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ABSTRACT. Let p be a prime number. We study the slopes of U,-eigenvalues on the subspace
of modular forms that can be transferred to a definite quaternion algebra. We give a sharp
lower bound of the corresponding Newton polygon. The computation happens over a definite
quaternion algebra by Jacquet-Langlands correspondence; it generalizes a prior work of
Daniel Jacobs who treated the case of p = 3 with a particular level.

In case when the modular forms have a finite character of conductor highly divisible by
p, we improve the lower bound to show that the slopes of U,-eigenvalues grow roughly like
arithmetic progressions as the weight k increases. This is the first very positive evidence
for Buzzard-Kilford’s conjecture on the behavior of the eigencurve near the boundary of the
weight space, that is proved for arbitrary p and general level. We give the exact formula of
a fraction of the slope sequence.
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Let p be a fixed prime number which we assume to be odd for simplicity in this introduc-
tion. For N a positive integer (the “tame level”) coprime to p, kK + 1 > 2 an integer (the
“weight” )E|, m a positive integer, and 1 a character of (Z/p™7Z)*, we use Sk+1(Io(p™N); ¢) to
denote the space of modular cuspforms of weight k41, level p”™ N, and nebentypus character
1 over some finite extension E of Q,. This space comes equipped with the action of Hecke
operators, most importantly the action of the Atkin U,-operator. It is a central question in
the theory of p-adic modular forms to understand the distributions of the “slopes”, namely,
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the p-adic valuations of the eigenvalues of U, acting on Si41(Io(p™N); 1), as the weight k+1
varies. All p-adic valuations or norms in this paper are normalized so that p has valuation 1
and norm p~L.

One of the most interesting expectations concerns the case when the nebentypus char-
acter 1 has exact conductor p™ for m > 2, i.e. ¥ does not factor through a character on
(Z/p™'Z)*. Let w: (Z/pZ)* — L} denote the Teichmuiiller character.

The following question was asked by Coleman and Mazur [CM98] and later elaborated by
Buzzard and Kilford [BK05].

Conjecture 1.1. Fiz an integer N coprime to p and a character vy of (Z/pZ)* such that
Yo(—=1) = —1. Then there exists a non-decreasing sequence of rational numbers ay, as, . ..
approaching to infinity such that

o for any integersm > 2, k+1 > 2 and any character of (Z/p™7Z)* of exact conductor
p™ such that V| (z/ymx -w” = o, the slopes of U, acting on Si11(Do(p™N);¢) is given
by the first few terms of the sequence

al/pma a2/pm7 s
consisting of all numbers strictly less than k and some equal to k’s.
Moreover, the sequence ay,as, ... is a union of finitely many arithmetic progressions.

There has been many direct computations supporting this Conjecture in special cases,
first by Buzzard and Kilford [BK05] (extending the work of Emerton [Em98]) in the case
when p=2and N = 1E|, then in many similar particular cases with small primes p and small
levels; see [Rol3l Kil08, [KM12l [JTa04]. Nonetheless, this Conjecture was never recorded in
the literature for lack of theoretic or heuristic evidences. The goal of this paper is to provide
some positive indications in the general case.

1.2. The geometry of the eigencurve. Before proceeding, we explain the meaning of
Conjecture [1.1]in terms of the geometry of the eigencurve.

Eigencurves were introduced by Coleman and Mazur [CM9§| to p-adically interpolate
modular eigenforms of different weights. Here the notion of weights is generalized to mean a
continuous character of Z7; for examples, x — 2)(x) corresponds a classical weight k + 1
with nebentypus character 1. In the loosest terms, the eigencurve is a rigid analytic closed
subscheme of the product of the weight space and G,,, defined as the Zariski closure of the
set of pairs (21 (z), a,(f)) for each eigenform f of weight k + 1 and nebentypus character ¢
with U,-eigenvalue a,(f). In particular, its fiber over the point z*¢(z) of the weight space
parametrizes the U,-eigenvalues on the space of modular forms Sy1(Io(p™N); 1) and the
overconvergent ones.

The eigencurve plays a crucial role and has many applications in the modern p-adic number
theory; to name one: Kisin’s proof of Fontaine-Mazur conjecture [Kis09]. Despite the many
arithmetic applications, the geometry of the eigencurve was however poorly understood for
a long time. For example, the properness of the eigencurve was not known until the very
recent work of Diao and Liu [DL].

Conjecture and this paper focus on another intriguing property: the behavior of the
eigencurve near the boundary of the weight space. The striking computation of Buzzard

2We earlier excluded the case of p = 2 for simple presentation; but slight modification allows us to include
this case, as we will do for the rest of the paper.
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and Kilford [BKO05] mentioned above shows that, when p = 2 and N = 1, the Coleman-
Mazur eigencurve, when restricted over the boundary annulus of the weight space, is an
infinite disjoint union of copies of this annulus. This is a family and a much stronger version
of Conjecture see Conjecture for the precise expectation. Generalizing this result
would have many number theoretical applications. For example, in [PX], the second author
and Pottharst reduced the parity conjecture of Selmer rank for modular forms to this precise
statement.

1.3. Main result of this paper. For the sake of presentation, we assume that there ex-
ists a prime number ¢ such that ¢||N. We only consider the subspace of modular forms
which are f-new, denote by a superscript f-new, e.g. Sy 1(Fo(p™N);2)4"V. This is the
subspace of modular forms that can be identified by Jacquet-Langlands correspondence with
the automorphic forms on a definite quaternion algebra D which ramifies at ¢ and oco.

The following lower bound of the Newton polygon of the U,-action on Sy (To(p™N); )™
might be known among some expertsﬂ

Theorem A. Assume that the conductor of 1 is exactly p™. (By our later convention, this
will include the case when 1 is trivial and m = 1.) Let t denote dim So(To(p™N);p)tmew
so that dim Sy (Do(p™N); )t = kt. Then the Newton polygon of the U,-action on
Ski1(Do(p™N); ) 1Y lies above the polygon with vertices

(0,0), (,0), (2t,1),. .., (nt, “¢), ...

The complete proof is given in Theorem .8 Note that the lower bound is independent
of k, and thus uniform in k. A similar uniform quadratic lower bound of Newton polygon
was obtained by the first named author in [Wa9§| using a variant of Dwork’s trace formula.
We point out that our lower bound is much sharper. In fact, the distance between the end
point of the Newton polygon of U, acting on Sj1(Lo(p™N); )" and our lower bound is
linear in k (comparing to the quadratic difference in [Wa98]).

When the character ¢ is trivial, Theorem [A] gives a heuristic explanation of a conjecture
of Gouveéa on the distributions of slopes. Unfortunately, we cannot prove a family version
of Theorem [A] while keeping the same bound in this case; therefore, it does not prove this
conjecture of Gouvéa. We refer to Remarks [4.9 and for related discussions.

The proof of Theorem [A| (and the proof of the subsequent theorems in this paper) uses
Jacquet-Langlands correspondence to transfer all information into automorphic forms for a
definite quaternion algebra. The advantage of working with definite quaternion algebra is
its simpler geometry compared to the modular curves. The quadratic error term in [Wa9§]
is partly a result of lack of a good integral structure on the modular curves. In contrast, the
theory of overconvergent automorphic forms on a definite quaternion algebra d’apres Buzzard
[BuO7] come equipped with a nice integral basis. Our computation essentially reproduces
Jacobs’ thesis [Ja04], except taking a more theoretical as opposed to computational approach.

The real improvement over Jacobs’ work is that, when the conductor p™ of ¢ is large
(e.g. m > 4), we can improve the lower bound above so that it agrees with the Newton
polygon (in the overconvergent setting) at infinitely many points which form an arithmetic
progression. This gives the following

3We think that Buzzard probably has an unpublished note on certain version of this theorem; see [Bu05).
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Theorem B. Keep the notation as in Theorem and assume that m > 4. Let ao(k) <
ar(k) < -+ < ap1(k) denote the slopes of the U,-action on Sgy1(To(p™N); ) ™Y, in
non-decreasing order (with multiplicity). Then we have

3] < an(k) < [3]+1.

This is proved in Theorem [6.17] Note that the inequality of the slopes does not depend
on the weight k 4+ 1. In fact, we prove a family version of such inequality which gives rise
to a decomposition (Theorem of the eigencurve over the disks W(zv,p~!) of radius
p~! centered around the character x1), just as in Buzzard-Kilford [BK05]. Unfortunately, we
cannot extend this result to the entire weight annulus of radius p~'/ P""*(>=1) which contains
).

The main idea of the proof consists of two major inputs: (1) We show that there is a
natural isomorphism

00

(1.3.1) SPIU k) = P

such that the U,-action on the left hand side is “approximately” the action of €@, ~,(p" - Up)
on the right hand side. Here the letter U is the corresponding level structure which looks
like To(p™) at p; SP"T(U; k) stands for the space of overconvergent automorphic forms over a
definite quaternion algebra D with weight character x living in W(zv, p~1); the right hand
side is the completed direct sum of classical automorphic forms over D of weight 2 with
characters Yw™2", twisted by the character w™ o det. It thus follows that the U,-slopes on
SP1(U; k) is approximately determined by the U,-slopes on these space of classical forms of
weight 2.

(2) To carry out the approximation in (1.3.1), it is important to show that the slopes of
the Hodge polygon of the U,-action on each S (U;¢w2") are between 0 and 1. Here the
Hodge polygon of the matrix for the U,-action refers to the convex hull of points given by
the minimal p-adic valuation of the minors of the matrix. To prove this key result, we make
use of (in the definite quaternion situation) the natural integration/summation pairing

() SP(U) x S (Usy™) = B

SEUw™) © (w" 0 de),

n=

and the fact that (U,(f),U,(9)) = p{(S,(f),g), where S, is the unramified central character
action at p. In fact, we also need certain deformed version of this pairing in order to improve
the result from the open disks of radius p~! to the closed disks of the same radius. This
small improvement is also essential to Theorem [Bl We refer to Section [6] for details.

We also point out that the condition m > 4 is currently an unfortunate technical condition.
See Remark [6.1§] for the discussion in the case when m = 3.

A consequence of the proof of Theorem [B|is that we can in fact show that some of the
slopes indeed form arithmetic progressions.
Theorem C. Keep the notation as in Theorem @ Fiz r € {0,1,.. .,’%3}. Let NP,.(7)
and HP, (i) denote the Newton polygon and Hodge polygon functions for the U,-action on
So(Co(p™N); pw=2r)emew - Suppose that (sg, NP,(so)) is a vertex of the Newton polygon NP,
and suppose that

NP,(s) <HP,.(s—1)+1 forall s=1,...,so.
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Then for any s = 0,1,..., 5o, the following subsequence
asrt(k), a5+rt+%t(k:), e as+rt+ip%1t(k:), .

is independent of the positive integer k whenever it is congruent to 2r + 1 modulo p — 1
(whenever it makes sense) and it forms an arithmetic progression with common difference

p—1
=5

This is proved in Corollary [6.19 Note that the common difference for the arithmetic pro-
gression s ’%1 but not 1. This is due to the periodic appearance of the powers of Teichmiiller
characters in (1.3.1)). In fact, this (larger) common difference agrees with the computation
of Kilford [Kil0§] and Kilford-McMurdy [KM12] in the case m = 2, where the common
difference is 2 when p = 5 and is % (which can be further separated into two arithmetic
progressions with common difference 3) when p = 7E|

The power of Theorem [C] is limited by how close the Hodge polygon is to the Newton
polygon. In particular, as N and m get bigger, the gap between the Newton and Hodge
polygons will be inevitably widened, and hence sq is relatively small compared to ¢.

One remedy we propose is to “decompose” the space of (overconvergent) modular forms

according to residual Galois pseudo-representations.

Theorem D. Let py,...,pq be the residual Galois pseudo-representations appearing as the
pseudo-representations attached to the eigenforms in S2(U;vyw=?") for somer = 0,1,. .., ’%3.
Then we have a natural decomposition of (overconvergent) automorphic forms:

d

d
SPIUs k) =@ SPN(Us k)5, and  SPL(Us) = @D SPL (U ),
j=1

j=1
for all weights k + 1. Moreover, Theorem @ holds for each individual SP (U, ww_zr)ﬁj.

This is proved in Theorem [7.12, The idea behind this theorem is that the isomorphism
(1.3.1) is also approximately equivariant for tame Hecke actions. One can certainly de-
compose the right hand side of according to the reductions of the associated Galois
(pseudo-)representations; the isomorphism allows us, to some extend, transfer the
decomposition to the space of overconvergent automorphic forms. The error terms can be
killed by taking the limit of repeated p-powers of the approximate projectors on the space
of overconvergent automorphic forms.

We believe that the decomposition by Galois pseudo-representations has its own interest;
for example, it gives a natural decomposition of the eigencurve according to the residual
Galois pseudo-representations. Our decomposition is given in a reasonably explicit way on
the Banach space of overconvergent automorphic forms and we have a good “model” of each
factor. So the decomposition of the eigencurve over disks of radius p~! centered around
xp(z) applies to the piece corresponding to each Galois pseudo-representation.

1.4. Structure of the paper. We first briefly recall the construction of eigencurves in
Section [2] as well as the conjecture of Buzzard-Kilford. Section [3] sets up basic notations
for classical and overconvergent automorphic forms for a definite quaternion algebra. Sec-
tion [ gives the most fundamental computation of the infinite matrix for the U,-action on

“We believe that the assumption m > 4 is technical; Theorem [B| should hold for m = 2 or 3 if one can
overcome all technical difficulties.
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the space of overconvergent automorphic forms. In particular, Theorem [A] is proved here.
The theoretical computation is complemented by a concrete example which we present in
Section B} this was previously studied by Jacobs [Ja04], but made much more accessible here
as a by-hand computation. We hope this explicit example can inspire the readers to seek for
new ideas. After this, we study the pairing between classical automorphic forms in Section [6]
and prove Theorems [B] and [C] at the end of the section. Section [7]is devoted to separating
the eigencurve according to residual Galois pseudo-representations. Theorems [D] is proved
at the end of Section [7l
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Unconventional use of notations. We list a few unconventional use of notations.

e The conductor of a trivial character of Z) is p as opposed to 1.

e We use k + 1, as opposed to k, for the weight of modular forms. Related to this, the
right action appearing in the definition of automorphic forms on definite quaternion
algebra uses a slightly different normalization; see (3.2.1]).

e Although the Hecke actions seem to come from certain right action on the Tate
algebras, we still view them as left action. Therefore, we exclusively work with
column vectors. We will try to clarify this in the context (e.g. Proposition [4.6)).

e All row and column indices of a matrix starts with 0 as opposed to 1; this will be
extremely useful when considering infinite matrices later.

2. COLEMAN-MAZUR EIGENCURVES

2.1. Weight space. We fix a prime number p. We write I' = Z; as A x 'y, where I'g =
(1+2pZ,)* = Z, (identified via the map = — % log(z)) and A = (Z,/2pZ,)* is isomorphic
toZ/(p — 1)Z if p > 3, and Z/2Z if p = 2. We choose the topological generator v, of I'g to
be the element exp(2p) € I'y C Z.

We use A = Z,[I'] and Ay = Z,[T'o] to denote the Iwasawa algebras. In particular, we
have A = Ay ®z, Z,[A]. For an element v € I', we use [7] to denote its image in the Iwasawa
algebra A. The chosen v defines an isomorphism Z,[T] ~ Ay given by T — [yo] — 1.

The weight space is defined to be W := MaX(A[i]), the rigid analytic space associated to
the formal scheme Spf(A); it is a disjoint union of #A copies of the open unit disk. The
natural projection

W = Max(Ao @z, Qp[A]) = Max(Ao[;]) ~ Max(Z,[T][])
gives each point on W a T'-coordinate.
The weight space W may be viewed as the universal space for continuous characters of I'.
More precisely, a continuous character x : [' — Oép gives rise to a continuous homomorphism
kA =Zy[I'] = Oc, and hence defines a point, still denoted by , on the weight space W.

The T-coordinate of the point x is T, = k(70) — 1. We point out that, the T-coordinate of
6



a point of VW depends on the choice of the topological generator vy, but its p-adic valuation
does not.

Example 2.2. For k € Z, the character ¥ : I' — Z, sending a to a* has T-coordinate
T, = exp(2kp) — 1. We observe that | exp(2kp) — 1| = p~*2*?): in other words, these types
of points are very closed to the centers of the weight disks.

Let ¢« I' = (Zy/p™Zy)* — O¢, denote a finite continuous character which does not
factor through smaller positive m (m > 2 if p = 2). We say that 1, has conductor p™,
ignoring the prime-to-p part of the conductor. In particular, a trivial character has conductor
p(ordifp=2);s0m=1(orm =2ifp=2). Whenm > 2 and p > 2, ¥,,(7) is a primitive
p™ !-st root of unity (,m-1. Thus, the point z¥1,, has T-coordinate (,m-1 exp(2pk)—1, which
has norm p~/?"*=1) (independent of k). So these points move towards the boundary of
the weight space as m grows; but stay in the same “rim” as k varies, and accumulate as k
becomes more congruent modulo powers of p.

We call characters x*1),, with k > 1 classical characters. (Our weight will always be k + 1
from now on.)

We use w : A — Z to denote the Teichmiiller character. We use () : I' = Z to denote

the character xw™!.

2.3. Coleman-Mazur eigencurve. Instead of working with the usual eigencurves, we shall
work with the so-called “spectral curves”; the main Conjecture is, for a large part,
equivalent for these two curves.

We first recall the definition of spectral curves; for details, we refer to [Bu07, Section 2].
Suppose that we are given an affinoid algebra AH over Q, and a Banach A-module S which is
potentially orthonormalizable, that is a Banach A-module isomorphic to a direct summand
of a Banach A-module P which admits a countable orthonormal basis (e;);en. Moreover,
suppose that we are given a nuclear operator U, on S, that is, the uniform limit of a
sequence of continuous A-linear operators on S whose images are finite A-modules. Then we
can extend the action of U, to the ambient space P by taking the zero action on the other
direct summand of P. Write U, as an infinite matrix M, respect to the basis (e;). Then the
characteristic power series of U, acting on S

Char(Uy; S) :=det(I — XM) =1+ X + o X* +--- € A[X]

converges and is independent of the choices of the ambient space P and its basis (e;). More-
over, we have lim,, ., |c,|[r™ = 0 for any r € R*. Consequently, it makes sense to talk about
the zero locus of the characteristic power series Char(U,; S) in Max(A) X G, yig, where X
is the coordinate of the second factor. We denote this zero locus by Spc := Spc(Up; 5);
it is called the spectral variety associated to the Banach module S and the U,-operator.
The natural projection wt : Spc — Max(A) is called the weight map; the map a, : Spc —

-1
G rig -, Gynig given by the composite of the other natural projection with an inverse

STypically, Max(A) is an affinoid subdomain of W.
7



map is called the slope map.

ap

Spc

|

Max(A).

The weight map is known to be locally finite. For each closed point z € Spc, we use |wt(z)|
to denote the absolute value of the T-coordinate of z and |a,(2)| to denote the absolute value
of the corresponding point with respect to the natural coordinate on Gy, yig.

In the case of elliptic modular forms (with level I'g(p)), Coleman and Mazur [CM9S]
constructed, for each affinoid subdomain A of the weight space VW, a Banach module M
consisting of overconvergent cuspidal modular forms of weight in A and of a fixed convergence
radius; it carries a natural action of the U,-operator. This construction was subsequently
generalized by Buzzard [Bu07] to allow arbitrary tame level on the modular curve. Using
the construction of the previous paragraph, one can define the spectral curve over Max(A),
which patches together over W as the subdomain Max(A) varies. We do not recall the
precise definition here, but refer to [Bu(7] for details. However, we shall later encounter a
slightly different situation working with definite quaternion algebras; detailed construction
of the corresponding Banach module will be given then.

Gm,rig

2.4. The eigencurve near the boundary of the weight space. Recall that weight space
W has a natural coordinate T'. For r < 1, we use W=" to denote the sub-annulus of WW where
r < |T| < 1. (Mazur prefers to call it the rim of the weight space.) We are mostly interested
in the situation when r — 17. As computed in Example , all powers z* of the cyclotomic
character are not in the rim of the weight space as soon as r > p~.

We put Spc=" := wt~H(W?=2").

The following question was asked by Coleman and Mazur [CM9§|, and later elaborated
by Buzzard and Kilford [BK05].

Conjecture 2.5. When r s sufficiently close to 1, the following statements hold.
(1) The space Spc=" is a disjoint union of (countably infinitely many) connected compo-
nents X1, X, ... such that the weight map wt : X,, — W=" is finite and flat for each
n.
(2) There exist nonnegative rational numbers A1, Ag, - - - € Q in non-decreasing order and
approaching to infinity such that, for each i and each point z € X,,, we have

jap(2)] = [wt(2)| P~

(3) The sequence A1, g, ... is a disjoint union of finitely many arithmetic progressions,
counted with multiplicity (at least when the indices are large enough).

Clearly Conjecture [2.5] implies Conjecture by specializing to classical weights using
Coleman’s classicality result [Co96, [Co97].

Remark 2.6. Let us give a few evidences and remarks on Conjecture (as well as Con-
jecture [1.1).

(1) The novelty of our formulation lies in emphasizing statement (3) of Conjecture [2.5|as
part of the general picture. In fact, the aim of this paper is to give strong evidence

to support this expectation; see in particular, Corollary and Theorem m(?))
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(2) Similar properties near the center of the weight space are expected to be false; we
refer to [Bu05, [C105], [Lo07] for more discussions. But see also Remarks |4.10

(3) One can reformulate this conjecture for eigencurves instead of spectral curves; the
two statements would be essentially equivalent.

(4) When p = 2,3 and the modular curve is taken to be Xy(p), Conjecture [2.5|is proved
using direct computations by Buzzard-Kilford [BK05] and Roe [Rol3], extending the
thesis of Emerton [Em9§].

(5) For p = 5,7, the weaker version Conjecture was verified in some cases by Kilford
and McMurty [Kil08| [KM12].

(6) In an analogous situation where the eigencurve associated to Artin-Scheier-Witt tower
of curves is considered, the analogous of Conjecture [2.5] in fact over the entire weight
Spaceﬂ is proved by Davis and the first two authors [DWX13]. Our argument in
Section [0] shares some similarities with this approach and is in part inspired by it.

Remark 2.7. We give our most optimistic expectation of the numerics in Conjecture [2.5]
Suppose p > 3 for simplicity. First, we expect Conjecture to hold for r = p~t/®=1) (i.e.
the radius for finite characters of conductor p2).|2| Moreover, we hope to make a guess about
the sequence A1, Ag, ... in Conjecture 2.5l Assume that the tame level structure is neat. Fix
a connected component of the weight disk and fix a finite character v, of conductor p? so
that the character z, lies in that weight disk.

For i = 0,...,22, consider the action of U, on the space of cusp forms Sy(p?; thow™?)
whose tame level is as given and the level at p is [y(p?) with Nybentypus character ¢yw 2.
The dimension of such space is denoted by ¢ (which does not depend on ). Let agi), e ,agi)
denote the p-adic valuations of the corresponding U,-eigenvalues, counted with multiplicity.

Let d denote the number of cusps of the modular curve with only the tame level, or
equivalently the dimension of the weight 2 Eisenstein series for the tame level.

Then the sequence Aj, Ag,... is expected to be the union (rearranged into the non-

decreasing order) of exactly the following list of numbers:

e the numbers 1,2, 3, ... with multiplicity d, and

° forz'zO,...,]"%1 and r = 1,...,t, the numbers

al +i, o +i+ 22 ol +i+(p—1), ...
The former part should be considered as “contributions from the Eisenstein series” although
the overconvergent modular forms are cuspidal; and the latter part is the “contributions from

the cuspidal part”, which is a union of arithmetic progressions with common difference #5=.

(The number ’%1 comes from the cyclic repetition of powers of the Teichmiiller character.)

Our guess is motivated by the main theorems of this paper and some computation of Kilford
and McMurty [Kil08], [KM12].

3. AUTOMORPHIC FORMS FOR A DEFINITE QUATERNION ALGEBRA

One of the major technical difficulties, among others, is the poor understanding of the
geometry of the modular curves, in explicit coordinates. To bypass this difficulty, we consider

6The fact that the analogous statements hold over the entire weight space means that the situation is
largely simplified; the method will probably not translate directly to the Coleman-Mazur eigencurve case.
Tt is possible that Conjecture holds for even smaller r, e.g. 7 < p~!; but we do not have strong

evidence either supporting or against this.
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the eigencurve for a definite quaternion algebra; then a p-adic family version of Jacquet-
Langlands correspondence [Ch05] allows us to recover a big part of Conjecture from the
corresponding statements for the quaternion algebra. We now recall the definition of the
quaternionic eigencurves following [Bu04, Bu07].

3.1. Setup. Let A; denote the finite adeles of Q and A;p ) its prime-to-p components. Let
D be a definite quaternion algebra over Q which splits at p; in other words, D ®¢ R is
isomorphic to the Hamiltonian quaternion and D ®q Q, ~ M3(Q,). Put Dy := D ®q Ay.
Let S be a finite set of primes including p and all primes at which D ramifies. For each
prime [ # p, we fix an open compact subgroup of U; of (D ®¢g Q;)*. For | ¢ S, we fix an
isomorphism D ®q Q; ~ My(Q;) and require that U; ~ GLy(Z;) under this identification.
We fix a positive integer m € N and consider the Iwahori subgroup
Uow™) = (o, 52 ) € CLa(Qy) = (D @ Q)"
o\p - mep Z;; - 2\p) — Q*xp) -

We will also need the monoid
20(pm) = {’7 - ((; Z) € MZ(ZP) ‘ pm|c7 p)(du det(v) 7é 0}
Finally, we write U = [], 2, Ui x Ug (p™) for the product, as an open compact subgroup of

D;. We occasionally use U; to denote H#p U, x (pTZpr 1+§5,;Zp).

We further assume that U is taken sufficiently small so that (see [Bu04, Section 4])
(3.1.1) for any x € D}, we have 27 'D*xNU = {1}.

We fix a finite extension E of Q, as the coefficient field, which we will enlarge as needed in
the argument. Let O denote the valuation ring of F and w an uniformizer. Write F = O/(w)
for the residue field. Let v(-) denote the valuation on E normalized so that v(p) = 1.

We write A° := O(z) and A = AO[:—?] for the Tate algebras.

Put 7, = p~ /P 0D if p > 2 and r,,, = 27277 if p = 2. Let W< denote the open
disks of W where the T-coordinate has absolute value < r,,. Let Max(A) be an affinoid
space over W<"_ (Typical examples of Max(A) we consider are either a subdomain or a
point.) Let x : ' — A* denote the universal character. Then x extends to a continuous
character

(3.1.2) Kt (Zy+p" A =L (14 pmA%)S — (ABDA)™
-z +—> r(a) - k(exp(2p))tos®)/,

One checks easily that the condition |k(exp(2p)) — 1| < 7., ensures the convergence and
the independence of the factorization a - x. See e.g. [Pil3, Section 2.1 for a more optimal
convergence condition.

3.2. Overconvergent automorphic forms. Consider the right action of Xo(p™) on AR.A
given by

) - R k(cz+d), ,az+b
(3.2.1) fory = (C Z) € Xo(p™) and h(z) € A®A,  (h][«7)(2) := cz+d h(cz—i-d)

80ur weight normalization is different from [Bu04l, Bu07, [Ja04] and most of the literature by using cz + d
in the denominator as opposed to (cz + d)?; we will see a small benefit of our choice later in Proposition
10



Note that it is crucial that p™|c and d € Z so that k(cz 4 d) and (cz + d)~' make sense.
We define the space of overconvergent automorphic forms of weight k and level U to be

SPNU; k) = {gp : D} — ARA | o(8gu) = o(g)||xup, for any 6 € D*, g € D¥ u € U},
where u,, is the p-component of u.

Example 3.3. When s = 2%, : T' — Qp(¢ymr—1)* is the continuous character considered
in Example , we can take the definition above for A = E D Qp(fpmul) corresponding to
the point x on W, which lies in W< if m’ < m. In this case, the right action is given by

(331) (bllen)(z) = (2 + (@ ().

The space SPT(U; k) = S,?J;];(U; ) is the space of overconvergent automorphic forms of
weight k + 1, Nybentypus character ¥, , and level U.

Moreover, when k > 1 is a positive integer, we observe that the subspace L, ; of A
consisting of polynomials in z with degree < k — 1 is stable under the action ; SO we
can define the space of classical automorphic forms of weight k+ 1, character ¥,,,, and level
U to be the subspace SP,(U; ) of sp ﬁl(U ; Uy ) consisting of functions ¢ with value in
Lj_1. In particular, when k£ =1,

(3.3.2) SY(Usbm) = {e: Dif - E ‘ w(dgu) = Py, (d)p(g) for any § € D* g € D7,
and v € U with u, = (‘;Z)}ﬂ

We occasionally write S (U;),,; O) for the subspace of functions that take integral values.

3.4. Hecke actions. The space SPT(U; k) carries actions of Hecke operators, which pre-
serves the subspace of classical automorphic forms S,{?H(U ;m) When k = 2%, is given as
in Example [3.3]

Let [ be a prime not in §; then U, ~ GLy(Z;). We write Ul((l) (I))Ul = Hi:o Uyw;, with
w; = (ﬁ (1)) for i <l and w; = ((1] ?), viewed as elements in GL2(Q;) ~ D ®¢g Q;. We define
the action of the operator T; on SPT1(U; k) by

Tilp) = Y elwwi,  with (plew)(g) := w(gw{l)-

=0

Similarly, we write (note m > 1)

p—1
o™ (59)Us (™) = [T Uo(p™)vi, with vi = (30 7).
i=0
Then the action of the operator U, on SP'I(U; k) is defined to be
p—1
(34.1) Up(0) = ) elwvi,  with (]x0:)(9) := @(gv; ")]]svi
=0

We point out that the definition of U,- and T;-operators do not depend on the choices of the
double coset representatives w; and v;. But our choices may ease the computation.

0T his looks slightly different from (3.4.1)) below because ||, w; is trivial as w; is not in the p-component.
11



These U,- and Tj-operators are viewed as acting on the space on the left (although the
expression seems to suggest a right action); they are pairwise commutative.

Notation 3.5. If an (overconvergent) automorphic form ¢ is a (generalized) eigenvector
for the U,-operator, we call the p-adic valuation of its (generalized) U,-eigenvalue the U,-
slope or simply the slope of p. By U,-slopes on a space of (overconvergent) automorphic
forms, we mean the set of slopes of all generalized U,-eigenforms in this space, counted with
multiplicity.

3.6. Classicality of automorphic forms. The relation between the classical and the over-

convergent automorphic forms in weight £+ 1 > 2 can be summarized by the following exact
sequence

()"

0= SZ(Usthm) = S (U5 m) = SPLUs ) =0,

where the first map is the natural embedding and the second map is given by

(D ) 0) = () (el0).

One checks that (£)*oU, = p*- U, o (:£)* (see [Bu04, §7]). As a corollary, all U,-eigenforms
of S,? J;TI(U ;) with slope strictly less than k are classical. It is also well known that the
Upy-slopes on SZ,,(U;y,) are always less than or equal to k by the admissibility of the
associated Galois representation. It follows that the Up-slopes on S,?H(U ;m) are exactly
the smallest dim SP,, (U; wm)lﬂ numbers (counted with multiplicity) in the set of Up,-slopes

on S (Us¥m).

3.7. Jacquet-Langlands correspondence. We recall a very special case of the classical
Jacquet-Langlands correspondence, which was used in the introduction. Let N be a positive
integer coprime to p. Assume that there exists a prime number ¢ such that ¢||N. Let Dy
denote the definite quaternion algebra over Q which ramifies at exactly £ and oco. If we take
the level structure so that S is the set of prime factors of p/N, U, is the maximal open

compact subgroup of (Dye ® Qp)*, and U, = (]\Zé Zi) C GL2(Q,) =~ (Dyoo ® Q) for a

prime ¢|N but g # ¢,p, then the Jacquet-Langlands correspondence says that there exists
an isomorphism of modules of U,- and all T;-operators for ¢t Np:

(3.7.1) St (o (B N )i ) 2% 22 SP5 (U )

for all weights k£ 4+ 1 > 2. This allows us to translate our results about automorphic forms
on definite quaternion algebras to results about modular forms. One can certainly make
variants of this; but we do not further discuss.

3.8. Eigencurve for D. It is clear that SPT(U; ) is (potentially) orthonormalizable (see
[Bu07, §10], or imitate Lemma . The action of the U,-operator on SP{(U; k) is nuclear
by [Bu07, Lemma 12.2]. So the construction in Subsection applies with S = SP1(U; k)
to give a spectral curve over Max(A). The construction is clearly functorial in A and hence
defines a spectral curve Spcp, over W<". As explained in [Bu07, Section 13|, the construction
for different m also glues over small weight disks and hence gives rise to a spectral curve
Spcp, over the entire weight space W.

HThis number can be expressed in a simple way as in Corollary
12



The Jacquet-Langlands correspondence above can be made into p-adic families. By [Ch05],
there is a closed immersion Spcis? < Spc™?, where the superscript means to take the reduced
subscheme structure.H Therefore, it is natural to expect that Conjecture holds for Spcj,
in place of Spc. Conversely, knowing Conjecture for Spcp, it is quite possible to infer a

lot of information regarding Spc via the comparison [Ch05].

4. EXPLICIT COMPUTATION OF THE U,-OPERATOR

We now make the first attempt to prove certain weak version of Conjectures and [2.5]
ending with a proof of Theorem [A] To our best knowledge, the only known approach to any
form of these conjectures is via “brutal force” computation, that is to compute directly the
characteristic power series of the operator U, to the extent that one can determine its slopes.
Our approach is derived from a computation made by Jacobs [Ja04] of the infinite matrix
for U, in terms of concrete numbers. The novelty of our improvement is to make “brutal
but formal computation” as opposed to using numbers. We include his example in the next
section with some simplification. It serves as a toy model of our computation presented in
this section.

Notation 4.1. We decompose D7 into (a disjoint union of) double cosets [I:Z, D*yU, for
some elements Yo, v1,...,V-1 € D;. By our smallness hypothesis on U in Subsection ,
the natural map D* x U — D*~;U for each i sending (9, u) to dv;u is bijective. We say that
the double coset decomposition above is honest.

Since the norm map Nm : D* — QX is surjective, we may modify the representatives
~; so that Nm(v;) € Z*. Moreover, since Nm(Up(p™)) = Zy, we can further modify the
p-component of each ; so that its norm is 1. Finally, using the fact that (D*)N™=! is dense
in (D ®g Q,)*N™=1 we may assume that the p-component of each ~; is trivial, still keeping

the property that Nm(v;) € Z*.
Let Max(A) be an affinoid space over W<"" and let x : I' — A* be the universal character.

Lemma 4.2. We have an A-linear isomorphism of Banach spaces

o)

SPHU; k) PIIARA

o (90(7i))i:0,...,t 1

Proof. This is clear as the function ¢ is uniquely determined by its value at the chosen
representatives «y;. There is no further restriction on the value of ¢(~;) because the double
coset decomposition in Notation |4.1|is honest. O

Corollary 4.3. We have dim SP,,(U;¢y,) = kt, for the number t in Notation .

Proposition 4.4. In terms of the explicit description of the space of overconvergent au-
tomorphic forms, the U,- and T;- (for | ¢ S) operators can be described by the following

12Rigorously speaking, [Ch05] proves the result for eigencurves; but the spectral curves, when taking the
reduced scheme structure, are exactly the images of the eigencurves after forgetting the tame Hecke actions.
13



commutative diagram.

SD’T(U' /{) = (p(7:)) @t:éA®A
goHUpcpl ﬂpl Map of
e Tip Ty | interest

SPHU; k) o= (p(7i)) @f;éA@)A.

Here the right vertical arrow L, (resp. %) is given by a matriz with the following description.

(1) The entries of i, (resp. T;) are sums of operators of the form ||,.0,, where 0, is the
p-component of a global element 6 € D* of norm p (resp. norm 1).
(2) There are exactly p (resp. |+ 1) such operators appearing in each row and each

column of H, (resp. ‘El)
(3) We have 6, € ( PEe ) (resp. 8, € Us(p™)

" Ly ZX

X

Proof. We only prove this for the U,-operator and the proof for the Tj-operator (I ¢ S) is
exactly the same. For each ~;, we have

U) ) = 3 e lvy

=0

1

Now we can write each v;v; " uniquely as 5{7].17,\1.7].%,]- for 0, ; € D*, \;; € {0,...,t — 1}, and

u; ; € U. Then we have

p—1

(Upp) (7 ZQO 5@] Yoy Uig)||wv; = ZQO i) (Wi pvs),

where u; j, is the p-component of w; ;. Substitute back in u; jv; = Vs 5”% and note the
fact that both ~; and 7, ; have trivial p-component by our choice in N otatlon E We have

p—1

(Up) () = Y o1 Mgy

J=0

where ¢; ; , is the p-component of the global element ¢; ; € D*. We now check the description
of each ¢; ;:

0ig = Yai,WigVi; - € 1, U (B9 U~

Py ZLp

Pz, 7 ) Moreover, the norm of

From this, we see that the p-component of ¢;; lies in (

iU (’6 ?)U ~; * lands in pzx, because our choice of the representatives satisfies Nm(;) € 7%

by Notation H Therefore, Nm(é; ;) € QZ, N pZ* = {p}. This concludes the proof of the
proposition. 0

4.5. Infinite matrices and generating functions. For an infinite matrix (where the row

and column indices start with 0 as opposed to 1)
14



Moo ™Mo,1 Mo2
mio M1 Mi2

(4.5.1) M = Moo M1 Mas

with coefficients in an affinoid E-algebra A, we consider the following formal power series:

Hu(z,y)= Y mia'y’ € Afe,y].

4,J€L>0

It is called the generating series of the matrix M. When M is the matrix for an operator
T acting on the Tate algebra A®A = A(z) over A with respect to the basis 1,2, 2%, ..., we
call Hy/(z,y) the generating series of T

For u € E, we write Diag(u) for the infinite diagonal matrix with diagonal elements
1,u,u?,.... Then we have

HDiag(u)M Diag(v) (*T? y) = HM (Ul’, Uy)‘

For t € N, we write Diag(u;t) for the infinite diagonal matrix with diagonal elements
1,...,1,u,...,u,u?, ... where each number appears repeatedly ¢ times.
The following key calculation is due to Jacobs [Ja04], Proposition 2.6].

Proposition 4.6. Let k: ' — A* be the universal character for an affinoid space Max(A)
over W< Let (2%) be a matriz in Xo(p™). The generating series of the operator ||,.(24)
acting on A®A (with respect to the basis 1,2z, 2% ... ) is given by

k(cx +d)

cx +d—axy — by

Here we point out that, although the operator H,i(‘; 2) when viewed as the action of the
monoid Xo(p™) is a right action, we only use one particular operator and will not discuss the
composition; so we still use the column vector convention (pretending it as a left operator).

Proof. This is straightforward. By definition,

K(cx+d) ,ax+by;
H ) = i .
”H(ZZ)(I 4) z';z;oy cx+d (cx—l—d)
_ k(cx +d) 1 B k(cx + d)
o +d 1—y-%_cx+d—a9&y—by'

O

Combining Proposition with Proposition [£.4] we can give a good description of the
infinite matrices for 4L, and ; (for [ ¢ S).

13Comparing to the convetion in [Ja04], we loose an extra factor of cx + d in the denominator due to our
normalization (3.2.1). There is no real improvement in our formula except that it is shorter.
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4.7. Hodge polygon and Newton polygon of a matrix. Before proceeding, we remind
the readers some basic facts about p-adic analysis; we will use them later freely without
referencing back here. Let M € M, (F) be a matrix.

(1) The Newton polygon of M is the convex polygon starting at (0,0) whose slopes are
exactly the p-adic valuations of the eigenvalues of M, counted with multiplicity.
(2) The Hodge polygon of M is the convex hull of the vertices

(i, the minimal p-adic valuation of the determinants of all i x i—minors).

(3) The Hodge polygon is invariant when conjugating M by elements in GL,(O); the
Newton polygon is invariant when conjugating M by elements in GL,,(F).

(4) If the slopes of the Hodge polygon of M are a; < --- < a,, then there exist matrices
A, B € GL,(O) such that AM B is a diagonal matrix whose diagonal elements have
valuation exactly aq,...,a,. Conversely, if such A and B exist, the Hodge polygon
of M has the described slopes.

(5) If the slopes of the Hodge polygon of M are a; < --- < a,, then there exists a matrix
A € GL,(O) such that the valuations of all entries in the i-th row of AMA™! are at
least a; for all 7. Conversely, when such A exists, the Hodge polygon of M lies above
the polygon with slopes aq, ..., a,.

(6) When O%" can be written as V & V' for two M-stable O-submodules. Then the
Newton slopes for M is the union of the Newton slopes of M acting on V and V".
The same holds for Hodge slopes.

(7) It is always true that the Newton polygon lies above the Hodge polygon. This also
holds for an infinite matrix associated to a nuclear operator.

We now prove Theorem [A] from the introduction.

Theorem 4.8. Let ¢y, be a finite character of Z, of exact conductor p™ with the same

m that defines the level structure U.E Recall that dim SP(U;1,,) = t. Then the Newton
polygon for the slopes of U, acting on SPT(U, z{x)*,,) for k € Z, lies above the polygon
with vertices

(4.8.1) (0,0), (,0), (2t,1), ..., (nt, ") ..

Proof. By Lemma {4.2 and Proposition (in our case A = F), it suffices to understand the
matrix for the operator if,. We first give ®!Z)A a basis:

2 2
107207207"'7117217217"'71t—17zt—17"'7

where the subscripts indicate which copy of A the element comes from. Then the matrix for
i, is a t x t-block matrix such that each block is an infinite matrix. By Proposition [£.6] the
generating series of each block is the sum of power series of the form
A (d)(d)*(1 + §2)**
cx+d—axy—by

, with pla and p™|c by Proposition [4.4]

When k € Z,, the expression above lands in Ofz, pzry, p™y] C O[z,py]; in particular, the
ith row of the corresponding infinite matrix is divisible by p*.
We can then rewrite the matrix of 4, under the following basis of @&/

2
107117"'7175*17’207"‘7275*17207""

M Again, we allow 9 to be trivial, in which case m =1 if p > 2 and m = 2 if p = 2.
16



Then the matrix of 4{, becomes an infinite block matrix, where each block is ¢ x t. Moreover,
the discussion above implies that the ith block row is entirely divisible by p’. In other words,
the Hodge polygon of this matrix lies above the polygon with vertices given by . So
the Newton polygon of 4L, also lies above it. 0

Remark 4.9. We discuss how one can improve the lower bound of the Newton polygon of
the U,-action on the classical automorphic forms S,?H(U ;1)) when 1 has conductor p and
m =1 (or 4 and m = 2). (The case when m > 2 for p > 2 and m > 3 for p = 2 will
be studied in length in Section |§|) Note that this includes the case when v is trivial. For
simplicity, we assume that the condition holds for U replaced by [], 2p Ui X GLy(Z,).
In particular, (p + 1)|t if p > 2 and 6|t if p = 2.

(1) When % is non-trivial of conductor p or 4, we know that the U,-slopes on SZ.,(U; )
are exactly given by k minus the Up,-slopes on SP,(U;9~!). (See Proposition
for the proof in the case of k = 1; and the general case is similar.) Thus, applying
Theorem to S2,(U;v™1) and using the fact above, we can improve the lower
bound in Theorem over the interval [%, kt]. Hence the Newton polygon for the
Up-action on SP.  (U; 1/1) lies above the polygon with slopes

e (if kiseven) 0, 1, ... ,g -1, g +1, g +2, ..., k, each with multiplicity ¢;
o (if kis odd) 0,1,... 5L EL 35k, each with multiplicity ¢, except the
slopes 1 and k“ each has multiplicity %

(2) When v is the tr1v1al character, S,?H(U ;triv) is the direct sum of the p-old part
S 1 (U; triv)P°M and the p-new part SP,, (U; triv)P™". Given our earlier hypothesis
on U, we have

3 D : -old . D . —new 1
dim S, (U; triv)P ¢ = ﬁkt, and  dim S (U triv)”™ " = Bkt

The eigenvalues of U,-action on SZ, | (U; triv)?™ " all have valuation (k—1)/2; whereas
the eigenvalues of Uy,-action on SP, | (U; triv)?°d can be paired so that the product of
each pair has valuation k. Then the lower bound in Theorem applies to the lesser
of the pair of eigenvalues on the p-old space. Using this piece of information and the
knowledge of the slopes on p-new forms, we conclude that the Newton polygon for
the U,-action on SZ, | (U; triv) lies above the polygon with slopes

e 0,1,.. [p+1] — 1, each Wlth multiplicity ¢,
o [pi] with multlpllclty [ﬁ]t,

o % with multiplicity (o I)kt,
-
~ [

-] with multlphCIty pk Py £]t, and

S+ 1L E— | il] +2,...,k, each with multiplicity ¢.
We point out that the bounds in both cases share the same end point with the actual
Newton polygon of the U,-action. Moreover, the distance of this end point and the vertex

(k;t t) given by Theorem . is linear in k; so Theorem . is already a quite sharp
bound in this sense.

5Here we temporarily allow rational multiplicity to mean to horizontal span of the corresponding segment
of the polygon, which may not be an integer.
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Remark 4.10. Keep the setup as in Remark [4.9(2) and consider the case of trivial character
now. Gouveéa [Go01] has computed many numerical examplesm to support his expectation of
the distribution of Up-slopes on SP; (U; triv). If one uses a1 (k) < -+ < age/p+1) (k) to denote
the lesser slopes on the space of p-old forms, Gouveéa conjectured that the distribution given
by the numbers

ar(k)/k, az(k)/k, ..., arejprr)/k, as k — oo,

converges to a uniform distribution on [0, ]ﬁ]

In view of the discussion above, this conjecture can be reinterpreted as: the Newton
polygon of U,-action on S,?H(U ;triv) “stays close” to the lower bound given in Remark .
At least, the polygon lower bound provides an inequality for the distribution conjectured by

Gouvéa.

5. AN EXAMPLE OF EXPLICIT COMPUTATION

In this section, we give an example of by-hand computation of the U,-slopes for a particular
definite quaternion algebra, a prime number p, and a level structure. This case was considered
earlier by Jacobs [Ja04], a former student of Buzzard, in his thesis. Unfortunately, Jacobs
relied too much on the computer and hence made the computation unaccessable to people
who are interested in checking for patterns. We reproduce a variant of this computation to
serve as a key toy model of our various proofs. We hope that this hand-on computation can
inspire the readers to further develop this technique.

5.1. The quaternion algebra. In this section, we consider the quaternion algebra D which
ramifies at only 2 and oco. Explicitly, it is

D =Q(,j)/( = —ji,i’ =j* = -1).
Here we use angled bracket to signify the non-commutativity of the algebra. It is conventional
to put k = ij. The maximal order of D is given by
Op = Z<i, J %(1 +i+] +k)>.
The unit group consists of 24 elements; they are
Of ={ +1,+i,4j,+k, 3(£1 +itj+k) }.

5.2. Level structure. Our distinguished prime p is 3. Put Dy = D ® Ay. For each [ # 2,
we identify D ® Q; with My(Q;). For | = 2, we use D*(Z5) to denote the maximal compact
subgroup of (D ® Q3)*. We consider the following open compact subgroup of D;:

7x 7
(5.2.1) U = D*(Zy) y GLa(Z,) % (92‘1, 14 Szg> -

We point out that for our choice of p = 3, this corresponds to m = 2 in Theorem [B} so it
is not literally covered by it.

16Rigorously speaking, Gouvéa [Go01] worked with actual modular forms, but we expect the analogous
of his conjecture applies in this case.
17Our choice of the level structure is slightly different from [Ja04], who uses the I';(9)-level structure.
Here T'1(9) is defined in the same way as but with the lower right entry of the last factor replaced by
14 9Z3. As a result, Jacobs had to go through an additional factorization to get the same answer.
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Notation 5.3. Let v3 denote the square root of —2 that is congruent to 1 modulo 3. We
have a 3-adic expansion

v3=14+3+2-3+2-32+3"+.--.
We choose the isomorphism between D ® Q3 and M(Q3) so that

10 . vy 1 . 0 —1 1 -
1<—><0 1), 1H(1 —Vs)’ JH(l 0>,andk<—><_V3 _1>.

Lemma 5.4. The following natural map is bz’jective.ﬂ
D* xU——=Dj
(0, u) —— du.
Proof. This is of course coincidental for our choices of D, p and U. We first observe that
D; = D* - Upax (see [Ja04, Lemma 1.22]), where Uy, is & maximal open compact subgroup

of (D®Ay)*, defined using the same equation as in (5.2.1)) except the factor at 3 is replaced
by GLy(Z3). Taking into account of the duplication, we have

D} = D* X Unax.

So it suffices to check that the image of OF in GLy(Z3) turns out to form a coset represen-
tative of Upayx/U. This can be checked easily by hand. (See the proof of [Ja04, Theorem 2.1]
for the list of residues of O} when taking modulo 9.) O

Corollary 5.5. Let v be a continuous character of Z; of conductor 9 such that (—1) =1
and let k = x(x)" withw € Og, be a character considered in Example[2. Then evaluation
at 1 induces an isomorphism SP1(U; k) = A.

Lemma 5.6. For the case considered in this section, the map Us in Proposition[{.4] is given
by Us = ||x01 + ||x02 + |[03, where

h=-1+i—j, b=11+1i+3j+k), andds=1(1-3i—j—k).
The images of 61, 92,03 in GLo(Z3) are given by

-1 2 I Rt AT e A
0 —-l-w) \2-%2 -2 ) —2+% 1+3% )

Modulo 9, they are
3 2 3 6 d 31
04)° \o7) " \o 7)

Proof. We follow the computation in Proposition We need to compute

U = 3 el ety for vy = (31)

J=1

181y [Ja04], D; is written as the disjoint union of three double cosets, which in fact corresponds to the

double coset decomposition of U over I'y(9).
190ne compares these matrices with the ones appearing after [Ja04, Lemma 2.5]. Jacobs has a different
normalizations which could be removed if one wishes. Also, we think his matrices involving v; ! are not
correct; this error is however fixed on the next page of loc. cit..
19



By Lemma we can write each vj_l uniquely as (5j_luj for 9, € D* and u; € U. Then

(v lkvy = el (wj505) = @(D)]]x05:5,
where u; 3 and 9,3 denote the 3-components of u; and §;, respectively. On the other hand,
we have

0; =uju; € D*NUv; CD*NU(F)U =D*NU(3)(3Y9),
where Uy (3) is defined as U in except the last factor is replaced by (3Zzi . +Z§23 ). If we
put d; = §5(1 —i+j), then we have
S eD NUIB) (3 —i+§) " =D nUiB) ("0 1omys)
=D*NU:i(3)(33)={-1, (1+i+j—k), s(1—-i—-j+k)}
The last equality follows from looking at the list of O modulo 3. (In the notation of Jacobs’s
thesis [Ja04], this set is {—1, us, —ug}.)

It is then clear that all §,’s are among the collections of the above right-multiplied by
1 —1i+j. The rest of the lemma is straightforward. U

Theorem 5.7. Let ¢ be a character of Z; of conductor 9 such that (—1) = 1. We consider
the characters k = x(x)"¢ (w € Oc, ) as in Example[3.5 The slopes of the Us-operator acting
on SPT(U; k) are %,1—#%,2—#%,3—#%,....

Proof. Put & = ¢(4); it is a primitive third root of unity. Then ¢(7) = 2. Put 7 = £ — 1
so that v(m) = 3. Let Hy,(x,y) denote the generating series of the Hecke operator acting
on SPH(U; k) =2 A. By Lemma[5.6] the map i3 is given as U = ||,0; + ||x02 + | |03 for the

elements dy, 2, 03 given therein. By Lemma [5.6], we have

1 4)4" )T )7
Ho(Lamy) =t L L
3T 4 =3 -mx—2ny T—3gw-my—6my T—35-x-mYy—TY
§ £ £

+
4—:13y—27ry+7—xy—67ry T—xy—TY
I+ (1+7)? (1+7)?

= + +
1 —ay+my 1—ay 1 -2y —my

(mod 3)

It is now straightforward to check that this is congruent to modulo 3. In other

1 —xzy
words, the matrix Diag(z-) - s - Diag(m) is congruent modulo 3 to 2 - I, where I, is the
infinite identity matrix. It follows from this easily that the slopes of the Us-operator acting

onSD’T(U;n)are%,1+%,2+%,3+%,.... O
6. IMPROVING THE LOWER BOUND

The key to obtain a strong result on U,-slopes is to improve the lower bound in Theorem
so that it agrees with the Newton polygon for sufficiently many points.

Hypothesis 6.1. In this and the next section, we retain the notation from Section |4 to work
with a general definite quaternion algebra D (which splits at p). We fix an integer m > 4.
By writing v,,, we always mean a finite continuous character of Z; of conductor p™. The
level structure at p is always taken to be Uy(p™) with the same number m. Some of the

results (perhaps after modification) may hold for smaller m; see Remark |6.18]
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We assume that ¢(—1) = 1.

6.2. Facts about classical automorphic forms. To avoid future confusion, we must
clarify how twisting an automorphic representation 7 (of weight 2) by a central Teichmiiller
character w" : A = (Z,/2pZ,)* — E* works, in an explicit way. For r € Z, we consider the
following space of classical automorphic forms

(6.2.1)  SP(Ustm;w") = {e: Df = E | o(6gu) = w" (ad)bn(d)p(g) for any § € D>,
g € Df,and u € U with u, = (%)}

It carries an action of Hecke operators 7; (for [ ¢ S) and U, just as defined in Subsection ,
except multiplied by w”(l) and 1, respectively.

Recall that (after making a finite extension of the coefficient field E), we have a decom-
position of automorphic representations under the actions of all Hecke operators T} (I ¢ S):

(6.2.2) SP(Usthmiw") = P V(m),

where the sum is taken over all automorphic representations 7 of GLy(A™) of weight 2. We
say that m appears in SP(U;),,;w") if the corresponding space V (7) # 0.

We may view w” as a Hecke character of A* and write 7 ® (w” odet) for the tensor product
of the automorphic representations of GLy(A); it has central character w,w?", where w, is
the central character of 7. For each [ ¢ S, the Tj-eigenvalue on the spherical vector at [ for
T ® (w" odet) is w"(l) times that for 7.

It is clear from this construction that 7 appears in S (U;1),,) if and only if 7 ® (w" o det)
appears in SP(U;,,;w"). In fact we have a canonical isomorphism of modules of Hecke
operators 7; for | ¢ S and U,

(6.2.3) SP(U;h) @ (W odet) =2 SP(U; hy; "),
where T; for [ ¢ S acts on the factor (w”odet) by multiplication by w”(l) and U, acts trivially.

We must point out that SP(U;,,;w") is genuinely different from SP(U;,,w?") (not even
up to twists).

Lemma 6.3. Assume Hypothesis . Then each Hecke eigenform in SP(U;p,,) is p-new,
and the action of U, on each of V(m) in (6.2.2)) is just the scalar multiplication by some
ay(m) € E. Moreover, v(a,(m)) € [0,1].

Proof. Equation (6.2.3]) allows us to assume r = 0 in (6.2.2]). The condition on v, and the
level structure ensures that the p-component 7, of 7 is forced to be a principal series, and has

. . . m\ 7X Zp
only one-dimensional fixed vector under the action of the group U;(p™) = (pmpzp L +pmzp)'
So U, acts on V(m) in the same way as U, acts on this one-dimensional fixed vector, by
multiplication of some a,(7) € E. The norm bound on v(a, (7)) follows from the admissibility

at p of the Galois representation attached to 7. O

6.4. A pairing on the space of automorphic forms. Similar to the Petersson inner
product for modular forms, the space of automorphic forms over a definite quaternion algebra
also admits an inner product structure.
Recall that weight 2 automorphic forms are simply functions on D;. Consider the following
pairing:
(6.4.1) (o) 89 (Ustm) x 83 (Ustpy,') — E
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(,¢) = Zso %) (7:)

D*\D¥ /U
Note that the choices of the characters above ensures that the pairing does not depend on
the choice of the representatives ~;’s.

Proposition 6.5. Keep the notation as above. Then we have

(6.5.1) (Up(), Up(¢)) = p(Sp(0), ¥'),
where S, is the action ¢ +— gp(o(pgl p?l) ) given by shifting the variable by an idéles at p.

Proof. In fact, before giving a proof, we convince ourselves by the numerical evidence de-

scribed in Example
We start the proof by pointing out a basic fact about the pairing (| - Recall the

definition of U; from Subsectlonn Suppose that o € DX is an element for which there exist
coset representatives aq,...,a, € D such that U;aU; = HJ=1 Uiaj and UaU = ]_[ _Uaj.
Then for ¢ € SP(U; ), the expression

o|[UaU](g ng ga; ') € Sy (Us b))

is independent of the choices of the representatives o;’s. It is straightforward to check that
the following equality holds (see [DS05, Proposition 5.5.2(2)] for a similar argument)

(p|[Ual], ¢') = (¢, [U«V]),

where o* = det(a)a™!.
We now compute the left hand side of (6.5.1]) as follows:

(Up(), Up(#) = (U (51)U), SNV (5T)U]) = (ellU(§7)VIIU (55)U], ).

We take coset decompositionﬂ

p—1 p—1
=10 ) and U(53)U =[TU(2)-
a=0 b=0
It then suffices to understand
p—1
(6.5.2) PTGV =3 w(a(38) " ()7
a,b=0

We observe that

p 0\ /1 b\ [(1—abpm™? b p 0
ap™ 1) \0 p)  \ —a?p®™ 2 1+abp™ ') \ap™ p

20We point out a subtlety here: we cannot pick the coset representatives (a;’m ?) for the Up-action on ¢’

and take the adjugate to apply on the ¢; this is because that the chosen set of representatives is not a set
of representatives for both left and right U-coset decomposition. It is therefore important to first work with
the double cosets and then take the left coset decomposition for U( 50 )U.
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and hence
2(g(38) " (b ) ) =ela(ubn ) (s L))
= (1 +abp™ ) (g (o 0) 7).

Since 1, has conductor exactly p™, as we sum up ((6.5.2)) over b all terms cancel to zero except
for those where a = 0, the corresponding terms exactly give p copies of gp(g(p ;1 p?l )) Thus
we have

(Up(), Up(¢")) = (pSp(e0), ¢).
This concludes the proof of the Proposition. O

Remark 6.6. One can also define a pairing analogous to (6.4.1)) for the space of automorphic
forms of higher weights k + 1. But we do not need it in this paper.

Notation 6.7. We identify the space of weight two classical automorphic forms SP(U;,,)
with /) E by evaluating at o, . .., —1. We use U (¢,,) and Tf'(¢)y,) to denote the matrices
for the Hecke actions of U, and T} (for [ ¢ S) under the standard basis.

Let ag(tm,) < -+ < ay_1(¥,,) denote the slopes of the Hodge polygon of il;l(wm), in

non-decreasing order. For simplicity, we assume that £ contains all powers p®(¥m)

Corollary 6.8. The numbers a;(¢y,) belong to [0,1]. In particular, there exists a basis
eo(Vm); - - s ei1(Um) of SP(U;thy, O) = @250 such that the matriz of Uy-action is given
by a matriz ngl’e(wm) whose ith row is divisible by p®(¥m).

Proof. 1t is clear that ﬂ;l(@/)m) has entries in the integral ring O. By Proposition , we have
(6.8.1) 8 ()" - U (1) = pAT,

where A € GL;(O) is the matrix for the action of the central character S,. Write ! (¢,,) =
BDC for B,C € GL;(O) and D diagonal; so that the valuations of the diagonal entries of

D are exactly ao(¢m), - - ., 2—1(1m) by Subsection [1.7(4). We rewrite (6.8.1) as
Tggel () —1y( AT\=1~T _ =1

By Subsection (4), this means that the slopes of the Hodge polygon of 5.1,;1(1/)7;1) are given
by 1 — a;(¢,,); more precisely, a;(¥m,) + a;—i—1(¢;1) = 1. Since both ;(1,,) and a;(¢;,!)

are non-negative, they belong to [0, 1]. The existence of the basis e1(¢y,), . .., e:(¢y,) follows
from Subsection [4.7](5). O

6.9. A variant of the pairing (6.4.1). For a purely technical reason, we need a pairing for
certain “deformed” classical automorphic forms of weight 2.
Let w be an indeterminant. Note that we have a character

Yt (i, 75 (0/p0u])”
(4) Um(d)(d)*,
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where (d) := dw~!(d) is defined as before and (d)* = 1 + ({(d) — L)w € O/p*Olw]f] We
point out that the image of v, , in fact lands in

(6.9.1) (0/p*0)" + pO/p*O - w.

We think of 9, ,, as certain deformation of the character 1,,.
We introduce the following deformed version of classical automorphic forms:

(6.9.2)

D77, _ x 2 p(dgu) = P (d)(d)“p(g) for any
Sy (U3 ¥mw) = {(p Dj = O/pOlw d € D*,g e D¥,and u € U with u, = (ﬁg) }

This space carries actions of 7; (for | ¢ S) and U, in the natural way. (Note that we do
not have a natural lift of this space over O, as ,,,, cannot be extended to a character with
value in O.)

Abstractly, we can identify S (U; ¢y, .,) with SP(U;1,,; O) @0 (O/p*O[w]) by identifying
the evaluations at 7;’s. Then the elements eg(1y,), . . ., €:—1(1y,) in Corollary [6.8| gives rise to
a basis of 5 (U; thm,.) over O/p*Olw]. Let U (¢, ) € My (O/p*Olw]) denote the matrix
for the Uy-action on SP(U;4,,..,) with respect to this basis. Since 9, ,, takes value in ([6.9.1]),
all entries of U5 (¢hm) in fact land in O/p*O + pO/p*O - w. It follows that the ith row
of 4 (Yy ) is divisible by p®¥m) (the constants and the coefficients on w). This is true
because all a;(¢,,) € [0, 1]; so the extra variable w which always comes together with p does
not matter.

The following technical lemma will be important for us later.

Lemma 6.10. Le tﬂde(l/Jm,w) denote the matriz given by dividing the ith row of U™ (1, )

by p*i¥m) | viewed as a matriz with entries in O/pOfw]. Then

det (U Cle(wm w)) (mod @) € F*, i.e. there is no w-terms.

Proof. Similar to the case of duality for classical automorphic forms, we have a natural
pairing
(3 Y + S8 (Us b)) X SD(U-w‘l ) — O/p*O[u]

Zcp% 7)

Since the proof of Proposition is tautologlcal, we have

(6.10.1) (Up(9), Up(@))mw = P(Sp(9), ¢ Vs in O/p*Olw].
Let B € GL;(O) denote the change of basis matrix from the basis given by evaluation at
vi’s to the basis eg(tn,), - - ., €r-1(1m). Then (6.10.1) gives

B (85 ($mw))" (BY) U5 (Y1) = pAL,

where A,, € GL,(O/p?O[w]) is the matrix for the action of S, on S2(U;m.). It follows
that

(6.10.2) (805 ()" (BT) LN W0, ) (AD) BT = pl.

211t is important here to consider torsion coefficients, otherwise, Ym,w may not be a homomorphism of
groups.
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w

We claim that the matrix M = (¢p0))" - (BT) 71U (0,1, ) (AD) 1 BT has ith row divisible

cl,e

by p'~®¥m)  Indeed, we write (ﬂ;l’e(lbm,w))T = (i_lp’ (Vmaw))T - Diag{p®o®m)  pa-1(¥m)}.
so that .
(—C e(wm w)|w 0) Dlag{pao ¢m) .- apat71(¢m)} ' M|w:0 = p].

Taking determinants, one finds that le e(

. —o —ap—1(Vm cle T\ -1

M’w:OZDlag{pl me)a"'apl 1 )} (( (wmw)‘w 0) ) .
So the claim holds when w = 0. Moreover, the matrix M is a product of matrices with
entries in O/p?O +pO/p*O - w, so its ith row is divisible by p'~*(¥m) without evaluating w.

We use M to denote the matrix given by dividing the ith row of M by p'~®¥m) viewed
as a matrix in M;(O/pOJw]). It then follows that

( Cle(@/me)) ) —]

Taking determinants modulo @ shows that det (£() T (m, w)) mod w is invertible in Flw] and
hence lies in F*. O

Ym.w) 1s invertible when w = 0. We deduce

Notation 6.11. Let v, be as in Hypothesis . We use W(z,,;p~ 1) to denote the closed
disk of radius p~! (}l in case p = 2)@ centered at z1),, in the weight space. This disk
corresponds to all characters of the form xt,,(-)* for w € Oc,, in particular, including
classical characters z*,,w=* for k > 1.

We take A° to be the Tate algebra O(w) and A to be E(w). We identify Max(A) =
Max(E(w)) with the disk W(z1,,; p~') so that the universal character x : I' — E(w)* is
given by

k(a) := ay,(a){a)®.
Here the expression (a)” is understood as (1 + 2pb)” = > -, (2pb)"(¥) € 1 + 2pwZ,(w), if
(a) =1+ 2pb. -

6.12. A variant of the space of overconvergent automorphic forms. For a technical
reason, it is more convenient to consider a variant of the space of overconvergent automorphic
forms, with coefficients in B := A(pz) = E{w, pz) C ARA.

Recall that the right action ||,y of v = (‘; g) € Yo(p™) on ARA is given by

(6.12.1) (h][7)(2) = “(C(jjdd)h(ziz) = Gl d) () (1 + gz)wh(giz) for h(z) € A.

Since p 1 d and p™|c, the expansion of the exponential (1+ £2)" lands in O(w,p™ 'z) C Bﬁ
So can be applied to an element h(z) € B and gives rise to a right action of ¥q(p™) on
B. Therefore, we can define the space of overconvergent automorphic forms with coefficients
in B (instead of ARA):

SPNU; k) = {go 1 Df — B | (dgu) = ¢(9)||xup, for any § € D*, g € Df,u € U};

22We apologize for the confusing notation when p = 2.
23This follows from the standard estimate (1 4+ z)” = 14+ 3. o, (¥)a™ € O(w,p~'z) (note that the
binomial coefficients are not integral for a free variable w.) We will use this estimate freely later in the
paper.
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it is a subspace of SPT(U;k) (with coefficients in A®.A). In explicit forms, we have an
isomorphism of Banach spaces Sy (U; k) = ®IZiB given by v — (0(Vi))izo....t1-

Notation 6.13. We use U/(x) and T'(x) (for I ¢ S) to denote the infinite matrices in

Proposition for the operators 4, and ¥; acting on @f;éA@A, with respect to the or-
thonormal basis 1g,...,1; 1, 20, ..., 21, 24, - . .. Here the subscripts indicate which copy of
A the element comes from. We use U5(x) and TP (k) (for [ ¢ S) to denote the infinite matrix

for the operators {, and ¥; acting on SBD ’T(U i k) = @2} B, with respect to the orthonormal
basis 1g, ..., 1,1, p20, - - -, P2t_1, p*25, . .. It is clear from the definition that

Diag(p~'s 1), (k) Diag(p; t) = U (k), and Diag(p~';1);'(x) Diag(p; t) = T7 (k).
In particular, Char (¢}(x), SP¥(U;k)) = Char (ilf(/{),Sg’T(U; k)). So to understand the
U,-slopes on SPT(U; k), it suffices to look at the U,-slopes on Sg’T(U; K).

The following lemma gives a key congruence relation between the action of a matrix in
Yo(p™) on the space of overconvergent automorphic forms and on the space of classical
automorphic forms.

Lemma 6.14. Let (2%) be a matriz in So(p™) with v(a) = 0 or 1. Then the matriz for
||H(‘; fl) acting on B (with respect to the basis 1,pz,p*2%, ... ) belongs to

wm(d) <d>w pAo pQAo pSAo
p>A° Gihn (d)(d)" + p*aA° paA° p*aA®
pLA® plaA® (3)*Um(d)(d)" + p*a*A° pa’A°

pBAo p4aA° pBCLZAo <%>3wm(d><d>w —|—p2a3Ao

where the (i, j)-entry of the matriz is
o (§)'Um(d)(d)" +p*a’A® if i =j >0,
o p'It2qJ A° ifi > j, and
o PiaiA° ifi < .
Proof. Note that (1+p™ 12)¥ € 1+ p32wO{pz,w) since m > 4@ So Propositionimplies
that (note that p™|c,p 1 d)
A d) ()" (1 + p' )" Y
H. o (pt = d €0 2204 € N).
ety P PY) = e (w,py, axy,p " i €N)
Translate this congruence into the language of matrix and note that the dominant coefficients

on terms z'y’ come from the expansion of %; this proves the Lemma. 0]

Lemma implies that the actions of U, and T} for [ ¢ S on Sg"'(U; k) is “very close”

to the actions on the completed direct sum
P SPUshmw 0™,
n>0
More precisely, we have the following.

241t is important that the zw coefficient has valuation strictly bigger than 2. The case m = 3 fails exactly

at this point. See Remark
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Proposition 6.15. (1) Forl ¢ S, we consider the infinite block diagonal matric
T = Diag { T} (Ym), 1 T (Wmw ), 1 T (Wmw ™), ... }.
Then the difference T8(k) — T lies in the error space
pMy(A%) - pM(A°) - p*M,(A%)  p°M,(A°)
PPM(A%)  pMy(A°)  pMy(A°)  p*M,(A°)

(6.15.1) Err = | P'Mi(A°) p°My(A°)  pMy(A°)  pMy(A°)
PPM(A°) p"M(A°) p’M,(A°)  pM(A°)

where the (i, j)-block entry of the matriz is
o pM,(A°) if i = j,
o p"ITAM,(A°) if i > j, and
o P TIM(A°) if i < .
(2) Similarly, we consider the infinite block diagonal matrix
5% := Diag (L (Ym), p- Uy (0w ™), p° - W (™), ... ).
Then difference ﬂf(ﬁ) — 11;1’00 lies in the p-error space

pM(A°)  pM,(A°) pQMt(A) (A°)
PM(A°) p*M(A°) p*M,(A°) (A%) -
(6.15.2) Err, ;= | P'Mi(A4°) p'Mi(A°) p°My(A°) p°My(A°) - |
P"My(A°) p"Mi(A%) p°M,(A°%) (4°)

where the (i, j)-block entry is

o pIM(A%) if i = j,

o p'T2M(A°) if i > 4, and

o pIM,(A°) ifi < j.
Moreover, the (i,i)-block entry of UE(k) is congruent to the matriz p - US (Y w_piw ™)
modulo p"™2M;(A°).

Proof. Note that the global elements ¢ appearing in the matrix of Y, or ¥; for [ ¢ S in
Proposition [4.4] are the same for classical or overconvergent automorphic forms for all char-
acters. So to prove (1) and (2), it suffices to estimate the difference between the actions of
each relevant 8, on S5"'(U; k) and on the completed direct sum D, -052 (U; hw ™2 w").
(Note that 1" - T(1),,w™?") is congruent modulo p to the action of 7j on the space of classical
automorphic forms SP(U;¥,,w™2";w0").)

For [ ¢ S, Proposition implies that, for every ¢, = (‘; 3) appearing in the expression
of T8(k), we have a,d € L), b,c € Zy, and ad — be = [; so we have ad = [ (mod p™). By
Lemma , ||x0, is, modulo the expression but with ¢ = 1, congruent to the infinite
diagonal matrix with diagonal elements

Um(d)(d)", Y (d)G{d)"; bm(d)(

Qule
~—
[N}
—~
Y
N>
g

which is the same as




modulo p; it is further the same as
Vi (d), W (d)w™2(d), Piby(d)w™(d), ...
modulo p. This is the same as the contribution of 9, to the matrix
T =PI T (™).
r>0

This concludes the proof of (1).
(2) can be checked similarly: for each 0, = (%) appearing in the expression of U5(x), we
have a € p-Z), d € Z), b,c € Zp, and ad = p (mod p™). Using Lemma as well as the

congruence 4 = 5 = pw?(d)(d)~* (mod p?), we conclude (2) in the same way as above. [

We now proceed to prove Theorem
Notation 6.16. Put g =1if p=2and q = p%l if p> 2.
We write the characteristic series of U, acting on Sl?’T(U P K) as
Char(U5(k), Sg (U k) = 1+ 1 (w) X + e2(w)X? + -+ € 1+ O(w)[X].
Theorem 6.17. Assume m > 4 as before. We have the following results regarding the

Newton polygon.

(1) For any wy € W(xtby; p~'), the Newton polygon of the power series 1+ cy(w) X +- - -
lies above the polygon starting at (0,0) with slopes given by

oo g—1

(6.17.1) U U {ao(Wmw ™) +qn+7, ... 1 (Y™ ) + qn + 1}

n=0r=0
(2) For eachn € N, let \,, denote the sum of n smallest numbers in (6.17.1). Then
cre(w) € M- O(w)™.

(3) For any wg € W(x),,;p7 1), the Newton polygon of the power series 1 + c1(wo)X +
- passes through the point (kt, A\x;) (which lies on the Hodge polygon in (1)). In
particular, the nth slope of this Newton polygon belongs to [|%], %] +1].

Proof. (1) Recall from Proposition [6.15(2), the matrix for U, satisfies
L[f(/{) - 11;1’00 € Err,,.
We now change the basis to

eo(Um)s -+ - et—1(Vm), Peo(mw ™)z, . . ., per_1 (Ymw ™ 2) 2, pPeo(Ymw™ )22, . . .

As a result, the action of U, is given by a new matrix ﬂf’e which is congruent to

Diag (L5"°(¢m), - U5 (Wmw™?), p* - U5 (Wmw™), ...)
modulo (6.15.2). In particular, for i« = 0,...,¢ — 1, the ((gn + r)t + 7)th row of ﬂf’e is
entirely divisible by p®(@m«™*)+antr  Therefore the Hodge polygon of uBe lies above the
Hodge polygon with slopes given by (6.17.1f); this improves the result of Theorem (when
m > 4).
(2) By the proof of (1), we know that cx(w) € p** - O{w). It suffices to show that the

reduction of p~** ¢y (w) modulo @ lies in F* C Flw].
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Note that, if we think of ﬂf’e as an infinite block matrix with ¢ x t-matrices as entries, its
i,7)-block for ¢ > j is entirely divisible by pi*2; so it will not contribute to the reduction
J J y Y

of p™**t ¢y, (w) modulo w. In other words, if M, denotes the t x t-matrix appearing as the
(n,n)-block entry of {5, then

k—1
p Mo (w) = p”\“Hdet(Mn) (mod w).
n=0

Using the congruence relation discussed in (1) and Proposition [6.15(2), we see that the
diagonal ¢ X t-matrices are exactly given by

il;l’e(z/zmw) modulo p?, p-(ﬂ;}’e(@bmw_gw_Q) modulo p*), pQ-(ilg’e(@Zme_zlw_A‘) modulo p®), ...

Consequently, the reduction of p~*#¢y(w) modulo @ is the same as the product

k—1
H det (i_l;l’ewm,w_%w_%)) mod .
n=0
By Lemma [6.10] each factor lives in F* and so is the product. (2) follows from this.
(3) Since (2) implies that the Newton polygon agrees with the Hodge polygon at points
(kt, Ait) for all k > 0, the Newton polygon of the power series 1+ ¢1(wg)X + - -+ is confined

between the Hodge polygon of (1) and the polygon with vertices (kt, Ag¢). (3) is immediate
from this. O

Theorem |Blis a corollary of Theorem using the Jacquet-Langlands correspondence ((3.7.1)).

Remark 6.18. Assume p > 2. When m = 3, Theorem [6.17](1) still holds. But the argument
in (2) fails in that, for example, there might be p*w terms in (1, 0)-block entry for the matrix
Ll;l’e; apriori, they may have nontrivial contribution to the reduction of p~***a,(w) modulo
w. So we can only conclude that the reduction is a unit in FJw] but not necessarily a
unit in F(w). The slope estimate would then only work over some open disk of radius p~*.
Nonetheless, we still expect our theorem continue to hold as long as m > 2. It would be
interesting to know how to extend our argument to the case m = 2, 3.

Corollary 6.19. Assume m > 4 as before. Let HP(1),,) (resp. NP(v,,)) denote the Hodge
polygon (resp. Newton polygon) of the U,-action on SP(U;,,); we write HP(1,,)(i) (resp.
NP(¢) (1)) for the y-coordinate of the polygon when the x-coordinate is i.

Fizr=0,...,q— 1. Suppose that (sg, NP(¢,,w™2")(s0)) is a vertex of the Newton polygon
NP (9w ™2") and suppose that

(6.19.1) NP (1w~ 2)(s) < HP (4w ) (s — 1) + 1P for all s = 1,..., s

Then for any s = 0, ..., 80, any n € Zsg, and any wy € W(xtb,;p~ '), the (qnt + rt + s)th
slope of the power series 1+ c;(wo) X +- -+ is the sth U,-slope on SP(U; ¥,w™2") plus qn+r.

Proof. As in the proof of Theorem [6.17((2), cyntrri+s(wo) is divisible by prant+rt+s. The ap-
proximation in the proof of Theorem [6.17(1) also implies that, modulo pret+rt+s=1 . p_ this

25Note that the Newton polygon is evaluated at s and the Hodge polygon is evaluated at s — 1.
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number is equal to

ng+r—1

H p“ det ﬂ;l’e(¢mw_2“)> -pnat)s . (coefficient of X in Char(Up; S5 (mw ")) ).
a=0

Under the hypothesis of the corollary, this implies that, for each s,
o cither v(cynttrits(Wo)) > Agnetrt+s—1 + 1, in which case the Newton polygon for the

U,-action on Sg’T(U; k) does not have a vertex at gnt + rt + s, or
e the valuation of cyutrits(wp) is determined by the classical forms, i.e.

0(Cqnttrirs(Wo)) = V(Cqntrt(wo)) + NP(¢hnw ") (s) 4 (qn +1)s.

Since (89, NP(¢w™2")(s0)) is a vertex, the (gnt + rt + s)th slope, for s =0, ..., sq, of the
power series 1+ ¢;(wg)X + - -+ agrees with the sth slope of Char(U,; S¥ (¢,,w™?")) plus the
normalizing factor gn + 7. O

Remark 6.20. We emphasize that the sequence given by sth U,-slope on SP(U;,,w=2")
plus gn + r, as n increases, is an arithmetic progression with common difference ¢ (but not
1). This is due to the periodic appearance of the powers of the Teichmiiller character. This
agrees with the computation of Kilford and McMurdy [Kil08, [KM12] in some special cases
(with m = 2), where the common difference is 2 when p = 5, and is 2 (which can be further
broken up into two arithmetic progressions with common difference 3) when p = 7.

Example 6.21. We provide an example to better understand the strength of (6.19.1). Con-
sider the explicit example in Section [p| with D = Q(i,j) and p = 3. We first consider the
m = 3 case where we take U to be

v/
— X 3 3
U = D*(Zy) x l};[gGLQ(Zl) X (2723 m 323>

(6.21.1)

and 13 to be a character of Z; of conductor 27. Then SP(U;13) is 3-dimensional, and the
action of Uz on the a basis is given by

G & G

(6.21.2) G G G
7 2 2

9 9 9

Its Newton polygon has slopes %, %, and % and the Hodge polygon has slopes 0, %, and 1.
For the case m = 4, we take U to be as in ((6.21.1) except the number 27 is replaced by
81. We take the character 1, to have conductor 81. Then SP(U;1),) is 9-dimensional, and

the action of Uz on a basis is given by

¢ 0 0 0 T 0 0 0
0 0 0 C13 0 0 0 C20 C23
0 ¢ ¢ 0 0 0 ¢ 0 0
¢ 0 0 0 ¢ ¢ 0 0 0
(6.21.3) 0 0 0 ¢2 0 0 0 ¢ ¢4f,
0 CH C20 0 0 0 C16 0 0
¢ 0 0 0 ¢2¢® 0 0 0
0 0 0 ¢* 0 0 0 ¢ ¢
0 CH CH 0 0 0 <25 0 0
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where ( is a primitive 27th root of unity. The Newton polygon of this matrix has slopes
115 17 111 .
15750 18- -+ 150 and the Hodge polygon has slopes 0,0,0, 5,5,35,1,1,1. In this case, the
number sy in Corollary can be taken to be 6; so we can determine about “two thirds”
of all slopes using Corollary |6.19,

One can verify Proposition by checking M'M = 3I for the matrix M in (6.21.2) or

(6.21.3), here the overline means to take the complex conjugation.

We now return to the general case.

Theorem 6.22. Assume m > 4 as before. Let ord (¢, w™") denote the dimension of the
ordinary part of SP(U;,,w™2"), or equivalently, the multiplicity of slope 0 in NP (¢,w=2").
Then the spectral variety Spcp X ywW(x,; p~t) is a disjoint union of subvarieties

Xo, X1, X2 X3, ---

such that each subvariety is finite and flat over W(xtbn; p~t), and for any closed point x €
Xnnt1) (resp. x € Xo), we have v(a,(x)) € (n,n+ 1] (resp. v(ay(x)) = 0). Moreover, the
degree of X(nni1) over W(xiby,; p~t) is ezactly

t + ord(Ymw2""%) — ord (¢,w").
In particular, this number depends only on n mod q.

Proof. Tt suffices to show that, for a fixed n € Z>y and any wy € W(x1),,,; p~'), the number
of slopes of 1+ ¢1(wg)X + - -+ less than or equal to n, is independent of wy and is equal to
nt + ord(y,,w™"). If so, the subspace

Xon = {(I,wo) € Spcp XWW(ﬂﬁ%Um;p_l) [v(ay(z)) < ”}

is finite and flat of degree nt + ord(¢,w=*") over W(ztby,; p~t); and it follows that X, is
both open (by definition) and closed (by finiteness) in Spcp, XyWwW(x,;p~t), and hence a
union of connected components. The theorem then follows.

To estimate the number of slopes less than or equal to n, we use the Hodge polygon lower
bound in Theorem It then suffices to prove that
(6.22.1)
V(Cnttord(wmw—2n) (Wo)) = AneFn-ord(Yw ™), and v(cpps(wo)) > Aptns for s > ord(,w=").

We again go back to the slope estimate in the proof of Theorem m (like in the proof of
Corollary ; it is easy to deduce that c,is(wp) for s > ord(¥,,w=>") is congruent to
n—1

(T det 8! )) - "+ (coefficient of X* in Char(U; SF (4w ™")))
=0

modulo p*+s+1 The valuation inequalities (6.22.1]) follow from this congruence relation.
[

Remark 6.23. We certainly expect that X(; ;41) is the disjoint union of X(; ;41) [ [ Xit1 (with
the obvious meaning); but we do not know how to prove this because, apriori, the error terms
from w might present an obstruction.

Remark 6.24. Using Corollary and the argument above, we can show that, when there

is a vertex (sg, NP(¢,w™2")(s0)) of the Newton polygon NP(1,,w™2") as in Corollary [6.19]
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we can get a further decomposition of X441y gntrs1) Separating those points whose a,-slopes
are first sq Up-slopes on SP(U;,,w™2") plus gn + 7.

7. TECHNIQUES FOR SEPARATION BY RESIDUAL PSEUDO-REPRESENTATIONS

We motivate this section by pointing out that the power of Corollary is largely
determined by how close the Newton polygon is to the Hodge polygon. The application of
this result is largely limited as the level subgroup U gets smaller. An natural idea to loosen
the condition ((6.19.1)) is to separate the space of automorphic forms using the tame Hecke
algebras.

In fact, we will show that one can obtain a natural direct sum decomposition of the space
of overconvergent automorphic forms according to the residual Galois pseudo-representations
attached. Furthermore, we can reproduce main theorems of the previous section for each
direct summand. We also emphasize that this decomposition should have its own interest.

We keep the notation as in the previous section. In particular, we assume Hypothesis (6.1}
m > 4.

7.1. Pseudo-representations. Let Gg s denote the Galois group of the maximal extension
of Q unramified outside S (see Subsection for §). Let R be a (topological) ring. A (2-
dimensional) pseudo-representation is a (continuous) map p : Ggs — R such that, for

gi € Go,s, we have p(1) = 2, p(g9192) = p(g291), and

p(91)p(g2)p(g3) + p(919293) + p(919392) = p(91)p(9293) + p(92)p(9193) + p(g3)P(9192).
Let p: Ggs — O be a pseudo-representation.

o If x : Gg.s — O is a continuous character, then (p® x)(g) := p(g)x(g) is a pseudo-
representation.

e We use p : Ggs — F to denote the reduction p(g) := p(g) mod w; it is called the
residual pseudo-representation associated to p.

e The (residual) pseudo-representation is uniquely determined by the its evaluation on
the geometric Frobenius: p(Frob;) for [ ¢ S.

It is known that to each automorphic representation 7 appearing in SP(U;1,,), there
exists a pseudo-representation p, : Ggs — O such that p(Frob;) = q;(m) for all { ¢ S. We
say that a residual pseudo-representation p : Gg.s — F appears in a space of automorphic
forms SP(U;,,) if there is an automorphic representation m appearing in S (U;1),,) such
that the reduction of the associated pseudo-representation is p.

The goal of this section is to decompose the space Sg’T(U ; k) according to the residual
pseudo-representations appearing in the space of weight two classical automorphic formsE]
The key is to use the tame Hecke action to break up the space Sg’T(U; k). We start with
the decomposition over the space of classical automorphic forms.

Notation 7.2. We use B(U;1,,) to denote all residual pseudo-representations p that appear
in S := @3;(1) SP(U;w™2";w"). For each pair of distinct residual pseudo-representations
p, 0 € B(U;¢), we pick a prime ;7 ¢ S such that p(Frob, ) # p'(Frob, ). We fix a lift
ai, ,(p) € O of p(Frob, ) and a lift a;__,(p') € O of p'(Frob;_ ).

261t should not be too surprise to see that we only need weight two modular forms, as it was already
observed by Serre [Se96] that all modular residual pseudo-representations appears in weight two.
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For p € B(U;v,,), consider the following tame Hecke operator
Pﬁ = H (Eﬁ,ﬁ/ - a’lp-’[;/ (ﬁl>)/(&lp-7,3/ (ﬁ) - alﬁ’p-/ (ﬁ/))
75
Note that P, defines an endomorphism of the integral model SP(U; ¢,,w™";w"; O) for each
r. The operator P; depends on the choice of the lifts a; 7(p) and az 7 (p')’s.

Lemma 7.3. Fizr € {0,...,q—1}. Let P;, denote the action of P; on the space of classical
automorphic forms Sy (U; Ymw™";w"; O). Then P;, = P;, (mod w). The limit
Pl = lim (P, )"

exists and it is the projection to the direct sum V(p), of subspaces V(m) over all auto-

morphic representations m appearing in S (U;bw™2";w") for which the associated pseudo-

representation reduces to p. In particular, we have
(ﬁﬁ’T)Q — ﬁﬁﬂ‘? ﬁﬁﬂ‘ﬁﬁ’ﬂ' - O Zfﬁ % ﬁ/, and Z ﬁiﬂ‘ — ld
pEB(Ustm)
Moreover, the definition of ﬁm is independent of the choice of the lifts a;_, (p) and a, (p')’s;
and it defines a direct sum decomposition of the integral model
SY(Usthmw ™00V V(p;0),.
ﬁE%(Uﬂbm)

Proof. Note that, P;, acts on each V(7)) by some element in (w) if p, # p, and by some
1-unit if p, = p. The Lemma follows from this immediately. 0

The upshot is that one can extend the decomposition above to the case of overconvergent
automorphic forms.

7.4. Some infinite matrices. For each 7, we identify SP(U;1,w™?";w") with ®'_jE by
evaluating the automorphic forms at vp,v1,...,v—1. This way, the operators P;, and P;,
are represented by two ¢ X t-matrices ‘]3%177,, %17,, € M,(0).

We use ‘}3%1’00 (resp. ‘B%l’oo) to denoEe thg infinite block diagonal matrix whose diagonal
block-entries are P, B, ... (resp. Py, PG, ... ).

Note that P; only involves Hecke operators; so it also acts on the space of overconvergent
automorphic forms S5 (U; k). Let P2 (k) denote the matrix for P, under the basis given by

Lo, -+, L1,p20,- -, p2t_1,p?28, ... as in Notation
By Proposition [6.15(1), we have that

(7.4.1) ‘Bg(/{) = f;l’oo modulo the error space Err in (6.15.1)).

The next Proposition says that we can improve the infinite matrix ‘,]35(%) into a projection,
as we did above; so that we factor out the subspace of overconvergent automorphic forms
corresponding to the Galois pseudo-representation p.

Proposition 7.5. Keep the notation as above.

Yrcl,00 Trclioo  qrycl,coqrcl oo - — yrcl,o0
(1) We have (F™)2 = T, FEFIX = 0 5 # 7, and %) TS = L
where I, := Diag(1) denotes the infinite identity matriz.
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(2) The limit
P () = lim (PE())”
exists. Moreover, we have
~ 5~ ~ ~ o ~
(B3 (k)" = B5(x), Bo(R)R5 (k) =0 for p#p, and > RB5(x) =
PEB(Ustpm)
(3) We have a decomposition of Banach A-modules respecting the U,-action:
Sgl(Uin)= @ PS5 (Usr).
PEB(Ustpm)
Consequently, we have a product formula for the characteristic series
Char(U,; S (Usk)) =[] Char (U, B5(k) S5 (Us ).
ﬁegg(Uﬂan)

(4) We have the following congruence relation: for every p € B(U;by,), the difference
of the infinite matrices ‘,Blf(fz) — ‘,]321’00 belongs to the space Err in (6.15.1]).

Proof. (1) follows from the corresponding properties of B¢, in Lemma
For (2), we observe that 5 (k) = ;1 *® (mod w) by Proposmon ( ) So by Lemma

(7.5.1) (BE(r))* = BE(k)  (mod w).
Easy induction proves that (‘B?(/@))pfl = (‘B?(fj))pi (mod w'); so the limit ‘:ﬁ?(m) =
lim; o0 (B5 (k)P exists. The property (%g(/@))z = P (k) also follows from (7.5.1).
Now for two pseudo-representations p # p’ in B(U;1)y,), we have
PE(r)PE (k) = PIPL< =0 (mod w).

It then follows that ‘f?g (/ﬁ)iﬁg (k) = 0 (note that it is important to know that 95 (x) commutes
with ‘]3? (k) because both operators can be expressed in terms of Hecke operators.)
Similarly, we start with
Z (/Bd ,00

> (k)

pEAB(Ustpm) pPEB(Us¢pm)

I (mod w)

Raising it to p’th power implies that
I Z (mg(m))p (mod w*).
pPEB(Ustbm)
Here we used the fact that 9B5 (x)B5 (k) = 0 (mod @) for p # § and once again the crucial
commutativity of 95 (x)’s. Taking limit shows that ) e B(Ubm) ‘i?B (k) = I

(3) follows from (2) and the fact that U, commutes with each ‘B? (k), as this operator is
a limit of polynomials in tame Hecke operators.

We now check (4). First recall some basic properties of the error space Err defined in
(6.15.1). For My, My € Err, it is easy to see that M; M € Err and ‘,BC] M, MI‘BCI > ¢ Err.
Thus
(752)  (BF()" = (B> = (B> + (B (5) = B5™))" — (P;™)" € Bar
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because P2 (k) — 9% ¢ Err by (7.4.1). Taking limit proves (4). O

. .. . . . B cl,o0
Caution 7 f6' It is important to point out‘that,. in , since B, (r) and P do not
commute with each other, we cannot use binomial expansion formula to improve the con-
gruence (7.5.2); hence the limit 935 () is not a block diagonal matrix. So Proposition (4)
is the best congruence we could hope for.

Remark 7.7. We should point out that decomposing a Banach Hecke module according to
pseudo-Galois representations p is a quite formal process and can be done in a much greater
generality. However, it is often difficult to control the factor corresponding to each p. The
advantage of our situation is that we can give a good “model” of the factor corresponding
to each p.

7.8. p-part of classical automorphic forms. Recall from Lemma that the space of
classical automorphic forms SP(U;,,w™2";w"; O) for each r is written as the direct sum
Docrv.g, V(0:0)r. We put V(p), = V(p; (9)[—] and d;, := dim V(p),; the number de-
pends only on r mod q.

Note that the operator U, acts on each V(p, O),. By Corollary[6.8] (and Subsection [£.7(6)),
the Hodge slopes a(p), < -+ < g, ,—1(p)r of the U,-action on each V(p, O), belong to [0, 1];

so are the Newton slopes. We plck a basis e(p)r, - . -, €d,,-1(p), of V(p, ), such that, the
corresponding matrix u;:]l,ﬁ,r of the U,-action has ith row divisible by pi(P)r,
Providing SP (U; 1,w=2";w") with the natural basis of evaluation at g, . ..,7;_1, and each

V(p), with the basis above, we write €5, and ©;, for the matrices for the natural inclusion

cl .

and the natural projection ‘B7

<5 Dp,r _
V(p)r —>S (U hmw ™" w") ——=V (D),

So €5, is a t X d;,~matrix and D, is a d;, X t-matrix such that ¢;,9,, = N%{T and
D5 Cor = La,-

7.9. A model for the p-part of overconvergent automorphic forms. Proposition
allows us to reduce the study of the Up-action on Sg’T(U ; k) to the U,-action on each subspace

‘BB( )SE(U; k), which we call the p-part of Sy (U; k). This space is slightly too abstract

as pomted out in Remark [7.7} we need to give it a model” V(p)x.
We set

SZLOO’O = @DOSQD(U;wmw_QT;wT; 0) ®p A°, and Sil’oo = Sill’oo’o ®e E.

We define the Up-action on this space to be ®r20 p" - Up,. Let {lz‘;l’oo denote the matrix for
this action with respect the standard basis given by evaluation at g, ...,;_1 of each of the
summand; this matrix is the infinite block diagonal matrix whose diagonal components are
T, ﬂcl(w w72r).

p D m

We put

V)T =D V(5 0)r @0 A% and V(p)F = V(p)3* @0 E.
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We define the U,-action on this space given by @ p" - U,; the corresponding matrix with
respect to the chosen basis on each V/(p; O), is an infinite block diagonal matrix 49> whose

diagonal components are p" -u;lvﬁ:’”,
We write

€ 1= By20€,, V(D)X = ST and DY = 8,209, 1 ST = V()F

for the natural inclusion and projection, respectively. So we have D3°€> = I, and ‘,BCI =
D7 is the infinite block diagonal matrix composed of ‘,B%{T.
On the infinite level, we use the letter ® to denote the following identification

t—1 —

(7.9.1) SENU; k) @E w, pz) @@mo Y(pz)" =2 S

where the first and the last equahty are given by evaluation at the elements vo, v, ..., V1.
This isomorphism does not respect the actions of the Hecke operators literally but we will
show later that it approximately does.

Proposition 7.10. The following two natural morphisms are isomorphisms

() o5
—

s BE(R)SE T (Usk) € SEH(U;s k) S

V(p)X;

B X e @) Dt (17 B(,) gD+
Up: V(P)F —= Sy =— 5" (U; ) ‘B (r)Sp"(U; ).
Moreover, ;" = (14 €) o, for some endomorphism € : V(p)% — V(p) which, under the
basis {e;j(p), |7 =0,...,ds, — 1 and r > 0}, is an infinite matriz in

pMd (AO) pMdﬁ,OXdﬁ,l (AO) p2Mdﬁ,o><d5,2 (Ao) p3Mdﬁ,o><dﬁ,3 (Ao)

p Mdp 1Xdj O(A ) pMdﬁ,l(Ao> pMdﬁ,1Xd5,2(Ao) p2Mdﬁ,1Xdﬁ,3<Ao)

EI‘I‘p = |P Mdp 2><dp0(A ) ngdﬁ,QXdﬁ,l(Ao> pMdp-,QXd;s,2(Ao) pMdﬁ,QXdp-,s(Ao)
p Mdp 3><dp0(A ) p4Md,§,3><d;3,1(Ao> p3Md/§,3Xd/§,2 (AO) pMdﬁ,3 (Ao)

where the (i, j)-block entry is

hd pMd (AO) ZfZ _j7

o pi~ 9+2Mdmxd (A°) ifi > 7, and

o i~ "M, xd, (AO) ifi<j.
Proof. We first take the composition
(7.10.1) 050Uy — Lo = DFPE(R)EX — I

= DEPLREX — [+ DX (PE (k) — P )€,
coancl,00 poo _ 00 (5*00 ) OO (500 _
Note that DR, C€F — [, = DFEFDFEF — I, = 0 and
D (PE (k) — P5™) € € DF - Err - € C Erry,

where the last inclusion uses the fact that €3° and D5° are block diagonal matrices (but not

with square blocks though). Since all matrices in I, + Err; are invertible, ¢; o 95 is an

isomorphism. Thus it suffices to prove that 1; is surjective.
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For this, we need only to show the surjectivity of 1; 0 ®5°. Note that
U0 D = P (R)EFDF = PF(R)Py ™ = B3 (k) (Ioe + (B3 = P7(x)))-
By Proposition (4), the operator I, + (~§1’°° - ‘ﬁg(/{)) € I, + Err is an isomorphism.
Then the surjectivity of ¢;0D5° follows from the surjectivity of ‘:f??(/{) onto %?(H)Sg’T(U; K).

This then concludes the proof of both ¢; and 1; being isomorphisms.
Finally, we observe that (7.10.1]) implies that

~ ~ -1
07" = (I + OFBER) — B )EF) 005 =t )05
for the infinite matrix € = @?(‘ig(/ﬁ) — ‘E%l’oo)ng € Err,. O

Notation 7.11. Fix p € A(U; ¢,,) aresidual pseudo-representation. Let HP;, (resp. NP;,)
denote the Hodge polygon (resp. Newton polygon) of the matrix U5"*"; let HP,, (i) (resp.
NP, (7)) denote the y-coordinate of the polygon when the z-coordinate is i. Let ag(p), <
e < &dﬁ,r—1(ﬁ)r denote the slopes of HP;, in non-decreasing order. Let ord;, denote the
multiplicity of the slope 0 in NP,

Write the characteristic power series of U, on ’i?g (k)Sg(U; k) as

Char (Up,‘ﬁg(/ﬁ)sg’T(U; K)) =14 cz1(w)X + cza(w)X? + - € 1+ O(w)[X].
Its zero in W(2thy,, p 1) X Guig 1s the spectral curve Spc,. We have
Spe xwW(atm;p )= |J  Spe,.
ﬁeﬁ%(Uﬂbm)

Theorem 7.12. Assume m > 4 as before. Theorem|[6.17, Corollary[6.19, and Theorem
hold for each p € B(U;vy,), in the following sense.

(1) For any wy € W(at)y,,p "), the Newton polygon of the power series 14-c51(wo) X +- - -
lies above the polygon starting at (0,0) with slopes given by

(7.12.1) U {ao(p)r +1,00(p)r + 7, 54, —1(D)r + 7}
r=0

(2) For eachn € N, let X\;,, denote the sum of n smallest numbers in (7.12.1)). Then
k
As.n X _ —
con(w) € pom - O(w)™,  for all n of the form n = ng) = de
r=0

In particular, for any wy € W(xb,;p~t), the Newton polygon of the power series
1+ c51(wo)X + - -+ passes through the point (n,A;,) for n =ngs.

(3) Fizxr =0,...,q — 1. Suppose that (so, NP;,(s0)) is a vertex of the Newton polygon
NP, and suppose that

(7.12.2) NP;,(s) <HP;,(s —1)+1 foralls=1,..., s

Then for any s =0,..., o, any n € Zso, and any wyg € W(xm; p~ 1), the (nsgnr +
s)th slope of the power series 1 + ¢1(wo)X + -+ is the sth U,-slope on V(p), plus

qn +r.
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(4) The spectral variety Spc, is a disjoint union of subvarieties
X500 X501 Xp02, Xp23 -

such that each subvariety is finite and flat over W(xtb; p'), and for any closed point
x € X;2, we have v(ay(x)) €7. Moreover, the degree of Xz (yr+1) over W (zm;pt)
1s exactly
dsri1 +ord; 1 — ords,.

(5) Keep the notation and hypothesis as in (3) and (4). For all n € Zso and for
a number B > 0 appearing in the first sy Uy,-slopes on V(p),, the closed points
r € X (qnirgnirt1) for which v(ay(x)) = B+ qn + r form a connected component
of Xj (qnirgnir+1]- It is finite and flat over W(xn,;p™ ") of degree equal to the mul-
tiplicity of B in the set of U,-slopes of V(p),.

Proof. By Proposition , both ¢; and 1; are isomorphisms of Banach spaces. So we have
Char (Up;‘ig(/@)SBD’T(U; /<;)) = Char ((wﬁ)_l oilf 0 Y5; V(ﬁ)f).
Recall from Proposition W(Q) that the infinite block diagonal matrix 42" = Diag{8(%! (), p-
U (pw™2), p? - U (hmw ™), ... } satisfies
U5(k) — L+ € the error space Err,, in (6.15.2).
We introduce the following error space

pMdﬁ,O (AO) pMdﬁ,O xdp,1 (AO) p2Mdp,0 xXdg 2 (

p3Mdﬁ,1 xds.0 (AO) p2Mdﬁ,1 (AO) p2Mdﬁ,1 Xdﬁ,Q(

Errﬁyp = p4Mdﬁ,2 xdg.0 (AO) p4Mdﬁ,2 xXdp,1 (AO) ngdﬁ,z xXdp,2 (
p5Mdﬁ,3Xdﬁ,O (AO) p5Md,3,3 xdp,1 (Ao) p5Md,3,3 ><d,3,2(

where the (7, j)-block entry is

hd pi—HMdﬁ,i (Ao) ifi= j7

° pi+2Mdﬁ,i><dp,j (AO> if 4 > j, and

° ijdﬁindﬁ,j (A°) if i < j.
Rewrite the composite (¢;)~! o ﬂf o1, as

(¥p) o B oy, = (id + €)DTPE (k)b e

= DPPI(K)UTCF + €DFPE (k)UTE?

(7.12.3) = DPPLZULCET + DX (P5 (k)45 — P >) € + €D P (k)UTE.
Here the second equality in the first line follows from the commutativity of ‘ﬁ? (k) and L(ff
as they are (limits of) Hecke operators. It suffices to understand each of the terms.

(i) The first term @go‘%g’ooﬂ;l’o"(’lgo of ([7.12.3)) exactly gives the action of U, on the space
of classical automorphic forms.

(ii) By Proposition we easily deduce that
B (1)Ll — 5L = P (L) — L) + (B () — Py ™)e
€ ({ﬁg’m + Err) - Err, + Err -ﬂ;l’oo C Erry;
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so the middle term of ([7.12.3)
@%O(‘:]}?(/i)ilf — ~%1’°°ﬂ;1’°°)€§° € D7 -Err, - € C Erry,.
(ili) We write
comB Bgoo __ oo (BB B cl,00 ¢ (cl,00 00 oogyrcl,00¢ (cl 00 gro0
€D (k) U, € = €D (B (k)8 — P U ™)CF + €D, U €
The second term belongs to Err;, because € € Err; by Proposition For the
first term, we use the argument in (ii) to see that it belongs to
€ @;O -Err, - Q:;o C Err;,,.
Combining the computation above, we see that (1;) " o 115 o 15 belongs to

cl,p
et )
p- u;l,p,l
(7.12.4) P2 _ﬂgl,ﬁ,Z + Err;,,.

At this point, (1)-(4) of the Theorem can be proved in the same way as they were proved
in Theorem Corollary [6.19] and Theorem [6.22] with the modifications indicated below.

(1) already follows from the estimate because each U5 is already written in the
form adapted to its Hodge polygon.

For (2), we need to consider the action of P; on the space SP(U; 1w ") (see (6.9.2)

for the definition). Let ]5,; denote the limit lim, o (P;)?". By the same argument as in
Proposition we have ]352 = ]35, ﬁﬁﬁﬁf =0for p# 7', and 3~ c 504, ﬁﬁ = id. We use
V(p, w), to denote the image PSP (U; thy ww™2"), which is isomorphic to V(p),80 O /p2Olw),
as an O-module. Let il;l’p’“’”’ denote the matrix for the U,-action on V(p, w), with respect to
the basis eo(p),, ..., €a,,—1(p)y; its ith row is divisible by p®®)r and all coefficients on w is
divisible by p. We use ﬁ;l’ﬁ’w’r

by p®r  As argued in the proof of Theorem [6.17((2), it suffices to prove that det ﬂ;l’ﬁ’w’T
belongs to F* C Flw] for each r. However, this follows from the fact that the product

to denote the matrix given by dividing the ¢th row of ﬂg’ﬁ’w”"

[T dets ™" = det T (¢, ?) € FX.
PEB(Ustpm)
(3) and (4) follow from the arguments in Corollary and Theorem with no essential
changes. (5) follows from (3) immediately. O
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