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Abstract

In this paper, we study deep holes of Gabidulin codes in both rank and
Hamming metrics. Specifically, first, we give a tight lower bound for the
distance of any word to a Gabidulin code and a sufficient and necessary con-
dition for achieving this lower bound as well. Then, a class of deep holes of
a Gabidulin code are discovered. Furthermore, we obtain some other deep
holes for certain Gabidulin codes.
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1 Introduction

Let Fym be an n-dimensional vector space over a finite field Fym where ¢ is a prime power,
and n,m are positive integers. In this paper we only consider the case when n < m. Let
B = (p1,--.,0m) be a basis of Fgm over F,. Let F; be the map from Fym to F, where F;(u)
is the i-th coordinate of an element u € F,= in the basis representation with 3. To any
u= (ug,...,up) in [Fym, we may associate the matrix @ = (@i )1<i<m,1<j<n € Mmn(Fq)
in which @; ; = F;(u;). The rank weight of the vector u can be defined by the rank of the
associated matrix u, denoted by wgr(u). Thus, we can define the rank distance between
two vectors u and v in Fyn as dg(u,v) = wr(u —v). We refer to [18] for more details on
codes for the rank distance.

For integers 1 < k < n, a linear rank-metric code C of length n and dimension k over
Fgm is a subspace of dimension k of Fn embedded with the rank metric. The minimum
rank distance of the code C, denoted by dr(C), is the minimum rank weight of the non-
zero codewords in C. A linear rank-metric code C' of length n and dimension k over F m



is called a maximum rank distance (MRD) code if dg(C') =n —k+ 1. A k x n matrix is
called a generator matrix of C if its rows span the code.
The rank distance of any word u € Fym to C' is defined as

dr(u,C) = min{dg(u,c) | c € C}.
It plays an important role in decoding of rank-metric codes. The maximum rank distance
pr(C) = max{dgr(u,C) | u € Fj.}

is called the covering radius of C'. If the rank distance from a word to the code C' achieves
the covering radius of the code, the word is called a deep hole of the code C.

The covering radius and deep holes of a linear code embedded with Hamming metric
were studied extensively [1, 2, 3, 4, 5, 10, 12, 14, 16, 22, 23, 24, 25, 26, 27], in which
MDS codes such as generalized Reed-Solomon codes, standard Reed-Solomon codes and
projective Reed-Solomon codes were explored deeply. Gabidulin codes were introduced by
Gabidulin in [7] and independently by Delsarte in [6]. Gabidulin codes can be seen as the
g-analog of Reed-Solomon codes. Furthermore, Gabidulin codes are MRD codes. Over
the last decade there has been increased interest in Gabidulin codes, mainly because of
their relevance to network coding [15, 19]. The covering radius for a Gabidulin code was
also studied in [8, 9, 20]. However, little is known about deep holes for such a code. In
this paper, we give a tight lower bound for the distance of any word to a Gabidulin code
in both rank and Hamming metrics, and a sufficient and necessary condition for attaining
this lower bound as well. Then, a class of deep holes of a Gabidulin code are discovered.
Furthermore, we study the distance of a special class of words to a Gabidulin code and
so obtain some other deep holes for certain Gabidulin codes. Note that we refer to rank
metric if Hamming metric is not explicitly pointed out in this paper.

The rest of this paper is organized as follows. In Section 2, we introduce some basic
notations and results about linearized polynomials. Section 3 provides a class of deep
holes for a Gabidulin code in both rank and Hamming metrics. Next, we obtain some
other deep holes for certain Gabidulin codes in Section 4. Finally, we give our conclusions
in Section 5.

2 Linearized polynomials

Gabidulin codes exploit linearized polynomials instead of arbitrary polynomials and so we
recall some results about linearized polynomials.
A g-linearized polynomial over Fym is defined to be a polynomial of the form

d

L(.Z') - Zaixqi7ai € Fq"”?ad 7é 0
=0

where d is called the g-degree of f(z), denoted by deg,(f(x)). Note that L(z) has no con-
stant term. One can easily check that L(x; + x2) = L(z1) + L(z2) and L(Az1) = AL(x1)



for any 1,29 € Fgm and A € F,, from which the name stems. In particular, L(z) in-
duces an [Fy-linear endomorphism of the Fy-vector space Fgm. The set of all g-linearized
polynomials over Fym is denoted by L,(x,Fsm). The ordinary product of linearized
polynomials does not have to be a linearized polynomial. However, the composition
Li(z) o Lo(x) = Li(L2(z)) is also a linearized polynomial. The set L,(z,Fym) forms
a non-commutative ring under the operations of composition o and ordinary addition. It
is also an F,-algebra.

Lemma 1. [17] Let f(x) € Ly(z,Fgn) and Fys be the smallest extension field of Fgm that
contains all roots of f(x). Then the set of all roots of f(x) forms an Fq-linear vector space
m IFqs .

Let U be an Fy-linear subspace of Fgm. Then []
polynomial of U.

gev (T — g) is called the g-annihilator

Lemma 2. [17] Let U be an Fy-linear subspace of Fgm. Then ngU(aj—g) 18 a g-linearized
polynomial over Fym.

Let B1,..., By € Fgm and denote the & x n Moore matrix by

B B . Ba
Bl By .. Ba
Mk(/B]_,,/Bn) = : : . :
k—1 k—1 k—1
e -
Furthermore, if g1,..., gn is a basis of U, one can write

[[@—9) = det(Mnii(g1, ..., gn,2))
geU

for some non-zero constant A € F,m. Clearly, its g-degree is n.

In addition, we have the notion of ¢g-Lagrange polynomials.

Let g = {g1,...,9n} C Fgm and r = {ry,...,r,} C Fym, where g1,...,g, are F -
linearly independent. For 1 < ¢ < n, we define the matrix D;(g,z) as My (g1,.-.,9n, )
without the ith column. The ¢-Lagrange polynomial with respect to g and r is defined to
be .

. det(Dy(g, )
Ag () = )"ty ———2 5 € Fym[x].
g,r( ) ;( ) 1 det(Mn(g)) q [ ]
Proposition 1. [21] The q-Lagrange polynomial Agy(x) is a q-linearized polynomial in
Fgm|x] and Agr(gi) =1 fori=1,...,n.

Proposition 2. [13] Let L(x) € Ly(z,Fgm) be such that L(g;) = 0 for all i. Then there
exists an H(x) € Lq(x,Fgm) such that L(z) = H(z) o [[je g (¥ — g), where < g > is the
Fy-vector space spanned by g.



3 Deep holes of Gabidulin codes

Let g1,...,9n € Fgm be linearly independent over F,, which also implies that n < m.
Let g = {g1,...,9n} and < g > is the F-vector space spanned by g. A Gabidulin code
G C Fym is defined as a linear block code with the generator matrix My (g1,---,9n), where
1 < k < n. Using the isomorphic matrix representation, we can interpret G as a matrix
code in IFZ”". The rank distance is defined in Section 1.

The Gabidulin code G with length n has dimension £ over F,m and minimum rank
distance n—k+1, and so G is an MRD code [7]. The Gabidulin code G can also be defined
as follow:

G = {(m(g),...,mlgn)) € Fym|m(z) € Lo(z,Fgm)
and deg,(m(z)) < k}. (1)

Note that this interpretation of the code G will be used throughout the rest of the paper.
It is the g-analogue of the generalized Reed-Solomon code.

Let
( H (x—g)) = Lq(x,Fgm) 0 H (x—9)

ge<g> geE<g>

be the left ideal generated by the element ng <g> (z — g) in the non-commutative ring
Ly(x,Fgm) with respect to the composition product. In particular, ([ ,c - (z —g)) is an
Fg-linear additive subgroup of Ly(z,Fgm). It follows that Lg(z, Fgm)/([[jccqs(x —9)) is
an F,-vector space. Define an [Fy-linear evaluation map

o Ly, Fn)/( ][ (@~ 9)) — Epm
ge<g>

given by
We have the following property.

Proposition 3. The above defined map o is an Fq-vector space isomorphism.

Proof. First, o is well-defined since the polynomial || ge<g> (x — g) vanishes at every g;.
Second, if f(g;) = 0 for all i = 1,...,n, then there exists H(z) € L4(x,Fym) such that
f(z) = H(z)o[[,c e~ (z—g) by Proposition 2 and so o is one-to-one. Third, we show that
o is surjective. For a given r = (r1,...,71y) € [Fym, we have the g-Lagrange polynomial
Ag r(7) satisfying Ag r(g;) = r; for i = 1,...,n by Proposition 1. The result is proved. []

The g-linearized polynomial || ge<g> (z—g) has ¢-degree n. It follows that any element
f(z) € Ly(x,Fym) can be written uniquely in the form

f@)=h(z)o [] (&—g)+r)

ge<g>

where h(z),r(x) € Ly(x,Fgm) and r(x) has g-degree smaller than n. This is the ¢-division
algorithm in the non-commutative ring L,(z,Fgm). As Fg-vector spaces, the quotient
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Ly(z,FF")/(I1,c<g>(x — g)) is thus represented by all g-linearized polynomials of g-degree
less than n. That is,

L@@, Fen)/( T] (= 9)) = {f € Lg(a.Fym)| degy(f) < n}.

geE<g>

Using the isomorphism o, we can identify any word v € Fg. with o(f) for a unique
polynomial f(z) € Ly(z,Fgm) with deg,(f) < n. When deg,(f) < k — 1, it is easy to see
that the distance dr(oy,G) = 0 by the definition. It was proved in [9] that the covering
radius of G is n — k. Thus, we have dR(af, G) < n— k by the definition of covering radius.
When k < deg,(f) < n, we provide a tight lower bound for dr(cy,G) as follows.

Theorem 1. Let f(z) € Ly(x,Fym) with deg,(f) < n and let oy = o(f) € Fym be the
corresponding word. If k < deg,(f) <n, then

dR(Uf, g) >n— degq(f)'

Furthermore, we suppose f is monic, then dr(oy,G) = n — deg,(f) if and only if there
exists a deg,(f)-dimensional subspace H of < g > such that

f@) —v(z) = [z ),

heH

for some v(x) € Ly(x,Fym) with deg,(v) <k —1.

Proof. Let u(x) be any g-polynomial over F,m. We consider the F-linear map defined by

Tu < g1, gn >2<u(gn), 0 u(gn) >
n n n
D &g Y Gulg) =ud_ &)
i=1 i=1 i=1

It is clear that the map m, is surjective and ker(m,) C Root(u) (the set of roots of u(x)).
So dimp, ker(m,) <dimp, Root(u) < deg,(u). Then

diqu < u(gl)’ T 7u(gn) >
= dimg, < g1, ,gn > —dimp ker(m,)
> n—deg,(u).

It follows that

dR(O'f,g)
= min rank((f —v)(g1), -, (f —v)(gn))

deg, (v)<k

- degr;l(ivr)l<k diqu < (f B v)<g1)’ o ('f a v)(gn) >

> i —d —v))=n—d :
- deglzl(lvl)l<k(n ¢8y(f = v)) =n = degy(/)



The last equality holds since deg,(f — v) = deg,(f) for any g-polynomial v(x) with
deg,(v) < k.
Furthermore, from the above proof, we know dr(oy,G) = n — deg,(f) if and only if
dimg, Root(f —v) = dimp ker(m;_,)
= degq(f - ’U) = degq(f)

for some g-polynomial v(z) with deg,(v) < k, which is equivalent to
f@)—v(z) =[] (== h),
heH
for some deg, (f)-dimensional subspace H of < g1,---, g, >. The theorem is proved. [

By Theorem 1 and the fact dr(o¢,G) < n — k, we immediately deduce the following
corollary, which provide a class of deep holes of the Gabidulin code G.

Corollary 1. The elements of the set {oy : deg,(f(z)) = k, f(x) € Ly(z,Fgm)} are deep
holes of the Gabidulin code G and so the number of deep holes of G is at least (¢ — 1)q"™".

According to the definition in Eq. (1), we may also study Gabidulin codes in Hamming
metric. It was showed that such codes are MDS codes in [7]. We use dg(u,v) and dg(u, G)
to denote the Hamming distance between vectors u and v and the Hamming distance of
a word u to G, respectively. Similarly, we have the following theorem.

Theorem 2. Let f(x) € Ly(z,Fgm) with deg,(f) < n and let oy = o(f) € Fym be the
corresponding word. If k < deg,(f) <n, then
dr(oy,G) = n — deg,(f).

Furthermore, suppose f is monic, then dy(oy,G) = n—deg,(f) if and only if there evists
a subset E = {gi,,... 79idegq(f>} of {g1,--+ ,gn} such that

f@) - = ] -9,
gE<E>
for some v(x) € Ly(,Fgm) with deg,(v) <k — 1.

Proof. Let now t = n — dg(of,G). By definition of the Hamming distance, there exists
some v(z) and non-zero H(r) € Ly(x,Fym) with deg,(v) < k such that

f@)—v@) =H@o [ (-9
GELGiy reennGiy >

for some indices 1 < i1 < -+ < iy < n. Comparing the g-degrees of both sides, we deduce
that ¢ < deg,(f). This proves that n — deg,(f) < dy(oyf,G). Furthermore, if f is monic,
the equality ¢ = deg,(f) holds if and only if H(z) = z, in which case, we obtain

f@)—v@)= J[ (@9

and the theorem is true. O



It is well known that dg(u,C') < n — k for any linear code of length n and dimension
k. Thus, by Theorem 2, the result in Corollary 1 still holds in Hamming metric.

4 Some other deep holes for certain Gabidulin
codes

We hope to obtain more deep holes of Gabidulin codes and so consider monic f(x) of
deg,(f) = k+d,d > 1, where f(z) = 20 a2 T (2 1) daga? 4
In Theorem 1, if we write [[,,cy(z —h) = 2 — T 4 (<1)4hga? 4 and

let 81,82, Brya € Fgm be a basis of H, then dr(os,G) =n — deg,(f) is equivalent to
a; = h;, for all 1 <i <d.

According to the process of the proof of [17, Lemma 3.51], we know that

det(Rita—i(B1,- -+ Br+a))
det(Myya(Br, -+ s Brga))
where Riyq—i(51,- -+, Bk+a) denotes the matrix Myyqg11(51, -+, Brra) deleting the row
A

(ﬁi]k‘wii? ce ,ﬁgi_{;ﬂ). As a result, we have dr(o¢,G) = n — (k + d) if and only if there
exist k + d linearly independent elements (1, 82, ..., Bk+qd of < g1, -+, gn > such that

. det(Ritd—i(B1, -+ » Brtd))
! det(Mk—‘rd(ﬁh o 7ﬁk‘+d))
where Ryi1q—i(B1,- -, Brrq) denotes as the above.

When d = 1, i.e., deg,(f) = k + 1, then by Theorem 1, o is not a deep hole of G if
and only if dr(of,G) =n — (kK + 1). Thus, by the above discussion, we have

}L/,; =

, foralll1 <i<d,

Lemma 3. Let f(x) = 20— a2?" 4+ ..., Then oy is not a deep hole of G if and only
if there exist k + 1 linearly independent elements 51, B2, ..., Bk+1 of < g1, ,gn > such
that

ay = det(Rk‘(Bla t aﬁk-ﬁ-l))
det(My11(B1, -+, Brt1))’
where Ry (b1, , Brr1) denotes the matrix Myyo(B1, -+ -, Bra1) without the row (ﬁfk, e
k
Brs)-
Similar to the above discussion, we get the result for Hamming metric case by Theorem
2. Let f(x) = 20 T T (fl)dadaquc +---. Then dy(oy,G) =

n— (k+d) if and only if there exist k+d distinct elements g;,, gi,, - . -, gi,q Of {91, -+ , gn}

such that
. det(Rk+d—i(gi1v T 7g’ik+d))

t det(Mk"i‘d(gil’ T 7g’ik+d))
where Rita—i(giy, -, 9iy,q) denotes as the above.

, forall 1 <i<d,



Lemma 4. Let f(x) = 2@ — a2 + ... Then oy is not a deep hole of G in Hamming
metric if and only if there exist k + 1 distinct elements gy, Giy, - - -, Girn 0f 191, 9n}

such that
a = det(Rk(gllﬂ e 7g’ik+1))
1 — )
det(My11(Givs***  Ginya))
where Ry (giy, -+ + Giy..,) denotes the matric Myso(giy, -+, Giy.y) without the row (g8 -,
k
ggk+1 )

In the following, we study some other deep holes for certain Gabidulin codes. In
particular, we consider Gabidulin codes over F,m only when m = n in Proposition 4 and
5.

Proposition 4. Let G be the Gabidulin code over Fyn with linearly independent set g =
{91,...,9n} and dimension k. Let f(x) = 2" 4 f<k—1, where f<j_1 is a gq-linearized
polynomial over Fyn of q-degree less than or equals to k — 1. Then oy is a deep hole of G.

Proof. For any hi,ha,...,hy € Fygn, it is easy to show that

dimg, < hy,ho,--- by >=dimg, < h{,h3,--- AL > .
Thus we have
dR(Ufa g)
= min rank((f —v)(g1), -, (f —v)(gn))
deg, (v)<k
= i di < - sy o n) >
degl?(g)l<k 1mF, (f v)(g1) (f v)(g )
_ in  di — )4 e (f = 0)(g,,
aol dimm, < (f=v)%g1), - (f —=v)(gn) >
= min dimp, < g1 + (f<r—1 —v)(g91), - s gn + (f<r—1 —v)%(gn) >
deg, (v)<k
> i —d —1(z) — !
> degr;l(lvr)l<k(n egq(x-i-(fgk: 1(z) —v(x))?))
> n—k.

The fourth equality holds since g?n = g;, and the first inequality follows from the process
of the proof of Theorem 1. By the fact dr(oy,G) < n—k, we obtain that dr(os,G) = n—k.
Thus o is a deep hole of G. O

In Proposition 4, if the dimension k equals to n — 2, we can obtain more deep holes of
the Gabidulin code as follows.

Proposition 5. Let G be the Gabidulin code over Fyn with linearly independent set g =
{91,---,9n} and dimension k =n — 2. Let f(x) = 20— a7 J<n—3, where a is an
element in Fyn with a # (—=1)"=p1=4 for allb € Fon and f<n—3 is a g-linearized polynomial
over Fyn of q-degree less than or equals to n — 3. Then oy is a deep hole of G.
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Proof. Suppose that o is not a deep hole of G. By Lemma 3, there are n — 1 linearly
independent elements 31,...,05,-1 in < g1, -+, gy > such that

_ det(Rp—2(By, - - , Bn-1))
det(Mp_1(B1,--+ , Bn-1))

For any matrix A = (a;;), denote by A@ the matrix (af ). Then

(2)

BL B B
o ﬁf B
Rg?zZ(Blv"' aﬁnfl) — T
n 2 n 2 qn72
51 ﬁQ te ngl
51 62 - Pan
Note that Bfn = f3;. Thus
BL By . B
o 532 B
n—2(B1s -+, Bn-1) : o :
n 2 n 2 qn72
51 52 oo Bpa
S e
and det(R &2 (B, Bn1)) = (=) tdet(M,,_1(B1,- -, Bn_1)). It is easy to see that
det(A@) = (det(A))Y, for any matrix A over Fyn. Thus

(det(Ru—a(Br, -+ Bu-1)))? = det(RW,(B1,+ , Bu-1))
— ( )n 1det( n— 1(517 o 75n—1))7é0

ie., det(Rp—2(f1, -+, Bn-1)) # 0. Moreover, by Eq. (2), we have
a = (_1)n71(det(Rn—2(ﬁ17 o 7/871—1)))17(17

which contradicts to the assumption of a. Thus o is a deep hole of G. []

Remark 1. When a = 0, the result in Proposition 5 can be obtained by Proposition 4.
The following proposition considers the case of Gabidulin codes with dimension k = 1.

Proposition 6. Suppose m is odd and 3 < n < m. Let G be the Gabidulin code with
linearly independent set g = {g1,...,9n} and dimension k = 1. Let f(z) = 27 + cx where
c€Fyn. Then oy is a deep hole of G.



Proof. Suppose that o is not a deep hole of G. By Lemma 3, there are two linearly
independent elements 51 and (B2 in < g1, - , gn > such that b =0 = 315 32_1 — fz_l).
Thus, (Bgﬁfl)qu = 1. Since m is odd, ged(¢® —1,¢™ — 1) = ¢ — 1. So we have
(ﬂgﬁfl)q_l = 1, which implies that % € [y, i.e., f1 and By are linearly dependent over
[F,. This contradicts with the assumption of 3; and 3. O

Remark 2. When n =m = 3, the result in Proposition 6 is included in Proposition 5.

Propositions 4, 5 and 6 still hold for the Hamming metric after similar analysis.

In the rest of this section we furthermore discuss the distance of a special class of
words to the Gabidulin codes over Fom with dimension k = 1. Before that, we give two
lemmas.

Lemma 5. [17] Let a be in a finite field Fy and p be the characteristic of F,. Then the
trinomial 2¥ — x — a is irreducible in Fy[x] if and only if Trg_ jr,(a) # 0.

For a finite field F,, the integer-valued function v on Fy is defined by v(b) = —1 for
beF, and v(0) = q— 1.

Lemma 6. [17] For even q, let a € Fy with trg, (a) = 1 and b € Fy, then the number of
solutions of the equation % + 132 + azd = b is ¢ — v(b).

We now consider the finite field Fom. Let
h(z1,z2) = 23 4 x129 + T3,
For any b € Fom, let the set
S(h(z1,x2) =) = {(c1,c2) € Fam X Fom|h(c1,c2) = b,c1 # ca,¢i # 0,1 = 1,2}

and N (h(z1,x2) =b) = |S(h(z1,22) = b)|.
We consider two cases:

Case 1: m is odd, which implies that Trom (1) = 1.

If b = 0, the number of solutions of the equation h(z1,z2) = b is 2™ — v(b) = 1 by
Lemma 6. Since (0,0) is a solution, S(h(z1,z2) =b) = @ and N(h(z1,22) =b) =0.

If b # 0, the number of solutions of the equation h(z1,z2) = bis 2™ + 1 by Lemma 6.
Thus, N(h(z1,22) =b) = 2™+ 1 — 2 since any element in Fom is a square. We also obtain
the corresponding S(h(z1,z2) = b).

Case 2: m is even, which implies that Trom (1) = 0.

By Lemma 5, 22 4+ = + 1 is reducible over Fam and so it can be written as 22 + 2 +1 =
(x + a)(z + B) where o, B € Fom, a # 1, B # 1 and a # B. Thus, 22 + z122 + 25 =
(x1 + axa)(z1 + Br2) = b and so the number of solutions of h(x1,z2) = bis 2" + 2™ — 1
ifb=0or 2™ —1if b#0.

If b = 0, then N(h(x1,72) = b) = 2™ — 2 and also we get S(h(z1,22) = b).

If b # 0, N(h(x1,z2) =b) = 2™ — 1 — 2 since any element in Fom is a square. We also
get S(h(x1,x2) =b).

From the above discussion, we get the following result.
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Proposition 7. Let G be the Gabidulin code over Fom with g = {g1,...,9n}, dimension
k=1and3 <n <m. Let f(x) = 2* + ba? + cx, where b,c € Fom. Then of is not a
deep hole of G if and only if there are two elements 1 and B in < g1,--- , gn > such that
(B1,B2) € S(h(x1,x2) = b). In particular, if n = m, then oy is a deep hole of G if and
only if b= 0 and m is odd.

Proof. Note that two nonzero elements 81 and 2 are linearly independent over Fs if and
only if 31 # 2. Thus, by Lemma 3, o is not a deep hole of G if and only if there are two
distinct nonzero elements 81 and 5o in < g1,--- , g, > such that

b= p7+ BiB2 + B,

ie., (B1,P2) € S(h(x1,x2) = b). In particular, if n = m, then < g1, -+, gy, >= Fam. By
the above discussion, o is a deep hole only when b = 0 and m is odd. For the other cases,

N(h(z1,22) = b) is at least 1. Therefore, the desired result is obtained. O
Remark 3. The second result of Proposition 7 may not hold for the case of Hamming
metric from Lemma 4 since it is possible that h(x1,z2) = b has no solutions in {g1,- -+ , gn}
when b # 0 although h(x1,z2) = b always has solutions in < g1, , gn >= Fom.

5 Conclusions

In this paper, we study deep holes of Gabidulin codes in both Hamming metric and rank
metric. The general results for Hamming metric case (see Theorem 2 and Lemma 4)

depend on the choice of the set {g1,...,gn}, while the results for rank metric case (see
Theorem 1 and Lemma 3) only depend on the subspace of Fyn spanned by g1, ..., gn.
In particular, when n = m, the latter does not depend on the choice of ¢1,..., g, since

< g1,---,9n > equals to the whole space Fym. Hence the problem about deep holes of
Gabidulin codes in Hamming metric seems more complicated than in rank metric.

On the other hand, for generalized Reed-Solomon codes, it has been proved that the
problem of determining if a received word is a deep hole is NP-hard [11]. For Gabidulin
codes, the problem seems more complicated although we give a necessary and sufficient
condition for this problem. So we state it as a conjecture.

Conjecture 1. Deciding deep holes of the Gabidulin code is NP-hard.

Acknowledgments The authors would like to thank the two anonymous referees for their
valuable and helpful comments, which have greatly improved the presentation and quality
of this paper.

References

[1] D. Bartoli, M. Giulietti and I. Platoni, On the covering radius of MDS codes, IEEE
Trans. Inf. Theory 6 (2) (2015) 801-811.

11



[2] Q. Cheng and E. Murray, On deciding deep holes of Reed-Solomon codes, Lecture
notes in Computer Science 4484 (2007) 296-305.

[3] Q. Cheng and D. Wan, On the list and bounded distance decodability of Reed-Solomon
codes, STAM Journal on Computing 37 (1) (2007) 195-209.

[4] G. Cohen, M. Karpovsky, H. Mattson and J. Schatz, Covering radius-survey and
recent results, IEEE Trans. Inf. Theory 31 (3) (1985) 328-343.

[5] G. Cohen, A. C. Lobstein and N. Sloane, Further results on the covering radius of
codes, IEEE Trans. Inf. Theory 32 (5) (1986) 680-694.

[6] P. Delsarte, Bilinear forms over a finite field with applications to coding theory, J.
Comb. Theory, A 25 (3) (1978) 226-241.

[7] E. M. Gabidulin, Theory of codes with maximum rank distance, Problemy Peredachi
Informatsii, 21 (1) (1985) 3-16.

[8] M. Gadouleau and Z. Yan, Packing and covering properties of rank metric codes, IEEE
Trans. Inf. Theory 54 (9) (2008) 3873-3883.

[9] M. Gadouleau and Z. Yan, Properties of codes with the rank metric, in Proc. IEEE
Globecom 2006, San Francisco, CA, 2006.

[10] R. Graham and N. Sloane, On the covering radius of codes, IEEE Trans. Inf. Theory
31 (3) (1985) 385-401.

[11] V. Guruswami and A. Vardy, Maximum-likelihood decoding of Reed-Solomon codes
is NP-hard, In Proceeding of SODA (2005) 2249-2256.

[12] T. Helleseth, T. Klove and J. Mykkeltveit, On the covering radius of binary codes,
IEEE Trans. Inf. Theory 24 (5) (1978) 627-628.

[13] A. Horlemann-Trautmann and M. Kuijper, Gabidulin decoding via minimal bases of
linearized polynomial modules, https://arxiv.org/abs/1408.2303v3.

[14] M. Keti and D. Wan, Deep holes in Reed-Solomon codes based on Dickson polyno-
mials, Finite Fields Appl. 40 (2016) 110-125.

[15] R. Kotter and R. R. Kschischang, Coding for errors and erasures in random network-
ing coding, IEEE Trans. Inf. Theory 54 (8) (2008) 3579-3591.

[16] Q. Liao, On Reed-Solomon codes, Chinese Annals of Mathematics, (1) (2011) 89-98.

[17] R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, Cambridge,
London.

[18] P. Loidreau, Properties of codes in rank metric, http://arxiv.org/abs/cs/0610057.

[19] D. Silva, F. R. Kschischang and R. Kotter, A rank-metric approach to error control
in random network coding, IEEE Trans. Inf. Theory 54 (9) (2008) 3951-3967.

12



[20] W. B. Vasantha, N. Suresh Babu, On the covering radius of rank-distance codes.
Gaita Sandesh 13 (1) (1999) 4348.

[21] A. Wachter-Zeh, Decoding of block and convolutional codes in rank metric. PhD
thesis, Ulm University, Germany, 2013.

[22] D. Wan and Y. Li, On error distance of Reed-Solomon codes, Science in China 51
(11) (2008) 1982-1988.

[23] R. Wu and S. Hong, On deep holes of standard Reed-Solomon codes, Science China
Mathematics 55 (12) (2012) 2447-2455.

[24] J. Zhang, F.-W. Fu and Q. Liao, New deep holes of generalized Reed-Solomon codes,
Scientia Sinica 43 (7) (2013) 727-740.

[25] J. Zhang and D. Wan, On deep holes of projective Reed-Solomon codes, International
Symposium on Information Theory (2016) 925-929.

[26] J. Zhang and D. Wan, Explicit deep holes of Reed-Solomon codes,
https://arxiv.org/abs/1711.02292.

[27] J. Zhuang, Q. Cheng and J. Li, On determining deep holes of generalized Reed-
Solomon codes, IEEE Trans. Inf. Theory 62 (1) (2016) 199-207.

13



