SLOPES FOR HIGHER RANK ARTIN-SCHREIER-WITT TOWERS

RUFEI REN, DAQING WAN, LIANG XIAO, AND MYUNGJUN YU

ABSTRACT. We fix a monic polynomial f(z) € Fy[z] over a finite field of characteristic p, and
consider the Ly -Artin-Schreier-Witt tower defined by f(x); this is a tower of curves - - - — Cp, —
Cm_1 — -+ = Cop = Al, whose Galois group is canonically isomorphic to Ly, the degree £
unramified extension of Z;, which is abstractly isomorphic to (ZP)Z as a topological group. We
study the Newton slopes of zeta functions of this tower of curves. This reduces to the study
of the Newton slopes of L-functions associated to characters of the Galois group of this tower.
We prove that, when the conductor of the character is large enough, the Newton slopes of the
L-function asymptotically form a finite union of arithmetic progressions. As a corollary, we prove
the spectral halo property of the spectral variety associated to the sz -Artin—Schreier—Witt tower.
This extends the main result in from rank one case £ =1 to the higher rank case £ > 1.
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1. INTRODUCTION

The topic we study in this paper reflects interests from two related areas. We shall first
introduce our theorem from the p-adic and Iwasawa theoretic perspective of L-functions of
varieties, and then explain the (philosophical) implication on spectral halo of eigenvarieties.

For a positive integer ¢, a Zg—Witt tower over a finite field [, of characteristic p is a
sequence of finite étale Galois covers over [y,

cii 3 Cpy = - > Cp = Cp = A,

whose total Galois group is isomorphic to Zf;. The integer £ is called the rank of the tower.
All such Witt towers, uncountably many, can be constructed explicitly from Witt vectors,
and their genera can be read off from an explicit formula, see [DKW]. A main interest in
arithmetic geometry is to understand the zeros of the zeta-functions of the curves C,, over
F,. In the context of Witt towers and the spirit of Iwasawa theory, a natural question is:
what are the p-adic valuations (slopes) of the zeros of the zeta-function of C,,, especially
what is the asymptotic behavior as m — o0o? This is an emerging new field of study, which
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is expected to be quite fruitful and yet rather complicated in general, as there are too many
Witt towers and most of them behave very badly. In order for the valuation sequence to
have a strong stable property as m grows, it is reasonable (and necessary) to assume that the
genus sequence has a stable property. Fortunately, Witt towers with a stable genus formula
can be classified, and this is recently done in [DKW]. It is then natural to investigate the
deeper slope stable property for the zeta function sequence of a genus stable Witt tower.

The first nontrivial case is when the tower is defined by the Teichmiiller lift of a poly-
nomial over Fy (see the next paragraph), called the Artin-Schreier-Witt tower, which does
satisfy the genus stable property. When the Artin—Schreier—Witt tower has the Galois group
Z, (rank one case), the slope stability question has been successfully answered in [DWX],
where it is shown that the valuations of the zeros are given by a finite union of arithmetic
progressions. This implies a strong stable property for the slopes when m — oco. Our
goal of this paper is to generalize the results in [DWZX] to the higher rank case, that is, to
Artin-Schreier-Witt towers whose Galois groups are canonically identified with Z,, which
is the unramified extension of Z, of degree ¢, by a suitable adaptation of the methods in
[IDWX]. The argument turns out to be more difficult because the space of characters is now
multi-dimensional (see the discussion after Theorem [1.4]).

Let us be more precise. Fix a prime number p. Let F, be a finite extension of F, of
degree a so that ¢ = p® Let £ be an integer which divides a. For an element b € F; , let
w(b) denote its Teichmiiller lift in Z, (the unramified extension of Z, with the residue field
[Fy); we put w(0) = 0. Let o denote (the lift of) the arithmetic p-Frobenius on F, and Z,.

We fix a monic polynomial f(z) = 2¢ + ag_12971 + -+ + @y € Fy[z] whose degree d is
not divisible by p. We write a4 = 1, and a; := w(a;) for i = 0,...,d. Let f(x) denote the
polynomial 2% + ag_12%71 + -+ 4+ ag € Zy[z], called the Teichmiiller lift of the polynomial
f(x). The Z,e- Artin-Schreier—Witt tower associated to f(z) is the sequence of curves Cp,
over F, defined by

d
¢ _ .
C : gf;b —y = Z(aiajl,0,0,...),
i=0
where y (yﬁ), ygn), ...) are viewed as Witt vectors of length m, and e/ means raising

each Witt coordinate to the p-th Jpower. In explicit terms, this means that Cy is the usual
Artin—Schreier curve given by yp —y = f(x), and Cy is the curve above Cj given by an
additional equation (over [Fy)

£+1

—y" = "~y _ [7@P) — ()
p p

where o is the Frobenius automorphism and f7(z) := 2% 4 o(ag_1)z? ' + - - - + o(ap).
The Galois group of the tower may be identified with Z,, such that a € Z,¢ sends v,

toy +a,, where a,, denotes the m-th truncated Witt vector of a. Each curve C,, has a

zeta function deﬁned by

p
g Y

mod p,

sk P(Cy, s
Z(Cm,S) = exp Z Z . #Cm<IFqk) = 1(—(15)’
k>1

where P(C,y,, s) € 14 sZ[s] is a polynomial of degree 2¢(C,, ), pure of g-weight 1, and g(Cyy,)
denotes the genus of Cy,.

Write C, for the completion of an algebraic closure of Qp, and let Oc, denote its
valuation ring with maximal ideal mc,. Using the Galois group, we may factor Z(Cp,, s)
into a product of L-functions:
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Z(Cm,S) - H Lf(Xa 3)7

. X
X: ZPZ /pmng *}Cp

where for each character x, L¢(x,s) is the L-function on A[}q given by

1
(1.0.1) Li(x,s) = 7
wgl 1- X<Trqueg(z)/Qpe (f(w(x))))sdeg(m)

where |A!| denotes the set of closed points of A]%‘q and w(z) denotes the Teichmiiller lift
of any of the conjugate geometric points in the closed point x. For x = 1, the L-function
Ls(1,s) is simply the trivial factor 1/(1 — ¢s), which is the zeta function of the affine line.

The goal of this paper is to understand the p-adic valuation of the zeros of these L-
functions for all non-trivial finite characters y. For this purpose, we will also need to
consider the characters which are not finite and put them in a family. In this paper, all
characters x : Z, — C are assumed to be continuous. For a finite character x, let m,
be the nonnegative integer so that the image of x has cardinality p™x; we call m, the
conductor of x. Our normalization on Newton polygons is as follows: given a valuation ring
R and an element w of positive valuation, the w-adic Newton polygon of a power series
co+c15+ -+ € R[s] is the lower convex hull of the points (k,valg(ck)) (kK € Z>p), where
the valuation valg(—) is normalized so that valg(w) = 1.

Theorem 1.1 (Main Theorem). For any nontrivial finite character x with conductor my,,
L¢(x, s) is a polynomial of degree dp™ 1 —1. Write

dp™mx—1-1
L¢(x,s) = Z st
k=0
We have the following:
. _ d—1 d+1
(i) For any 0 < n < p™ 1 we have valy(cnd—1) = Zg’ilx—l) and valy(cpq) = 721;(:’;;1)'

(i) For any 0 < n < p™x 1 the g-adic Newton polygon of L¢(x,s) passes through the
points (nd — 1, 29—y gnd (nd, 2odtl)y,

9 2me71 9 mex—l

(i11) The g-adic Newton polygon of L(x,s) has slopes (in increasing order)

my—1

U {ait, qug, .., g} — {0},
i—1

p

where
i1 )
Q5 = # for ] = ].,
i—1 7 .
X1 <o < =T for 3> 1

Remark 1.2. We do not know how to get the arithmetic progression property as in [DWX],
which is uniform in x (depending only on the large conductor m.,, not on the choice of x

with the given conductor m,). However, for j = 1, the slopes a;1 = i—1

-1 do form an

arithmetic progression, which depends only on the conductor m,. For any fixed j > 1, part
(iii) only proves that the slopes a;; are approximately an arithmetic progression.

If we restrict to those characters x that factors through a fixed quotient n : Z,r — Zj,
then the slopes «;; form a union of finitely many arithmetic progressions (independent of
the character x but a priori depending on the quotient 7)), as the problem reduces to the
case of usual Z,-tower but with non-Teichmiiller polynomials considered in [Li]. It is unclear
whether these arithmetic progressions depend on the choice of the quotient 1 : Z,e — Zj.
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It would be more convenient for us to consider the p-adic function defined by
(1.2.1) CF(x8) = Ly (x: 8) L3 (x, 4s) Ly (x. 4°s) -+,
where L} (x,s) == (1 — X(TrQq/Qpe (f(0)))s)L¢(x,s) is the L-function of x over the torus
G = Al —0. )

From C7%(x, s), one may recover L}(x,s) as L}(x,s) = g;f&:;)). Hence Theorem is

essentially a corollary of the following

Theorem 1.3. Given a nontrivial finite character x with conductor m,,, write

Ci(x,8) = > wi(x)s".
k=0

Then for all k > 0, we have
k(k—1)

Valq(wk(X)) > W and,
kE(k—1)
For k=nd ornd+1, valg(wi(x)) = dpT’
In particular, the g-adic Newton polygon of C;‘Z(X, s) passes through the points (nd, gg;dx__ll))

and (nd +1 ”(nd+1)) for alln > 0.

I 2me71

We will show that both Theorem [1.1] and [T.3] follow from Theorem [T.4] below, in [2.6
To effectively prove Theorem it is important to consider all characters in a big
family. We fix a basis {c1,...,¢c/} of Z as a free Z,-module; we write ¢; = ¢; mod p for

each j. The Galois group Z,¢ of the tower can be identified with Zf, explicitly as

o

Zpe

T (Terl/Qp (zc1), ... ,Tr@pz/@p (zcr)).

4
Zp

We consider the universal character of sz:

Xuniv © Ly ZplT)* := Zp[Th, ..., T]*
o (1 T1) e/ g )T
(When ¢ = 1, we simply write 7' for T'.) Any continuous character x : Z,c — C; can be
recovered from xuniv by evaluating each T} at X(c;) —1, where cf, ..., ¢; € Z, are elements
such that Tr@pe/@p(c;‘cj) is equal to 1 if i = j and is equal to 0 if 7 # j.
Similar to the finite character case, we can define the power series
C}(Xuniv, 8) = CHT, s) =1+ wi(T)s + wa(T)s* + - - € 1 + sZ,[T][s],

for the universal character yuniv; for details, see Section This power series interpolates
C}(x, s) for all (finite) characters x : Z, — C via the formula

C;(X, s) = C;;(I, S)‘szx(c;)fl for all j-

Theorem 1.4. Let I denote the ideal (T1,...,Ty) C Zy[T]). For k € Zxo, we put A\, =
%. Then we have the following.
(1) For any k > 0, we have

(1.4.1) wi(T) € 171,
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(2) When k =nd or nd + 1, we have
(1.4.2) wi(T) = ug - ST mod (pI™* + 1]

for some unit uy, € Zy, where S(T') is the following polynomial

4 4
(1.4.3) s(@) =] (Zai(cj)Tj).

Theorem is the main technical result of this paper. Part (1) is proved at the end of
Section [t part (2) is proved at the end of Section [5} relying on the key Theorem [5.1

Let us now explain the philosophical meaning of Theorem The first estimate
uses a standard argument to establish certain Hodge bound. It implies, for example,
when k& = nd or nd + 1, the “leading term” (if nonzero) of wy(Z") must be a homogeneous
polynomial of degree A\ in T.

(i) When ¢ = 1, this leading term has to be a monomial in 7'; so specializing to any
continuous non-trivial character x of Z,, this “leading term” (if its coefficient is a
p-adic unit) is also the “leading term” of wy(x). Theorem [1.4](2) is proved in [DWX],
Proposition 3.4], which is the key of the proof of [DWX] Theorem 1.2].

(ii) In clear contrast, when ¢ > 1, this “leading term”, even if its coefficients are p-adic
units, may not continue to have smaller valuation than higher degree terms after
certain specialization. In particular, the naive generalization of Theorem to all
non-trivial characters of Z, is false. It is thus of crucial importance to understand:
what does the “leading term” of wy (1) look like? This is exactly answered by ,
which shows that the “leading term” of wy(T) is, up to a p-adic unit, a power of a
particular polynomial &(T') independent of k and the Teichmiiller polynomial f.

We also point out that the polynomial &(7") modulo pIl ¢ 4 1%+ is canonically indepen-

dent of the choice of the basis {c1,...,¢} (Lemma [2.1)). Moreover, &(T) is in some sense
“elliptic” as its zero avoids all the evaluations of the T)’s corresponding to finite continuous
non-trivial characters of Z,, (Lemma .

While Theorem is known when ¢ = 1 by [DWX], its proof for general ¢ is quite
different. The idea lies in a careful study of the matrix whose characteristic power series
gives rise to C}(ZL, s). We do this in two steps. The first step is to show that the leading term
of wi(T') comes from the determinant of the upper left k x k-submatrix. The second step
is to show that the determinant of the mod p reduction of the upper left k x k-submatrix
is “independent of ¢”, in the sense that it is the same matrix for the £ = 1 case except
replacing T' = 17 by the polynomial Z§:1 c¢;T;; see Theorem In this way, we reduce
the proof of Theorem for general £ to the known case of ¢ = 1.

1.5. Analogy with the Igusa tower of modular curves. An important philosophical
implication of Theorem is through the close analogy between the Artin—Schreier—Witt
tower and the Igusa tower of modular varieties:
e the Galois group Z, of the Z,-Artin-Schreier-Witt tower (¢ = 1) is the additive
version of the Galois group Z of the Igusa tower of modular curves,

e the big Banach module B in (3.7.1) is analogous to the space of overconvergent
modular forms,
e the linear operator v defined in (3.7.2) is analogous to the U,-operator, and

e the power series C’;ﬁ (T, s) is analogous to the characteristic power series of U,.

lUnder the hypothesis ptd, A\pq/l = % and A\pg4+1/4 = Apa/l+ % are always integers.
2The product over the Frobenius twists of c; is a result of the setup of the Dwork’s trace formula; see Corollary
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Inspired by this analogy, we define the Artin-Schreier—Witt eigenvariety to be the zero
locus of the universal multi-variable power series Cf(Z, s) inside Gp® x (W — {Q}) where

W is the weight space Max(Z, [[I]][%]) As shown in the diagram below, this eigenvariety ¢
admits a weight map wt to the weight space, and an “a,-map” to Gy, rig remembering the
value of s71. The p-adic valuation of the image of the “ap-map” is called the slope of the
point.

slope

/\
C,

&r

.

w —{0}

This gives a full picture analogous to the case of eigencurves or more generally eigenvarieties.

A key component of the analogy is that the proof of the decomposition of the Z,-
Artin—Schreier—Witt eigencurve ([DWX| Theorem 4.2]) is very similar to the proof of the
decomposition of the Coleman—Magzur eigencurve over the boundary of the weight space
([CWX], Theorem 1.3]), where the Hodge estimate (see Definition [4.3)) is analogous to [LWX],
Proposition 3.12(1)], and the numerics provided by the Poincaré duality of L-functions
corresponds to the numerics given by the Atkin—Lehner involution. The only difference is
that the Hodge lower bound in [LWX] is obtained by a slightly different mechanismﬁ

The state-of-art technique on the study of spectral halo (based on [LWX]) is intrinsic
to GLQ(QP)H To extend [LWX] beyond this case, say to GL2(Q,), it is natural to first
study under the analogous Artin—Schreier—Witt setup. More precisely, the corresponding
question concerns a Z,¢-Artin—Schreier-Witt tower of varieties over the (-dimensional base

Q.

ap val.

(Gt for £ > 1. There are now two distinct difficulties we encounter:

(a) the weight space has become multi-dimensional, and
(b) the base of the variety has become multi-dimensional.

Interestingly, for automorphic eigenvarieties, these two difficulties appear simultaneously,
whereas on the Artin—Schreier—Witt side, we can tackle them one at a time.

This paper addresses the difficulty (a). The solution we propose is the following: it
might be too much to ask for a decomposition of the eigenvariety over the entire weight
space such that the slopes on each component are determined by the weight map, exactly
because of the issue explained in (ii) after Theorem Instead, we study a subspace of
W, the admissible locus, defined by

WA .~ {1 € W(C,) — {0} | valy(&(1)) = £ - min{valy(t),. .., valy(tr)}}.

This is an increasing union of affinoid subdomains of W, which is independent of the poly-
nomial f, and is canonically independent of the choice of basis {c1,..., ¢/} (Corollary .

3For Artin-Schreier—Witt tower, the trivial character behaves slightly differently.

An [CWX], we looked at the Betti realization instead of the de Rham realization to circumvent the technical
difficulties caused by the geometry of the base modular curve.

5Recently, C. Johansson and J. Newton [JN] generalized the Hodge estimate of [LWX], but unfortunately the naive
generalization of the numerical coincidence no longer holds. They can still define certain extension of the eigenvariety
to the “adic boundary” of the weight space. But much less is known regarding to this extension, compare to the
GL2(Qp)-case.

6An alternative way to explain this is: the “adic boundary” of the weight space is (non-canonically isomorphic
to) ]P’ﬁ;l; so when ¢ = 1, there is only one direction approaching the boundary. But when ¢ > 1, we may have to
give up on some “bad directions” approaching the boundary. Theorem says that the bad direction is exactly the

[
hypersurface defined by the polynomial [] ( 3 o%(c;)T;) mod p.
i=1 j=1
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Moreover, W24m contains all points corresponding to finite non-trivial characters of /.

(Lemma [2.5)).
One corollary of Theorem [1.4]is the following.

Theorem 1.6. Put E?dm = wtTt (WM Then E'J%dm is the disjoint union

e4 = Xo [T X [T X [T X0 [T

of infinitely many rigid subspaces, such that for each interval J = [n,n] or (n,n + 1),
o the map wt : Xj — W2 s finite and flat, and
e for each point x € Xy, we have
valy(a,(x)) _alp—1)

vl Smt@) - ¢ 7

This is Theorem [6.11
Remark 1.7. One may interpret Theorem as the pull-back of the following diagram:

decomposition pattern of Sj}dm —— decomposition pattern of £¢(Zy)

waiwdm Cadl w<zp>i {0},

where the right hand side is the corresponding theorem ([DWZX] Theorem 4.2]) for the case
¢=1.

Roadmap of the paper. In Section [2| we give several basic facts regarding the polyno-
mial &(T'), and show that Theorems and follow from Theorem [1.4] Starting from
Section we use another set of variables m instead of T'. We define the characteristic
power series C} (m, s) in Section |3, and give a lower bound for its I-adic Newton polygon in
Section [4] Section [5]is devoted to the proof of Theorem by showing that its validity is
independent of ¢ and hence reduce to the known case £ = 1. Section [6] interprets everything
in the language of eigenvarieties. In the appendix, we include several errata for the paper
[DWX].

2. WEIGHT SPACE

We collect some basic facts regarding the weight space and characters of Z.

Lemma 2.1. (1) The ideal I = (T, ...,Ty) C Zy[T] = Zy[Z,e] is canonically independent
of the choice of the basis {c1,...,ce}.

(2) The polynomial &(T) mod pI* + I*! is independent of the choice of the basis
{61, e ,Cg}.

Proof. (1) Note that a change of basis of Z,¢ over Z, results in a change of variables of
{T1,..., Ty} in a way that yuniv is well-defined. In fact, I is the augmentation ideal, or
equivalently the kernel of Z,[Z,.] = Z,. So it is canonically independent of the choice of
the basis.

(2) The group of all possible change of basis matrices GLy(Z,) is generated by the
following three types:

(a) only swapping ¢; with c;;

(b) for a unique fixed 4, scaling ¢; to u;c; for u; € Z,';

(c) only changing ¢ to ¢; + ucy for u € Zy.
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It suffices to check the independence of &(T) mod pI* + I**! under these three changes of
basis. Case (a) will result in swapping 7; with Tj. The independence of &(T') follows from

the definition. Case (b) will result in changing 7; to (1 + T;)% " _ 1. The invariance of
&(T) mod pI? + I**1 of this change of basis follows from the congruence

T = uici((l + TZ-)“z'_1 — 1) mod pI + I°.

Case (c) will result in changing T to (1 + 73)(1 + 77)~"* — 1, and keeping all the other
variables unchanged. Then the invariance of &(T) mod pI¢ + I**! of &(T) follows from the
congruence

ATy + Ty = (e1 +uc)Th + 02((1 +T)(1+T) - 1) mod pI + I°. O

Remark 2.2. In view of Lemma the validity of Theoremis independent of {c1, ..., cs};
so it suffices to prove it for a particular choice of basis {ci, ..., c/}.

2.3. Weight space. Using the variables T1,...,7,, we can explicitly present the weight
space as

W = Max (Zp[Zy][3]) = {(t1,- .., te) € Cp | valy(t;) > 0 for all j}.
Since &(T) is a homogeneous polynomial of degree ¢, we have
valg(&(t)) > £ min {valy(t1),. .., valy(te)}.

Our theory will apply to the case when the above inequality is an equality, namely over the
admissible locus

wadm = L(t,... ty) € W — {0} | valy(&(t)) = £ min{valy(t1), ..., valg(t)} }.

Corollary 2.4. The admissible locus W™ C W is independent of the choice of the basis
{Cl, ‘o ,Cg}.

Proof. This follows from Lemma [2.1(2) and the definition of the admissible locus. O

Lemma 2.5. Let x : Z, — C; be a finite non-trivial character. Its coordinate on the
weight space is given by t;, = X(cj») —1 for j = 1,...,£. Then this point lies on the
admissible locus W™,

Proof. The coordinate of x is clearly as given. Let m, denote the conductor of x, so that
the image of x lies in Z,[(,mx]. In particular, each t;, € Zj,[(pmx].

Note that c1, ..., ¢, form a basis of Z,¢ over Z,. So they also form an orthonormal basis
of Ze[(pmx] over Zy[Cymx]. Tt then follows that

¢
valg ( Z cjtj%) = min {Valq<t17x), e ,Valq(tgyx)}.
j=1
Taking the norm from Z,[(ymx] to Z[¢ymx] shows that
valg (S(t1,y, - .-, tey)) = € -min {valy(tiy), ..., valg(tey) }

This means that the point corresponding to x lies in Wad™, O
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2.6. Proof of Theorem [1.4 = Theorem [1.1l and [1.3l For a finite non-trivial character

x with coordinates t;, = x(cj) — 1, we know that

min {Valq(tl,x), . ,Valq(t&x)} = min {Valq(x(c”{) —1),...,valy(x(cp) — 1)}
1 1
a plp-1)

Hence Theorem [1.4{1) implies

1 1 k(k—1)
2.6.1 1 > A — - = .
(2.1 VAl (00) 2 M s = g

Moreover, by Lemma the point corresponding to this finite character y lies on the
admissible locus W24™, So Theorem (2) implies that the equality in holds for
k =nd or nd + 1.

From this, we deduce that the g-adic Newton polygon of C’}k(x, s) lies above the polygon

, 2];;]:)(1_)1), and so it must pass through the points (nd, g;?ndx__ll)) and (nd +
1 n(nd+1)

s ST ) given by (k, valg(wg(x))) for k = nd and nd + 1 with n € Z>o. This completes
the proof of Theorem [1.3

with vertices (k:

C3(xs)
For Theorem we observe that L}(x, s) = m

and the set {a € C, | a™! is a root of Li(x,s) = 0} is the same as the set

is a polynomial of degree dp™x~!,
{ﬁ €C, | 5_1 is a root of C}(X, s) = 0 and val,(8) € [0, 1)}

So Theore.m follows from Theorem directly as L¢(x, s) is obtained from L}(X, s) by
removing its unique linear factor with slope zero. U

Remark 2.7. The same argument proves the analog of Theorem for all continuous

characters x of Z,c whose corresponding point on the weight space lies in yadm,

3. I-ADIC EXPONENTIAL SUMS

We fix the polynomial f and its Teichmiiller lift f as in the introduction.

Notation 3.1. We first recall that the Artin—Hasse exponential series is defined by

00y ' o
(3.1.1) E(m) =exp (Y 7;7) = I - 14+ nz,[x].
i=0 pli, i>1

Setting T' = E(m) — 1 defines an isomorphism Z,[r] = Z,[T].
For the rest of the paper, it will be more convenient to set T; = E(m;) — 1 for each j
and use 7y, ..., as the parameters for the ring Z,[T] = Z,[x]. In particular, we have

I:(Tl,...,Tg):(ﬂl,...,Trg).

Definition 3.2. For a positive integer k, the I-adic exponential sum of f over quk is

4
\ Trg , gy leif(@(@))]
S*(k,m) = Y [[E(x) “* € Zy[n]

X g=
:J[:E]Fq,c Jj=1

"This sum agrees with Sy¢(k,T) in [LW] (in the one-dimensional case).
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Note that the sum is taken over F;k. The superscript * reminds us that we are working
over the torus G,,. We define the I-adic characteristic power series associated to f to be

[e.9]

o
(3.2.1) Ci(m,s) = exp (Z 1 —1qk 5*(k77)k)

k=1

= Zwk(ﬂ)sk € Zp|x, 5]
k=0

The I-adic L-series of f is defined by
k

L}(m,s) = exp (i S*(k7l>%)-

k=1

These two series determine each other, and are related by the relation
Ci(m,s) = Li(xm, s)L}(m, qs) L} (x, ¢%s) - - .
It is clear that for a finite character x : Z, — CJ,
L}(X’ S) = L}(Ea 5)’E(7rj):x(c;) for all 5> C}(Xa 5) = C}(ﬂa S)|E(7rj)zx(c;) for all j-

Here the subscript means to evaluate the power series at m; € mc, for which E(7;) = x(c})
(the elements ¢; are defined just before Theorem [1.4)).

Hypothesis 3.3. From now till the end of Section |5, assume the chosen basis {ci,...,cs}
consists of Teichmiiller lifts, i.e. ¢; = w(¢;) for j =1,...,¢.

d A
Notation 3.4. For our given polynomial f(z) = ) a;z’ € Z4[x], we put
i=0

d

(3.4.1) Ep(x)r = [ E(aima’) € Zg[][].
=0

d A
So B¢, f(7)x; would mean 'Ho E(cjaimjx’). If o denotes arithmetic p-Frobenius automor-
1=
phism which acts naturally on Qg, and trivially on 7 and x, then we have, for every j € Z>o,

d

EY (2)x = [ E(af na') € Zy[x][2]-
=0

Lemma 3.5. (1) If we write E¢(z), = 20 bu(m)a™ € Zy[7][x], then by(r) € ™7, [x].

4
(2) If we write [] Ec;(2)r; = Zo en(m)a™ € Zy[x][z], then en(n) € I/ and eq = 1.
7=1 n=

Proof. Note that the ith factor of Ef(z), in (3.4.1)) is a power series in wa® for 1 < i < d;
so every term in their product is a sum of products of m, 7z, . .., 7z (1) is clear from this.
(2) follows from (1) immediately. O

Convention 3.6. In this paper, the row and column indices of matrices start with zero.

80ur C7(m, s) agrees with the C¢(T)s) in [ILW] (in the one-dimensional case); we will not introduce a version

C(T, s) without the star since it will not be used in our proof.
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3.7. Dwork’s trace formula. Consider the following “Banach module” over Z,[x] with
“orthonormal basis” T := {1,z,22,... }ﬂ

(3.7.1) B = Zgm](z) = {Zdn(g)azn | dn(m) € Zg[x] and nh—>Holo dn = 0}
n=0

Let 1), denote the operator on B defined by

0y (3 @) = 3 dynlm)e”

n>0 n>0

and let ¥ be the composite linear operator

14
(3.7.2) =y [[ Be,s(2)r, : B — B,
j=1
4 4 ~
where [[ E¢,¢(%)x;(9) := [ Ec,s(x)x, - g for any g € B. One can easily check that
7j=1 7=1
1/}(1'”) = Z 6mp7n(ﬂ)xma
m=0

where e, = e,(x) is as defined in Lemma (2) Explicitly, the matrix of ¢ with respect
to the basis I := {1,z,22,...} is given by

€o 0 . 0 0 . 0
ep ep—1 v €o 0 . 0
e €ap1 ey o1 €
(3.7.3) N = (emp-n)ppns0 = :

Cmp CEmp-1 "' Cmp—p Cmp—p-1 " Cmp-2p

The operator 0! o 1) is o~ !-linear, but its a-th iteration (¢! 0 4)® is linear since o®
acts trivially on Z,[x]. For the same reason, c*(N) = N.

Theorem 3.8 (Dwork Trace Formula). For every k > 0, we have

* k -1 k
S*(k,m) = (¢" — l)TrE/qu((a o1))? )
Proof. The proof is the same as in [LW, Lemma 4.7]. The key point is that the Dwork trace
formula is universally true, see [W] for a thorough understanding of the universal Dwork
trace formula. g

Corollary 3.9. The theorem above has an equivalent multiplicative form:

(3.9.1) Ci(xm,s) = det (I — s H(N)---a(N)N).

9Since Zq[x] is not a Banach algebra, B is not a Banach space in the literal sense.
10T his B is different from the space B considered in [DWZX], Section 2], where the extra rescaling factors 7t/ are
used to simplify the notation of the proof. We cannot do such simplification over a multi-dimensional weight space.
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Proof. It follows from the following list of equalities

* > 1 % Sk
Cjlms) =exp (3 7= 55" b m )
k=1
o0 k
=exp (Z fTrﬁ/Zq[[ﬂ((o_l o ¢)ak)%)
k=1

=det (I — (67 o9))?s | B)
=det (I — so " (N)o 3(N)---a~*“N))
=det (I — s0*~ 1(N)---U(N)N). O

4. A HobGe BounD For C}(T, s)

In this section, we prove Theorem (1), which will follow from the key estimate of
a certain (variant of) Hodge polygon bound in Proposition We continue to assume

Hypothesis

Notation 4.1. We define a “valuation function”

valy : Zg[r] —— Z U {oo},

o= fr, FrEr s
Note that val;(ab) = val;(a) + valz(b) for a,b € Zg[x].

Remark 4.2. Using this “valuation function”, we can similarly define the I-adic Newton
polygon of a power series kgo cr(m)s® € Zy[m, s] to be the lower convex hull of the points

(k,val;(ck(x))). Then Theorem says that the I-adic Newton polygon of C%(m,s) lies

ak(k—1)(p—1)
2d

above the polygon with vertices (k, Ag) with A\ = , and it passes through the

points (nd, Apg) and (nd + 1, A\pg41) for all n € Zso.

Definition 4.3. Let My (Z,[n]) denote the set of matrices with entries in Z4[x], whose
rows and columns are indexed by Zx>( (recall from Convention that all row and column
indices start from 0).

We say a matrix N = (hmn)mn>0 € Moo(Zq[x]) is twisted I-adically incremental (in d
steps) if valy (hn) = #E (or equivalently valr(hpy) > [*E]) for all integers m, n > 0.
By Lemma ( ) and (3.7.3), we see that the matrix N and more generally o(IN) is twisted
I-adically incremental for every 1.

Proposition below allows us to control the /-adic Newton polygon of C'} (m, s) using

the twisted I-adic incrementing properties of these o(N)’s.

Notation 4.4. For a matrix M, we write

mo myp oo Mp

no N1 Nkl |,
for the k x k-matrix formed by elements whose row indices belong to {mg, m1,...,mk_1}
and whose column indices belong to {ng, n1,...,nk_1}.

H'We invite the readers to compare this with [LWZX] Proposition 3.12(1)], which is the estimate before the conju-
gation by a diagonal matrix.
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Lemma 4.5. Let M = (hpmn) € Moo(Zg[x]) be a twisted I-adically incremental matriz,

then for indices myg,...,mp_1 and ng,...,ng_1, we have
s S
valj(det [ 7:0 ZLI ZL’“_l ] ) > Z%
0 1 k=1 | af =
Proof. In fact, we show that the val; of each term in the determinant above is greater than
k—1
or equal to ) P Indeed, for each permutation o € Aut({0,...,k — 1}), we have
i=0
PMo — Ny (0) PME—1 — N (k1) Spmi—n
o - o(k— 1~ 10
valy (hmona(o) T hmk—lnd(k—l)) > g4 T + d > —Qa
i=0
The lemma follows. 0

Proposition 4.6. Let Mo, M;,...,My,—1 € Mo (Zy[x]) be twisted I-adically incremental
o0

matrices, and let det(I — sMy_1--- M1 Mg) = > (—1)*r(x)s* denote the characteristic
k=0

power series of their product, then for every integer k > 0, we have

ak(k —1)(p—1)

valr(rg(m)) > and
H(r(m) = Sl
s 01 k—1 k(k—1)(p—1)+(p—1)
_ ak(k—1)(p—1)+(p—
re(m) = det mod Il =2 1
i@ =T1 (a1 0521 )
j=0 M;
Proof. From the definition of characteristic power series, we see
(4.6.1)
mo mi o Mg
ri(w) = Z det [ Mo my - My ]
0<mo<mi<-<mj_1<00 - Meg_1--Mi My
a—1 _
- b det< MaEL0 AL T Lk )
m; my; M
0<mg,0<mp,1 <+ <mg g —1<00 j=0 ‘- 3,0 J,1 7,k—1 1M

0<mg—1,0<Ma—1,1<<Mgq_1 k1<0

a—1 - E
— E: H (det Mj41,0 Mi411 - Myl k-1 )
i [ 0 My Myk—1

0<mp,0<mp,1 <+ <mg g —1<00

0<mg—1,0<Ma—1,1<<Mgq_1k1<0

Here and after, we set mgq; = mg; forall 0 <7 <k — 1.
Since every M; is twisted [-adically incremental, we can control each term in (4.6.1))
using Lemma [£.5}

a—1
m; m; cee oMy _
Va11< | | (det[ 77;;1,0 n];,_l’l n];l’k ' } >>
3,0 7,1 J.k—1 M;

)
(4.6.2) a—1 k—Jl om m p—124 ak(k —1)(p — 1)
g+li — Myi _ P — i - —
i o 221z MDD
=0 i=0 g=01=0

This verifies the first statement.
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Notice that the last inequality of (4.6.2) is an equality if and only if m;; = i for all
0<j<a-—1land0<1i<k—1;and when it is not an equality, (4.6.2) is greater than or
ak(kfl)(p?il)Jr(pfl)

2

. Therefore, we have

- o o1 -+ k-1 [ﬂk(kfl)(Pfl)Jr(p*l)]
ri(mw) = I | det 0 1 o k1 mod [ 2d ) O
j=0 M

equal to

Proof of Theorem ( 1). By Corollary C’]’Z(g, s) is the characteristic power series of

the product ¢ 1(N)---o(N)N. But each ¢*(N) is twisted I-adically incremental, which
implies Theorem [1.4(1) by applying Proposition |4.6}|'4 O

5. THE PROOF OF THEOREM |1.4)(2)

As a reminder, Hypothesis [3.3]is still in force in this section. This section is devoted to
prove Theorem (2), whose proof will appear at the end of this section. Its key ingredient
is the following

_ l
Theorem 5.1. Put T := ) ¢jm; € Fy[x], then
j=1

01 - k-1
det mod p
01 - k—1],
viewed as an element of Fy[x], lies in F[T]. Moreover, the coefficients of this determinant
as a power series in T does not depend on £.

Proof. We write €, := e, mod p € F,[x]. Consider the following (kp —p+1) x (kp—p+1)
matrix

k (k—1)(p—1)
[eo & &y 0 Ep_1p 0 00 |
0 ep—1 epp-1 -+ €(k—1)p—1 0 0 O
k3 0 €0 €p e €(k—1)p—p 0 0 O
0 0 €p—1 " €(k—1)p—p—1 0 0 O 0
NI = : Do :
0 0 * S é(kfl)(pfl) 0 0 O 0
0 0 * €(k—1)(p—1)—1 1 0 0 0
0 0 * é(k—l)(p—l)—2 0 1 0 0
0 0 * €(k—1)(p—1)-3 0 0 1 0
| 0 0 0 €o 000 0 1 |

12Although this section assumes Hypothesis as pointed out in Remark the validity of Theorem 1) does
not depend on the choice of the basis {ci,...,c¢}. So our proof is complete.
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—_
oyl

0 1

oyl
|
—_

Note that the upper left k x k-block of N,;F is the transpose of [ 0 -1 modulo

pH so we have an equality in Fy[x]:

01 k—l] mod p = det(N}).
N

(5.1.1) det[o L

To study N kT , we need the following

Lemma 5.2. We have the following equality and congruence.

d oo 14
(5.2.1) ne, = Z Zz cen_ipral ( Z(cjﬂj)pT)
i=1 r=0 7j=1
d oo B l ,
(5.2.2) = Z i ep_ipral (Z ¢;mi)” (mod p).
i=1 r=0 j=1

Proof. Taking the derivative of H Ee,1(7)x; gives

14

(1150s92) = (L o) (S5 (e ).

=1 i=17r=0 j=1

j
4
Replacing [] Ec,f(z)x, by Z enx”, the above equality becomes
j=1

gnenﬁn_l = (Zenaz )(Zi (Z (¢jmy) )ixipr_lafr)

n=0 i=1r=0 j=1
Then (5.2.1) follows by comparing the 2" !-coefficients. The congruence (5.2.2)) follows
4 4
from the easy fact that ( > Cjﬂ'j) = Z (cjm;)P" (mod p). O
i=1 i=1

We now continue with the proof of Theorem ﬂ Let N l;r , be the matrix consisting of
the first k& columns of N;'. Then the (m,n)-entry of N,El is just épp—m. Applying Lemma
to np —m in place of n (and then taking the reduction modulo p), we deduce

d oo
T =T

— _ —_ _ . —_ _p
—MEpp—m = (NP — M)Epp—m = Z Z i Crp— (mepipr) @ T
i=1 r=0

in F,[x]. Note that the coefficients in the above congruence does not involve the column
index n. So if we use R,,(k) to denote the mth row of NI}, we get

d oo
i=1 r=0

for all 0 < m < kp — p. In other words, the mth row of N}E1 with m # 0 (mod p) can
be written as a linear combination of the rows below it, and the coefficients of this linear
combination belong to Fy[%] (as opposed to Fy[x]).

13Hero, we made a tough choice to consider the transpose instead, so that the display of N;fd is much nicer.
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To take advantage of this linear relation among the rows R, _(k), we define the (upper
triangular) matrix Ap(%) € Mip—pi1(F[Z]) so that, if we write R, (k)" to denote the mth
row of Py := Ax(T)N}I, then we have

(5.2.4) Rm(k})/ _ mRm( ) + ZZI TZ i m+’Lp (k)@f Tpr, if pfm,
Ry (k)

Explicitly, if we write A(T) = (amn)m,nezzo, we have

if p| m.

ia? " when n —m = ip" with 1 < < d and p{4,

B 1 when m =n and p|m,
Amn =
m when m = n and p {m,
0 otherwise.

Note that, in the first case, there is only one term, because other terms with p|i is zero
modulo p.

By the recurrence relations of {e,} in (5.2.3)), the matrix Py := A,(T)N,| takes the
following form

K (k= 1)(p—1)
[ €0 ép éQp ce é(kfl)p k ok ok e e k]
0 0 0 ¥ %k *
€0 ép cee é(k—2)p L S N
k 3 0 0 0 e O * * ES “e e *
P, = (pmn 0<m<hp—p = S e S
0<n<kp—p 0 0 €0 - Ek—3)p K Kk ke K
0 O 0 * k% *
o o o --- 0
| O 0 0 cee €0 |

where for n > k, pyp is a function of T given by

iC_LfT‘ipr when n —m = ip"” with 1 <7 < d and p {1,

1 when m =n and p|m
(5.2.5) Brom = P

m when m =n and p t m,

0 otherwise.

Since Ax(T) is upper triangular, we have
(5.2.6) det(Ax(T sz = (-1 in F,[Z].

For a similar reason (and ey = 1), we have

12 - H+i o kp-p—1

det(Pk):det[k E+1 - k4+i—1 --- kp—p _
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Combining these two, we deduce

(=1)* " Ldet(N) = det(A(%)) det(N ) det(P,)

~ det 1 2 ... LJ oo kp—p—1
E kE+1 - k‘—i—z—l kp—p B
The key observation here is that the entries of the (sub)matrix
1 2 L%J+i o kp—p—1
kE k+1 -+ k4+i-1 .- kp—p |p

all lies in the subring F,[T] of F,[x], as seen in its explicit form (5.2.5). Moreover, the
coefficients on these entries are independent of £. It follows that

(5.2.7) det(N)) € F,[%]

is a power series whose coefficients are independent of ¢. The Theorem follows from this

and the equality (5.1.1)). O
Now, we deduce Theorem [I.4[2) from Theorem

Proof of Theorem[1.J(2). For k = nd or nd + 1, we note that X} := \y/a = % or

nlndt D@ are integers because p f d.

Since N is twisted I-adically incremental, Lemma, implies that

01 - k-1 pO+1+ (k=)= 041+ 4 (h=1)
det[o 1 ... k—l} el d k.
Combining this with Theorem we see that
o1 - k-1 =N =\ —\ -
et [ 01 o k-1 ]N mod p = By TN 40y T+ € THE ],

where vy, € I, is independent of ¢. Thus,

Applying Proposition to the series of product ¢* '(N)---o(N)N (whose charac-
teristic power series defines C' (m,s)), we get

a—1
01 -+ k-1 N4l
w;&w)zH(det{ _ } ) mod [7+".
Pl 0 1 E—1 o5 (V)
Combining this with (5.2.8]), we deduce
a—1 = a—1
(5.2.9) wi(m) =[] @i I H Ux ST mod pI 4+ L
i=0 i=0

&(T) ::ﬁ(ié’T) H (Zcf? 7r]> = ﬁai(z) mod pIf + I*+1,

=1 j=1 =1 j=1

M ere we are allowed to write & IV because only this element modulo p affects the congruence relation.
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From (5.2.9), we see that Theorem ( ) is equivalent to H v)\,. <. But as pointed out

above, this element is independent of £. We know that Theorem - holds when ¢ = 1,
as proved in [DWZX| Propostion 3.4], so it holds for all EH O

6. ARTIN-SCHREIER—WITT EIGENVARIETIES

We now interpret Theorem [I.4] using the language of eigenvarieties. Recall the weight
space W and its admissible locus W29™ from Section [2 We remind the readers that W/adm

is independent of the choice of the basis {ci,...,c/} (Corollary [2.4) and contains all the
points corresponding to finite non-trivial characters of Z,, (Lemma [2.5)

The eigenvariety & associated to the Artin-Schreier-Witt tower for f(z) is defined as
the zero locus of C'}(Z, s), viewed as a rigid analytic subspace of (W —{0}) x Gy, rig, where

s is the coordinate of the second factorm Denote the natural projection to the first factor
by wt : £ — W —{0}; and denote the inverse of the natural projection to the second factor
by

a: & B2 gris 220 Grig,

We use Ej}dm = wt =1 (WIM) to denote the preimage of the admissible locus of the eigen-
variety.

Theorem 6.1. The admissible locus of the eigenvariety Sadm is an infinite disjoint union

Xo[TXon [TX: [T X0 [T

of rigid analytic spaces such that for each interval J = [n,n] or (n,n + 1) with n € Z>,
o the map wt : X7 — W™ s finite and flat of degree 1 if J represents a point and
of degree d — 1 if J represents a genuine interval, and
e for each point x € Xz, we have
valy(a(z) _alp-1)
valy (S (wt(z))) 14 '
Proof. Similar arguments have appeared multiple times in the literature; see [BKl, Theorem
A], [LWX], Theorem 1.3], or [DWX] Theorem 4.2]. So we only sketch the proof here.
For a continuous character x of Z,c whose corresponding points lies on the admissible

locus W™ Theorem (see Remark implies that the g-valuations of the zeros of
C}(x, s) consists of

e for all n, exactly one zero has valuation —val,(S(x)) - ’m(i_l), and
e for all n, exactly d—1 zeros (counted with multiplicity) have valuations in the interval
a(p—1 _
—valy (&(x)) - alp=1) . [n+ 2,0+ 2L

14

From this, we see that E?dm is the disjoint union of the following subspaces
X = EF™ 0 {(t, ap) € W™ x GEE | valy(ap) = valy(&(2)) - &=}, and
Xty = EF 0 {(t ap) € W™ X GIE | valy(ay) € valy (&) - “E2 - (n,n+ 1)}
= &1 N {(t ap) € W™ x G3¥ | valy(ap) € valy(S(2) - “T - [+ §,n + 431}
150nce again, Remark allows us to prove Theorem 2) under Hypothesis

Here we removed the zero point of the weight space, because when T' = 0, C; (0,s) = 1—s which is very different

from other points of the weight space.
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Note that, restricting to every open affinoid subdomain of E?dm, the above decomposition
o

is a union of affinoid subdomains. So E?dm = ]_[0 (X (] U X(mn“)) is a decomposition
n—

into an infinite disjoint union of rigid subspaces. The degree of each X ; follows from the

description of the number of zeros above. O

APPENDIX A. ERRATA FOR [DWX]

e (pointed out to us by Hui Zhu) upper half of page 7 (or lower half of page 1458 in
the published version) the displayed formula

0o
Ef({B) :Zuj'ﬂj/d.%'j € B, for Uj EZP.
§=0

should have u; € Z,[r'/?] instead.

e (pointed out to us by Hui Zhu) Theorem 3.8 on Line 2 of the second paragraph of
its proof, we took A; to be the minimal integer satisfying certain properties. There might
not be such \,, in which case we should simply take A, to be infinity. This will not affect
the proof, as all we care are those A}’s that are “close” to the lower bound polygon.

e Theorem 4.2(2) The statement that each Cy; is finite and flat over W is not literally
true because Cy; often misses the point over T" = 0 in W, as the slopes at points on Cy;
tend to oo as 1" approaches to 0. So one should replace the W and Cy in the statement with
We = W\{0} and C} := Cr\wt=1(0).
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