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ABSTRACT. Suppose ¢ is a prime power and f € F,[z] is a univariate polynomial with exactly
t monomial terms and degree < g — 1. To establish a finite field analogue of Descartes’
Rule, Bi, Cheng, and Rojas (2013) proved an upper bound of 2(q — 1)% on the number
of cosets in F; needed to cover the roots of f in F;. Here, we give explicit f with root
structure approaching this bound: When ¢ is a perfect (¢t —1)-st power we give an explicit ¢-
nomial vanishing on q% distinct cosets of Fy. Over prime fields ), computational data we
provide suggests that it is harder to construct explicit sparse polynomials with many roots.
Nevertheless, assuming the Generalized Riemann Hypothesis, we find explicit trinomials

having Q( —282_ ) distinct roots in F,.
loglogp p

1. INTRODUCTION

How can one best bound the complexity of an algebraic set in terms of the complexity
of its defining polynomials? Over the complex numbers (or any algebraically closed field),
Bézout’s Theorem [Béz06] bounds the number of roots, for a system of multivariate polyno-
mials, in terms of the degrees of the polynomials. Over finite fields, Weil’s famous mid-20t!
century result [Wei49] bounds the number of points on a curve in terms of the genus of
the curve (which can also be bounded in terms of degree). These bounds are optimal for
dense polynomials. For sparse polynomials, over fields that are not algebraically closed,
these bounds can be much larger than necessary. For example, Descartes’” Rule [SL54] tells
us that a univariate real polynomial with exactly ¢ monomial terms always has less than
2t real roots, even though the terms may have arbitrarily large degree. It has been gener-
alized to number fields and p-adic extensions of Q [Lenstra9d8|, and local fields of positive
characteristics [Poonen98].

Is there an analogue of Descartes” Rule over finite fields? Despite the wealth of beautiful
and deep 20®-century results on point-counting for curves and higher-dimensional varieties
over finite fields, varieties defined by sparse univariate polynomials were all but ignored un-
til [CFKLLS00] (see Lemma 7 there, in particular). Aside from their own intrinsic interest,
refined univariate root counts over finite fields are useful in applications such as cryptogra-
phy (see, e.g., [CFKLLSO00]), the efficient generation of pseudo-random sequences (see, e.g.,
[BBKO09]), and refined estimates for certain exponential sums over finite fields [Bou05, Proof
of Theorem 4]. For instance, estimates on the number of roots of univariate tetranomials over
a finite field were a key step in establishing the uniformity of the Diffie-Helman distribution
[CFKLLS00, Proof of Thm. 8, Sec. 4] — a quantitative statement relevant to justifying the
security of cryptosystems based on the Discrete Logarithm Problem.

We are thus interested in the number of roots of sparse univariate polynomials over finite
fields. The polynomial 29 — x having two terms and exactly ¢ roots in F, might suggest that
there is no finite field analogue of Descartes’ rule. However, the roots of x? — x consist of 0
and the roots of 77" — 1, and the latter roots form the unit group F;:=F, \ {0}. For an
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arbitrary binomial az™ + bz™ € F [z] with n>m and a and b nonzero, the roots consist of 0
(if m > 0) and the roots of 2"~ 4 b/a. Note that the number of roots of 2" ™ +b/a in F, is
either 0 or ged(n —m, g —1). In the latter case, the roots form a coset of a subgroup of F}.
For polynomials with three or more terms, the number of roots quickly becomes mysterious
and difficult, and, as we shall demonstrate in this paper, may exhibit very different behaviors
in the two extreme cases where (a) ¢ is a large power of a prime, and (b) ¢ is a large prime.

To fix notation, we call a polynomial f(z) = c;2® + 2 + -+ + ¢z® € F, [z] with
e1<ey< -+ <e;<q—1and ¢; # 0 for all i a (univariate) t-nomial. The best current upper
bounds on the number of roots of f in F,, as a function of ¢, ¢, and the coset structure of
the roots of f, can be summarized as follows, using | - | for set cardinality:

Theorem 1.1. Let f € F[z] be any univariate t-nomial with degree <q — 1 and exponent
set {e1,..., e} containing 0. Set §(f) :=gcd(es,...,er,q — 1), Z(f) :={x€F, | f(x)=0},
R(f):=|Z(f)|, and let C(f) denote the mazimum cardinality of any coset (of any subgroup
of Fy) contained in Z(f). Then:

0. (Special case of [KS96, Thm. 1]) R(f)<*t(q —1).

t—=2

1. [BCR16, Thm. 1.1] Z(f) is a union of no more than 2 (g(;fl)) " cosets, each associated

1/(t-1)
to one of two subgroups Hy C Hy of ¥y, where |Hi|=0(f), [Ha| > (f) <q(f1)> , and

|Hy| can be determined within 2°® (log )M bit operations.
2. [KO16, Thm. 1.2] For t=3 we have R(f)<d(f) { + Tf” and, if we have in addition
that q is a perfect square and 6(f)=1, then R(f)<./q.

3. (See [Kell6, Thms. 2.2 & 2.3]) For any t > 2 we have R(f) < 2(q— 1)=1C(f)Y/ ¢,
Furthermore, C(f) < max{keN : k|(¢—1) and, for all i, there is a j#i with k|(e; —e;)}. W

For any fixed ¢t >2, Dirichlet’s Theorem (see, e.g., [BS96, Thm. 8.4.1, Pg. 215]) implies that
there are infinitely many prime p with ¢|(p — 1), and thus infinitely many prime powers ¢
with t|(¢ — 1). For such pairs (g,t) the bound from Assertion (0) is tight: The roots of

| _
fla)= W e L R ]

are the disjoint union of ¢ — 1 cosets of size §(f) = +. (There are no Hp-cosets for this

t-nomial.) However, Assertions (1) and (3) tell us that we can get even sharper bounds by
making use of the structure of the cosets inside Z(f). For instance, when ¢t=3 and §(f)=1,
Assertion (2) yields the upper bound /g, which is smaller than £ (q — 1) for ¢>5.

While Assertion (3) might sometimes not improve on the upper bound =1(g—1), it is often
the case that C'(f) is provably small enough for a significant improvement. For instance,
when e; =0 and ged(e;, ¢ — 1) =1 for all i >2, we have C(f)=1 and then R(f)<2(q— 1)%.

Our first main result is two explicit families of t-nomials revealing that Assertions (1)—(3)
are close to optimal for non-prime q.

Theorem 1.2. Let t,u,peN with t>2 and p prime. If g=p“—D* then the polynomial
Trup(z) =14+ +2" +. + o

has §(riap) = C(riuy) =1 and exactly ¢*=2/C=Y roots in F,. Furthermore, if q=p™, then
the polynomaial

p(t 2)u

u u_ L. (t—2)u
Graup(®) =14 a + 2" 4o g PP
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has 6(Grup) =1, C(grup) < [t/2], and evactly ¢*=2/* + .. 4 ¢*/* + 1 roots in F,.

Theorem 1.2 is proved in Section 2 below. The polynomials 7, , show that the bounds from
Assertions (1) and (3) of Theorem 1.1 are within a factor of 2 of being optimal, at least for
d(f)=C(f)=1 and a positive density of prime powers ¢q. Note in particular that rs,,, shows
that Assertion (2) of Theorem 1.1 is optimal for g a perfect square and §(f)=1. (See [KO16,
Thm. 1.3] for a different set of extremal trinomials when ¢ is an odd perfect square.) The
second family ¢;,,, reveals similar behavior for a different family of prime powers.

Optimally bounding the maximal number of roots (or cosets of roots) for the case of
prime ¢ is more subtle already in the trinomial case. One reason is that explicit families of
trinomials with many roots over prime fields appear much harder to generate. For instance,
as we'll see below, the smallest prime p for which there is a trinomial f with §(f)=1 and
15 roots in F, is p="71237. (Note that 15 < 71237/4)) Also, it wasn’t until the 1970s that
Cohen proved that, given any n €N and any prime p=e?"°8™) one can always find bel,
with 2" + 2 4+ b having n distinct roots in F, [Coh70, Coh72], ie., he found a family of

trinomials with Q(lololgp > roots in F,, (albeit with unknown constant terms).
glogp

Using conditional results on the splitting of primes in number fields, we are able to give a
completely explicit family of trinomials with a similar number of roots in certain [F,,.

Theorem 1.3. Fiz any n>2 and set hy,(x):=x" —x — 1. Then §(h,)=C(h,)=1 and there
s a prime p>n + 2 satisfying

(a) p = eOM"Vnlo8n) ynconditionally, and

(b) p= O(n**log?n) if the Generalized Riemann Hypothesis (GRH) is true,
with h,, having n distinct roots in IF,.

Theorem 1.3 is proved in Section 3. In particular, we use a classic estimate of Lagarias,
Montgomery, and Odlyzko [LMO79] (reviewed in Section 3 below) on the least prime ideal
possessing a Frobenius element exhibiting a particular Galois conjugacy class. The latter
result is in turn heavily based on the effective Chebotarev Density Theorem of Lagarias and
Odlyzko [LOT7].

Could the existence of trinomials f with §(f) =1 and, say, Q(\/ﬁ) roots in F, (as one
might conjecture from Theorem 1.2) be obstructed by p not being a perfect square? We
feel that p being prime is such an obstruction and, based on experimental results below, we
conjecture the following upper bound:

Conjecture 1.4. There is an absolute constant ¢ > 1 such that, for any prime p >3 and
v,e2,e3€{1,...,p—2}, with e3>ey>0 and ged(eq, e3,p —1)=1, the trinomial v+ x° + 3
has no more than (logp)® roots in F,,.

(See also [KO16, Conj. 1.5 & Sec. 4] for other refined conjectures and heuristics in this
direction.) It is a simple exercise to show that, to compute the maximal number of roots in
[F, of trinomials with 0(f)=1, one can restrict to the family of trinomials in the conjecture.

For any n € N, let p,, be the least prime for which there exists a univariate trinomial f,,
with §(f,)=1 and exactly n distinct roots in F,, . Note that p, is well-defined according to
[Coh70, Coh72]. We did a computer search to find the values of p, for 1 <n < 16. They
are...

n|l1 23 4 5 6 7 8 9 10 11 12 13 14 15 16

pn|3 5 11 23 47 151 173 349 619 1201 2753 4801 10867 16633 71237 8581
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For example, pig = 8581 because —364 + 363z + 227 has exactly 16 roots in Fgsg1, and no
trinomial f €F,[z] with p <8581 and d(f)=1 has more than 15 roots in F,,. In the appendix,
we give representative trinomials for each p, above.

To get a feel for how the maximal number of roots of a trinomial grows with the field size,
let us compare the graphs (drawn darker) of the functions 0.91log x and 1.77log x with the
piecewise linear curve (drawn lighter) going through the sequence of points ((p1, 1), ..., (p12, 12),
(p16, 16), (P13, 13), (p14, 14), (p15, 15)) as shown in Figure 1 below. We used some simple Maple

2000 4000 6000 8000 10000 12000 14000 16000

FIGURE 1

and Sage programs that took a few hours to find most of the data above. The value of py;
took C code (written by Zander Kelley) running on a supercomputer for 2 days.

Quantitative results on sparse polynomials over finite fields sometimes admit stronger
analogues involving complex roots of unity. For instance, [BCR13, BCR16] and [Che(7]
deal with the complexity of deciding whether a sparse polynomial vanishes on a (finite)
subgroup of, respectively, F; or C*. It is thus interesting to observe a recent complex
analogue to our trinomial root counts over F: Theobald and de Wolff [TdW14] proved that,
if ged(ea, e3) =1, a trinomial ¢; + cox®® + c32° € Cx] can have at most 2 complex roots of
the same absolute value. So any such trinomial has at most 2 roots in the torsion subgroup
{CeC | ¢"=1 for some n € N} of C*. This upper bound is sharp: Consider (z — 1)(x — ()
for any ¢ ¢ {£1} satisfying (=1 for some n>3.

2. MAIN LOWER BoUNDS IN THE PRIME POWER CASE

Proof of Theorem 1.2: To establish the root count for r;,, it clearly suffices to prove
that 7., divides 29 — z or, equivalently, 2#"~"" = 2 in the ring R := F,[z]/(riu,(z)).
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. (t—1)u (t—2yu\ P* 0 t—mu\ P .
Toward this end, observe that zP = (mp ) = (—1 —xP - — 2P ) in

R. Since (a + b)P" = a?" + *" in any ring of characteristic p, we thus obtain T =
(=17 (L4 a?" +--- +p'=2¥) in R. The last factor is merely ry,,(z) — z, so we obtain
2P = (=1)P"(=z) = (=1)"**"z in R. Since (—1)*7" =1 in F, for all primes p, we have
thus established the root count for 7, .

That §(r¢u,p) = 1 is clear since r;,, has a nonzero constant term and 1 as one of its
exponents. Likewise, 0(g; ) =1. That C(r,,)=1 is clear because the lowest exponents of
Ttup are 0 and 1, the rest are powers of p, and ged(p*, ¢ — 1)=1 for all k€N. We postpone
proving our upper bound on C(gy ) until after we prove our stated root count for g, .

Consider now the set S of elements in IF, whose trace to F,u is zero, that is,

S = {aqu|a+a7’"+a7’2“+-~~+ap(t_l)u:O}'

Then S has ¢/p* =p"~Y* elements and is a vector space of dimension ¢ — 1 over Fpu. Let
a € S be nonzero. We show that a?"~! is a root of Gtup:

t—2

t—2 t—1
u_1 u_1 iu_) .. ] (i+1)u_1 1 iu
gt,um(ap ) =1+ § a(p P tptl) — 14 E a? = a '_EO a? =0.

i=1 i=1

Now note that, for any a € S and any nonzero w € [F,«, the element aw is also in S. Also,
for a,beF,, a?"~1=p""~! if and only if b=aw for some nonzero w € Fyu. Therefore, when a
runs through S\ {0}, the element a?“~! yields (p®—1* —1)/(p* — 1) =14 p* + - - - + pt=2u
roots for g, p.

To finally prove our upper bound on C(gt ), note that, for j>i,

i—1)u
L4+ph4--- +p(j—2)uzu
pr—1 "7
and
p(jfl)u -1 B p(ifl)u -1 :p(i—l)u p(j*i)u -1
pr—1 pt—1 =1 )
So for 1> 2,

, (=du _ 1 lj—ilu _ 1
- max ged (p(z_l)" (pu—) pt — 1) =  max gcd (Zju—,pt“ — 1)
je{L . th\{i} pt—1 GE{L,t N\ {i} p*—1

fu
—1
= max ged (p - 1) :
2e{1,..., max{i—1,t—i}} pv—1
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H ) D u = i d (pu 717 1>
ence (gt, ,p) 16?1171'%} ee{l,..., rgi}f—l,t,i}} &C 1P

Van
pt—1
= cd v_1
cetimli2 S ( —1 ¥ )
1 /p™—1
= cd v q
etttz o ( 1’(p“ —1> @ >>
-1 tu -1 Ku_l
d(p 7p )ng(p 7pu_1)a
tetiomtzpy >\ pr— 1 pr— 1 pt—1

ged(Lt)u 1
= max <p—) ged(l,p* —1).

ee{1,...,[t/2]}} pv —1

The last equality follows easily from two elementary facts: (1) ged(zf—1, 2t —1) =28 1,
and (2) (x — 1)( 5*2+2x€*3+---—|—(€—2)x+(€— N)=a""1+ -+ 22 +2— (1)

So D(grup) < . L/ J}l -0 < |t/2]. By [Kell6, Prop. 2.4] and [Kell6, Thm. 2.2],
e
D(g1up) > C(gtup), so we are done. H

3. MAIN LOWER BOUNDS IN THE PRIME CASE

We’ll need several results from algebraic number theory. First, let K be any number field,
i.e., a finite algebraic extension of Q. Let dx denote the discriminant of K over Q, and Oy
the ring of algebraic integers of K, i.e., those elements of K with monic minimal polynomial
in Z[x]. We need to know the size of the smallest prime p € Z that splits completely in Ok.
There are various bounds in the literature that are proved via some effective version of the
Chebotarev Density Theorem. For instance:

Theorem 3.1. (See [LO77, Cor. 1.2 & pp. 461-462] and [LMO79, Thm. 1.1].) If f € Z|x]
1s any rreducible polynomial of degree n then the least prime p for which the reduction of f

mod p has n distinct roots in F, is (unconditionally) no greater than dfo((l), where K CC s
the splitting field of f. Furthermore, if GRH is true, then p=0((log dx)?).

The papers [LO77, LMO79] in fact work in much greater generality: Our limited paraphrase
above is simply the special case where one is looking for a prime yielding a Frobenius element
corresponding to the identity element of the Galois group of f over Q.

The best recent estimates indicate that, in the unconditional case of Theorem 3.1, we
can take the O-constant to be 40, for sufficiently large dyx [KN14]. Also, for an abelian
extension K over Q, Pollack [Poll4] gives a much better bound (in the unconditional case):

1
p=0.k <d}*(+6> where € > 0 is arbitrary, and the implied O-constant depends only on ¢ and

the degree of K over Q.

We will also need good bounds on discriminants of number fields. In the following theorem,
the lower bound is due to Minkowski [Min91] and the upper bound follows easily from work
of Toyama [T6y55] (by induction on the number of composita generated by the distinct roots

of f).

Theorem 3.2. (See, e.g., [BS96 pp 259-260].) For any number field K of degree n over

Q, we have dg > (Z?;; > (”e;/;‘) > 28 Also, if K has minimal polynomial f € Q[z] and L is

the splitting field of f, then d;, divides d;; DR (n=2inLn™ 2401 g
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Proof of Theorem 1.3: Clearly, d(h,) =1. Also, since ged(n,n — 1) =1, it is clear that
C(hn)=1. Now, for any n > 2, the trinomial h,, := 2™ — x — 1 is irreducible over Q [Sel56].
Let a € C be any root of h, and let K = Q(«), so that [K : Q] = n. Then dk divides
the resultant of h, and h], [BS96, Thm. 8.7.1, pg. 228]. The resultant of h, and h! can
then be computed explicitly to be (—1)% (n™ + (—=1)"(n — 1) ') [Swa62]. Hence dg
divides n" + (—1)"(n — 1)"~!. (We note that an elegant modern development of trinomial
discriminants can be found in Chapter 12 of [GKZ94]; see Formula 1.38 on Page 406 in
particular).

Let L be the the splitting field of h,,. Then L has degree at most n! and, by Theorem 3.2,
dg > 28" and dj, divides (n" + (—1)"(n — 1)”*1)(”*1)!+(nf2)!n+---+1!n"*2+0!”n71_ Note that, for

K~ 63n L )

n >3, we have n" + (—1)"(n — 1)" 1 < n™ 4 (n — 1)" < enloantsr

Also, by Stirling’s Estimate [Rud76, Pg. 200], n!<ey/n (2)" (for all n>1), so we have

(n—1)!+n(n—2)! +--+2m" 3 + 1In""2 4 olp™!

1\ _ 9\ "2 N
< e\/n—1<n > —i—e\/n—Z(n ) n+---+eﬁ<—> n"? 4 nmt
e e

e

1 1
< 6\/5 (1 + g + -+ 6”1) n = (1 —el/e) n—1/2 <4.31n”—1/27

and thus d; < eton"""/?logn,
Theorem 3.1 then tells us that there is a prime p € Z so that h,, splits completely modulo
p with no repeated roots where

(a) p= O™/ %logn) — gelmtt/zol)lonn unconditionally, and
(b) p = O((n""/?logn)?) = e@rtitelen if GRH is true. W

We used the family of trinomials ™ — 2 — 1 mainly for the sake of simplifying our proof.
Many other families would likely exhibit the same behavior, albeit with some additional
intricacies in applying prime ideal bounds. However, the deeper question is to understand
the structure of truly extremal trinomials over prime fields, such as those appearing in the
Appendix below.
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APPENDIX: SOME EXTREMAL TRINOMIALS

We list in Figure 2, for n€{1,...,16}, trinomials f,, with 6(f,)=1 and f,, having exactly
n distinct roots in [F,, , with p,, the smallest prime admitting such a trinomial. In particular,
for each ne{1,...,16}, a full search was done so that the trinomial f,, below has the least
degree among all trinomials over F, having exactly n roots in I, . (It happens to be the
case that, for n€{1,...,16}, we can also pick the middle degree monomial of f, to be x.)
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n Jn Pn

1 1+ 2 — 222 3

2 14z — 222 5

3 1— 3z + 223 11

4 24+ 23

5 1+ 4z — 528 47

6 1+ 247 — 25233 151

7 24+ 173

8 1+ 237 — 2422 349

9 —71 + 70z + ' 619
10 1+ 5z — 62192 1201
11 —797 + 7962 + 257 2753
12 —82 4 81z + 318 4801
13| —1226 + 1225z + %25 | 10867
14 —39 4 38z + 22264 16633
15 | 29574 — 295732 — 227103 | 71237
16 —364 + 3632 + 227 8581

FIGURE 2. Trinomials with exactly n distinct roots in I, and p,, minimal

By rescaling the variable as necessary, we have forced 1 to be among the roots of each of the
trinomials above. It is easily checked via the last part of Assertion (3) of Theorem 1.1 that
C(fn)=1 for each ne{1,...,16}.

The least prime p;7 for which there is a trinomial fi7 with §(fi7) =1 and exactly 17 roots in
[F,,, is currently unknown (as of July 2016). Better and faster code should hopefully change
this situation soon.
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