INDEX BOUNDS FOR CHARACTER SUMS WITH
POLYNOMIALS OVER FINITE FIELDS

DAQING WAN AND QIANG WANG

ABSTRACT. We provide an index bound for character sums of polynomials over
finite fields. This improves the Weil bound for high degree polynomials with small
indices, as well as polynomials with large indices that are generated by cyclotomic
mappings of small indices. As an application, we also give some general bounds
for numbers of solutions of some Artin-Schreier equations and mininum weights
of some cyclic codes.

1. INTRODUCTION

Let g(z) be a polynomial of degree n > 0 and ¢ : F, — C* be a nontrivial additive
character. If g(x) is not of the form ¢+ f? — f for some f(x) € F,[x] and constant
c € F,, then

(1) > Ulg@)| < (n—1)va.

This is the case if the degree n is not divisible by p. The upper bound in Equation
(1) is well known as the Weil bound. In 1996, Stepanov [8] stated the following
problem for additive characters.

Problem 1. Determine the class of polynomials g(x) € F,[z] of degree n, 1 <n <
q — 1 for which the upper bound (1) can be sharpened and the absolute value of the
Weil sum can be estimated non-trivially for n > /g + 1.

It is well known that every polynomial g over F, such that ¢g(0) = b has the
form az” f(x*) + b with some positive integers r, s such that s | (¢ —1). There
are different ways to choose r,s in the form ax”f(z*) + b. However, in [1], the
concept of the index of a polynomial over a finite field was first introduced and any
non-constant polynomial g € F,[z] of degree n < ¢ — 1 can be written uniquely as
g(x) = a(z" f(z'7V/%)) + b with index ¢ defined below. Namely, write
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where a, a,_;; #0,j=1,..., k. Let r be the lowest degree of v in g(z) —b. Then
g(z) = a (2" f(x97V/%)) + b, where f(z) = 2% + ap_s, 2% + -+ + @y, 2% +ay,

q—1 qg—1
ged(n —r,n—7r—iy,...,n—r—ip1,q—1) s

,6:

Y

and ged(eg, €1, ...,ex-1,¢) = 1. The integer ¢ = q%l is called the index of g(x).

In particular, when £ = 0, we note that any polynomial az” + b has the index
¢ = 1. From the above definition of index ¢, one can see that the greatest common
divisor condition makes ¢ minimal among those possible choices. The index of
a polynomial is closely related to the concept of the least index of a cyclotomic
mapping polynomial [3, 6, 9]. Let v is a fixed primitive element of F,. Let ¢ | (¢—1)
and the set of all nonzero (-th powers be Cp. Then Cy is a subgroup of F; of index
{. The elements of the factor group F;/Cy are the cyclotomic cosets of index (

C;=~'Cy, i=0,1,--- ,0—1.

For any ag,ai,---,a,-1 € F, and a positive integer r, the r-th order cyclotomic

mapping fuo ay . a,, 0f index € from F, to itself (see Niederreiter and Winterhof in

6] for r = 1 or Wang [9]) is defined by

, 0, if x =0;
(2) ao,a1,...,ae_1(x) - { CLZ‘Q?T, if = Cia 0 S 7 S g — 1.
It is shown that r-th order cyclotomic mappings of index ¢ produce the polyno-
mials of the form " f(2°) where s = %. Indeed, the polynomial presentation is

given by

Eays N
g(x) = 7 Z (Z aigﬂ) 2T

j=0 \i=0

where ( = ~° is a fixed primitive /-th root of unity. On the other hand, as we
mentioned earlier, each polynomial f(x) such that f(0) = 0 with index ¢ can be
written as " f(2(@1/%), which is an r-th order cyclotomic mapping with the least
index ¢ such that a; = f(¢%) fori =0, ...,¢—1. Obviously, the index of a polynomial
can be very small for a polynomial with large degree.

The concept of index of polynomials over finite fields appears quite useful. Re-
cently index approach was used to study permutation polynomials [10], as well as
the upper bound of value sets of polynomials over finite fields when they are not
permutation polynomials [5]. In this paper we first provide an index bound for
character sums of arbitrary polynomials.

Theorem 1.1. Let g(z) = 2" f(z97V/%) + b be any polynomial with index (. Let
¢ be a primitive £-th Toot of unity and ng = #{0 <1 < £ —1| f(¢") = 0}. Let
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Y F, = C* be a nontrivial additive character. Then

®) S wlo(a)) — Tno| < (¢~ mo)aca(r, )

z€ly

This implies that for many polynomials of large degree with small indices (for
which the Weil bound becomes trivial), we have nontrivial bound for the character
sum in terms of indices.

Moreover, we note that many classes of polynomials with large indices ¢ (e.g.,
¢ = q — 1) can be defined through cyclotomic cosets of smaller index d that is also
a divisor of ¢ — 1. Indeed, in [10], we studied a general class of polynomials of the
form

U

-1

U

—1
¢TIV (= D/ R (),

QU=

(4) g(x) =

Il
=)
Il
=)

=0 j

where f;(x) and R;(z) are arbitrary polynomials for each 0 <7 < d—1 and ( is a
primitive d-th root of unity. Here we abuse the notation and let Cy be a subgroup

of F, with index d and C; = 7viCo, i =0,...,d — 1 be all cyclotomic cosets of index
d. Equivalently, ¢ is defined by

0, if z =0;
(5) g(x) _{ a;Ri(x), ifxeC;, 0<i<d-—1,

where a; = f;(¢*) for 0 <7 < d—1 and ( is a primitive d-th root of unity. Without
loss of generality, we assume that each R;(x) is a nonzero polynomial and f;(z) can
be a zero polynomial.

More generally, we obtain

Theorem 1.2. Let d | (¢ — 1) and g(x) € Fy[x] be a polynomial defined by

(z) = 0, if v = 0;
I =\ wRi(z), ifzeC, 0<i<d—1,

where a; € F,, 0 # R;(z) € Fylz], Ri(0) =0, and C; is the i-th cyclotomic coset of
index d for0 <i<d—1. Let L={0<i<d—-1]a; #0} andng=d— |L|. If
the degree r; of each nonzero polynomial R;(x) satisfies that ged(r;,p) = 1 for each
i€ L and r = max{r; | i € L}, then we have

(6) >~ vlg(@)) = Jno| < (d = no)ry/a.

z€ly

Moreover, if R;(x) = a™ for 0 <i <d—1, then we have
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@ S 0(g(e)) — Tno| < (@~ no) max{acd(r, =00}

z€lF,

We note that the conditions R;(0) = 0 for 0 < i < d — 1 in the above theorem
are only used to normalize the polynomial in the proof. Moreover, a slightly looser
upper bound (d — ng)r,/q instead of W\/@ is presented in the result for the
sake of simplicity. In fact, without the restrictions on the values of R;(x) at 0, we
still have the same bound as follows:

—1
no| < (d —no)ry/q,

(8) > wlg() -

IEFZ

where the sum runs over all non-zero elements in IF,. Therefore we obtain nontrivial
bounds for polynomials defined by (5) if either each R;(z) = 2™ is a suitable mono-
mial or each R;(x) is a low degree polynomial. In Section 2, we prove our main
results. As a consequence, index bounds of the number of solutions of a certain
Artin-Schreier equation and minimum weights of some cyclic codes are derived in
Section 3.

2. PROOF OF THEOREMS AND SOME CONSEQUENCES

We note that Theorem 1.1 is a corollary of the second part of Theorem 1.2 when
d = ¢ and all r;’s are the same. Therefore it is enough to prove Theorem 1.2. Because
of the equivalence of equations (4) and (5), we prove the following equivalent result.

Theorem 2.1. Let g(x) = 3 Y1) 32070 ¢7ia?* fi(a /) Ri(x) for some d | (q—1)
and s = % such that R;(0) = 0 for 1 < i < d. Let ¢ be a primitive d-th root of
unity and ng = d — |L| where L = {0 <i <d—1] fi(¢") # 0}. Let ¢ : F, — C*
be a nontrivial additive character. If the degree r; of each nonzero polynomial R;(x)
satisfies that ged(r;, p) = 1 for each i € L and r = max{r; | i € L}, then

(9) > (g(x) - —no < (d —no)r\/q.

z€lF,

Moreover, if Ri(z) =" for 0 <i<d—1, then we have

(10) S (o)) — o] < (A~ mo) macfed(r %1)}\/@

z€eF,
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Proof. We recall v is a fixed primitive element of F, and ¢ = 7(4=1/4 be a primitive d-
th root of unity. Because d | (¢—1), we must have ged(d, p) = 1. For z € C; = +'Cy,
write = y'y? for some y € F} and then g(z) = fi(¢")Ri(v'y?). Let a; = f;(¢"). We
have

d—1
S vtgl@) ~ Ino| = |23 (14 3 wth@RGY) | - Ino
z€F, i=0 yeF:
< 330 [1+ X wlr@RGYY)
i€l y€eFy

S (10t S ORO YY)
1ZL

yeFy

= SIS wlariiy)|

el |yel,

If all the degrees of polynomials R;(x) are less than or equal to r, then the Weil
bound implies Equation (9). Indeed, because ged(dr;, p) = 1, we must have

I vkt < - 1y

i€L |yeF,
< (d—no)ry/q.

Moreover, if R;(z) = 2" for 0 < i < d—1, then g(x) = f;({*)y"iy?i. Moreover, if

we replace y by y* such that ged(dr;,q — 1) = kdr; +b(q — 1) and ged(k,q — 1) =1

in the sum ’Zyqu @Z)(yd”)‘, we can reduce the degree of the monomial y?# in the

sum to ged(dr;, ¢ — 1). Therefore, we obtain

é S D dlaiRi(v'yh)

i€l |y€elfy
1
< 52 (seddrig—1) 1) g
i€L
< d— 1o maLX{gcd(dri, q—1)—1}/q
1€
qg—1
< _ 1 -
< (d—mno) max{ged(ri, ——)}v/a.
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g

As a result, for any polynomial with index ¢ and vanishing order r at 0 such that
ged(r, p) = 1, if both £ and ged(r, %) are small, we obtain a nontrivial bound for its
character sum. This provides a partial answer to Problem 1 because many of these
polynomials have large degrees which give the trivial Weil bound. For example, let
g(x) = x2@D/3+1 4 2(a=1/3+1 4 4 over F, with characteristic p > 3. Then the Weil
bound gives the trivial result. However, we note that g(z) has index ¢ = 3, ng = 2,

and r = 1. By Theorem 1.1, we have ’erwq Y(g(z)) — %q‘ < V4

Corollary 2.2. Let g(z) = 2" + ax” € Fy[z] witha € F; andq—-1>n>r > L.
Let ¢ = ﬁiq_l), t =ged (n,r,q—1), and u = ged(n —r,0). Let ¢ : F, — C* be
a nontrivial additive character. If x"~" 4+ a has a solution in the subset of all {-th
roots of unity of Fy, then

(1) > v +aan) = T < (- wiva

z€Fy

otherwise,

(12) > (e + ax”)| < /g,

z€el,

Proof. First we note that ged(r, &) = ged(r, ged (n — r,q — 1)) = ged (n,7,q¢ — 1) =
t. Let ¢ be a primitive /-th root of unity and ng = #{0 < i < -1 (¢*)" " +a = 0}.
By Theorem 1.1 we have

(13) > (o) = fo| < (€= no)tya

z€el,
Suppose —a = ~* for a fixed primitive element ~. If (“®") = ~* then we have
i(n —r)s = k (mod ¢ — 1) where s = 2. This linear congruence has a solution

only if s | k. In this case, it reduces to i(n—r) = k/s (mod ¢) and thus i(n—r) = k/s
(mod ¢) has exactly u = ged(n —r, £) solutions for i. Therefore, ng = w if us | k and
ng = 0 otherwise. Hence we obtain either

(14) :EEZF:QQ/J(SE" + azx") — % < (0 —u)t\/q,
or

(15) Z P(a"™ 4 ax”)| < lt/q.

zely
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g

We remark that "~ + a has a solution in the subset of all /-th roots of unity
of F, if and only if @ | k where k& = log (—a) is the discrete logarithm of
—a. Otherwise, we have the index bound ft,/q for binomials 2" + az". Because
t = ged(n,r, g — 1) can easily achieve 1, our bound for many binomials is essentially
£\/q. We note that if £ < /g — 1, then £ < % <n — 1 and thus our bound ¢,/q is
better than the Weil bound (n — 1),/q.

3. SOME APPLICATIONS

In this section, we remark some applications of our index bound in counting the
numbers of solutions of some algebraic curves and the minimum weights of some
cyclic codes. Let g € F,[z] be a polynomial and let N, ;m be the number of solutions
(z,y) € F,n of an Artin-Schreier equation y? —y = g(z). Then

(16) Nggm = Z Z Ym(9()),

Vm, $€]qu

where the outer sum runs over all additive character ¢ of F, and v, (z) = ¢(Tr(x)),
and T'r denotes the trace from F,m to IF,.

It is well known that if g has degree n with ged(n,q) = 1, then the Weil bound
gives

(17) |Ng,qm —q" < (n—1)(¢— 1)qm/2-

Improving the Weil bound for the Artin-Schreier curves has received a lot of recent
attentions because of their applications in coding theory and computer sciences, see
2] [4] [7] for more details.

As a consequence of our earlier results with the assumption that ¢ has an in-
dex ¢ and vanishing order r at 0 such that ged(r,p) = 1, we obtain the following
improvement in a different direction.

Corollary 3.1. Let g € Fym[x] be a polynomial with index ¢ and vanishing order r
at 0 such that ged(r,p) = 1. Let ng be defined as in Theorem 1.1 and Ny m be the
number of solutions (z,y) € Fgm of an Artin-Schreier equation y? —y = g(x). Then

(q—1)g™
/

In particular, we have the following corollary.

qg" —1
T7

(18) Nggm —q™ — no| < (g —1)(¢€ —np) ged( T)qm/z‘

Corollary 3.2. Let g(x) = 2" + az” € Fym[z] such that ged(r,p) = 1. Let { =
% and t = ged(n,r,q™ — 1). Then the number of solutions Ny gm of the
curve y! —y = ™ + ax” satisfies

(19) |N97q’" —q" < (g~ 1)€tqm/2a
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except the case when x"~" + a has a root in the set of {-th roots of unity in Fym, in
which case, we have

m  (@—1)¢mged(n —r, 0 m
Q) Ny g - DA RO gy,
We note that 27" + a has a root in the set of ¢-th roots of unity in Fym if and
only if w | k where k = log, (—a) is the discrete logarithm of —a.

Finally we comment on some applications on cyclic codes. Let C' be a cyclic
code of length N over F, with ged(N,q) = 1. Let F,m be the splitting field of the
polynomial 2% — 1 over F, and Tr be the trace function from F = to F,. Let 8 be
a primitive N-th root of unity. Fix a subset J of the set {0,1,..., N — 1} and let
h(z) = [;c;mps (x) be the generator polynomial of C, the orthogonal code of C,
where m, () is the minimal polynomial of v in Fym. Then C' consists of the words

() = Y Trlaa(3)'

where g,(z) = 37, ;a;27 and a = (a;)jes € (Fym)" with u = [J|. Here J is called
p-check set. The weight w(a) of ¢,(x) is given by N — z(a), with z(a) = #{i | 0 <
i < N —1,Tr(g.(8")) = 0}. Let N; be the number of solutions z € F,m of the
equation Tr(g(z)) = 0 and let N, be the number of solutions (z,y) € F2, of the
equation y? —y = g(z), where g(x) € Fym[z]. It is clear that Ny = ¢N;. Using
the classical Weil-Serre bound, Wolfmann [11] provided some general bounds for the
mininum weights of some cyclic codes. Here we can similarly give an index bound
for the minimum weights of some of these cyclic codes.

Let k be the integer such that Nk = ¢ — 1. The set of all N-th roots of unity
over F, is also the set of k-powers of F,.. Therefore z(a) is the number of z* in F,,
such that Tr(g.(z¥)) = 0. Consider Ej, = {x € F. | Tr(ga(2*)) = 0}. Obviously
E) is the union of z(a) distinct classes modulo Gy, where Gy is the subgroup of
F}. of order k. Hence |Ey| = kz(a) = k(N —w(a)) = ¢™ — 1 — kw(a). Let
N3 be the number of solutions z € Fym of the equation Tr(g,(z*)) = 0. Then
N3 = |Eg| = ¢ — 1 — kw(a) if Tr(g.(0)) # 0 and N3 = |Ex| + 1 = ¢™ — kw(a) if
Tr(g.(0)) = 0. Combining the above discussions with Equation (18), we obtain

Corollary 3.3. Let F n be the splitting field of the polynomial ¥ — 1 over F, with
Nk =q™ —1 and B a primitive N-th root of unity over F,. Let C' be a cyclic code
of length N over IF, with J as 3-check set. Let ¢ be a primitive (-th root of unity. If
each nonzero member of J is prime to q and g,(x) = ZJEJ a;z? = 2" f, (x40 + b
has index ¢ and vanishing order v at 0. Let ng = #{0 <i </l —1] f,(¢*) =0}.
(a) If 0 € J, then the weight w(a) of c.(x) satisfies
¢ —q™ ' (g —1)g" ng < (g —1)(¢ — ng) ged(r, #)qm/z.

wla) ==+ Kl = kg
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(b) If 0 & J then the weight w(a) of c,(x) satisfies

gt —qm -1 n (g —1)g™ ng < (¢ — 1)(£ = no) ged(r, quil)qm/z.
k kL - kq

w(a) —

Therefore, if J = {r,r + %, STt W} such that r > 0 and each member
of J is relatively prime to ¢, we can estimate an lower bound the minimum weight
of the corresponding cyclic code. Because 1 < ng < ¢ — 1 for all nonzero codewords
ga(x), we therefore obtain the weight of ¢,(z) is at least

w(

qm _ qul -1 B (q o 1)qm*1n0 B (q — 1)(£ — TLQ) ng(T, qu_l)qm/Q

>
@) 2 2 o] kg
L ool (gD =) (g DU Deed(n ) g
= k Kkl kq
(q—Dg™"  (¢—1)(¢—1)ged(r, %)qmp 1
= Kl kq K

Therefore the minimum weights of these cyclic codes are quite large when m is large.

1]

[10]
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