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ABSTRACT. We provide upper bounds for the cardinality of the
value set of a polynomial map in several variables over a finite field.
These bounds generalize earlier bounds for univariate polynomials.

1. INTRODUCTION

Let F, be a finite field of ¢ elements with characteristic p. The
value set of a polynomial f over I, is the set V; of images when we
view f as a mapping from [, to itself. Clearly f is a permutation
polynomial (PP) of F, if and only if the cardinality |V}| of the value
set of f is q. As a consequence of the Chebotarev density theorem,
Cohen [3] proved that for fixed integer d > 1, there is a finite set T}
of positive rational numbers such that: for any ¢ and any f € F,[z] of
degree d, there is an element c; € Ty with |V¢| = crq + Oq(\/q). In
particular, when ¢ is sufficiently large compared to d, the set of ratios
Il is contained in a subset of the interval [0,1] having arbitrarily
small measure. It is therefore natural to ask how the sizes of value sets
are explicitly distributed, and also how polynomials are distributed in
terms of value sets. For example, there are several results on bounds of
the cardinality of value sets if f is not a PP over [F,; Wan [13] proved
that [V¢| < ¢—[(¢—1)/d] and Guralnick and Wan [6] also proved that
if (d,q) = 1 then V| < (47/63)q + O4(,/q). Some progress on lower
bounds of |Vy| can be found in [4, 14], as well as minimal value set
polynomials that are polynomials satisfying |V;| = [¢/d] [1, 5, 10]. All
of these results relate |V}| to the degree d of the polynomial. Algorithms
and complexity in computing |V;| have been studied recently, see [2].

Let f : F; — Ty be a polynomial map in n variables defined over
F,, where n is a positive integer. In Section 2 we extend Wan’s result
on upper bounds of value sets for univariate polynomials in [13] to
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polynomial maps in n variables. Denote by |V}| the number of distinct
values taken by f(x1,...,2z,) as (z1,...,2,) runs over Fy. Following
the approach of studying value set problems in terms of the degree of
a polynomial, we give an upper bound of |V}| in terms of the total
degree of the multivariate polynomial f over I, in Theorem 2.1. In
particular, this answers an open problem raised by Lipton [9] in his
computer science blog.

2. VALUE SETS OF POLYNOMIAL MAPS IN SEVERAL VARIABLES

In this section, we let f : F)' — F}' be a polynomial map in n variables
defined over F,, where n is a positive integer. We give a simple upper
bound for the number |V}| of distinct values taken by f(z1,...,z,) as
(z1,...,7,) runs over Iy when f does not induce a permutation map.

We write f as a polynomial vector:

(1) floy, oo xn) = (fi(xy, oo zn), ooy folTn, ooy xy)),

where each f; (1 <i < n) is a polynomial in n variables over F,. The
polynomial vector f induces a map from Fy to Fy. By reducing the
polynomial vector f modulo the ideal (z{ — z1,...,2% — x,), we may
assume that the degree of f; in each variable is at most ¢ — 1 and we
may further assume that f is a non-constant map to avoid the trivial
case. Let d; denote the total degree of f; in the n variables xy,...,z,
and let d = max; d;. Then d satisfies 1 < d < n(qg—1). Let |V}| be the
cardinality of the value set Vi = {f(x1,...,2,)|(21,...,2,) € F,}. It
is clear that |V¢| < ¢". If |V}| = ¢", then f is a permutation polynomial
vector, see [8, Chapter 7]. If |[V}| < ¢", we prove the following:

Theorem 2.1. Assume that |V¢| < ¢". Then

2) Vil <" - min(" 2 gy

In the special case when n = 1, the bound in (2) reduces to the
bound (3) proved in [13] for the case of a univariate polynomial:

Q) Vil <q- 10

Based on computer calculations, the bound in (3) was first conjec-
tured by Mullen [11]. The original proof of (3) in [13] is elementary, and
uses power symmetric functions and involves a p-adic lifting lemma. A
significantly simpler proof of (3) is given by Turnwald [12], who uses

elementary symmetric functions instead of power symmetric functions
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and works directly over the finite field IF, without p-adic liftings. Inde-
pendently and later, Lenstra [7] showed one of us another simple proof
which uses power symmetric functions in characteristic zero and avoids
the use of the p-adic lifting lemma.

The proof of (3) gives a stronger result as shown in [14]. This infor-
mation will be used later to prove the higher dimensional Theorem 2.1.
We first recall the relevant one dimensional result in [14]. Let Z, de-
note the ring of p-adic integers with uniformizer p and residue field [F,.
Let f be a polynomial in F,[z] of degree d > 0. For a fixed lifting
f(x) € Z,[z] of f and a fixed lifting L, C Z, of F,, we define U(f) to
be the smallest positive integer k such that

(4) Z f ¥ 20 (mod pk).
z€Lg

The number U(f) exists (see the proof of Lemma 2.2 below) and is

casily seen to be independent of the choice of the liftings f (x) and L,.
One checks from the definition that U(f) > (¢ — 1)/d. Thus, we have
the inequality,

— <U(f)<g¢-1L
The following improvement of (3) is given in [14]:
Lemma 2.2. If |V}| < ¢, then
Vil <q—=U(f).

Proof. To be self-contained, we give a simpler proof of this lemma using
ideas of Lenstra and Turnwald, closely following the version given by
Lenstra [7]. Note that in this lemma we are dealing with a polynomial
f in one variable.

Let w = ¢ — |V¢|. Assume |V;| > ¢ — U(f), that is, w < U(f),
where we define U(f) = oo if it does not exist. We need to prove that
f is bijective on F,. By the definition of U(f) and the assumption
w < U(f), we can write

Z @T’“ = pg(T) (mod T**1)

k=1

for some polynomial g € Z,[T]. This together with the logarithmic
derivative identity
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shows that
[ (= f(@)T) = exp(—pg(T)) (mod T"*') =1 (mod (p,T"™)),

x€Lq

where in the last congruence we used the fact that p*/k! is divisible by
p for every positive integer k. Reducing this congruence modulo p, one
obtains

[T - f@7T) =1 (mod 7).

€l
On the other hand, since f is not a constant, we have w < ¢ — 1 and

H (1—yT)=1-T9"=1 (mod T").
y€lFy
Thus,
[[a-f@1) =[] —yT) (mod 7).
z€ly yel,
By hypothesis, the two products have exactly |V| factors in common.
Removing the |V}| common factors which are invertible modulo 7%,
we obtain two polynomials of degree at most w which are congruent
modulo 7%, and therefore identical. Multiplying the removed factors
back in, we conclude that

[[a-r@1) =]~y

This proves that f is bijective on [F, as required. 0

We use Lemma 2.2 to prove Theorem 2.1. Recall that f is now the
polynomial vector in (1). Let ey, ..., e, be a basis of the extension field
Fyn over F,. Write = z1e; + - -+ + 2,6, and

g<1ﬂ ::ji(xla---amn) ep+ - +-jh($1,...,$n) €n-
The function g induces a non-constant univariate polynomial map from
the finite field IF» into itself. Furthermore, one has the equality |V;| =
|g(Fyn)|. We do not have a good control on the degree of g as a uni-
variate polynomial and thus we cannot use the univariate bound (3)
directly. The following lemma gives a lower bound for U(g), which is
enough to prove Theorem 2.1.

Lemma 2.3. If d > n, we have the inequality

n(g—1)
d
If d < n, we have the inequality

q<U(g) <q"

<U(g) <q"
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Proof. The upper bound is trivial. We need to prove the lower
bound. We may assume that g(zie; + - - + z,e,) is already lifted to
characteristic zero and has total degree d when viewed as a polynomial
in the n variables x1,...,x,. Furthermore, we can assume that the
coefficients of g as a polynomial in n variables are either zero or roots
of unity, that is, we use the Teichmiiller lifting for the coefficients. Let
L, denote the Teichmiiller lifting of F,,.

Let k be a positive integer such that k < n(q —1)/d if d > n and
k < q if d < n. We need to prove the claim that

Sk(g) = Z g(ziey + -+ zpe,)” =0 (mod pk).

(xlv'“ 7xn)€L;’]7‘

Expand g(zie,+- - +x,e,)* as a polynomial in the n variables 1, . . ., z,,.
Let

Un

M(zy,...,x,) = ax{* -z

be a typical non-zero monomial in ¢*. It suffices to prove that

Z it -zt =0 (mod pk).

The sum on the left side is zero if one of the u; is not divisible by ¢ — 1.
Thus, we shall assume that all u;’s are divisible by ¢ — 1. The total
degree
u1+---+un§dkz.
Thus, there are at least n — |dk/(¢ — 1)] of the u;’s which are zero.
This implies that
Sk(g) = 0 (mod ¢"~ /@~ D]),

Let v, denote the p-adic valuation satisfying v,(p) = 1. If the inequality

vp(q)(n — [kd/(g = 1)]) = 1+ vp(k)

is satisfied, then the claim is true and we are done.

In the case that d < n and k < ¢, we have dk/(q¢ — 1) < n and
vp(k) < vp(q). Thus,

vp(@)(n = [kd/(g = 1)]) = vp(q) = 1+ vp(k).
In the case d > n and k < n(q — 1)/d, we have
n(g—1)
d

It follows that v,(k) < v,(g). Since kd/(q — 1) < n, we deduce

vp(q)(n — [kd/(q = 1)]) = vp(q) = 1+ vp(k).
The proof is complete. [

k< <q.
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Remark. For a sharp example, we may take n = d = 2 and
f(x1,m3) = (x1,7122). This is a birational morphism from A? to A2
but not a finite morphism. Asymptotic upper bounds for value sets of
non-exceptional finite morphisms are given in [6].
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