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Abstract

In this paper, we study deep holes of Gabidulin codes in both rank and
Hamming metrics. Specifically, first, we give a tight lower bound for the
distance of any word to a Gabidulin code and a sufficient and necessary con-
dition for achieving this lower bound as well. Then, a class of deep holes of
a Gabidulin code are discovered. Furthermore, we obtain some other deep
holes for certain Gabidulin codes.
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1 Introduction

Let Fnqm be an n-dimensional vector space over a finite field Fqm where q is a prime power,
and n,m are positive integers. In this paper we only consider the case when n ≤ m. Let
β = (β1, . . . , βm) be a basis of Fqm over Fq. Let Fi be the map from Fqm to Fq where Fi(u)
is the i-th coordinate of an element u ∈ Fqm in the basis representation with β. To any
u = (u1, . . . , un) in Fnqm , we may associate the matrix ū = (ūi,j)1≤i≤m,1≤j≤n ∈ Mm,n(Fq)
in which ūi,j = Fi(uj). The rank weight of the vector u can be defined by the rank of the
associated matrix ū, denoted by wR(u). Thus, we can define the rank distance between
two vectors u and v in Fnqm as dR(u,v) = wR(u− v). We refer to [18] for more details on
codes for the rank distance.

For integers 1 ≤ k ≤ n, a linear rank-metric code C of length n and dimension k over
Fqm is a subspace of dimension k of Fnqm embedded with the rank metric. The minimum
rank distance of the code C, denoted by dR(C), is the minimum rank weight of the non-
zero codewords in C. A linear rank-metric code C of length n and dimension k over Fqm



is called a maximum rank distance (MRD) code if dR(C) = n− k + 1. A k × n matrix is
called a generator matrix of C if its rows span the code.

The rank distance of any word u ∈ Fnqm to C is defined as

dR(u, C) = min{dR(u, c) | c ∈ C}.

It plays an important role in decoding of rank-metric codes. The maximum rank distance

ρR(C) = max{dR(u, C) | u ∈ Fnqm}

is called the covering radius of C. If the rank distance from a word to the code C achieves
the covering radius of the code, the word is called a deep hole of the code C.

The covering radius and deep holes of a linear code embedded with Hamming metric
were studied extensively [1, 2, 3, 4, 5, 10, 12, 14, 16, 22, 23, 24, 25, 26, 27], in which
MDS codes such as generalized Reed-Solomon codes, standard Reed-Solomon codes and
projective Reed-Solomon codes were explored deeply. Gabidulin codes were introduced by
Gabidulin in [7] and independently by Delsarte in [6]. Gabidulin codes can be seen as the
q-analog of Reed-Solomon codes. Furthermore, Gabidulin codes are MRD codes. Over
the last decade there has been increased interest in Gabidulin codes, mainly because of
their relevance to network coding [15, 19]. The covering radius for a Gabidulin code was
also studied in [8, 9, 20]. However, little is known about deep holes for such a code. In
this paper, we give a tight lower bound for the distance of any word to a Gabidulin code
in both rank and Hamming metrics, and a sufficient and necessary condition for attaining
this lower bound as well. Then, a class of deep holes of a Gabidulin code are discovered.
Furthermore, we study the distance of a special class of words to a Gabidulin code and
so obtain some other deep holes for certain Gabidulin codes. Note that we refer to rank
metric if Hamming metric is not explicitly pointed out in this paper.

The rest of this paper is organized as follows. In Section 2, we introduce some basic
notations and results about linearized polynomials. Section 3 provides a class of deep
holes for a Gabidulin code in both rank and Hamming metrics. Next, we obtain some
other deep holes for certain Gabidulin codes in Section 4. Finally, we give our conclusions
in Section 5.

2 Linearized polynomials

Gabidulin codes exploit linearized polynomials instead of arbitrary polynomials and so we
recall some results about linearized polynomials.

A q-linearized polynomial over Fqm is defined to be a polynomial of the form

L(x) =

d∑
i=0

aix
qi , ai ∈ Fqm , ad 6= 0

where d is called the q-degree of f(x), denoted by degq(f(x)). Note that L(x) has no con-
stant term. One can easily check that L(x1 + x2) = L(x1) + L(x2) and L(λx1) = λL(x1)
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for any x1, x2 ∈ Fqm and λ ∈ Fq, from which the name stems. In particular, L(x) in-
duces an Fq-linear endomorphism of the Fq-vector space Fqm . The set of all q-linearized
polynomials over Fqm is denoted by Lq(x,Fqm). The ordinary product of linearized
polynomials does not have to be a linearized polynomial. However, the composition
L1(x) ◦ L2(x) = L1(L2(x)) is also a linearized polynomial. The set Lq(x,Fqm) forms
a non-commutative ring under the operations of composition ◦ and ordinary addition. It
is also an Fq-algebra.

Lemma 1. [17] Let f(x) ∈ Lq(x,Fqm) and Fqs be the smallest extension field of Fqm that
contains all roots of f(x). Then the set of all roots of f(x) forms an Fq-linear vector space
in Fqs.

Let U be an Fq-linear subspace of Fqm . Then
∏
g∈U (x− g) is called the q-annihilator

polynomial of U .

Lemma 2. [17] Let U be an Fq-linear subspace of Fqm. Then
∏
g∈U (x−g) is a q-linearized

polynomial over Fqm.

Let β1, . . . , βn ∈ Fqm and denote the k × n Moore matrix by

Mk(β1, . . . , βn) :=


β1 β2 . . . βn
βq1 βq2 . . . βqn
...

...
. . .

...

βq
k−1

1 βq
k−1

2 . . . βq
k−1

n

 .

Furthermore, if g1, . . . , gn is a basis of U , one can write∏
g∈U

(x− g) = λ det(Mn+1(g1, . . . , gn, x))

for some non-zero constant λ ∈ Fqm . Clearly, its q-degree is n.
In addition, we have the notion of q-Lagrange polynomials.
Let g = {g1, . . . , gn} ⊂ Fqm and r = {r1, . . . , rn} ⊂ Fqm , where g1, . . . , gn are Fq-

linearly independent. For 1 ≤ i ≤ n, we define the matrix Di(g, x) as Mn(g1, . . . , gn, x)
without the ith column. The q-Lagrange polynomial with respect to g and r is defined to
be

Λg,r(x) =
n∑
i=1

(−1)n−iri
det(Di(g, x))

det(Mn(g))
∈ Fqm [x].

Proposition 1. [21] The q-Lagrange polynomial Λg,r(x) is a q-linearized polynomial in
Fqm [x] and Λg,r(gi) = ri for i = 1, . . . , n.

Proposition 2. [13] Let L(x) ∈ Lq(x,Fqm) be such that L(gi) = 0 for all i. Then there
exists an H(x) ∈ Lq(x,Fqm) such that L(x) = H(x) ◦

∏
g∈<g>(x− g), where < g > is the

Fq-vector space spanned by g.
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3 Deep holes of Gabidulin codes

Let g1, . . . , gn ∈ Fqm be linearly independent over Fq, which also implies that n ≤ m.
Let g = {g1, . . . , gn} and < g > is the Fq-vector space spanned by g. A Gabidulin code
G ⊆ Fnqm is defined as a linear block code with the generator matrix Mk(g1, . . . , gn), where
1 ≤ k ≤ n. Using the isomorphic matrix representation, we can interpret G as a matrix
code in Fm×nq . The rank distance is defined in Section 1.

The Gabidulin code G with length n has dimension k over Fqm and minimum rank
distance n−k+1, and so G is an MRD code [7]. The Gabidulin code G can also be defined
as follow:

G = {(m(g1), . . . ,m(gn)) ∈ Fnqm |m(x) ∈ Lq(x,Fqm)

and degq(m(x)) < k}. (1)

Note that this interpretation of the code G will be used throughout the rest of the paper.
It is the q-analogue of the generalized Reed-Solomon code.

Let
(

∏
g∈<g>

(x− g)) = Lq(x,Fqm) ◦
∏

g∈<g>

(x− g)

be the left ideal generated by the element
∏
g∈<g>(x − g) in the non-commutative ring

Lq(x,Fqm) with respect to the composition product. In particular, (
∏
g∈<g>(x− g)) is an

Fq-linear additive subgroup of Lq(x,Fqm). It follows that Lq(x,Fqm)/(
∏
g∈<g>(x− g)) is

an Fq-vector space. Define an Fq-linear evaluation map

σ : Lq(x,Fqm)/(
∏

g∈<g>

(x− g)) −→ Fnqm

given by
σ(f(x)) = (f(g1), . . . , f(gn)).

We have the following property.

Proposition 3. The above defined map σ is an Fq-vector space isomorphism.

Proof. First, σ is well-defined since the polynomial
∏
g∈<g>(x − g) vanishes at every gi.

Second, if f(gi) = 0 for all i = 1, . . . , n, then there exists H(x) ∈ Lq(x,Fqm) such that
f(x) = H(x)◦

∏
g∈<g>(x−g) by Proposition 2 and so σ is one-to-one. Third, we show that

σ is surjective. For a given r = (r1, . . . , rn) ∈ Fnqm , we have the q-Lagrange polynomial
Λg,r(x) satisfying Λg,r(gi) = ri for i = 1, . . . , n by Proposition 1. The result is proved.

The q-linearized polynomial
∏
g∈<g>(x−g) has q-degree n. It follows that any element

f(x) ∈ Lq(x,Fqm) can be written uniquely in the form

f(x) = h(x) ◦
∏

g∈<g>

(x− g) + r(x),

where h(x), r(x) ∈ Lq(x,Fqm) and r(x) has q-degree smaller than n. This is the q-division
algorithm in the non-commutative ring Lq(x,Fqm). As Fq-vector spaces, the quotient
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Lq(x,Fmq )/(
∏
g∈<g>(x− g)) is thus represented by all q-linearized polynomials of q-degree

less than n. That is,

Lq(x,Fqm)/(
∏

g∈<g>

(x− g)) = {f ∈ Lq(x,Fqm)| degq(f) < n}.

Using the isomorphism σ, we can identify any word u ∈ Fnqm with σ(f) for a unique
polynomial f(x) ∈ Lq(x,Fqm) with degq(f) < n. When degq(f) ≤ k − 1, it is easy to see
that the distance dR(σf ,G) = 0 by the definition. It was proved in [9] that the covering
radius of G is n− k. Thus, we have dR(σf ,G) ≤ n− k by the definition of covering radius.
When k ≤ degq(f) < n, we provide a tight lower bound for dR(σf ,G) as follows.

Theorem 1. Let f(x) ∈ Lq(x,Fqm) with degq(f) < n and let σf = σ(f) ∈ Fnqm be the
corresponding word. If k ≤ degq(f) < n, then

dR(σf ,G) ≥ n− degq(f).

Furthermore, we suppose f is monic, then dR(σf ,G) = n − degq(f) if and only if there
exists a degq(f)-dimensional subspace H of < g > such that

f(x)− v(x) =
∏
h∈H

(x− h),

for some v(x) ∈ Lq(x,Fqm) with degq(v) ≤ k − 1.

Proof. Let u(x) be any q-polynomial over Fqm . We consider the Fq-linear map defined by

πu : < g1, · · · , gn >→< u(g1), · · · , u(gn) >
n∑
i=1

ξigi 7→
n∑
i=1

ξiu(gi) = u(
n∑
i=1

ξigi).

It is clear that the map πu is surjective and ker(πu) ⊆ Root(u) (the set of roots of u(x)).
So dimFq ker(πu) ≤dimFq Root(u) ≤ degq(u). Then

dimFq < u(g1), · · · , u(gn) >

= dimFq < g1, · · · , gn > −dimFqker(πu)

≥ n− degq(u).

It follows that

dR(σf ,G)

= min
degq(v)<k

rank((f − v)(g1), · · · , (f − v)(gn))

= min
degq(v)<k

dimFq < (f − v)(g1), · · · , (f − v)(gn) >

≥ min
degq(v)<k

(n− degq(f − v)) = n− degq(f).
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The last equality holds since degq(f − v) = degq(f) for any q-polynomial v(x) with
degq(v) < k.

Furthermore, from the above proof, we know dR(σf ,G) = n− degq(f) if and only if

dimFqRoot(f − v) = dimFqker(πf−v)

= degq(f − v) = degq(f)

for some q-polynomial v(x) with degq(v) < k, which is equivalent to

f(x)− v(x) =
∏
h∈H

(x− h),

for some degq(f)-dimensional subspace H of < g1, · · · , gn >. The theorem is proved.

By Theorem 1 and the fact dR(σf ,G) ≤ n − k, we immediately deduce the following
corollary, which provide a class of deep holes of the Gabidulin code G.

Corollary 1. The elements of the set {σf : degq(f(x)) = k, f(x) ∈ Lq(x,Fqm)} are deep

holes of the Gabidulin code G and so the number of deep holes of G is at least (qm−1)qmk.

According to the definition in Eq. (1), we may also study Gabidulin codes in Hamming
metric. It was showed that such codes are MDS codes in [7]. We use dH(u,v) and dH(u,G)
to denote the Hamming distance between vectors u and v and the Hamming distance of
a word u to G, respectively. Similarly, we have the following theorem.

Theorem 2. Let f(x) ∈ Lq(x,Fqm) with degq(f) < n and let σf = σ(f) ∈ Fnqm be the
corresponding word. If k ≤ degq(f) < n, then

dH(σf ,G) ≥ n− degq(f).

Furthermore, suppose f is monic, then dH(σf ,G) = n− degq(f) if and only if there exists
a subset E = {gi1 , . . . , gidegq(f)} of {g1, · · · , gn} such that

f(x)− v(x) =
∏

g∈<E>
(x− g),

for some v(x) ∈ Lq(x,Fqm) with degq(v) ≤ k − 1.

Proof. Let now t = n − dH(σf ,G). By definition of the Hamming distance, there exists
some v(x) and non-zero H(x) ∈ Lq(x,Fqm) with degq(v) < k such that

f(x)− v(x) = H(x) ◦
∏

g∈<gi1 ,...,git>
(x− g)

for some indices 1 ≤ i1 < · · · < it ≤ n. Comparing the q-degrees of both sides, we deduce
that t ≤ degq(f). This proves that n− degq(f) ≤ dH(σf ,G). Furthermore, if f is monic,
the equality t = degq(f) holds if and only if H(x) = x, in which case, we obtain

f(x)− v(x) =
∏

g∈<gi1 ,...,git>
(x− g)

and the theorem is true.

6



It is well known that dH(u, C) ≤ n− k for any linear code of length n and dimension
k. Thus, by Theorem 2, the result in Corollary 1 still holds in Hamming metric.

4 Some other deep holes for certain Gabidulin

codes

We hope to obtain more deep holes of Gabidulin codes and so consider monic f(x) of

degq(f) = k+d, d ≥ 1, where f(x) = xq
k+d−a1xq

k+d−1
+a2x

qk+d−2
+· · ·+(−1)dadx

qk +· · · .
In Theorem 1, if we write

∏
h∈H(x− h) = xq

k+d − h1xq
k+d−1

+ · · ·+ (−1)dhdx
qk + · · · and

let β1, β2, . . . , βk+d ∈ Fqm be a basis of H, then dR(σf ,G) = n− degq(f) is equivalent to

ai = hi, for all 1 ≤ i ≤ d.

According to the process of the proof of [17, Lemma 3.51], we know that

hi =
det(Rk+d−i(β1, · · · , βk+d))
det(Mk+d(β1, · · · , βk+d))

,

where Rk+d−i(β1, · · · , βk+d) denotes the matrix Mk+d+1(β1, · · · , βk+d) deleting the row

(βq
k+d−i

1 , · · · , βq
k+d−i

k+d ). As a result, we have dR(σf ,G) = n − (k + d) if and only if there
exist k + d linearly independent elements β1, β2, . . . , βk+d of < g1, · · · , gn > such that

ai =
det(Rk+d−i(β1, · · · , βk+d))
det(Mk+d(β1, · · · , βk+d))

, for all 1 ≤ i ≤ d,

where Rk+d−i(β1, · · · , βk+d) denotes as the above.

When d = 1, i.e., degq(f) = k + 1, then by Theorem 1, σf is not a deep hole of G if
and only if dR(σf ,G) = n− (k + 1). Thus, by the above discussion, we have

Lemma 3. Let f(x) = xq
k+1 − a1xq

k
+ · · · . Then σf is not a deep hole of G if and only

if there exist k + 1 linearly independent elements β1, β2, . . . , βk+1 of < g1, · · · , gn > such
that

a1 =
det(Rk(β1, · · · , βk+1))

det(Mk+1(β1, · · · , βk+1))
,

where Rk(β1, · · · , βk+1) denotes the matrix Mk+2(β1, · · · , βk+1) without the row (βq
k

1 , · · · ,
βq

k

k+1).

Similar to the above discussion, we get the result for Hamming metric case by Theorem
2. Let f(x) = xq

k+d − a1xq
k+d−1

+ a2x
qk+d−2

+ · · ·+ (−1)dadx
qk + · · · . Then dH(σf ,G) =

n−(k+d) if and only if there exist k+d distinct elements gi1 , gi2 , . . . , gik+d
of {g1, · · · , gn}

such that

ai =
det(Rk+d−i(gi1 , · · · , gik+d

))

det(Mk+d(gi1 , · · · , gik+d
))
, for all 1 ≤ i ≤ d,

where Rk+d−i(gi1 , · · · , gik+d
) denotes as the above.
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Lemma 4. Let f(x) = xq
k+1 − a1xq

k
+ · · · . Then σf is not a deep hole of G in Hamming

metric if and only if there exist k + 1 distinct elements gi1 , gi2 , . . . , gik+1
of {g1, · · · , gn}

such that

a1 =
det(Rk(gi1 , · · · , gik+1

))

det(Mk+1(gi1 , · · · , gik+d
))
,

where Rk(gi1 , · · · , gik+d
) denotes the matrix Mk+2(gi1, · · · , gik+d

) without the row (gq
k

i1
, · · · ,

gq
k

ik+1
).

In the following, we study some other deep holes for certain Gabidulin codes. In
particular, we consider Gabidulin codes over Fqm only when m = n in Proposition 4 and
5.

Proposition 4. Let G be the Gabidulin code over Fqn with linearly independent set g =

{g1, . . . , gn} and dimension k. Let f(x) = xq
n−1

+ f≤k−1, where f≤k−1 is a q-linearized
polynomial over Fqn of q-degree less than or equals to k− 1. Then σf is a deep hole of G.

Proof. For any h1, h2, . . . , hn ∈ Fqn , it is easy to show that

dimFq < h1, h2, · · · , hn >= dimFq < hq1, h
q
2, · · · , h

q
n > .

Thus we have

dR(σf ,G)

= min
degq(v)<k

rank((f − v)(g1), · · · , (f − v)(gn))

= min
degq(v)<k

dimFq < (f − v)(g1), · · · , (f − v)(gn) >

= min
degq(v)<k

dimFq < (f − v)q(g1), · · · , (f − v)q(gn) >

= min
degq(v)<k

dimFq < g1 + (f≤k−1 − v)q(g1), · · · , gn + (f≤k−1 − v)q(gn) >

≥ min
degq(v)<k

(n− degq(x+ (f≤k−1(x)− v(x))q))

≥ n− k.

The fourth equality holds since gq
n

i = gi, and the first inequality follows from the process
of the proof of Theorem 1. By the fact dR(σf ,G) ≤ n−k, we obtain that dR(σf ,G) = n−k.
Thus σf is a deep hole of G.

In Proposition 4, if the dimension k equals to n− 2, we can obtain more deep holes of
the Gabidulin code as follows.

Proposition 5. Let G be the Gabidulin code over Fqn with linearly independent set g =

{g1, . . . , gn} and dimension k = n− 2. Let f(x) = xq
n−1 − axqn−2

+ f≤n−3, where a is an
element in Fqn with a 6= (−1)n−1b1−q for all b ∈ F∗qn and f≤n−3 is a q-linearized polynomial
over Fqn of q-degree less than or equals to n− 3. Then σf is a deep hole of G.
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Proof. Suppose that σf is not a deep hole of G. By Lemma 3, there are n − 1 linearly
independent elements β1, . . . , βn−1 in < g1, · · · , gn > such that

a =
det(Rn−2(β1, · · · , βn−1))
det(Mn−1(β1, · · · , βn−1))

. (2)

For any matrix A = (aij), denote by A(q) the matrix (aqij). Then

R(q)
n−2(β1, · · · , βn−1) =


βq1 βq2 . . . βqn−1
βq

2

1 βq
2

2 . . . βq
2

n−1
...

...
. . .

...

βq
n−2

1 βq
n−2

2 . . . βq
n−2

n−1
βq

n

1 βq
n

2 . . . βq
n

n−1

 .

Note that βq
n

i = βi. Thus

R(q)
n−2(β1, · · · , βn−1) =


βq1 βq2 . . . βqn−1
βq

2

1 βq
2

2 . . . βq
2

n−1
...

...
. . .

...

βq
n−2

1 βq
n−2

2 . . . βq
n−2

n−1
β1 β2 . . . βn−1

 ,

and det(R(q)
n−2(β1, · · · , βn−1)) = (−1)n−1 det(Mn−1(β1, · · · , βn−1)). It is easy to see that

det(A(q)) = (det(A))q, for any matrix A over Fqn . Thus

(det(Rn−2(β1, · · · , βn−1)))q = det(R(q)
n−2(β1, · · · , βn−1))

= (−1)n−1 det(Mn−1(β1, · · · , βn−1)) 6= 0.

i.e., det(Rn−2(β1, · · · , βn−1)) 6= 0. Moreover, by Eq. (2), we have

a = (−1)n−1(det(Rn−2(β1, · · · , βn−1)))1−q,

which contradicts to the assumption of a. Thus σf is a deep hole of G.

Remark 1. When a = 0, the result in Proposition 5 can be obtained by Proposition 4.

The following proposition considers the case of Gabidulin codes with dimension k = 1.

Proposition 6. Suppose m is odd and 3 ≤ n ≤ m. Let G be the Gabidulin code with
linearly independent set g = {g1, . . . , gn} and dimension k = 1. Let f(x) = xq

2
+ cx where

c ∈ Fqm. Then σf is a deep hole of G.
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Proof. Suppose that σf is not a deep hole of G. By Lemma 3, there are two linearly

independent elements β1 and β2 in < g1, · · · , gn > such that b = 0 = β1β2(β
q2−1
2 −βq

2−1
1 ).

Thus, (β2β
−1
1 )q

2−1 = 1. Since m is odd, gcd(q2 − 1, qm − 1) = q − 1. So we have

(β2β
−1
1 )q−1 = 1, which implies that β2

β1
∈ Fq, i.e., β1 and β2 are linearly dependent over

Fq. This contradicts with the assumption of β1 and β2.

Remark 2. When n = m = 3, the result in Proposition 6 is included in Proposition 5.

Propositions 4, 5 and 6 still hold for the Hamming metric after similar analysis.

In the rest of this section we furthermore discuss the distance of a special class of
words to the Gabidulin codes over F2m with dimension k = 1. Before that, we give two
lemmas.

Lemma 5. [17] Let a be in a finite field Fq and p be the characteristic of Fq. Then the
trinomial xp − x− a is irreducible in Fq[x] if and only if TrFq/Fp

(a) 6= 0.

For a finite field Fq, the integer-valued function v on Fq is defined by v(b) = −1 for
b ∈ F∗q and v(0) = q − 1.

Lemma 6. [17] For even q, let a ∈ Fq with trFq(a) = 1 and b ∈ Fq, then the number of
solutions of the equation x21 + x1x2 + ax22 = b is q − v(b).

We now consider the finite field F2m . Let

h(x1, x2) = x21 + x1x2 + x22.

For any b ∈ F2m , let the set

S(h(x1, x2) = b) = {(c1, c2) ∈ F2m × F2m |h(c1, c2) = b, c1 6= c2, ci 6= 0, i = 1, 2}

and N(h(x1, x2) = b) = |S(h(x1, x2) = b)|.
We consider two cases:

Case 1: m is odd, which implies that Tr2m(1) = 1.
If b = 0, the number of solutions of the equation h(x1, x2) = b is 2m − v(b) = 1 by

Lemma 6. Since (0, 0) is a solution, S(h(x1, x2) = b) = ∅ and N(h(x1, x2) = b) = 0.
If b 6= 0, the number of solutions of the equation h(x1, x2) = b is 2m + 1 by Lemma 6.

Thus, N(h(x1, x2) = b) = 2m + 1− 2 since any element in F2m is a square. We also obtain
the corresponding S(h(x1, x2) = b).

Case 2: m is even, which implies that Tr2m(1) = 0.
By Lemma 5, x2 +x+ 1 is reducible over F2m and so it can be written as x2 +x+ 1 =

(x + α)(x + β) where α, β ∈ F2m , α 6= 1, β 6= 1 and α 6= β. Thus, x21 + x1x2 + x22 =
(x1 + αx2)(x1 + βx2) = b and so the number of solutions of h(x1, x2) = b is 2m + 2m − 1
if b = 0 or 2m − 1 if b 6= 0.

If b = 0, then N(h(x1, x2) = b) = 2m+1 − 2 and also we get S(h(x1, x2) = b).
If b 6= 0, N(h(x1, x2) = b) = 2m − 1− 2 since any element in F2m is a square. We also

get S(h(x1, x2) = b).
From the above discussion, we get the following result.
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Proposition 7. Let G be the Gabidulin code over F2m with g = {g1, . . . , gn}, dimension
k = 1 and 3 ≤ n ≤ m. Let f(x) = x4 + bx2 + cx, where b, c ∈ F2m. Then σf is not a
deep hole of G if and only if there are two elements β1 and β2 in < g1, · · · , gn > such that
(β1, β2) ∈ S(h(x1, x2) = b). In particular, if n = m, then σf is a deep hole of G if and
only if b = 0 and m is odd.

Proof. Note that two nonzero elements β1 and β2 are linearly independent over F2 if and
only if β1 6= β2. Thus, by Lemma 3, σf is not a deep hole of G if and only if there are two
distinct nonzero elements β1 and β2 in < g1, · · · , gn > such that

b = β21 + β1β2 + β22 ,

i.e., (β1, β2) ∈ S(h(x1, x2) = b). In particular, if n = m, then < g1, · · · , gn >= F2m . By
the above discussion, σf is a deep hole only when b = 0 and m is odd. For the other cases,
N(h(x1, x2) = b) is at least 1. Therefore, the desired result is obtained.

Remark 3. The second result of Proposition 7 may not hold for the case of Hamming
metric from Lemma 4 since it is possible that h(x1, x2) = b has no solutions in {g1, · · · , gn}
when b 6= 0 although h(x1, x2) = b always has solutions in < g1, · · · , gn >= F2m.

5 Conclusions

In this paper, we study deep holes of Gabidulin codes in both Hamming metric and rank
metric. The general results for Hamming metric case (see Theorem 2 and Lemma 4)
depend on the choice of the set {g1, . . . , gn}, while the results for rank metric case (see
Theorem 1 and Lemma 3) only depend on the subspace of Fqm spanned by g1, . . . , gn.
In particular, when n = m, the latter does not depend on the choice of g1, . . . , gn since
< g1, . . . , gn > equals to the whole space Fqm . Hence the problem about deep holes of
Gabidulin codes in Hamming metric seems more complicated than in rank metric.

On the other hand, for generalized Reed-Solomon codes, it has been proved that the
problem of determining if a received word is a deep hole is NP-hard [11]. For Gabidulin
codes, the problem seems more complicated although we give a necessary and sufficient
condition for this problem. So we state it as a conjecture.

Conjecture 1. Deciding deep holes of the Gabidulin code is NP-hard.
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