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Abstract. Suppose q is a prime power and f ∈Fq[x] is a univariate polynomial with exactly
t monomial terms and degree < q − 1. To establish a finite field analogue of Descartes’

Rule, Bi, Cheng, and Rojas (2013) proved an upper bound of 2(q − 1)
t−2
t−1 on the number

of cosets in F∗
q needed to cover the roots of f in F∗

q . Here, we give explicit f with root
structure approaching this bound: When q is a perfect (t−1)-st power we give an explicit t-

nomial vanishing on q
t−2
t−1 distinct cosets of F∗

q . Over prime fields Fp, computational data we
provide suggests that it is harder to construct explicit sparse polynomials with many roots.
Nevertheless, assuming the Generalized Riemann Hypothesis, we find explicit trinomials

having Ω
(

log p
log log p

)
distinct roots in Fp.

1. Introduction

How can one best bound the complexity of an algebraic set in terms of the complexity
of its defining polynomials? Over the complex numbers (or any algebraically closed field),
Bézout’s Theorem [Béz06] bounds the number of roots, for a system of multivariate polyno-
mials, in terms of the degrees of the polynomials. Over finite fields, Weil’s famous mid-20th

century result [Wei49] bounds the number of points on a curve in terms of the genus of
the curve (which can also be bounded in terms of degree). These bounds are optimal for
dense polynomials. For sparse polynomials, over fields that are not algebraically closed,
these bounds can be much larger than necessary. For example, Descartes’ Rule [SL54] tells
us that a univariate real polynomial with exactly t monomial terms always has less than
2t real roots, even though the terms may have arbitrarily large degree. It has been gener-
alized to number fields and p-adic extensions of Q [Lenstra98], and local fields of positive
characteristics [Poonen98].

Is there an analogue of Descartes’ Rule over finite fields? Despite the wealth of beautiful
and deep 20th-century results on point-counting for curves and higher-dimensional varieties
over finite fields, varieties defined by sparse univariate polynomials were all but ignored un-
til [CFKLLS00] (see Lemma 7 there, in particular). Aside from their own intrinsic interest,
refined univariate root counts over finite fields are useful in applications such as cryptogra-
phy (see, e.g., [CFKLLS00]), the efficient generation of pseudo-random sequences (see, e.g.,
[BBK09]), and refined estimates for certain exponential sums over finite fields [Bou05, Proof
of Theorem 4]. For instance, estimates on the number of roots of univariate tetranomials over
a finite field were a key step in establishing the uniformity of the Diffie-Helman distribution
[CFKLLS00, Proof of Thm. 8, Sec. 4] — a quantitative statement relevant to justifying the
security of cryptosystems based on the Discrete Logarithm Problem.

We are thus interested in the number of roots of sparse univariate polynomials over finite
fields. The polynomial xq−x having two terms and exactly q roots in Fq might suggest that
there is no finite field analogue of Descartes’ rule. However, the roots of xq − x consist of 0
and the roots of xq−1 − 1, and the latter roots form the unit group F∗q := Fq \ {0}. For an
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arbitrary binomial axn + bxm ∈ Fq[x] with n>m and a and b nonzero, the roots consist of 0
(if m > 0) and the roots of xn−m + b/a. Note that the number of roots of xn−m + b/a in Fq is
either 0 or gcd(n−m, q − 1). In the latter case, the roots form a coset of a subgroup of F∗q.
For polynomials with three or more terms, the number of roots quickly becomes mysterious
and difficult, and, as we shall demonstrate in this paper, may exhibit very different behaviors
in the two extreme cases where (a) q is a large power of a prime, and (b) q is a large prime.

To fix notation, we call a polynomial f(x) = c1x
e1 + c2x

e2 + · · · + ctx
et ∈ Fq[x] with

e1<e2< · · · <et<q − 1 and ci 6= 0 for all i a (univariate) t-nomial. The best current upper
bounds on the number of roots of f in Fq, as a function of q, t, and the coset structure of
the roots of f , can be summarized as follows, using | · | for set cardinality:

Theorem 1.1. Let f ∈ Fq[x] be any univariate t-nomial with degree < q − 1 and exponent
set {e1, . . . , et} containing 0. Set δ(f) := gcd(e1, . . . , et, q − 1), Z(f) := {x∈Fq | f(x)=0},
R(f) := |Z(f)|, and let C(f) denote the maximum cardinality of any coset (of any subgroup
of F∗q) contained in Z(f). Then:

0. (Special case of [KS96, Thm. 1]) R(f)≤ t−1
t

(q − 1).

1. [BCR16, Thm. 1.1] Z(f) is a union of no more than 2
(
q−1
δ(f)

) t−2
t−1

cosets, each associated

to one of two subgroups H1⊆H2 of F∗q, where |H1|= δ(f), |H2| ≥ δ(f)
(
q−1
δ(f)

)1/(t−1)

, and

|H2| can be determined within 2O(t)(log q)O(1) bit operations.

2. [KO16, Thm. 1.2] For t=3 we have R(f)≤δ(f)
⌊

1
2

+
√

q−1
δ(f)

⌋
and, if we have in addition

that q is a perfect square and δ(f)=1, then R(f)≤√q.
3. (See [Kel16, Thms. 2.2 & 2.3]) For any t ≥ 2 we have R(f) ≤ 2(q − 1)

t−2
t−1C(f)1/(t−1).

Furthermore, C(f) ≤ max{k∈N : k|(q − 1) and, for all i, there is a j 6= i with k|(ei − ej)}. �

For any fixed t≥2, Dirichlet’s Theorem (see, e.g., [BS96, Thm. 8.4.1, Pg. 215]) implies that
there are infinitely many prime p with t|(p − 1), and thus infinitely many prime powers q
with t|(q − 1). For such pairs (q, t) the bound from Assertion (0) is tight: The roots of

f(x)=
xq−1 − 1

x(q−1)/t − 1
=1 + x

1
t
(q−1) + · · ·+ x

t−1
t

(q−1),

are the disjoint union of t − 1 cosets of size δ(f) = q−1
t

. (There are no H2-cosets for this
t-nomial.) However, Assertions (1) and (3) tell us that we can get even sharper bounds by
making use of the structure of the cosets inside Z(f). For instance, when t=3 and δ(f)=1,
Assertion (2) yields the upper bound

√
q, which is smaller than 2

3
(q − 1) for q≥5.

While Assertion (3) might sometimes not improve on the upper bound t−1
t

(q−1), it is often
the case that C(f) is provably small enough for a significant improvement. For instance,

when e1 =0 and gcd(ei, q− 1)=1 for all i≥2, we have C(f)=1 and then R(f)≤2(q− 1)
t−2
t−1 .

Our first main result is two explicit families of t-nomials revealing that Assertions (1)–(3)
are close to optimal for non-prime q.

Theorem 1.2. Let t, u, p∈N with t≥2 and p prime. If q=p(t−1)u then the polynomial

rt,u,p(x) := 1 + x+ xp
u

+ · · ·+ xp
(t−2)u

has δ(rt,u,p) =C(rt,u,p) = 1 and exactly q(t−2)/(t−1) roots in Fq. Furthermore, if q= ptu, then
the polynomial

gt,u,p(x) := 1 + x+ x1+pu + · · ·+ x1+pu+···+p(t−2)u
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has δ(gt,u,p)=1, C(gt,u,p)≤bt/2c, and exactly q(t−2)/t + · · ·+ q1/t + 1 roots in Fq.

Theorem 1.2 is proved in Section 2 below. The polynomials rt,u,p show that the bounds from
Assertions (1) and (3) of Theorem 1.1 are within a factor of 2 of being optimal, at least for
δ(f)=C(f)=1 and a positive density of prime powers q. Note in particular that r3,u,p shows
that Assertion (2) of Theorem 1.1 is optimal for q a perfect square and δ(f)=1. (See [KO16,
Thm. 1.3] for a different set of extremal trinomials when q is an odd perfect square.) The
second family gt,u,p reveals similar behavior for a different family of prime powers.

Optimally bounding the maximal number of roots (or cosets of roots) for the case of
prime q is more subtle already in the trinomial case. One reason is that explicit families of
trinomials with many roots over prime fields appear much harder to generate. For instance,
as we’ll see below, the smallest prime p for which there is a trinomial f with δ(f) = 1 and
15 roots in Fp is p= 71237. (Note that 15< 712371/4.) Also, it wasn’t until the 1970s that
Cohen proved that, given any n∈N and any prime p= eΩ(n logn), one can always find b∈Fp
with xn + x + b having n distinct roots in Fp [Coh70, Coh72], i.e., he found a family of

trinomials with Ω
(

log p
log log p

)
roots in Fp (albeit with unknown constant terms).

Using conditional results on the splitting of primes in number fields, we are able to give a
completely explicit family of trinomials with a similar number of roots in certain Fp.

Theorem 1.3. Fix any n≥2 and set hn(x) :=xn− x− 1. Then δ(hn)=C(hn)=1 and there
is a prime p≥n+ 2 satisfying

(a) p = eO(nn√n logn) unconditionally, and
(b) p = O(n2n+1 log2 n) if the Generalized Riemann Hypothesis (GRH) is true,

with hn having n distinct roots in Fp.

Theorem 1.3 is proved in Section 3. In particular, we use a classic estimate of Lagarias,
Montgomery, and Odlyzko [LMO79] (reviewed in Section 3 below) on the least prime ideal
possessing a Frobenius element exhibiting a particular Galois conjugacy class. The latter
result is in turn heavily based on the effective Chebotarev Density Theorem of Lagarias and
Odlyzko [LO77].

Could the existence of trinomials f with δ(f) = 1 and, say, Ω
(√

p
)

roots in Fp (as one
might conjecture from Theorem 1.2) be obstructed by p not being a perfect square? We
feel that p being prime is such an obstruction and, based on experimental results below, we
conjecture the following upper bound:

Conjecture 1.4. There is an absolute constant c≥ 1 such that, for any prime p≥ 3 and
γ, e2, e3∈{1, . . . , p− 2}, with e3>e2>0 and gcd(e2, e3, p− 1)=1, the trinomial γ + xe2 + xe3

has no more than (log p)c roots in Fp.

(See also [KO16, Conj. 1.5 & Sec. 4] for other refined conjectures and heuristics in this
direction.) It is a simple exercise to show that, to compute the maximal number of roots in
Fp of trinomials with δ(f)=1, one can restrict to the family of trinomials in the conjecture.

For any n∈N, let pn be the least prime for which there exists a univariate trinomial fn
with δ(fn)=1 and exactly n distinct roots in Fpn . Note that pn is well-defined according to
[Coh70, Coh72]. We did a computer search to find the values of pn for 1≤ n≤ 16. They
are...

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pn 3 5 11 23 47 151 173 349 619 1201 2753 4801 10867 16633 71237 8581
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For example, p16 = 8581 because −364 + 363x + x2729 has exactly 16 roots in F8581, and no
trinomial f ∈Fp[x] with p<8581 and δ(f)=1 has more than 15 roots in Fp. In the appendix,
we give representative trinomials for each pn above.

To get a feel for how the maximal number of roots of a trinomial grows with the field size,
let us compare the graphs (drawn darker) of the functions 0.91 log x and 1.77 log x with the
piecewise linear curve (drawn lighter) going through the sequence of points ((p1, 1), . . . , (p12, 12),
(p16, 16), (p13, 13), (p14, 14), (p15, 15)) as shown in Figure 1 below. We used some simple Maple

2000 4000 6000 8000 10000 12000 14000 16000

2

4

6

8

10

12

14

16

Figure 1

and Sage programs that took a few hours to find most of the data above. The value of p15

took C code (written by Zander Kelley) running on a supercomputer for 2 days.
Quantitative results on sparse polynomials over finite fields sometimes admit stronger

analogues involving complex roots of unity. For instance, [BCR13, BCR16] and [Che07]
deal with the complexity of deciding whether a sparse polynomial vanishes on a (finite)
subgroup of, respectively, F∗q or C∗. It is thus interesting to observe a recent complex
analogue to our trinomial root counts over Fq: Theobald and de Wolff [TdW14] proved that,
if gcd(e2, e3) = 1, a trinomial c1 + c2x

e2 + c3x
e3 ∈C[x] can have at most 2 complex roots of

the same absolute value. So any such trinomial has at most 2 roots in the torsion subgroup
{ζ ∈C | ζn = 1 for some n∈N} of C∗. This upper bound is sharp: Consider (x − 1)(x − ζ)
for any ζ 6∈{±1} satisfying ζn=1 for some n≥3.

2. Main Lower Bounds in the Prime Power Case

Proof of Theorem 1.2: To establish the root count for rt,u,p it clearly suffices to prove

that rt,u,p divides xq − x or, equivalently, xp
(t−1)u

= x in the ring R := Fp[x]/〈rt,u,p(x)〉.
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Toward this end, observe that xp
(t−1)u

=
(
xp

(t−2)u
)pu

=
(
−1− xp0 − · · · − xp(t−3)u

)pu
in

R. Since (a + b)p
u

= ap
u

+ bp
u

in any ring of characteristic p, we thus obtain xp
(t−1)u

=
(−1)p

u (
1 + xp

u
+ · · ·+ p(t−2)u

)
in R. The last factor is merely rt,u,p(x) − x, so we obtain

xp
(t−1)u

= (−1)p
u
(−x) = (−1)1+pux in R. Since (−1)1+pk = 1 in Fp for all primes p, we have

thus established the root count for rt,u,p.
That δ(rt,u,p) = 1 is clear since rt,u,p has a nonzero constant term and 1 as one of its

exponents. Likewise, δ(gt,u,p)=1. That C(rt,u,p)=1 is clear because the lowest exponents of
rt,u,p are 0 and 1, the rest are powers of p, and gcd(pk, q − 1)=1 for all k∈N. We postpone
proving our upper bound on C(gt,u,p) until after we prove our stated root count for gt,u,p.

Consider now the set S of elements in Fq whose trace to Fpu is zero, that is,

S :=
{
a ∈ Fq | a+ ap

u

+ ap
2u

+ · · ·+ ap
(t−1)u

= 0
}
.

Then S has q/pu = p(t−1)u elements and is a vector space of dimension t − 1 over Fpu . Let
a ∈ S be nonzero. We show that ap

u−1 is a root of gt,u,p:

gt,u,p(a
pu−1) = 1 +

t−2∑
i=1

a(pu−1)(piu+···+pu+1) = 1 +
t−2∑
i=1

ap
(i+1)u−1 =

1

a

t−1∑
i=0

ap
iu

= 0.

Now note that, for any a∈ S and any nonzero w ∈Fpu , the element aw is also in S. Also,
for a, b∈Fq, ap

u−1 =bp
u−1 if and only if b=aw for some nonzero w∈Fpu . Therefore, when a

runs through S\{0}, the element ap
u−1 yields (p(t−1)u − 1)/(pu − 1) = 1 + pu + · · · + p(t−2)u

roots for gt,u,p.
To finally prove our upper bound on C(gt,u,p), note that, for j>i,

1 + pu + · · ·+ p(j−2)u=
p(j−1)u − 1

pu − 1
,

and

p(j−1)u − 1

pu − 1
− p(i−1)u − 1

pu − 1
=p(i−1)u

(
p(j−i)u − 1

pu − 1

)
.

So for i≥2,

max
j∈{1,...,t}\{i}

gcd

(
p(i−1)u

(
p(j−i)u − 1

pu − 1

)
, ptu − 1

)
= max

j∈{1,...,t}\{i}
gcd

(
p|j−i|u − 1

pu − 1
, ptu − 1

)
= max

`∈{1,...,max{i−1,t−i}}
gcd

(
p`u − 1

pu − 1
, ptu − 1

)
.
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Hence, D(gt,u,p) := min
i∈{1,...,t}

max
`∈{1,...,max{i−1,t−i}}

gcd
(
p`u−1
pu−1

, ptu − 1
)

= max
`∈{1,...,bt/2c}}

gcd

(
p`u − 1

pu − 1
, ptu − 1

)
= max

`∈{1,...,bt/2c}}
gcd

(
p`u − 1

pu − 1
,

(
ptu − 1

pu − 1

)
(pu − 1)

)
≤ max

`∈{1,...,bt/2c}}
gcd

(
p`u − 1

pu − 1
,
ptu − 1

pu − 1

)
gcd

(
p`u − 1

pu − 1
, pu − 1

)
,

= max
`∈{1,...,bt/2c}}

(
pgcd(`,t)u − 1

pu − 1

)
gcd(`, pu − 1) .

The last equality follows easily from two elementary facts: (1) gcd(x`−1, xt−1)=xgcd(`,t)−1,
and (2) (x − 1)(x`−2 + 2x`−3 + · · · + (` − 2)x + (` − 1)) = x`−1 + · · · + x2 + x − (` − 1).
So D(gt,u,p) ≤ max

`∈{1,...,bt/2c}
1 · ` ≤ bt/2c. By [Kel16, Prop. 2.4] and [Kel16, Thm. 2.2],

D(gt,u,p)≥C(gt,u,p), so we are done. �

3. Main Lower Bounds in the Prime Case

We’ll need several results from algebraic number theory. First, let K be any number field,
i.e., a finite algebraic extension of Q. Let dK denote the discriminant of K over Q, and OK
the ring of algebraic integers of K, i.e., those elements of K with monic minimal polynomial
in Z[x]. We need to know the size of the smallest prime p ∈ Z that splits completely in OK .
There are various bounds in the literature that are proved via some effective version of the
Chebotarev Density Theorem. For instance:

Theorem 3.1. (See [LO77, Cor. 1.2 & pp. 461–462] and [LMO79, Thm. 1.1].) If f ∈Z[x]
is any irreducible polynomial of degree n then the least prime p for which the reduction of f

mod p has n distinct roots in Fp is (unconditionally) no greater than d
O(1)
K , where K⊂C is

the splitting field of f . Furthermore, if GRH is true, then p=O((log dK)2).

The papers [LO77, LMO79] in fact work in much greater generality: Our limited paraphrase
above is simply the special case where one is looking for a prime yielding a Frobenius element
corresponding to the identity element of the Galois group of f over Q.

The best recent estimates indicate that, in the unconditional case of Theorem 3.1, we
can take the O-constant to be 40, for sufficiently large dK [KN14]. Also, for an abelian
extension K over Q, Pollack [Pol14] gives a much better bound (in the unconditional case):

p=Oε,K

(
d

1
4

+ε

K

)
where ε > 0 is arbitrary, and the implied O-constant depends only on ε and

the degree of K over Q.
We will also need good bounds on discriminants of number fields. In the following theorem,

the lower bound is due to Minkowski [Min91] and the upper bound follows easily from work
of Tôyama [Tôy55] (by induction on the number of composita generated by the distinct roots
of f).

Theorem 3.2. (See, e.g., [BS96, pp. 259–260].) For any number field K of degree n over

Q, we have dK≥ n2n

(n!)2
≥ (πe2/4)n

2πn
> 5.8n

6.3n
. Also, if K has minimal polynomial f ∈Q[x] and L is

the splitting field of f , then dL divides d
(n−1)!+(n−2)!n+···+1!nn−2+0!nn−1

K . �
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Proof of Theorem 1.3: Clearly, δ(hn) = 1. Also, since gcd(n, n − 1) = 1, it is clear that
C(hn)=1. Now, for any n ≥ 2, the trinomial hn := xn − x− 1 is irreducible over Q [Sel56].
Let α ∈ C be any root of hn and let K = Q(α), so that [K : Q] = n. Then dK divides
the resultant of hn and h′n [BS96, Thm. 8.7.1, pg. 228]. The resultant of hn and h′n can

then be computed explicitly to be (−1)
(n+2)(n−1)

2 (nn + (−1)n(n− 1)n−1) [Swa62]. Hence dK
divides nn + (−1)n(n − 1)n−1. (We note that an elegant modern development of trinomial
discriminants can be found in Chapter 12 of [GKZ94]; see Formula 1.38 on Page 406 in
particular).

Let L be the the splitting field of hn. Then L has degree at most n! and, by Theorem 3.2,

dK>
5.8n

6.3n
and dL divides (nn + (−1)n(n− 1)n−1)

(n−1)!+(n−2)!n+···+1!nn−2+0!nn−1

. Note that, for

n ≥ 3, we have nn + (−1)n(n− 1)n−1≤ nn + (n− 1)n−1≤en logn+ 4
27 .

Also, by Stirling’s Estimate [Rud76, Pg. 200], n!<e
√
n
(
n
e

)n
(for all n≥1), so we have

(n− 1)! + n(n− 2)! + · · ·+ 2!nn−3 + 1!nn−2 + 0!nn−1

< e
√
n− 1

(
n− 1

e

)n−1

+ e
√
n− 2

(
n− 2

e

)n−2

n+ · · ·+ e
√

1

(
1

e

)1

nn−2 + nn−1

< e
√
n

(
1 +

1

e
+ · · ·+ 1

en−1

)
nn−1 =

(
e

1− 1/e

)
nn−1/2<4.31nn−1/2,

and thus dL<e
4.5nn+1/2 logn.

Theorem 3.1 then tells us that there is a prime p ∈ Z so that hn splits completely modulo
p with no repeated roots where

(a) p = eO(nn+1/2 logn) = ee
(n+1/2+o(1)) logn

unconditionally, and
(b) p = O((nn+1/2 log n)2) = e(2n+1+o(1)) logn if GRH is true. �

We used the family of trinomials xn − x− 1 mainly for the sake of simplifying our proof.
Many other families would likely exhibit the same behavior, albeit with some additional
intricacies in applying prime ideal bounds. However, the deeper question is to understand
the structure of truly extremal trinomials over prime fields, such as those appearing in the
Appendix below.
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Appendix: Some Extremal Trinomials

We list in Figure 2, for n∈{1, . . . , 16}, trinomials fn with δ(fn)=1 and fn having exactly
n distinct roots in Fpn , with pn the smallest prime admitting such a trinomial. In particular,
for each n∈{1, . . . , 16}, a full search was done so that the trinomial fn below has the least
degree among all trinomials over Fpn having exactly n roots in Fpn . (It happens to be the
case that, for n∈{1, . . . , 16}, we can also pick the middle degree monomial of fn to be x.)
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n fn pn
1 1 + x− 2x2 3
2 1 + x− 2x2 5
3 1− 3x+ 2x3 11
4 −2 + x+ x4 23
5 1 + 4x− 5x8 47
6 1 + 24x− 25x33 151
7 −2 + x+ x34 173
8 1 + 23x− 24x21 349
9 −71 + 70x+ x184 619

10 1 + 5x− 6x152 1201
11 −797 + 796x+ x67 2753
12 −82 + 81x+ x1318 4801
13 −1226 + 1225x+ x225 10867
14 −39 + 38x+ x2264 16633
15 29574− 29573x− x27103 71237
16 −364 + 363x+ x2729 8581

Figure 2. Trinomials with exactly n distinct roots in Fpn and pn minimal

By rescaling the variable as necessary, we have forced 1 to be among the roots of each of the
trinomials above. It is easily checked via the last part of Assertion (3) of Theorem 1.1 that
C(fn)=1 for each n∈{1, . . . , 16}.

The least prime p17 for which there is a trinomial f17 with δ(f17)=1 and exactly 17 roots in
Fp17 is currently unknown (as of July 2016). Better and faster code should hopefully change
this situation soon.

References

[BS96] Eric Bach and Jeff Shallit, Algorithmic Number Theory, Vol. I: Efficient Algorithms, MIT Press,
Cambridge, MA, 1996.
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[Wei49] André Weil, “Numbers of solutions of equations in finite fields,” Bull. Amer. Math. Soc. 55, (1949),
pp. 497-508.

E-mail address: qcheng@cs.ou.edu

School of Computer Science, University of Oklahoma, Norman, OK 73019

E-mail address: sgao@math.clemson.edu

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975

E-mail address: rojas@math.tamu.edu

TAMU 3368, College Station, TX 77843-3368

E-mail address: dwan@math.uci.edu

Department of Mathematics, University of California, Irvine, CA 92697-3875


