq be the set of all partitions of n into
parts from the set rms. To indicate λ P ppnq, we write λ $ n. The function
p
`

n
˘

denotes the number of partitions of n and p
`

n,m
˘

denotes the number of
partitions into parts from the set rms.

The sequence tppn,mq pmod `quně0 is periodic [6, 11, 13]. In this paper, we
treat the following key infinite family of congruences for p

`

n,m
˘

modulo a prime
` which stem from the periodicity of tppn,mq pmod `quně0. These congruences
fall in intervals of consecutive arithmetic progressions.

Theorem 2.2 (The Interval Theorem). [8, 9] For any prime `, any non-
negative integer k, and any 2 ď m ď `` 1, we have

p p`lcmpmqk ´ v,mq ” 0 pmod `q (4)

for 0 ă v ă
`

m`1
2

˘

.

Example 2.3. We display the collection of congruences in arithmetic progres-
sions from The Interval Theorem for the case ` “ 5 with 2 ď m ď 6.
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m “ 2 m “ 5 m “ 6

pp10k ´ 1, 2q ” 0 pmod 5q pp300k ´ 1, 5q ” 0 pmod 5q pp300k ´ 1, 6q ” 0 pmod 5q

pp10k ´ 2, 2q ” 0 pmod 5q pp300k ´ 2, 5q ” 0 pmod 5q pp300k ´ 2, 6q ” 0 pmod 5q

pp300k ´ 3, 5q ” 0 pmod 5q pp300k ´ 3, 6q ” 0 pmod 5q

m “ 3 pp300k ´ 4, 5q ” 0 pmod 5q pp300k ´ 4, 6q ” 0 pmod 5q

pp30k ´ 1, 3q ” 0 pmod 5q pp300k ´ 5, 5q ” 0 pmod 5q pp300k ´ 5, 6q ” 0 pmod 5q

pp30k ´ 2, 3q ” 0 pmod 5q pp300k ´ 6, 5q ” 0 pmod 5q pp300k ´ 6, 6q ” 0 pmod 5q

pp30k ´ 3, 3q ” 0 pmod 5q pp300k ´ 7, 5q ” 0 pmod 5q pp300k ´ 7, 6q ” 0 pmod 5q

pp30k ´ 4, 3q ” 0 pmod 5q pp300k ´ 8, 5q ” 0 pmod 5q pp300k ´ 8, 6q ” 0 pmod 5q

pp300k ´ 9, 5q ” 0 pmod 5q pp300k ´ 9, 6q ” 0 pmod 5q

m “ 4 pp300k ´ 1, 5q ” 0 pmod 5q pp300k ´ 10, 6q ” 0 pmod 5q

pp60k ´ 1, 4q ” 0 pmod 5q pp300k ´ 10, 5q ” 0 pmod 5q pp300k ´ 11, 6q ” 0 pmod 5q

pp60k ´ 2, 4q ” 0 pmod 5q pp300k ´ 11, 5q ” 0 pmod 5q pp300k ´ 12, 6q ” 0 pmod 5q

pp60k ´ 3, 4q ” 0 pmod 5q pp300k ´ 12, 5q ” 0 pmod 5q pp300k ´ 13, 6q ” 0 pmod 5q

pp60k ´ 4, 4q ” 0 pmod 5q pp300k ´ 13, 5q ” 0 pmod 5q pp300k ´ 14, 6q ” 0 pmod 5q

pp60k ´ 5, 4q ” 0 pmod 5q pp300k ´ 14, 5q ” 0 pmod 5q pp300k ´ 15, 6q ” 0 pmod 5q

pp60k ´ 6, 4q ” 0 pmod 5q pp300k ´ 16, 6q ” 0 pmod 5q

pp60k ´ 7, 4q ” 0 pmod 5q pp300k ´ 17, 6q ” 0 pmod 5q

pp60k ´ 8, 4q ” 0 pmod 5q pp300k ´ 18, 6q ” 0 pmod 5q

pp60k ´ 9, 4q ” 0 pmod 5q pp300k ´ 19, 6q ” 0 pmod 5q

pp300k ´ 20, 6q ” 0 pmod 5q

Given this large family of congruences, one might hope that there is some
crank statistic that witnesses these congruences by classifying the partitions
being counted into ` equally populated subclasses. Throughout this paper, we
consider a special class of partition statistics which we call multiplicity-based
statistics or MB statistics defined below.

Definition 2.4. Let λ be a partition of n into parts from the set rms. We write
λ in “multiplicity notation,” so that λ “ p1e1 , 2e2 , . . . ,memq is the partition with
exactly ei parts of size i for each i P rms. We define a multiplicity-based statistic
or MB statistic τ “ pτ1, τ2, . . . , τmq P Zm to be a function τ : ppn,mq Ñ Z such
that

τpλq “
m
ÿ

i“1

τiei. (5)

The function τpλq is simply a linear combination of the multiplicities of the
parts of λ.

Below we establish notation for treating the way in which MB statistics
classify partitions into subclasses.

Definition 2.5.

• For a given partition statistic τ , define Mτ pr, n,mq to be the set of
partitions λ of n into parts from rms such that τpλq “ r, and define
Mτ pr, n,mq “ |Mτ pr, n,mq|.
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• Given an MB-statistic τ , we can produce a generating function forMτ pr, n,mq.

fτ pz, qq “
8
ÿ

n“0

8
ÿ

r“´8

Mτ pr, n,mqz
rqn “

m
ź

i“1

1

1´ zτiqi
. (6)

• For a given partition statistic τ and a positive integer `, we allow τ to
classify the partitions of n into ` subclasses by letting Mτ pr, `, n,mq be
the set of partitions λ of n into parts from rms such that τpλq ” r pmod `q.
Also, define Mτ pr, `, n,mq “ |Mτ pr, `, n,mq|.

We are interested in MB statistics that witness congruences by dividing
ppn,mq into subclasses that are equally populated.

Definition 2.6. If the MB statistic τ : ppn,mq Ñ Z is equally distributed over
every residue class modulo `, we say that τ is a crank modulo `, witnessing
the `-divisibility of p

`

n,m
˘

. That is, if Mτ pi, `, n,mq “ ppn,mq{` for each
0 ď i ď `´ 1, then τ is a crank modulo `.

2.1 Cranks Witnessing The Interval Theorem

Surprisingly, every congruence given in The Interval Theorem is witnessed by
a crank. In Corollary 2.11, we show that there are in essence two universal
cranks witnessing each and every one of these congruences for all m and `. In
addition, we produce a collection of MB statistics, each of which is a crank for
The Interval Theorem. The collection grows ever larger with m and `, and we
quantify this in Theorem 2.18.

When some ` is prescribed, we write ypxiq
m

i“1 to denote the tuple pxiq
m
i“1 with

the component x` omitted whenever m ě `.

Theorem 2.7. An MB statistic τ is a crank for the congruences of The Interval

Theorem if the components of the tuple
z

´τi
i

¯

m

i“1
are distinct modulo `, and τ` ı 0

pmod `q.

Example 2.8. The components of

ˆ

2

1
,

0

2
,
´1

3

˙̂
for the MB statistic τ “ p2, 0,´1q

are distinct modulo 5, hence τ is a crank for The Interval Theorem. This crank
reads “twice the number of 1s minus the number of 3s”. For example, the crank
value of λ “ p12, 23, 36q is computed as p2 ˆ 2q ` p0 ˆ 3q ´ p1 ˆ 6q “ ´2 ” 3
pmod 5q. Table 1 displays the 70 partitions of pp26, 3q classified by the crank
τ “ p2, 0,´1q modulo 5 into five equally populated subclasses.

We require the following two lemmas to prove Theorem 2.7.

Lemma 2.9. [12, 15] Let ` a prime, ζ “ e2πi{`, and ai P Z for 1 ď i ď `. If
ř̀

i“1

aiζ
i “ 0 then ai “ aj for all i, j.
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Table 1: The set pp26, 3q classified into five equally populated subclasses under
the crank τ “ p2, 0,´1q modulo 5.

τpλq”0pmod 5q τpλq”1pmod 5q τpλq”2pmod 5q τpλq”3pmod 5q τpλq”4pmod 5q
`

11, 22, 37
˘ `

12, 20, 38
˘ `

10, 21, 38
˘ `

15, 20, 37
˘ `

13, 21, 37
˘

`

18, 20, 36
˘ `

16, 21, 36
˘ `

14, 22, 36
˘ `

12, 23, 36
˘ `

10, 24, 36
˘

`

15, 23, 35
˘ `

13, 24, 35
˘ `

11, 25, 35
˘ `

19, 21, 35
˘ `

17, 22, 35
˘

`

12, 26, 34
˘ `

10, 27, 34
˘ `

111, 20, 35
˘ `

16, 24, 34
˘ `

14, 25, 34
˘

`

112, 21, 34
˘ `

110, 22, 34
˘ `

18, 23, 34
˘ `

13, 27, 33
˘ `

114, 20, 34
˘

`

19, 24, 33
˘ `

17, 25, 33
˘ `

15, 26, 33
˘ `

113, 22, 33
˘ `

11, 28, 33
˘

`

16, 27, 32
˘ `

117, 20, 33
˘ `

115, 21, 33
˘ `

10, 210, 32
˘ `

111, 23, 33
˘

`

116, 22, 32
˘ `

14, 28, 32
˘ `

12, 29, 32
˘ `

110, 25, 32
˘ `

18, 26, 32
˘

`

13, 210, 31
˘ `

114, 23, 32
˘ `

112, 24, 32
˘ `

120, 20, 32
˘ `

118, 21, 32
˘

`

113, 25, 31
˘ `

11, 211, 31
˘ `

19, 27, 31
˘ `

17, 28, 31
˘ `

15, 29, 31
˘

`

123, 20, 31
˘ `

111, 26, 31
˘ `

119, 22, 31
˘ `

117, 23, 31
˘ `

115, 24, 31
˘

`

10, 213, 30
˘ `

121, 21, 31
˘ `

16, 210, 30
˘ `

14, 211, 30
˘ `

12, 212, 30
˘

`

110, 28, 30
˘ `

18, 29, 30
˘ `

116, 25, 30
˘ `

114, 26, 30
˘ `

112, 27, 30
˘

`

120, 23, 30
˘ `

118, 24, 30
˘ `

126, 20, 30
˘ `

124, 21, 30
˘ `

122, 22, 30
˘

Lemma 2.10. Given a prime `, set ζ “ expp2πi{`q. For any MB statistic,
if fτ pζ, qq ´ qDfτ pζ, qq reduces to a polynomial in q of degree d ă D, then for
0 ă v ă D ´ d and k ě 1,

(i) ppDk ´ v,mq ” 0 pmod `q, and

(ii) τpλq is a crank witnessing the congruence above.
That is, Mτ pa, `,Dk ´ v,mq “Mτ pb, `,Dk ´ v,mq for all a, b.

Proof. Given τ , suppose fτ pζ, qq ´ qDfτ pζ, qq reduces to a polynomial in q of
degree d ă D. Then, for n ą d,

`´1
ÿ

r“0

`

Mτ pr, `, n,mq ´Mτ pr, `, n´D,mq
˘

ζr “ 0. (7)

Thus the coefficient Mτ pr, `, n,mq´Mτ pr, `, n´D,mq is equal to some constant
cn for every r by Lemma 2.9.

We now prove (ii) by induction on k. For d ă n ă D, we have for all r,

Mτ pr, `, n,mq ´Mτ pr, `, n´D,mq “Mτ pr, `, n,mq ´ 0 “ cn.

Now suppose Mτ pa, `,Dk´ v,mq “Mτ pb, `,Dk´ v,mq for all a, b. Since by
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(7)
`´1
ÿ

r“0

`

Mτ pr, `,Dpk ` 1q ´ v,mq ´Mτ pr, `,Dk ´ v,mq
˘

ζr “ 0,

and by our induction hypothesis

`´1
ÿ

r“0

`

Mτ pr, `,Dk ´ v,mqζ
r “ 0,

we have
`´1
ÿ

r“0

`

Mτ pr, `,Dpk ` 1q ´ v,mqζr “ 0.

Thus by Lemma 2.9, Mτ pa, `,Dpk ` 1q ´ v,mq “ Mτ pb, `,Dpk ` 1q ´ v,mq for
all a, b. Hence (ii) holds by induction, and (i) follows. �

We now prove Theorem 2.7.

Proof. Set ζ “ expp2πi{`q. So that we may invoke Lemma 2.10, we describe
conditions on the components τi of τ such that fτ pζ, qq ´ q

Dfτ pζ, qq reduces to
a polynomial in q. We begin by setting D “ `lcmpmq where 2 ď m ď ` ` 1.
Consider

fτ pζ, qq ´ q
`lcmpmqfτ pζ, qq “

1´ q`lcmpmq

m
ź

j“1

`

1´ ζτjqj
˘

. (8)

The rational function in (8) reduces to a polynomial in q if the multiset of roots
of the denominator is contained in the multiset of roots of the numerator. We
now examine these multisets of roots.

The numerator 1 ´ q`lcmpmq in (8) has a set of `lcmpmq distinct roots de-
scribed by

"

exp

ˆ

s2πi

`lcmpmq

˙
ˇ

ˇ

ˇ

ˇ

0 ď s ă `lcmpmq

*

. (9)

The set of roots of the denominator in (8) is

m
ď

j“1

 

q | ζτjqj “ 1
(

“

m
ď

j“1

 

q | qj “ ζ´τj
(

“

m
ď

j“1

j
ď

c“1

"

exp

ˆ

´τj2πi

j`
`
c2πi

j

˙*

.

(10)
The roots of the denominator (10) are each an `lcmpmqth root of unity and
hence are members the set of roots of the numerator (9). It follows then, that
the difference (8) is a polynomial if the roots of the denominator are distinct.

We now prove that (8) reduces to a polynomial if and only if τ satisfies the
conditions in Theorem 2.7.
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In one direction, suppose τ does not satisfy the conditions in Theorem 2.7,

so that either τ` ” 0 pmod `q or for some w ă y with w, y ‰ `, we have
τw
w
”
τy
y

pmod `q.
The first case, τ` ” 0 pmod `q, is only relevant if m “ ` or ` ` 1. Then, in

the far right side of (10), when j “ `, as c ranges from 1 to `, we get the set
of all `th roots of unity. When j “ 1 and c “ 1 we get exp p´τ12πi{`q, which
is also an `th root of unity. Hence we have a repeated root in (10), so (8) does
not reduce to a polynomial.

In the second case, where
τw
w
”
τy
y
pmod `q, we have τw ”

wτy
y

pmod `q.

For j “ w and c “ w, in the far right side of (10) we get

exp

ˆ

´τw2πi

w`
`
w2πi

w

˙

“ exp

ˆ

´wτy2πi

yw`
` 2πi

˙

“ exp

ˆ

´τy2πi

y`

˙

.

When j “ y and c “ y in the far right side of (10), we get exp p´τy2πi{y`q again.
Hence we have a repeated root in (10), so (8) does not reduce to a polynomial.

In the other direction, supposing τ does satisfy the conditions in Theorem
2.7, we now show that (8) reduces to a polynomial in q of degree `lcmpmq ´
`

m`1
2

˘

. As before, the roots of the numerator 1 ´ q`lcmpmq in (8) are the set
of all `lcmpmq roots of unity, the roots of the denominator (10) are each an `
lcmpmqth root of unity, and thus the difference (8) is a polynomial if the roots
of the denominator (10) are distinct.

Suppose to the contrary that the roots of the denominator are not distinct.
Then either

exp

ˆ

´τj2πi

j`
`
c2πi

j

˙

“ exp

ˆ

´τ`2πi

`2
`
c2πi

`

˙

for some j ‰ `, or

exp

ˆ

´τj2πi

j`
`
c2πi

j

˙

“ exp

ˆ

´τk2πi

k`
`
c2πi

k

˙

for some j ‰ k, where j, k ‰ `.
In the first case, which is only relevant for m “ ` or `` 1, we have

exp

ˆ

´τj2πi

j`
`
c2πi

j

˙

“ exp

ˆ

´τ`2πi

`2
`
c2πi

`

˙

,

which implies

2πi

ˆ

´τj
j`

`
c

j

˙

“ 2πi

ˆ

´τ`
`2

`
c

`
` x

˙

for some integer x. Thus

´τj`` c`
2 “ ´τ`j ` cj`` xj`

2,

which implies τ` ” 0 pmod `q, contradicting the conditions on τ in Theorem
2.7.
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In the second case, we have

exp

ˆ

´τj2πi

j`
`
c2πi

j

˙

“ exp

ˆ

´τk2πi

k`
`
c2πi

k

˙

,

which implies

2πi

ˆ

´τj
j`

`
c

j

˙

“ 2πi

ˆ

´τk
k`

`
c

k
` x

˙

for some integer x. Thus

´τjk ` ck` “ ´τkj ` cj`` xjk`,

which implies
τj
j
”
τk
k
pmod `q, contradicting the conditions on τ in Theorem

2.7.
Thus fτ pζ, qq ´ q`lcmpmqfτ pζ, qq reduces to a polynomial in q of degree `

lcmpmq ´
`

m`1
2

˘

if and only if
τj
j
ı
τk
k
pmod `q for j ‰ k, j, k ‰ `, and τ` ı 0

pmod `q. Since these conditions on τ match those from Theorem 2.7, we have
that such MB statistics are cranks for The Interval Theorem. �

Surprisingly, there are always two very simple MB statistics that are cranks
witnessing The Interval Theorem.

Corollary 2.11. The MB-statistics α, the number of parts excluding those of
size ` ` 1, and β, the number of parts excluding parts of size 1, are cranks
witnessing The Interval Theorem.

Proof. For 2 ď m ď `` 1,

α “

#

pα1,α2, . . . ,αmq “ p1, 1, . . . , 1, 1q if 2 ď m ď `

pα1,α2, . . . ,α``1q “ p1, 1, . . . , 1, 0q if m “ `` 1

β “ pβ1,β2, . . . ,βmq “ p0, 1, . . . , 1, 1q

In each case, both of the functions α and β satisfy Theorem 2.7, and the
proof is complete. �

2.2 Dyson’s Rank and P
`

n,m
˘

.

We now show that Dyson’s original rank statistic witnesses an infinite family of
partition congruences.

Let P
`

n,m
˘

enumerate the partitions of n into parts from the set rms with at
least one part of size m. This function is also equal to the number of partitions
of n into exactly m parts. It is well known that p

`

n,m
˘

“ P
`

n `m,m
˘

, and

we may recast The Interval Theorem in terms of P
`

n,m
˘

.
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Proposition 2.12. For any prime `, any non-negative integer k, and any 2 ď
m ď `` 1, we have

P p`lcmpmqk `m´ v,mq ” 0 pmod `q (11)

for 0 ă v ă
`

m`1
2

˘

.

In this new context, Dyson’s rank reprises its original role.

Theorem 2.13. For any prime `, Dyson’s rank modulo ` witnesses the partition
congruences in Proposition 2.12 for 2 ď m ď `.

Proof. Let P
`

n,m
˘

be the set of partitions of n with largest part m. Let

µ : p
`

n,m
˘

Ñ P
`

n`m,m
˘

be the bijection defined by adding a part of size m.
By Corollary 2.11, we have that α classifies p p`lcmpmqk ´ v,mq into ` equally
populated subclasses. For p p`lcmpmqk ´ v,mq, multiplying α by ´1 and adding
the constant m ´ 1 merely relabels these subclasses. Thus the new statistic
m´α´1 also classifies p p`lcmpmqk ´ v,mq into ` equally populated subclasses.
Now notice that for any λ P p p`lcmpmqk ´ v,mq such that m ´ αpλq ´ 1 “ x,
µpλq will have Dyson rank x, because m is the largest part of µpλq, and µpλq
has exactly αpλq ` 1 parts. Thus Dyson’s rank modulo ` is a witness for the
partition congruences in Proposition 2.12. �

Example 2.14. In Table 2, we list all twenty-one partitions of Pp16, 3q classified
by Dyson’s rank modulo 3 into three equally populated subclasses.

Table 2: Pp16, 3q

0 pmod 3q 1 pmod 3q 2 pmod 3q
`

11, 20, 35
˘ `

14, 20, 34
˘ `

12, 21, 34
˘

`

10, 22, 34
˘ `

13, 22, 33
˘ `

11, 23, 33
˘

`

15, 21, 33
˘ `

12, 24, 32
˘ `

17, 20, 33
˘

`

14, 23, 32
˘ `

18, 21, 32
˘ `

10, 25, 32
˘

`

110, 20, 32
˘ `

11, 26, 31
˘ `

16, 22, 32
˘

`

13, 25, 31
˘ `

17, 23, 31
˘ `

15, 24, 31
˘

`

19, 22, 31
˘ `

113, 20, 31
˘ `

111, 21, 31
˘

2.3 Crank Equivalence

Theorem 2.7 shows that there are many cranks witnessing the congruences de-
scribed in The Interval Theorem. One might ask whether or not each of these
cranks is genuinely different, or if several different cranks might classify parti-
tions into subclasses in the same way, with the labels on the subclasses merely
rearranged.
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Definition 2.15. We call two MB statistics equivalent modulo ` if their clas-
sifications of partitions into ` subclasses are the same, with the labels on the
subclasses possibly rearranged. That is, two MB statistics τ and σ are equiva-
lent if there exists a permutation φ of t0, 1, . . . , `´1u such that Mτ pr, `, n,mq “
Mσpφprq, `, n,mq for all 0 ď r ă `.

In Example 2.3, with k “ 1, we have p
`

291, 6
˘

” 0 pmod 5q. In this case,
the cranks α and β described in Corollary 2.11 are not equivalent. Table 3
shows that when each are taken modulo 5, α classifies the partitions of 291
differently than β. In particular, we see two partitions separated by α into
different subclasses, that are placed into the same subclass by β.

Table 3: Distinct subclasses generated by different crank functions.

λ $ 291 αpλq pmod 5q βpλq pmod 5q
`

1288, 20, 31, 40, 50, 60
˘

4 1
`

1289, 21, 30, 40, 50, 60
˘

0 1

In Theorem 2.16, we show that the cranks α and β witnessing The Interval
Theorem are, in general, not equivalent.

Theorem 2.16. For any prime ` ě 3 and 3 ď m ď ``1, the cranks α pmod `q
and β pmod `q are not equivalent. That is, they classify the partitions described
in The Interval Theorem in two genuinely different ways.

Proof. To show that α and β divide the partitions of n into different subclasses,
we construct partitions λ $ n and µ $ n such that β pλq “ β pµq, but α pλq “
α pµq.

Let λ “
`

1n´3, 20, 31, 40, 50, . . . ,m´ 10,m0
˘

, and µ “
`

1n´2, 21, 30, 40, 50, . . . ,m´ 10,m0
˘

.
Then α pλq “ n´ 2 and β pλq “ 1, while α pµq “ n´ 1 and β pµq “ 1.

Hence, β pλq “ β pµq while α pλq “ α pµq ´ 1. Thus, the cranks α and β
produce distinct subclasses of partitions as they witness The Interval Theorem.

�

At the same time, every MB statistic has many equivalents. In Proposition
2.17, we give two transformations that generate equivalent MB statistics.

Proposition 2.17. Let τ “ pτ1, τ2, . . . , τmq be an MB statistic. Given a prime
` and a constant a ı 0 pmod `q, define aτ “ paτ1, aτ2, . . . , aτmq. Then τ and
aτ are equivalent modulo `.

Let b be any integer and define τ ` bp1, 2, . . . ,mq “ pτ1` b, τ2` 2b, . . . , τm`
bmq. Then τ and τ ` bp1, 2, . . . ,mq are equivalent modulo `.

Proof. Define a permutation φˆ of t0, 1, . . . , ` ´ 1u by φˆprq “ ar pmod `q.
For each partition λ “ p1e1 , 2e2 , . . . ,memq of n, there is some r P t0, 1, . . . , ` ´
1u such that λ P Mτ pr, `, n,mq. Then aτpλq ” ar pmod `q, and thus λ P
Maτ pφ

ˆprq, `, n,mq. Thus τ and aτ are equivalent.
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Further define a permutation φ` of t0, 1, . . . , ` ´ 1u by φ`prq “ r ` bn
pmod `q. Then, since p1, 2, . . . ,mqpλq “ n, we have pτ ` bp1, 2, . . . ,mqqpλq ”
r ` bn pmod `q. Thus λ P Mτ`bp1,2,...,mqpφ

`prq, `, n,mq, hence τ and τ `
bp1, 2, . . . ,mq are equivalent. �

By indicating a distinct representative of each equivalence class of cranks,
we are able to count the number of inequivalent MB statistics that are cranks
for The Interval Theorem.

Theorem 2.18. For any prime ` ě 3 and 3 ď m ď ` ` 1, the number of
inequivalent MB statistics generated by Theorem 2.7 that witness The Interval
Theorem is exactly

• p`´2q!
p`´mq! for 2 ď m ă `, and

• p`´ 1q! for m “ `, `` 1.

Proof. We show that tτ P t0, 1, . . . , ` ´ 1um : τ “ p0, 1, τ3, τ4, . . . , τmqu is a set

of inequivalent cranks for The Interval Theorem if the components of
z

´τi
i

¯

m

i“1
are distinct modulo `, and τ` ‰ 0.

Consider two different MB statistics τ “ p0, 1, τ3, τ4, . . . , τmq and σ “ p0, 1, σ3, σ4, . . . , σmq
in t0, 1, . . . , `´ 1um, and let j be the smallest such that τj ‰ σj . Without loss
of generality, assume τj ‰ 0 (if τj “ 0, switch the roles of τ and σ).

Let n be some integer of the form `lcmpmqk´v meeting the hypotheses The
Interval Theorem. To show that τ and σ divide the partitions of n into different
subclasses, we construct partitions γ $ n and κ $ n such that τ pγq “ τ pκq,
but σ pγq ‰ σ pκq.

Let
γ “

`

1n´j`, 20, 30, . . . , j`, pj ` 1q0, . . . ,m´ 10,m0
˘

.

Choose a to be the least non-negative residue of pτjq
´1 modulo `, and let

κ “
´

1n´jp`´aq´2, 21, 30, 40, . . . , j`´a, pj ` 1q0, . . . ,m´ 10,m0
¯

.

Then τ pγq “ `τj ” 0 pmod `q and τ pκq “ 1 ` p` ´ aqτj “ 1 ` `τj ´ 1 ” 0
pmod `q. However, σ pγq “ `σj ” 0 pmod `q, while σ pκq “ 1 ` p` ´ aqσj “
1` `σj ´ aσj ı 0 pmod `q, since σj ‰ τj ” a´1 pmod `q.

Hence τ pγq “ τ pκq while σ pγq ‰ σ pκq, and thus the cranks τ and σ produce
genuinely different divisions into subclasses as they witness the The Interval
Theorem.

On the other hand, for m ă `, Since each i P r` ´ 1s is invertible modulo
`, the total number of (possibly equivalent) cranks generated in Theorem 2.7

is equal to the total number of tuples
z

´τi
i

¯

m

i“1
“

´τi
i

¯m

i“1
that have distinct

components modulo `, which is `!{p`´mq!. Let τ “ pτ1, τ2, . . . , τmq be any such
crank. By Proposition 2.17, we see that τ is equivalent to several other cranks,
which we now count. Since there ` constants b modulo ` and ` ´ 1 non-zero
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constants a modulo `, there are `p` ´ 1q potential equivalents to τ , which we
now show are all different.

Suppose for some a, b, c, d, we have that aτ`bp1, 2, . . . ,mq “ cτ`dp1, 2, . . . ,mq.
Then

aτ1 ` b “ cτ1 ` d (12)

and
aτ2 ` 2b “ cτ2 ` 2d. (13)

Subtracting twice (12) from (13), we get apτ2 ´ 2τ1q “ cpτ2 ´ 2τ1q. Notice that
since τ1{1 and τ2{2 are distinct, we have a “ c. If τ1 “ 0, we also have b “ d
and we are done. Otherwise, subtracting τ2{τ1 times (12) from (13) we get
bp2´ τ2{τ1q “ dp2´ τ2{τ1q. Notice again that since τ1{1 and τ2{2 are distinct,
we have b “ d. Thus we have `p`´ 1q different cranks that are equivalent to τ .
Hence, for 2 ď m ă `, there are at most p`!{p`´mq!q{`p`´1q “ p`´2q!{p`´mq!
inequivalent cranks witnessing The Interval Theorem.

The case m “ ` is follows identically to the case m “ ` ´ 1, but with an
additional factor of `´1 total (possibly equivalent) cranks generated in Theorem
2.7 from the choice of some τ` ı 0 pmod `q. Hence, for m “ `, there are at most
pp`´1q`!{p`´`q!q{`p`´1q “ p`´1q! inequivalent cranks witnessing The Interval
Theorem.

The case m “ ` ` 1 is follows identically to the case m “ `, but with an
additional trivial factor of 1 total cranks generated in Theorem 2.7, since once
τ1 through τ` are generated, τ``1 is uniquely determined. Hence, for m “ `` 1,
there are again at most p` ´ 1q! inequivalent cranks witnessing The Interval
Theorem. �

3 Future Work

The Interval Theorem describes partition congruences that occur in arithmetic
progressions with period `lcmpmq. There exists a related infinite family of
partition congruences having a much smaller period.

Theorem 3.1. [7]
For any prime `, any non-negative integer k, and 0 ă u ă `´1

2 , we have

p plcmp`qk ´ u`, `q ” 0 pmod `q. (14)

Theorem 2.7 shows that the MB statistic τ “ p1, 1, . . . , 1, 0,´1q, otherwise
described as the number of parts of size 1 through `´2, minus the number of parts
of size `, is a crank for The Interval Theorem. Theorem 2.7 does not show that
τ is a crank for Theorem 3.1. However, by producing quasipolynomial formulas
for Mτ

`

r, `, n,m
˘

for each r, since we find that the relevant constituents are the
same as r varies, we discover that τ is also a crank witnessing the congruences
of Theorem 3.1 for ` “ 3, 5, and 7.
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For example, for k a non-negative integer, we find after performing nine
individual computations that

Mτ

`

0, 3, 18k ` 3, 3
˘

“Mτ

`

1, 3, 18k ` 3, 3
˘

“Mτ

`

2, 3, 18k ` 3, 3
˘

“ 9k2 ` 6k ` 1,

Mτ

`

0, 3, 18k ` 9, 3
˘

“Mτ

`

1, 3, 18k ` 9, 3
˘

“Mτ

`

2, 3, 18k ` 9, 3
˘

“ 9k2 ` 12k ` 4, and

Mτ

`

0, 3, 18k ` 15, 3
˘

“Mτ

`

1, 3, 18k ` 15, 3
˘

“Mτ

`

2, 3, 18k ` 15, 3
˘

“ 9k2 ` 18k ` 9.

Thus the truth of

Mτ

`

0, 3, 6k ` 3, 3
˘

“Mτ

`

1, 3, 6k ` 3, 3
˘

“Mτ

`

2, 3, 6k ` 3, 3
˘

“
pp6k ` 3, 3q

3

follows. For more information about computing the constituents of quasipoly-
nomials for ppn,mq, see [3].

Despite only a small amount of evidence, we boldly offer the following.

Conjecture 3.2. The MB statistic τ “ p1, 1, . . . , 1, 0,´1q is a crank witnessing
the congruences of Theorem 3.1 for all primes `.
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