

On deep holes of Gabidulin codes

Weijun Fang^a Li-Ping Wang^{b,c} Daqing Wan^d

^a Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

Email: nankaifwj@163.com

^b Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

^c University of Chinese Academy of Sciences, Beijing, China

Email: wangliping@iie.ac.cn

^d Department of Mathematics, University of California, Irvine CA 92697, USA

Email: dwan@math.uci.edu

Abstract

In this paper, we study deep holes of Gabidulin codes in both rank and Hamming metrics. Specifically, first, we give a tight lower bound for the distance of any word to a Gabidulin code and a sufficient and necessary condition for achieving this lower bound as well. Then, a class of deep holes of a Gabidulin code are discovered. Furthermore, we obtain some other deep holes for certain Gabidulin codes.

Keywords: Gabidulin codes, rank metric, deep holes, covering radius

1 Introduction

Let $\mathbb{F}_{q^m}^n$ be an n -dimensional vector space over a finite field \mathbb{F}_{q^m} where q is a prime power, and n, m are positive integers. In this paper we only consider the case when $n \leq m$. Let $\beta = (\beta_1, \dots, \beta_m)$ be a basis of \mathbb{F}_{q^m} over \mathbb{F}_q . Let \mathcal{F}_i be the map from \mathbb{F}_{q^m} to \mathbb{F}_q where $\mathcal{F}_i(u)$ is the i -th coordinate of an element $u \in \mathbb{F}_{q^m}$ in the basis representation with β . To any $\mathbf{u} = (u_1, \dots, u_n)$ in $\mathbb{F}_{q^m}^n$, we may associate the matrix $\bar{\mathbf{u}} = (\bar{u}_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n} \in \mathcal{M}_{m,n}(\mathbb{F}_q)$ in which $\bar{u}_{i,j} = \mathcal{F}_i(u_j)$. The rank weight of the vector \mathbf{u} can be defined by the rank of the associated matrix $\bar{\mathbf{u}}$, denoted by $w_R(\mathbf{u})$. Thus, we can define the rank distance between two vectors \mathbf{u} and \mathbf{v} in $\mathbb{F}_{q^m}^n$ as $d_R(\mathbf{u}, \mathbf{v}) = w_R(\mathbf{u} - \mathbf{v})$. We refer to [18] for more details on codes for the rank distance.

For integers $1 \leq k \leq n$, a **linear rank-metric code** C of length n and dimension k over \mathbb{F}_{q^m} is a subspace of dimension k of $\mathbb{F}_{q^m}^n$ embedded with the rank metric. The minimum rank distance of the code C , denoted by $d_R(C)$, is the minimum rank weight of the non-zero codewords in C . A linear rank-metric code C of length n and dimension k over \mathbb{F}_{q^m}

is called a **maximum rank distance (MRD)** code if $d_R(C) = n - k + 1$. A $k \times n$ matrix is called a generator matrix of C if its rows span the code.

The rank distance of any word $\mathbf{u} \in \mathbb{F}_{q^m}^n$ to C is defined as

$$d_R(\mathbf{u}, C) = \min\{d_R(\mathbf{u}, \mathbf{c}) \mid \mathbf{c} \in C\}.$$

It plays an important role in decoding of rank-metric codes. The maximum rank distance

$$\rho_R(C) = \max\{d_R(\mathbf{u}, C) \mid \mathbf{u} \in \mathbb{F}_{q^m}^n\}$$

is called the covering radius of C . If the rank distance from a word to the code C achieves the covering radius of the code, the word is called a deep hole of the code C .

The covering radius and deep holes of a linear code embedded with Hamming metric were studied extensively [1, 2, 3, 4, 5, 10, 12, 14, 16, 22, 23, 24, 25, 26, 27], in which MDS codes such as generalized Reed-Solomon codes, standard Reed-Solomon codes and projective Reed-Solomon codes were explored deeply. **Gabidulin codes were introduced by Gabidulin in [7] and independently by Delsarte in [6]**. Gabidulin codes can be seen as the q -analog of Reed-Solomon codes. Furthermore, Gabidulin codes are MRD codes. Over the last decade there has been increased interest in Gabidulin codes, mainly because of their relevance to network coding [15, 19]. The covering radius for a Gabidulin code was also studied in [8, 9, 20]. However, little is known about deep holes for such a code. **In this paper, we give a tight lower bound for the distance of any word to a Gabidulin code in both rank and Hamming metrics, and a sufficient and necessary condition for attaining this lower bound as well.** Then, a class of deep holes of a Gabidulin code are discovered. Furthermore, we study the distance of a special class of words to a Gabidulin code and so obtain some other deep holes for certain Gabidulin codes. Note that we refer to rank metric if Hamming metric is not explicitly pointed out in this paper.

The rest of this paper is organized as follows. In Section 2, we introduce some basic notations and results about linearized polynomials. Section 3 provides a class of deep holes for a Gabidulin code in both rank and Hamming metrics. Next, we obtain some other deep holes for certain Gabidulin codes in Section 4. Finally, we give our conclusions in Section 5.

2 Linearized polynomials

Gabidulin codes exploit linearized polynomials instead of arbitrary polynomials and so we recall some results about linearized polynomials.

A q -linearized polynomial over \mathbb{F}_{q^m} is defined to be a polynomial of the form

$$L(x) = \sum_{i=0}^d a_i x^{q^i}, a_i \in \mathbb{F}_{q^m}, a_d \neq 0$$

where d is called the q -degree of $f(x)$, denoted by $\deg_q(f(x))$. Note that $L(x)$ has no constant term. One can easily check that $L(x_1 + x_2) = L(x_1) + L(x_2)$ and $L(\lambda x_1) = \lambda L(x_1)$

for any $x_1, x_2 \in \mathbb{F}_{q^m}$ and $\lambda \in \mathbb{F}_q$, from which the name stems. In particular, $L(x)$ induces an \mathbb{F}_q -linear endomorphism of the \mathbb{F}_q -vector space \mathbb{F}_{q^m} . The set of all q -linearized polynomials over \mathbb{F}_{q^m} is denoted by $\mathcal{L}_q(x, \mathbb{F}_{q^m})$. The ordinary product of linearized polynomials **does not have to be** a linearized polynomial. However, the composition $L_1(x) \circ L_2(x) = L_1(L_2(x))$ is also a linearized polynomial. The set $\mathcal{L}_q(x, \mathbb{F}_{q^m})$ forms a non-commutative ring under the operations of composition \circ and ordinary addition. It is also an \mathbb{F}_q -algebra.

Lemma 1. [17] *Let $f(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})$ and \mathbb{F}_{q^s} be the smallest extension field of \mathbb{F}_{q^m} that contains all roots of $f(x)$. Then the set of all roots of $f(x)$ forms an \mathbb{F}_q -linear vector space in \mathbb{F}_{q^s} .*

Let U be an \mathbb{F}_q -linear subspace of \mathbb{F}_{q^m} . Then $\prod_{g \in U} (x - g)$ is called the q -annihilator polynomial of U .

Lemma 2. [17] *Let U be an \mathbb{F}_q -linear subspace of \mathbb{F}_{q^m} . Then $\prod_{g \in U} (x - g)$ is a q -linearized polynomial over \mathbb{F}_{q^m} .*

Let $\beta_1, \dots, \beta_n \in \mathbb{F}_{q^m}$ and denote the $k \times n$ Moore matrix by

$$M_k(\beta_1, \dots, \beta_n) := \begin{pmatrix} \beta_1 & \beta_2 & \dots & \beta_n \\ \beta_1^q & \beta_2^q & \dots & \beta_n^q \\ \vdots & \vdots & \ddots & \vdots \\ \beta_1^{q^{k-1}} & \beta_2^{q^{k-1}} & \dots & \beta_n^{q^{k-1}} \end{pmatrix}.$$

Furthermore, if g_1, \dots, g_n is a basis of U , one can write

$$\prod_{g \in U} (x - g) = \lambda \det(M_{n+1}(g_1, \dots, g_n, x))$$

for some non-zero constant $\lambda \in \mathbb{F}_{q^m}$. Clearly, its q -degree is n .

In addition, we have the notion of q -Lagrange polynomials.

Let $\mathbf{g} = \{g_1, \dots, g_n\} \subset \mathbb{F}_{q^m}$ and $\mathbf{r} = \{r_1, \dots, r_n\} \subset \mathbb{F}_{q^m}$, where g_1, \dots, g_n are \mathbb{F}_q -linearly independent. For $1 \leq i \leq n$, we define the matrix $\mathcal{D}_i(\mathbf{g}, x)$ as $M_n(g_1, \dots, g_n, x)$ without the i th column. The q -Lagrange polynomial with respect to \mathbf{g} and \mathbf{r} is defined to be

$$\Lambda_{\mathbf{g}, \mathbf{r}}(x) = \sum_{i=1}^n (-1)^{n-i} r_i \frac{\det(\mathcal{D}_i(\mathbf{g}, x))}{\det(M_n(\mathbf{g}))} \in \mathbb{F}_{q^m}[x].$$

Proposition 1. [21] *The q -Lagrange polynomial $\Lambda_{\mathbf{g}, \mathbf{r}}(x)$ is a q -linearized polynomial in $\mathbb{F}_{q^m}[x]$ and $\Lambda_{\mathbf{g}, \mathbf{r}}(g_i) = r_i$ for $i = 1, \dots, n$.*

Proposition 2. [13] *Let $L(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})$ be such that $L(g_i) = 0$ for all i . Then there exists an $H(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})$ such that $L(x) = H(x) \circ \prod_{g \in \langle \mathbf{g} \rangle} (x - g)$, where $\langle \mathbf{g} \rangle$ is the \mathbb{F}_q -vector space spanned by \mathbf{g} .*

3 Deep holes of Gabidulin codes

Let $g_1, \dots, g_n \in \mathbb{F}_{q^m}$ be linearly independent over \mathbb{F}_q , which also implies that $n \leq m$. Let $\mathbf{g} = \{g_1, \dots, g_n\}$ and $\langle \mathbf{g} \rangle$ is the \mathbb{F}_q -vector space spanned by \mathbf{g} . A Gabidulin code $\mathcal{G} \subseteq \mathbb{F}_{q^m}^n$ is defined as a linear block code with the generator matrix $M_k(g_1, \dots, g_n)$, where $1 \leq k \leq n$. Using the isomorphic matrix representation, we can interpret \mathcal{G} as a matrix code in $\mathbb{F}_q^{m \times n}$. The rank distance is defined in Section 1.

The Gabidulin code \mathcal{G} with length n has dimension k over \mathbb{F}_{q^m} and minimum rank distance $n - k + 1$, and so \mathcal{G} is an MRD code [7]. The Gabidulin code \mathcal{G} can also be defined as follow:

$$\begin{aligned} \mathcal{G} = & \{(m(g_1), \dots, m(g_n)) \in \mathbb{F}_{q^m}^n \mid m(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m}) \\ & \text{and } \deg_q(m(x)) < k\}. \end{aligned} \quad (1)$$

Note that this interpretation of the code \mathcal{G} will be used throughout the rest of the paper. It is the q -analogue of the generalized Reed-Solomon code.

Let

$$\left(\prod_{g \in \langle \mathbf{g} \rangle} (x - g) \right) = \mathcal{L}_q(x, \mathbb{F}_{q^m}) \circ \prod_{g \in \langle \mathbf{g} \rangle} (x - g)$$

be the left ideal generated by the element $\prod_{g \in \langle \mathbf{g} \rangle} (x - g)$ in the non-commutative ring $\mathcal{L}_q(x, \mathbb{F}_{q^m})$ with respect to the composition product. In particular, $(\prod_{g \in \langle \mathbf{g} \rangle} (x - g))$ is an \mathbb{F}_q -linear additive subgroup of $\mathcal{L}_q(x, \mathbb{F}_{q^m})$. It follows that $\mathcal{L}_q(x, \mathbb{F}_{q^m}) / (\prod_{g \in \langle \mathbf{g} \rangle} (x - g))$ is an \mathbb{F}_q -vector space. Define an \mathbb{F}_q -linear evaluation map

$$\sigma : \mathcal{L}_q(x, \mathbb{F}_{q^m}) / \left(\prod_{g \in \langle \mathbf{g} \rangle} (x - g) \right) \longrightarrow \mathbb{F}_{q^m}^n$$

given by

$$\sigma(f(x)) = (f(g_1), \dots, f(g_n)).$$

We have the following property.

Proposition 3. *The above defined map σ is an \mathbb{F}_q -vector space isomorphism.*

Proof. First, σ is well-defined since the polynomial $\prod_{g \in \langle \mathbf{g} \rangle} (x - g)$ vanishes at every g_i . Second, if $f(g_i) = 0$ for all $i = 1, \dots, n$, then there exists $H(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})$ such that $f(x) = H(x) \circ \prod_{g \in \langle \mathbf{g} \rangle} (x - g)$ by Proposition 2 and so σ is one-to-one. Third, we show that σ is surjective. For a given $\mathbf{r} = (r_1, \dots, r_n) \in \mathbb{F}_{q^m}^n$, we have the q -Lagrange polynomial $\Lambda_{\mathbf{g}, \mathbf{r}}(x)$ satisfying $\Lambda_{\mathbf{g}, \mathbf{r}}(g_i) = r_i$ for $i = 1, \dots, n$ by Proposition 1. The result is proved. \square

The q -linearized polynomial $\prod_{g \in \langle \mathbf{g} \rangle} (x - g)$ has q -degree n . It follows that any element $f(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})$ can be written uniquely in the form

$$f(x) = h(x) \circ \prod_{g \in \langle \mathbf{g} \rangle} (x - g) + r(x),$$

where $h(x), r(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})$ and $r(x)$ has q -degree smaller than n . This is the q -division algorithm in the non-commutative ring $\mathcal{L}_q(x, \mathbb{F}_{q^m})$. As \mathbb{F}_q -vector spaces, the quotient

$\mathcal{L}_q(x, \mathbb{F}_q^m)/(\prod_{g \in \langle \mathbf{g} \rangle} (x - g))$ is thus represented by all q -linearized polynomials of q -degree less than n . That is,

$$\mathcal{L}_q(x, \mathbb{F}_q^m)/(\prod_{g \in \langle \mathbf{g} \rangle} (x - g)) = \{f \in \mathcal{L}_q(x, \mathbb{F}_q^m) \mid \deg_q(f) < n\}.$$

Using the isomorphism σ , we can identify any word $u \in \mathbb{F}_{q^m}^n$ with $\sigma(f)$ for a unique polynomial $f(x) \in \mathcal{L}_q(x, \mathbb{F}_q^m)$ with $\deg_q(f) < n$. When $\deg_q(f) \leq k - 1$, it is easy to see that the distance $d_R(\sigma_f, \mathcal{G}) = 0$ by the definition. It was proved in [9] that the covering radius of \mathcal{G} is $n - k$. Thus, we have $d_R(\sigma_f, \mathcal{G}) \leq n - k$ by the definition of covering radius. When $k \leq \deg_q(f) < n$, we provide a tight lower bound for $d_R(\sigma_f, \mathcal{G})$ as follows.

Theorem 1. *Let $f(x) \in \mathcal{L}_q(x, \mathbb{F}_q^m)$ with $\deg_q(f) < n$ and let $\sigma_f = \sigma(f) \in \mathbb{F}_{q^m}^n$ be the corresponding word. If $k \leq \deg_q(f) < n$, then*

$$d_R(\sigma_f, \mathcal{G}) \geq n - \deg_q(f).$$

Furthermore, we suppose f is monic, then $d_R(\sigma_f, \mathcal{G}) = n - \deg_q(f)$ if and only if there exists a $\deg_q(f)$ -dimensional subspace H of $\langle \mathbf{g} \rangle$ such that

$$f(x) - v(x) = \prod_{h \in H} (x - h),$$

for some $v(x) \in \mathcal{L}_q(x, \mathbb{F}_q^m)$ with $\deg_q(v) \leq k - 1$.

Proof. Let $u(x)$ be any q -polynomial over \mathbb{F}_{q^m} . We consider the \mathbb{F}_q -linear map defined by

$$\begin{aligned} \pi_u &: \langle g_1, \dots, g_n \rangle \rightarrow \langle u(g_1), \dots, u(g_n) \rangle \\ &\sum_{i=1}^n \xi_i g_i \mapsto \sum_{i=1}^n \xi_i u(g_i) = u(\sum_{i=1}^n \xi_i g_i). \end{aligned}$$

It is clear that the map π_u is surjective and $\ker(\pi_u) \subseteq \text{Root}(u)$ (the set of roots of $u(x)$). So $\dim_{\mathbb{F}_q} \ker(\pi_u) \leq \dim_{\mathbb{F}_q} \text{Root}(u) \leq \deg_q(u)$. Then

$$\begin{aligned} &\dim_{\mathbb{F}_q} \langle u(g_1), \dots, u(g_n) \rangle \\ &= \dim_{\mathbb{F}_q} \langle g_1, \dots, g_n \rangle - \dim_{\mathbb{F}_q} \ker(\pi_u) \\ &\geq n - \deg_q(u). \end{aligned}$$

It follows that

$$\begin{aligned} &d_R(\sigma_f, \mathcal{G}) \\ &= \min_{\deg_q(v) < k} \text{rank}((f - v)(g_1), \dots, (f - v)(g_n)) \\ &= \min_{\deg_q(v) < k} \dim_{\mathbb{F}_q} \langle (f - v)(g_1), \dots, (f - v)(g_n) \rangle \\ &\geq \min_{\deg_q(v) < k} (n - \deg_q(f - v)) = n - \deg_q(f). \end{aligned}$$

The last equality holds since $\deg_q(f - v) = \deg_q(f)$ for any q -polynomial $v(x)$ with $\deg_q(v) < k$.

Furthermore, from the above proof, we know $d_R(\sigma_f, \mathcal{G}) = n - \deg_q(f)$ if and only if

$$\begin{aligned}\dim_{\mathbb{F}_q} \text{Root}(f - v) &= \dim_{\mathbb{F}_q} \ker(\pi_{f-v}) \\ &= \deg_q(f - v) = \deg_q(f)\end{aligned}$$

for some q -polynomial $v(x)$ with $\deg_q(v) < k$, which is equivalent to

$$f(x) - v(x) = \prod_{h \in H} (x - h),$$

for some $\deg_q(f)$ -dimensional subspace H of $\langle g_1, \dots, g_n \rangle$. The theorem is proved. \square

By Theorem 1 and the fact $d_R(\sigma_f, \mathcal{G}) \leq n - k$, we immediately deduce the following corollary, which provide a class of deep holes of the Gabidulin code \mathcal{G} .

Corollary 1. *The elements of the set $\{\sigma_f : \deg_q(f(x)) = k, f(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})\}$ are deep holes of the Gabidulin code \mathcal{G} and so the number of deep holes of \mathcal{G} is at least $(q^m - 1)q^{mk}$.*

According to the definition in Eq. (1), we may also study Gabidulin codes in Hamming metric. It was showed that such codes are MDS codes in [7]. We use $d_H(\mathbf{u}, \mathbf{v})$ and $d_H(\mathbf{u}, \mathcal{G})$ to denote the Hamming distance between vectors \mathbf{u} and \mathbf{v} and the Hamming distance of a word \mathbf{u} to \mathcal{G} , respectively. Similarly, we have the following theorem.

Theorem 2. *Let $f(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})$ with $\deg_q(f) < n$ and let $\sigma_f = \sigma(f) \in \mathbb{F}_{q^m}^n$ be the corresponding word. If $k \leq \deg_q(f) < n$, then*

$$d_H(\sigma_f, \mathcal{G}) \geq n - \deg_q(f).$$

Furthermore, suppose f is monic, then $d_H(\sigma_f, \mathcal{G}) = n - \deg_q(f)$ if and only if there exists a subset $E = \{g_{i_1}, \dots, g_{i_{\deg_q(f)}}\}$ of $\{g_1, \dots, g_n\}$ such that

$$f(x) - v(x) = \prod_{g \in \langle E \rangle} (x - g),$$

for some $v(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})$ with $\deg_q(v) \leq k - 1$.

Proof. Let now $t = n - d_H(\sigma_f, \mathcal{G})$. By definition of the Hamming distance, there exists some $v(x)$ and non-zero $H(x) \in \mathcal{L}_q(x, \mathbb{F}_{q^m})$ with $\deg_q(v) < k$ such that

$$f(x) - v(x) = H(x) \circ \prod_{g \in \langle g_{i_1}, \dots, g_{i_t} \rangle} (x - g)$$

for some indices $1 \leq i_1 < \dots < i_t \leq n$. Comparing the q -degrees of both sides, we deduce that $t \leq \deg_q(f)$. This proves that $n - \deg_q(f) \leq d_H(\sigma_f, \mathcal{G})$. Furthermore, if f is monic, the equality $t = \deg_q(f)$ holds if and only if $H(x) = x$, in which case, we obtain

$$f(x) - v(x) = \prod_{g \in \langle g_{i_1}, \dots, g_{i_t} \rangle} (x - g)$$

and the theorem is true. \square

It is well known that $d_H(\mathbf{u}, C) \leq n - k$ for any linear code of length n and dimension k . Thus, by Theorem 2, the result in Corollary 1 still holds in Hamming metric.

4 Some other deep holes for certain Gabidulin codes

We hope to obtain more deep holes of Gabidulin codes and so consider monic $f(x)$ of $\deg_q(f) = k+d$, $d \geq 1$, where $f(x) = x^{q^{k+d}} - a_1x^{q^{k+d-1}} + a_2x^{q^{k+d-2}} + \cdots + (-1)^d a_d x^{q^k} + \cdots$. In Theorem 1, if we write $\prod_{h \in H} (x - h) = x^{q^{k+d}} - h_1x^{q^{k+d-1}} + \cdots + (-1)^d h_d x^{q^k} + \cdots$ and let $\beta_1, \beta_2, \dots, \beta_{k+d} \in \mathbb{F}_{q^m}$ be a basis of H , then $d_R(\sigma_f, \mathcal{G}) = n - \deg_q(f)$ is equivalent to

$$a_i = h_i, \text{ for all } 1 \leq i \leq d.$$

According to the process of the proof of [17, Lemma 3.51], we know that

$$h_i = \frac{\det(\mathcal{R}_{k+d-i}(\beta_1, \dots, \beta_{k+d}))}{\det(M_{k+d}(\beta_1, \dots, \beta_{k+d}))},$$

where $\mathcal{R}_{k+d-i}(\beta_1, \dots, \beta_{k+d})$ denotes the matrix $M_{k+d+1}(\beta_1, \dots, \beta_{k+d})$ deleting the row $(\beta_1^{q^{k+d-i}}, \dots, \beta_{k+d}^{q^{k+d-i}})$. As a result, we have $d_R(\sigma_f, \mathcal{G}) = n - (k+d)$ if and only if there exist $k+d$ linearly independent elements $\beta_1, \beta_2, \dots, \beta_{k+d}$ of $\langle g_1, \dots, g_n \rangle$ such that

$$a_i = \frac{\det(\mathcal{R}_{k+d-i}(\beta_1, \dots, \beta_{k+d}))}{\det(M_{k+d}(\beta_1, \dots, \beta_{k+d}))}, \text{ for all } 1 \leq i \leq d,$$

where $\mathcal{R}_{k+d-i}(\beta_1, \dots, \beta_{k+d})$ denotes as the above.

When $d = 1$, i.e., $\deg_q(f) = k+1$, then by Theorem 1, σ_f is not a deep hole of \mathcal{G} if and only if $d_R(\sigma_f, \mathcal{G}) = n - (k+1)$. Thus, by the above discussion, we have

Lemma 3. *Let $f(x) = x^{q^{k+1}} - a_1x^{q^k} + \cdots$. Then σ_f is not a deep hole of \mathcal{G} if and only if there exist $k+1$ linearly independent elements $\beta_1, \beta_2, \dots, \beta_{k+1}$ of $\langle g_1, \dots, g_n \rangle$ such that*

$$a_1 = \frac{\det(\mathcal{R}_k(\beta_1, \dots, \beta_{k+1}))}{\det(M_{k+1}(\beta_1, \dots, \beta_{k+1}))},$$

where $\mathcal{R}_k(\beta_1, \dots, \beta_{k+1})$ denotes the matrix $M_{k+2}(\beta_1, \dots, \beta_{k+1})$ without the row $(\beta_1^{q^k}, \dots, \beta_{k+1}^{q^k})$.

Similar to the above discussion, we get the result for Hamming metric case by Theorem 2. Let $f(x) = x^{q^{k+d}} - a_1x^{q^{k+d-1}} + a_2x^{q^{k+d-2}} + \cdots + (-1)^d a_d x^{q^k} + \cdots$. Then $d_H(\sigma_f, \mathcal{G}) = n - (k+d)$ if and only if there exist $k+d$ distinct elements $g_{i_1}, g_{i_2}, \dots, g_{i_{k+d}}$ of $\{g_1, \dots, g_n\}$ such that

$$a_i = \frac{\det(\mathcal{R}_{k+d-i}(g_{i_1}, \dots, g_{i_{k+d}}))}{\det(M_{k+d}(g_{i_1}, \dots, g_{i_{k+d}}))}, \text{ for all } 1 \leq i \leq d,$$

where $\mathcal{R}_{k+d-i}(g_{i_1}, \dots, g_{i_{k+d}})$ denotes as the above.

Lemma 4. Let $f(x) = x^{q^{k+1}} - a_1 x^{q^k} + \dots$. Then σ_f is not a deep hole of \mathcal{G} in Hamming metric if and only if there exist $k+1$ distinct elements $g_{i_1}, g_{i_2}, \dots, g_{i_{k+1}}$ of $\{g_1, \dots, g_n\}$ such that

$$a_1 = \frac{\det(\mathcal{R}_k(g_{i_1}, \dots, g_{i_{k+1}}))}{\det(M_{k+1}(g_{i_1}, \dots, g_{i_{k+1}}))},$$

where $\mathcal{R}_k(g_{i_1}, \dots, g_{i_{k+1}})$ denotes the matrix $M_{k+2}(g_{i_1}, \dots, g_{i_{k+1}})$ without the row $(g_{i_1}^{q^k}, \dots, g_{i_{k+1}}^{q^k})$.

In the following, we study some other deep holes for certain Gabidulin codes. In particular, we consider Gabidulin codes over \mathbb{F}_{q^m} only when $m = n$ in Proposition 4 and 5.

Proposition 4. Let \mathcal{G} be the Gabidulin code over \mathbb{F}_{q^n} with linearly independent set $\mathbf{g} = \{g_1, \dots, g_n\}$ and dimension k . Let $f(x) = x^{q^{n-1}} + f_{\leq k-1}$, where $f_{\leq k-1}$ is a q -linearized polynomial over \mathbb{F}_{q^n} of q -degree less than or equals to $k-1$. Then σ_f is a deep hole of \mathcal{G} .

Proof. For any $h_1, h_2, \dots, h_n \in \mathbb{F}_{q^n}$, it is easy to show that

$$\dim_{\mathbb{F}_q} \langle h_1, h_2, \dots, h_n \rangle = \dim_{\mathbb{F}_q} \langle h_1^q, h_2^q, \dots, h_n^q \rangle.$$

Thus we have

$$\begin{aligned} & d_R(\sigma_f, \mathcal{G}) \\ &= \min_{\deg_q(v) < k} \text{rank}((f - v)(g_1), \dots, (f - v)(g_n)) \\ &= \min_{\deg_q(v) < k} \dim_{\mathbb{F}_q} \langle (f - v)(g_1), \dots, (f - v)(g_n) \rangle \\ &= \min_{\deg_q(v) < k} \dim_{\mathbb{F}_q} \langle (f - v)^q(g_1), \dots, (f - v)^q(g_n) \rangle \\ &= \min_{\deg_q(v) < k} \dim_{\mathbb{F}_q} \langle g_1 + (f_{\leq k-1} - v)^q(g_1), \dots, g_n + (f_{\leq k-1} - v)^q(g_n) \rangle \\ &\geq \min_{\deg_q(v) < k} (n - \deg_q(x + (f_{\leq k-1}(x) - v(x))^q)) \\ &\geq n - k. \end{aligned}$$

The fourth equality holds since $g_i^{q^n} = g_i$, and the first inequality follows from the process of the proof of Theorem 1. By the fact $d_R(\sigma_f, \mathcal{G}) \leq n - k$, we obtain that $d_R(\sigma_f, \mathcal{G}) = n - k$. Thus σ_f is a deep hole of \mathcal{G} . \square

In Proposition 4, if the dimension k equals to $n - 2$, we can obtain more deep holes of the Gabidulin code as follows.

Proposition 5. Let \mathcal{G} be the Gabidulin code over \mathbb{F}_{q^n} with linearly independent set $\mathbf{g} = \{g_1, \dots, g_n\}$ and dimension $k = n - 2$. Let $f(x) = x^{q^{n-1}} - ax^{q^{n-2}} + f_{\leq n-3}$, where a is an element in \mathbb{F}_{q^n} with $a \neq (-1)^{n-1}b^{1-q}$ for all $b \in \mathbb{F}_{q^n}^*$ and $f_{\leq n-3}$ is a q -linearized polynomial over \mathbb{F}_{q^n} of q -degree less than or equals to $n - 3$. Then σ_f is a deep hole of \mathcal{G} .

Proof. Suppose that σ_f is not a deep hole of \mathcal{G} . By Lemma 3, there are $n - 1$ linearly independent elements $\beta_1, \dots, \beta_{n-1}$ in $\langle g_1, \dots, g_n \rangle$ such that

$$a = \frac{\det(\mathcal{R}_{n-2}(\beta_1, \dots, \beta_{n-1}))}{\det(M_{n-1}(\beta_1, \dots, \beta_{n-1}))}. \quad (2)$$

For any matrix $A = (a_{ij})$, denote by $A^{(q)}$ the matrix (a_{ij}^q) . Then

$$\mathcal{R}_{n-2}^{(q)}(\beta_1, \dots, \beta_{n-1}) = \begin{pmatrix} \beta_1^q & \beta_2^q & \dots & \beta_{n-1}^q \\ \beta_1^{q^2} & \beta_2^{q^2} & \dots & \beta_{n-1}^{q^2} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_1^{q^{n-2}} & \beta_2^{q^{n-2}} & \dots & \beta_{n-1}^{q^{n-2}} \\ \beta_1^{q^n} & \beta_2^{q^n} & \dots & \beta_{n-1}^{q^n} \end{pmatrix}.$$

Note that $\beta_i^{q^n} = \beta_i$. Thus

$$\mathcal{R}_{n-2}^{(q)}(\beta_1, \dots, \beta_{n-1}) = \begin{pmatrix} \beta_1^q & \beta_2^q & \dots & \beta_{n-1}^q \\ \beta_1^{q^2} & \beta_2^{q^2} & \dots & \beta_{n-1}^{q^2} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_1^{q^{n-2}} & \beta_2^{q^{n-2}} & \dots & \beta_{n-1}^{q^{n-2}} \\ \beta_1 & \beta_2 & \dots & \beta_{n-1} \end{pmatrix},$$

and $\det(\mathcal{R}_{n-2}^{(q)}(\beta_1, \dots, \beta_{n-1})) = (-1)^{n-1} \det(M_{n-1}(\beta_1, \dots, \beta_{n-1}))$. It is easy to see that $\det(A^{(q)}) = (\det(A))^q$, for any matrix A over \mathbb{F}_{q^n} . Thus

$$\begin{aligned} (\det(\mathcal{R}_{n-2}(\beta_1, \dots, \beta_{n-1})))^q &= \det(\mathcal{R}_{n-2}^{(q)}(\beta_1, \dots, \beta_{n-1})) \\ &= (-1)^{n-1} \det(M_{n-1}(\beta_1, \dots, \beta_{n-1})) \neq 0. \end{aligned}$$

i.e., $\det(\mathcal{R}_{n-2}(\beta_1, \dots, \beta_{n-1})) \neq 0$. Moreover, by Eq. (2), we have

$$a = (-1)^{n-1} (\det(\mathcal{R}_{n-2}(\beta_1, \dots, \beta_{n-1})))^{1-q},$$

which contradicts to the assumption of a . Thus σ_f is a deep hole of \mathcal{G} . \square

Remark 1. When $a = 0$, the result in Proposition 5 can be obtained by Proposition 4.

The following proposition considers the case of Gabidulin codes with dimension $k = 1$.

Proposition 6. Suppose m is odd and $3 \leq n \leq m$. Let \mathcal{G} be the Gabidulin code with linearly independent set $\mathbf{g} = \{g_1, \dots, g_n\}$ and dimension $k = 1$. Let $f(x) = x^{q^2} + cx$ where $c \in \mathbb{F}_{q^m}$. Then σ_f is a deep hole of \mathcal{G} .

Proof. Suppose that σ_f is not a deep hole of \mathcal{G} . By Lemma 3, there are two linearly independent elements β_1 and β_2 in $\langle g_1, \dots, g_n \rangle$ such that $b = 0 = \beta_1\beta_2(\beta_2^{q^2-1} - \beta_1^{q^2-1})$. Thus, $(\beta_2\beta_1^{-1})^{q^2-1} = 1$. Since m is odd, $\gcd(q^2 - 1, q^m - 1) = q - 1$. So we have $(\beta_2\beta_1^{-1})^{q-1} = 1$, which implies that $\frac{\beta_2}{\beta_1} \in \mathbb{F}_q$, i.e., β_1 and β_2 are linearly dependent over \mathbb{F}_q . This contradicts with the assumption of β_1 and β_2 . \square

Remark 2. When $n = m = 3$, the result in Proposition 6 is included in Proposition 5.

Propositions 4, 5 and 6 still hold for the Hamming metric after similar analysis.

In the rest of this section we furthermore discuss the distance of a special class of words to the Gabidulin codes over \mathbb{F}_{2^m} with dimension $k = 1$. Before that, we give two lemmas.

Lemma 5. [17] Let a be in a finite field \mathbb{F}_q and p be the characteristic of \mathbb{F}_q . Then the trinomial $x^p - x - a$ is irreducible in $\mathbb{F}_q[x]$ if and only if $\text{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(a) \neq 0$.

For a finite field \mathbb{F}_q , the integer-valued function v on \mathbb{F}_q is defined by $v(b) = -1$ for $b \in \mathbb{F}_q^*$ and $v(0) = q - 1$.

Lemma 6. [17] For even q , let $a \in \mathbb{F}_q$ with $\text{tr}_{\mathbb{F}_q}(a) = 1$ and $b \in \mathbb{F}_q$, then the number of solutions of the equation $x_1^2 + x_1x_2 + ax_2^2 = b$ is $q - v(b)$.

We now consider the finite field \mathbb{F}_{2^m} . Let

$$h(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2.$$

For any $b \in \mathbb{F}_{2^m}$, let the set

$$S(h(x_1, x_2) = b) = \{(c_1, c_2) \in \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \mid h(c_1, c_2) = b, c_1 \neq c_2, c_i \neq 0, i = 1, 2\}$$

and $N(h(x_1, x_2) = b) = |S(h(x_1, x_2) = b)|$.

We consider two cases:

Case 1: m is odd, which implies that $\text{Tr}_{2^m}(1) = 1$.

If $b = 0$, the number of solutions of the equation $h(x_1, x_2) = b$ is $2^m - v(b) = 1$ by Lemma 6. Since $(0, 0)$ is a solution, $S(h(x_1, x_2) = b) = \emptyset$ and $N(h(x_1, x_2) = b) = 0$.

If $b \neq 0$, the number of solutions of the equation $h(x_1, x_2) = b$ is $2^m + 1$ by Lemma 6. Thus, $N(h(x_1, x_2) = b) = 2^m + 1 - 2$ since any element in \mathbb{F}_{2^m} is a square. We also obtain the corresponding $S(h(x_1, x_2) = b)$.

Case 2: m is even, which implies that $\text{Tr}_{2^m}(1) = 0$.

By Lemma 5, $x^2 + x + 1$ is reducible over \mathbb{F}_{2^m} and so it can be written as $x^2 + x + 1 = (x + \alpha)(x + \beta)$ where $\alpha, \beta \in \mathbb{F}_{2^m}$, $\alpha \neq 1, \beta \neq 1$ and $\alpha \neq \beta$. Thus, $x_1^2 + x_1x_2 + x_2^2 = (x_1 + \alpha x_2)(x_1 + \beta x_2) = b$ and so the number of solutions of $h(x_1, x_2) = b$ is $2^m + 2^m - 1$ if $b = 0$ or $2^m - 1$ if $b \neq 0$.

If $b = 0$, then $N(h(x_1, x_2) = b) = 2^{m+1} - 2$ and also we get $S(h(x_1, x_2) = b)$.

If $b \neq 0$, $N(h(x_1, x_2) = b) = 2^m - 1 - 2$ since any element in \mathbb{F}_{2^m} is a square. We also get $S(h(x_1, x_2) = b)$.

From the above discussion, we get the following result.

Proposition 7. Let \mathcal{G} be the Gabidulin code over \mathbb{F}_{2^m} with $\mathbf{g} = \{g_1, \dots, g_n\}$, dimension $k = 1$ and $3 \leq n \leq m$. Let $f(x) = x^4 + bx^2 + cx$, where $b, c \in \mathbb{F}_{2^m}$. Then σ_f is not a deep hole of \mathcal{G} if and only if there are two elements β_1 and β_2 in $\langle g_1, \dots, g_n \rangle$ such that $(\beta_1, \beta_2) \in S(h(x_1, x_2) = b)$. In particular, if $n = m$, then σ_f is a deep hole of \mathcal{G} if and only if $b = 0$ and m is odd.

Proof. Note that two nonzero elements β_1 and β_2 are linearly independent over \mathbb{F}_2 if and only if $\beta_1 \neq \beta_2$. Thus, by Lemma 3, σ_f is not a deep hole of \mathcal{G} if and only if there are two distinct nonzero elements β_1 and β_2 in $\langle g_1, \dots, g_n \rangle$ such that

$$b = \beta_1^2 + \beta_1\beta_2 + \beta_2^2,$$

i.e., $(\beta_1, \beta_2) \in S(h(x_1, x_2) = b)$. In particular, if $n = m$, then $\langle g_1, \dots, g_n \rangle = \mathbb{F}_{2^m}$. By the above discussion, σ_f is a deep hole only when $b = 0$ and m is odd. For the other cases, $N(h(x_1, x_2) = b)$ is at least 1. Therefore, the desired result is obtained. \square

Remark 3. The second result of Proposition 7 may not hold for the case of Hamming metric from Lemma 4 since it is possible that $h(x_1, x_2) = b$ has no solutions in $\{g_1, \dots, g_n\}$ when $b \neq 0$ although $h(x_1, x_2) = b$ always has solutions in $\langle g_1, \dots, g_n \rangle = \mathbb{F}_{2^m}$.

5 Conclusions

In this paper, we study deep holes of Gabidulin codes in both Hamming metric and rank metric. The general results for Hamming metric case (see Theorem 2 and Lemma 4) depend on the choice of the set $\{g_1, \dots, g_n\}$, while the results for rank metric case (see Theorem 1 and Lemma 3) only depend on the subspace of \mathbb{F}_{q^m} spanned by g_1, \dots, g_n . In particular, when $n = m$, the latter does not depend on the choice of g_1, \dots, g_n since $\langle g_1, \dots, g_n \rangle$ equals to the whole space \mathbb{F}_{q^m} . Hence the problem about deep holes of Gabidulin codes in Hamming metric seems more complicated than in rank metric.

On the other hand, for generalized Reed-Solomon codes, it has been proved that the problem of determining if a received word is a deep hole is NP-hard [11]. For Gabidulin codes, the problem seems more complicated although we give a necessary and sufficient condition for this problem. So we state it as a conjecture.

Conjecture 1. Deciding deep holes of the Gabidulin code is NP-hard.

Acknowledgments The authors would like to thank the two anonymous referees for their valuable and helpful comments, which have greatly improved the presentation and quality of this paper.

References

- [1] D. Bartoli, M. Giulietti and I. Platoni, On the covering radius of MDS codes, IEEE Trans. Inf. Theory 6 (2) (2015) 801-811.

- [2] Q. Cheng and E. Murray, On deciding deep holes of Reed-Solomon codes, Lecture notes in Computer Science 4484 (2007) 296-305.
- [3] Q. Cheng and D. Wan, On the list and bounded distance decodability of Reed-Solomon codes, SIAM Journal on Computing 37 (1) (2007) 195-209.
- [4] G. Cohen, M. Karpovsky, H. Mattson and J. Schatz, Covering radius—survey and recent results, IEEE Trans. Inf. Theory 31 (3) (1985) 328-343.
- [5] G. Cohen, A. C. Lobstein and N. Sloane, Further results on the covering radius of codes, IEEE Trans. Inf. Theory 32 (5) (1986) 680-694.
- [6] P. Delsarte, Bilinear forms over a finite field with applications to coding theory, J. Comb. Theory, A 25 (3) (1978) 226-241.
- [7] E. M. Gabidulin, Theory of codes with maximum rank distance, Problemy Peredachi Informatsii, 21 (1) (1985) 3-16.
- [8] M. Gadouleau and Z. Yan, Packing and covering properties of rank metric codes, IEEE Trans. Inf. Theory 54 (9) (2008) 3873-3883.
- [9] M. Gadouleau and Z. Yan, Properties of codes with the rank metric, in Proc. IEEE Globecom 2006, San Francisco, CA, 2006.
- [10] R. Graham and N. Sloane, On the covering radius of codes, IEEE Trans. Inf. Theory 31 (3) (1985) 385-401.
- [11] V. Guruswami and A. Vardy, Maximum-likelihood decoding of Reed-Solomon codes is NP-hard, In Proceeding of SODA (2005) 2249-2256.
- [12] T. Helleseth, T. Klove and J. Mykkeltveit, On the covering radius of binary codes, IEEE Trans. Inf. Theory 24 (5) (1978) 627-628.
- [13] A. Horlemann-Trautmann and M. Kuijper, Gabidulin decoding via minimal bases of linearized polynomial modules, <https://arxiv.org/abs/1408.2303v3>.
- [14] M. Keti and D. Wan, Deep holes in Reed-Solomon codes based on Dickson polynomials, Finite Fields Appl. 40 (2016) 110-125.
- [15] R. Kötter and R. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inf. Theory 54 (8) (2008) 3579-3591.
- [16] Q. Liao, On Reed-Solomon codes, Chinese Annals of Mathematics, (1) (2011) 89-98.
- [17] R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, Cambridge, London.
- [18] P. Loidreau, Properties of codes in rank metric, <http://arxiv.org/abs/cs/0610057>.
- [19] D. Silva, F. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding, IEEE Trans. Inf. Theory 54 (9) (2008) 3951-3967.

- [20] W. B. Vasantha, N. Suresh Babu, On the covering radius of rank-distance codes. *Gaita Sandesh* 13 (1) (1999) 4348.
- [21] A. Wachter-Zeh, Decoding of block and convolutional codes in rank metric. PhD thesis, Ulm University, Germany, 2013.
- [22] D. Wan and Y. Li, On error distance of Reed-Solomon codes, *Science in China* 51 (11) (2008) 1982-1988.
- [23] R. Wu and S. Hong, On deep holes of standard Reed-Solomon codes, *Science China Mathematics* 55 (12) (2012) 2447-2455.
- [24] J. Zhang, F.-W. Fu and Q. Liao, New deep holes of generalized Reed-Solomon codes, *Scientia Sinica* 43 (7) (2013) 727-740.
- [25] J. Zhang and D. Wan, On deep holes of projective Reed-Solomon codes, *International Symposium on Information Theory* (2016) 925-929.
- [26] J. Zhang and D. Wan, Explicit deep holes of Reed-Solomon codes, <https://arxiv.org/abs/1711.02292>.
- [27] J. Zhuang, Q. Cheng and J. Li, On determining deep holes of generalized Reed-Solomon codes, *IEEE Trans. Inf. Theory* 62 (1) (2016) 199-207.