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Abstract. For the Artin-Schreier curve yq − y = f(x) defined over a
finite field Fq of q elements, the celebrated Weil bound for the number of
Fqr -rational points can be sharp, especially in super- singular cases and
when r is divisible. In this paper, we show how the Weil bound can be
significantly improved, using ideas from moment L-functions and Katz’s
work on `-adic monodromy calculations. Roughly speaking, we show
that in favorable cases (which happens quite often), one can remove an
extra

√
q factor in the error term.

1. Introduction

Let k = Fq be a finite field of characteristic p > 2 with q elements, and
let f ∈ k[x] be a polynomial of degree d > 1. Without loss of generality, we
can and will always assume that d is not divisible by p. Let Cf be the affine
Artin-Schreier curve defined over k by

yq − y = f(x).

Let r be a positive integer, and let Nr(f) denote the number of Fqr -rational
points on Cf . The genus of the smooth projective model of Cf is given by

g = (q − 1)(d− 1)/2.

The celebrated Weil bound in this case gives the estimate

|Nr(f)− qr| ≤ (d− 1)(q − 1)q
r
2 .

This bound can be sharp in general, for instance when Cf is supersingular
and r is divisible. If qr is not a square, Serre’s improvement [14] leads to a
somewhat better bound:

|Nr(f)− qr| ≤ (d− 1)(q − 1)

2
[2q

r
2 ],

where [x] denotes the integer part of a real number x.
In this paper, we shall show that if q is large compared to d (and thus the

genus g = (d−1)(q−1)/2 is small compared to the field size qr with r ≥ 2),
then the above Weil bound can be significantly improved in many cases.
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The type of theorems we prove is of the following nature. For simplicity, we
just state one special case.

Theorem 1.1. Let r ≥ 1 and p > 2. If the derivative f ′ is square-free
and either r is odd or the hypersurface f(x1) + · · · + f(xr) = 0 in Ark is
non-singular, then we have the estimate

|Nr(f)− qr| ≤ Cd,rq
r+1
2 ,

where Cd,r is the constant

Cd,r =

r∑
a=0

|a− 1|
(
d− 2 + r − a

r − a

)(
d− 1

a

)
.

Note that the constant Cd,r is independent of q and it is a polynomial in
d with degree r. Thus, for fixed d and r, our result essentially removes an
extra

√
q factor from Weil’s bound. The non-singularity hypothesis cannot

be dropped in general, as there are cases for r even where we can have

|Nr(f)− (qr + q
r
2

+1)| ≤ Cd,rq
r+1
2 ,

see section 4 for more details. This gives further examples that the q-factor
in the Weil bound cannot be replaced by an O(

√
q) factor in general.

As an extreme illustration, we consider the elementary case that r = 1. It
is clear that N1(f) = qnf , where nf is the number of distinct roots of f(x)
in Fq which is at most d. Thus, the best estimate in this case should be

|N1(f)− q| ≤ (d− 1)q,

which is precisely what our bound gives! It is far better than the Weil bound

|N1(f)− q| ≤ (d− 1)(q − 1)
√
q.

For r = 2, our bound takes the form

|N2(f)− q2| ≤ (d− 1)2q3/2,

which is better than the Weil bound

|N2(f)− q2| ≤ (d− 1)(q − 1)q

as soon as q ≥ (d− 1)2 + 3. For r = 3, our bound takes the form

|N3(f)− q3| ≤ (d− 1)(d2 − 3d+ 3)q2,

which is better than the Weil bound

|N3(f)− q3| ≤ (d− 1)(q − 1)q3/2

as soon as q ≥ (d2 − 3d+ 4)2.
Our idea is to translate Nr(f) to moment exponential sums and then

calculate the associated moment L-function as explicitly as possible. Let ψ
be a fixed non-trivial additive character of k. For f ∈ k[x], it is clear that
we have the formula

Nr(f) =
∑
t∈k

∑
x∈kr

ψ(Tr(tf(x))),
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where kr = Fqr and Tr denotes the trace map from kr to k. Separating the
term from t = 0, we obtain

(1) Nr(f)− qr =
∑
t∈k?

∑
x∈kr

ψ(Tr(tf(x))).

Now, Weil’s bound for exponential sums gives the estimate∣∣∣∣∣∣
∑
x∈kr

ψ(Tr(tf(x)))

∣∣∣∣∣∣ ≤ (d− 1)q
r
2

for every t ∈ k?. It follows that

|Nr(f)− qr| ≤ (q − 1)(d− 1)q
r
2 .

In order to improve this bound, we need to understand the cancelation of
the outer sum of (1) over t ∈ k?. Heuristically, one expects that the outer
sum contributes another O(

√
q) factor instead of the trivial q factor, if f

is sufficiently “random”. This is in fact what we shall prove using the full
strength of Deligne’s general theorem on Riemann hypothesis.

The double sum in (1) is precisely a moment exponential sum associated
to the two variable polynomial tf(x). Thus, we can use the techniques of
moment L-functions to get improved information about the solution number
Nr(f). We now briefly outline our method. Let ` be a fixed prime different
from p. Let Gf denote the relative `-adic cohomology with compact support
associated to the family of one variable exponential sums attached to tf(x),
where x is the variable and t is the parameter on the torus Gm. Applying
the `-adic trace formula fibre by fibre, we obtain∑

t∈k?

∑
x∈kr

ψ(Tr(tf(x))) = −
∑
t∈k?

Tr(Frobrq|(Gf )t),

where (Gf )t is the fibre of Gf at t, and Frobq is the geometric q-th power
Frobenius map. Alternatively, one can rewrite

Tr(Frobrq|(Gf )t) = Tr(Frobq|[Gf ]rt ),

where [Gf ]r denotes the r-th Adams operation of Gf . It is a virtual `-adic
sheaf on Gm. For example, Katz [9] used the formula

[Gf ]r =

r∑
i=1

(−1)i−1i · Symr−iGf ⊗ ∧iGf .

We shall use the following optimal formula from [17] given by

[Gf ]r =
r∑
i=0

(−1)i−1(i− 1) · Symr−iGf ⊗ ∧iGf .

Note that the term i = 0 does not occur in the first formula, and the term
i = 1 does not occur in the second formula as the coefficient becomes zero
for i = 1. The coefficients of the second formula are smaller and thus lead
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to fewer number of zeros and poles for the corresponding L-functions. In
this way, we get the smaller constant Cd,r in Theorem 1.1.

It follows that

Nr(f)− qr =

r∑
i=0

(−1)i(i− 1) ·
∑
t∈k?

Tr(Frobq|(Symr−iGf ⊗ ∧iGf )t).

This reduces our problem to the study of the L-function over Gm of the
`-adic sheaves Symr−iGf ⊗ ∧iGf for all 0 ≤ i ≤ r. By general results of
Deligne [3], we deduce that

|Nr(f)− (qr + δf,rq
r
2

+1)| ≤ Cd,rq
r+1
2 ,

where Cd,r comes from the Euler characteristic of the components of the
virtual sheaf [Gf ]r, and

δf,r =
r∑
i=0

(−1)i−1(i− 1) · dimH2
c(Gm,k̄,Symr−iGf ⊗ ∧iGf ).

Under the conditions of Theorem 1.1, it follows that the sheaf Symr−iGf ⊗
∧iGf has no geometrically trivial component for any 0 ≤ i ≤ r, and thus we
deduce that δf,r = 0.

Our main result is somewhat stronger. We determine the weights, the triv-
ial factors and the degrees of the L-functions of all the sheaves Symr−iGf ⊗
∧iGf , thus obtaining a fairly complete information about the associated mo-
ment L-function, see [5][6] and [13] for the study of moment L-functions in
two other examples, namely, the family of hyper-Kloosterman sums and the
Dwork family of toric Calabi-Yau hypersurfaces. Under slightly more gen-
eral hypotheses, Katz’s results on monodromy group calculations [7][8] give
stronger results which lead to further improvements of Theorem 1.1 (see
Corollaries 4.2 and 4.6). See also [9] for a result on the average number of
rational points on hypersurfaces obtained using a similar approach.

The possibility of our improvement for the Weil bound in the case of Artin-
Schreier curves is due to the fact that the curve has a large automorphism
group Fq, which is the group of Fq-rational points on the group scheme A1.
We expect that similar improvements should exist for many other curves
(or higher dimensional varieties) with a large automorphism group. For
example, in the last section of this paper we treat the case of Artin-Schreier
hypersurfaces

yq − y = f(x1, ..., xn).

This method leads to similar improvements of Deligne’s bound for such
hypersurfaces in many cases. As an explicit new example to try, we would
suggest the affine Kummer curve of the form

y
(q−1)
e = f(x),

where e is a fixed positive integer, q is a prime power congruent to 1 modulo
e, and f(x) ∈ k[x] is a polynomial of degree d. For r ≥ 1 and Nr(f, e)
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denoting the number of Fqr -rational points on the above Kummer curve, we
conjecture that for certain generic f , there is the following estimate

|Nr(f, e)− qr| ≤ sd,e,rq
r+1
2 ,

where sd,e,r is a constant independent of q. We do not know how to prove
this conjecture, even in the case e = 1.

To conclude this introduction, we raise another open problem. In The-
orem 1, we assumed that the curve Cf : yq − y = f(x) is defined over the
subfield Fq of Fqr . We believe that similar improvement is also true if Cf is
defined over the larger field Fqr . But we could not prove this at present.

Remarks. Weil’s estimate gives both an upper bound and a lower bound
for the number of rational points on a curve of genus g over the finite field
Fq. Improvements for the lower bound are in general harder to get. Im-
provements for the upper bound can often be obtained by more elementary
means. In fact, there are already several such results in the literature for
large genus curves. The first result along these lines is due to Stark [15] in
the hyperelliptic case, using Stepanov’s method. Using the explicit formula,
Drinfeld-Vladut and Serre [14] obtained an upper bound improvement when

2g > qr − qr/2, which in our Artin-Schreier setting becomes

(d− 1)(q − 1) > qr − qr/2.
For r > 1, this means that q must be small compared to d. In comparison,
our improvements apply when q is large compared to d. Using a geometric
intersection argument, Stöher-Voloch [16] obtained another upper bound
which in our case becomes

Nr(f) ≤ 1

2
D(D + qr − 1),

where D = max(d, q).

2. Cohomology of the family t 7→
∑
ψ(Tr(tf(x)))

Let k = Fq be a finite field of characteristic p, and f ∈ k[x] a polynomial
of degree d prime to p. Let Cf be the Artin-Schreier curve defined on A2

k
by the equation

(2) yq − y = f(x)

and denote by Nr(f) its number of rational points over kr := Fqr .
Fix a non-trivial additive character ψ : k → C?. It is clear that

(3) Nr(f) =
∑
t∈k

∑
x∈kr

ψ(t · Tr(f(x))) =
∑
t∈k

∑
x∈kr

ψ(Tr(tf(x)))

where Tr denotes the trace map kr → k.
Fix a prime ` 6= p and an isomorphism ι : Q̄` → C. Consider the Galois

étale cover of Gm×A1 (with coordinates (t, x)) given by u−uq = tf(x), with
Galois group k; and let Lψ(tf(x)) be the rank 1 smooth Q̄`-sheaf correspond-

ing to the representation of k given by ψ−1 via ι. Define Kf = Rπ!Lψ(tf(x)) ∈
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Dbc(Gm,k, Q̄`), where π : Gm×A1 → Gm is the projection. The trace formula
implies that the trace of the action of the r-th power of a local geometric
Frobenius element at t ∈ k? on Kf is given by

∑
x∈kr ψ(Tr(tf(x))).

It is known [3, 3.7] that Kf = Gf [−1] for a smooth sheaf Gf of rank d− 1
and punctually pure of weight 1, whose local r-th power Frobenius trace at
t ∈ k? is then given by −

∑
x∈kr ψ(Tr(tf(x))). Therefore

(4) Nr(f)− qr =
∑
t∈k?

∑
x∈kr

ψ(Tr(tf(x)))

= −
∑
t∈k?

Tr(Frobrt |(Gf )t) = −
∑
t∈k?

Tr(Frobt|[Gf ]rt )

where

[Gf ]r =

r∑
i=0

(−1)i−1(i− 1) · Symr−iGf ⊗ ∧iGf

is the r-th Adams operation on Gf .
The sheaf Gf can also be interpreted in terms of the Fourier transform.

Consider the sheaf f?Q̄` on A1
k. There is a canonical surjective trace map

φ : f?Q̄` = f?f
?Q̄` → Q̄`, let Ff be its kernel. It is a constructible sheaf of

generic rank d− 1 on A1
k.

Lemma 2.1. If j : Gm,k → A1
k is the inclusion, the shifted sheaf j!Gf [1] is

the Fourier transform of Ff [1] with respect to ψ.

Proof. Taking Fourier transform in the distinguished triangle inDbc(A1
k, Q̄`):

Ff [1]→ f?Q̄`[1]→ Q̄`[1]→

we get a distinguished triangle:

FTψ(Ff )[1]→ FTψ(f?Q̄`)[1]→ (Q̄`)0(−1)[0]→ .

where (Q̄`)0 is a punctual sheaf supported at 0. If µ : A1 × A1 → A1

is the multiplication map, the Fourier transform of f?Q̄`[1] is given by
Rπ1!(π

?
2f?Q̄` ⊗ µ?Lψ)[2] = Rπ1!(Lψ(tf(x)))[2], where πi : A1 × A1 → A1

are the projections. In particular, by proper base change j?FTψ(f?Q̄`)[1] =
j?Rπ1!(Lψ(tf(x)))[2] = Kf [2] = Gf [1]. Applying j? to the triangle above we
find quasi-isomorphisms

j?FTψ(Ff )[1] ∼= Gf [1]

and

j!j
?FTψ(Ff )[1] ∼= j!Gf [1].

To conclude, it remains to show that the natural map j!j
?FTψ(Ff )[1]→

FTψ(Ff )[1] is a quasi-isomorphism. Since its restriction to Gm,k is a quasi-
isomorphism, we only need to check that it induces a quasi-isomorphism
on the stalks at (a geometric point over) 0, that is, that FTψ(Ff )0 = 0.
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By definition of the Fourier transform, FTψ(Ff )0 = RΓc(A1
k̄
,Ff ). We con-

clude by using the long exact sequence of cohomology with compact support
associated to the sequence

0→ Ff → f?Q̄` → Q̄` → 0,

since Hi
c(A1

k̄
, f?Q̄`) = Hi

c(A1
k̄
, Q̄`) = 0 for i 6= 2 and H2

c(A1
k̄
, f?Q̄`) = H2

c(A1
k̄
, Q̄`) =

Q̄`(−1) is one-dimensional. �

We can now use Laumon’s local Fourier transform theory to determine
the monodromy actions at 0 and ∞ for Gf . Recall that, for every charac-
ter χ : k? → Q̄?

` , there is an associated Kummer sheaf Lχ on Gm,k: The
(q−1)-th power map Gm,k → Gm,k is a Galois étale cover with Galois group
canonically isomorphic to k?, and one just takes the pull-back of the char-
acter χ̄ to π1(Gm,k, η̄) � k?. For every d|q− 1, if [d] denotes the d-th power
map Gm,k → Gm,k we have [d]?Q̄` =

⊕
Lχ, where the sum is taken over all

characters of k? such that χd is trivial.
Assume that k contains all d-th roots of unity. The sheaf Ff is smooth on

the complement U of the set of the critical values of f in A1. Since d is prime
to p, in a neighborhood of infinity the map x 7→ f(x) = adx

d(1 +
ad−1

adx
+

· · ·+ a0
adxd

) is equivalent (for the étale topology) to the map x 7→ adx
d (just

by making the change of variable x 7→ αx, where αd = 1+
ad−1

adx
+ · · ·+ a0

adxd
).

In particular, the decomposition group D∞ at infinity acts on the generic
stalk of f?Q̄` through the direct sum of the tame characters (ad)?Lχ for all

non-trivial characters χ of k? such that χd = 1, where (ad) : Gm,k → Gm,k

is the multiplication by ad map. Since (ad)?Lχ = (a−1
d )?Lχ = χ̄(ad)

deg⊗Lχ,
we conclude that D∞ acts on the generic stalk of Ff via the direct sum⊕
χ̄(ad)

deg ⊗ Lχ taken over all non-trivial characters χ of k? such that χd

is trivial.

Proposition 2.2. Suppose that k contains all d-th roots of unity. The
action of the decomposition group D0 at 0 on Gf is tame and semisimple,

and it splits as a direct sum
⊕

(χ(ad)g(χ̄, ψ))deg ⊗ Lχ over all non-trivial

characters χ of k? such that χd = 1, where g(χ̄, ψ) := −
∑

t χ̄(t)ψ(t) is the
Gauss sum.

Proof. By ([12, Proposition 2.5.3.1],[8, Theorem 7.5.4]), the local mon-
odromy at 0 of Gf can be read from the local monodromy at infinity of Ff .

More precisely, we have LFT (∞,0)(
⊕
χ̄(ad)

deg⊗Lχ) =
⊕
LFT (∞,0)(χ̄(ad)

deg⊗
Lχ). Now, for every χ, since the Fourier transform commutes with tensoring

by a locally constant sheaf (by the projection formula, since π?1(αdeg) = αdeg

and µ?(αdeg) = αdeg for π1 and µ : A1
k × A1

k → A1
k the projection and mul-

tiplication) we have LFT (∞,0)(χ̄(ad)
deg ⊗ Lχ) = χ̄(ad)

deg ⊗ LFT (∞,0)Lχ =

χ̄(ad)
deg ⊗ g(χ, ψ)deg ⊗ Lχ̄ by [12, Proposition 2.5.3.1] (note that Lχ corre-

sponds to Vχ̄ as a representation of D∞ and to V ′χ as a representation of D0

in the notation of [12] due to the choice of uniformizers). �
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For simplicity, we will assume from now on that f ′ is square-free and
p > 2. Suppose that k contains all roots of f ′ (and therefore all critical
values of f). Let s ∈ k be a critical value of f . The polynomial fs := f − s
has at worst double roots and k contains all its double roots. Let gs be the
square-free part of fs (i.e. fs divided by the product of all its monic double
linear factors), which lies in k[x]. Let S0 be the henselization of A1

k at s,
z1, . . . , ze ∈ k the double roots of fs, Sj the henselization of A1

k at zj for
j = 1, . . . , e and T the union of the henselizations of A1

k at the closed points
of the subscheme defined by gs = 0. We have a cartesian diagram

(
∐
j Sj)

∐
T −−−−→ A1

ky(
∐
j hj)

∐
h

yf
S0 −−−−→ A1

k

where the map hj : Sj → S0 is isomorphic (for the étale topology) to the
map x 7→ bj(x − zj)2 (where bj is fs(x)/(x − zj)2 evaluated at zj , that is,
f ′′(zj)/2) via the change of variable mapping the local coordinate x − zj
to α(x − zj), where α ∈ Sj is a square root of fs(x)/bj(x − zj)

2 (which
exists by Hensel’s lemma, since its image in the residue field k is 1), and
h : T → S0 is finite étale. In particular, the decomposition groupDs at s acts
on the generic stalk of f?Q̄` through the direct sum

⊕
j(1⊕ (bj)?Lρ)

⊕
L =⊕

j(ρ(bj)
deg ⊗ Lρ)

⊕
(e · 1⊕ L) where L is unramified and ρ = ρ̄ : k? → Q̄?

`

is the quadratic character.

Proposition 2.3. Suppose that p > 2, f ′ is square-free and all its roots are
in k. The action of the decomposition group D∞ at infinity on Gf splits as

a direct sum
⊕

z(ρ(bz)g(ρ, ψ))deg ⊗Lρ ⊗Lψf(z) where the sum is taken over

the roots of f ′, bz = f ′′(z)/2, ρ : k? → Q̄?
` is the quadratic character and

g(ρ, ψ) = −
∑

t ρ(t)ψ(t) the corresponding Gauss sum.

Proof. By ([12],[8, Theorem 7.5.4]), the local monodromy at infinity of
Gf can be read from the local monodromies of Ff . More precisely, the part
of slope > 1 corresponds to the slope > 1 part of the local monodromy at
infinity of Ff , so it vanishes. The part of slope ≤ 1 is a direct sum, over
all critical values s of f , of Lψs tensored with the local Fourier transform

LFT (0,∞) applied to the action of Is on the generic stalk of Ff modulo its
Is-invariant space.

Using [12, 2.5.3.1] and the fact that Fourier transform commutes with

tensoring by unramified sheaves, for every root z of f ′ LFT (0,∞)(ρ(bz)
deg ⊗

Lρ) = ρ(bz)
deg⊗g(ρ, ψ)deg⊗Lρ. So each critical value s contributes a factor⊕

f(z)=s(ρ(bz)g(ρ, ψ))deg ⊗Lρ ⊗Lψs to the monodromy of Gf at infinity. �

We can now compute the determinant of Gf :

Corollary 2.4. Suppose that k contains all d-th roots of unity. If d is
odd, the determinant of Gf is the Tate-twisted Artin-Schreier sheaf Lψs((1−
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d)/2), where s = s1 + · · · + sd−1 is the sum of the critical values of f
and ψs(t) = ψ(st). If d is even, the determinant of Gf is Lρ ⊗ Lψs ⊗
(ερ(ad)g(ρ, ψ))deg((2−d)/2), where ρ is the multiplicative character of order
2, g(ρ, ψ) = −

∑
t ρ(t)ψ(t) is the corresponding Gauss sum, ad is the leading

coefficient of f , ε = 1 if d ≡ 0 or 2 mod 8 and ε = (−1)(q−1)/d if d ≡ 4 or
6 mod 8.

Proof. The determinant of Gf is a smooth sheaf of rank one on Gm,k. At

0, it is isomorphic by proposition 2.2 to the product
⊗

χd=1,χ 6=1

(
(χ(ad)g(χ̄, ψ))deg ⊗ Lχ

)
.

For any χ we have
(
(χ(ad)g(χ̄, ψ))deg ⊗ Lχ

)
⊗
(
(χ̄(ad)g(χ, ψ))deg ⊗ Lχ̄

)
=

(g(χ̄, ψ)g(χ, ψ))deg = (χ(−1)q)deg. If d is odd, the non-trivial characters
with χd = 1 can be grouped in conjugate pairs. Moreover, χ(−1) =
χ((−1)d) = χd(−1) = 1. We conclude that the determinant at 0 is the

unramified character (q
d−1
2 )deg = Q̄`(

1−d
2 ). At infinity, it is geometrically

isomorphic by proposition 2.3 to the product
⊗

z(Lρ ⊗ Lψf(z)) = Lψs (the

hypothesis that k contains all roots of f ′ is not needed for the geometric iso-
morphism, since it is always satisfied in a sufficiently large finite extension
of k). So det(Gf ) ⊗ Lψ−s is everywhere unramified and therefore geometri-

cally constant. Looking at the Frobenius action at 0, it must be Q̄`(
1−d

2 ),

so det(Gf ) = Lψs(1−d
2 ).

If d is even, the factor at 0 corresponding to the quadratic character ρ

stays unmatched, so as a representation ofD0 the determinant is (εq
d−2
2 )deg⊗

(ρ(ad)g(ρ, ψ))deg ⊗Lρ, where ε =
∏(d−2)/2
i=1 χi(−1) for a fixed character χ of

exact order d. At∞ it is geometrically isomorphic to Lρ⊗Lψs , so det(Gf )⊗
Lρ ⊗ Lψ−s is everywhere unramified and therefore geometrically constant.

Looking at the Frobenius action at 0, it must be (εq
d−2
2 ρ(ad)g(ρ, ψ))deg, so

det(Gf ) = Lρ ⊗ Lψs ⊗ (ερ(ad)g(ρ, ψ))deg(2−d
2 ).

It remains to compute the value of ε. We have

ε =

(d−2)/2∏
i=1

χi(−1) = χd(d−2)/8(−1) = χ((−1)d(d−2)/8).

If d ≡ 0 or 2 mod 8, d(d − 2)/8 is even and therefore ε = 1. If d ≡ 4 or 6

mod 8, d(d− 2)/8 is odd so ε = χ(−1) = (−1)(q−1)/d. �

3. The moment L-function of Gf .

Recall the definition [4] of the moment L-function for the sheaf Gf . For a
fixed r ≥ 1, let

Lr(f, ψ, T ) :=
∏

t∈|Gm,k|

1

det(1− FrobrtT
deg(t)|(Gf )t)

,

where |Gm,k| denotes the set of closed points of Gm,k.
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It is known ([4, Theorem 1.1]) that Lr(f, ψ, T ) is a rational function, and
we have the formula

(5) Lr(f, ψ, T ) =
det(1− FrobkT |H1

c(Gm,k̄, [Gf ]r))

det(1− FrobkT |H2
c(Gm,k̄, [Gf ]r))

=

=

∏r
i=0 det(1− FrobkT |H1

c(Gm,k̄, Symr−iGf ⊗ ∧iGf ))(−1)i−1(i−1)∏r
i=0 det(1− FrobkT |H2

c(Gm,k̄, Symr−iGf ⊗ ∧iGf ))(−1)i−1(i−1)
.

Thus, we get a decomposition

(6) Lr(f, ψ, T ) =
Q(T )P0(T )P∞(T )

P (T )P ′(T )
.

We now describe each of the factors in this decomposition.
First,

Q(T ) =

r∏
i=0

det(1− FrobkT |H1(P1
k̄, j?(Symr−iGf ⊗ ∧iGf )))(−1)i−1(i−1)

is the non-trivial factor. Notice that the dual of Gf is G−f (1), since Ff is self-
dual and D ◦FTψ = FTψ̄ ◦D(1) [11, Corollaire 2.1.5] and FTψ̄Ff [1] = [t 7→
−t]?Gf [1] = G−f [1]. Therefore the dual of Symr−iGf ⊗∧iGf is Symr−iG−f ⊗
∧iG−f (r), so the dual (in the derived category) of j?Symr−iGf ⊗ ∧iGf [1]

is j?Symr−iG−f ⊗ ∧iG−f [1](r + 1), cf. [2, 2.1]. Since P1 is proper, by [2,
Théorème 2.2] we get a perfect pairing

H1(P1
k̄, j?(Symr−iGf⊗∧iGf ))×H1(P1

k̄, j?(Symr−iG−f⊗∧iG−f )) 7→ Q̄`(−r−1)

for every i = 0, . . . , r.
In particular, we get a functional equation relating the polynomial

Qi(T ) := det(1− FrobkT |H1(P1
k̄, j?(Symr−iGf ⊗ ∧iGf ))) =

si∏
j=1

(1− γijT ).

and the corresponding polynomial Q?i (T ) for −f . The functional equation
is given by

Q?i (T ) =

si∏
j=1

(1− qr+1γ−1
ij T ) =

=
T siq(r+1)si

(−1)siγi1 · · · γisi

si∏
j=1

(1− γijq−(r+1)T−1) =
T siq(r+1)si

csi
Qi(q

−(r+1)T−1)

where csi is the leading coefficient of Qi(T ). Therefore,

Q?(T ) :=
r∏
i=0

Q?i (T )(−1)i−1(i−1) =
T sq(r+1)s

cs
Q(q−(r+1)T−1)
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where s is the degree of the rational function Q(T ) and cs its leading coeffi-
cient (i.e. the ratio of the leading coefficients of the numerator and denom-
inator). By [3, Théorème 3.2.3], all reciprocal roots and poles of Q(T ) are
pure Weil integers of weight r + 1.

The other factors of Lr(f, ψ, T ) are the “trivial factors”:

P (T ) =
r∏
i=0

det(1− FrobkT |H0(P1
k̄, j?(Symr−iGf ⊗ ∧iGf )))(−1)i−1(i−1)

and

P ′(T ) =
r∏
i=0

det(1− FrobkT |H2(P1
k̄, j?(Symr−iGf ⊗ ∧iGf )))(−1)i−1(i−1)

are rational functions of the same degree and pure of weight r and r + 2
respectively, and vanish if Symr−iGf ⊗∧iGf has no invariants for the action
of π1(Gm,k̄) for any i. The other two are the local factors at 0:

P0(T ) := det(1− Frob0T |([Gf ]r)I0) =

=
r∏
i=0

det(1− Frob0T |(Symr−iGf ⊗ ∧iGf )I0)(−1)i−1(i−1)

and at infinity:

P∞(T ) := det(1− Frob∞T |([Gf ]r)I∞) =

=
r∏
i=0

det(1− Frob∞T |(Symr−iGf ⊗ ∧iGf )I∞)(−1)i−1(i−1).

We now compute the local factors explicitly.

Corollary 3.1. (Local factor at 0 of the moment L-function) Suppose that
k contains all d-th roots of unity. For any positive integer r ≥ 1, the local
factor at 0 of the r-th moment L-function for Gf is given by

det(1− Frob0T |([Gf ]r)I0) =
∏
χ

(1− g(χ, ψ)rT )

where the product is taken over all non-trivial characters χ of k? such that
χe = 1 for e = gcd(d, r) and g(χ, ψ) = −

∑
t χ(t)ψ(t) is the corresponding

Gauss sum.

Proof. As a representation of the inertia group I0, Gf is the direct sum⊕d−1
i=1 Lχi for a character χ of order d. So in the Grothendieck group of

Q̄`[I0]-modules we have [Gf ]r =
⊕d−1

i=1 L
⊗r
χi

=
⊕d−1

i=1 Lχir . For a given i, Lχir
is trivial as a representation of I0 if and only if χir is trivial, that is, if and
only if ir is a multiple of d.

Writing d = d′e with e = gcd(d, r). The trivial summands correspond
to i = d′, 2d′, . . . , (e − 1)d′. The characters χi are then exactly the non-
trivial characters of k? whose e-th power is trivial, and the corresponding
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Frobenius eigenvalues are (χi(ad)g(χ̄i, ψ))r = χir(ad)g(χ̄i, ψ)r = g(χ̄i, ψ)r

by proposition 2.2. �

Corollary 3.2. (Local factor at∞ of the moment L-function) Suppose that
p > 2, f ′ is square-free and all its roots are in k. For any positive integer
r ≥ 1, the local factor at ∞ of the r-th moment L-function for Gf is given
by

det(1− Frob∞T |([Gf ]r)I∞) =

=

 (1− (ρ(−1)q)r/2T )d−1 if 2p|r
(1− (ρ(−1)q)r/2T )m if 2|r, (r, p) = 1 and f has double roots
1 otherwise

where ρ : k? → {1,−1} is the quadratic character and m is the number of
double roots of f .

Proof. As a representation of the inertia group I∞, Gf is the direct sum⊕d−1
i=1 (Lψsi ⊗ Lρ) where ψsi(t) = ψ(sit). So in the Grothendieck group of

Q̄`[I∞]-modules we have [Gf ]r =
⊕d−1

i=1 (L⊗rψsi ⊗ L
⊗r
ρ ) =

⊕d−1
i=1 (Lψrsi ⊗ Lρr).

The term (Lψrsi ⊗ Lρr) is trivial if and only if ρr and ψrsi are both trivial,
that is, if and only if r is even and rsi = 0. That can only happen when
either r is divisible by 2p or r is even and si = 0.

In the first case the inertia group I∞ acts trivially on every term, and the
Frobenius eigenvalues are all equal to (±g(ρ, ψ))r = g(ρ, ψ)r = (ρ(−1)q)r/2

by proposition 2.3. In the second case, if (r, p) = 1, the inertia group
only acts trivially on the m terms for which si = 0, and the corresponding
Frobenius eigenvalue is again (ρ(−1)q)r/2. �

We now give some geometric conditions on f that ensure that the trivial
factors P (T ) and P ′(T ) disappear:

Proposition 3.3. Suppose that f ′ is square-free, and either:

(1) r is odd, or
(2) the hypersurface defined by f(x1) + · · · + f(xr) = 0 in Ark is non-

singular.

Then P (T ) = P ′(T ) = 1.

Proof. We will check that, for every i = 0, . . . , r, the action of π1(Gm,k̄) on

the sheaf Symr−iGf ⊗ ∧iGf has no non-zero invariants. Since Symr−iGf ⊗
∧iGf is a subsheaf of

⊗r Gf for every i, it suffices to prove it for the latter.
By Proposition 2.3, the inertia group I∞ acts on Gf through the direct

sum of the characters Lρ⊗Lψf(z) for every root z of f ′. Therefore it acts on
its r-th tensor power as the direct sum of the characters Lρr⊗Lψf(z1)+···+f(zr)
for all r-tuples (z1, . . . , zr) of roots of f ′. If r is odd, none of these is the
trivial character, since Lρr = Lρ (which is totally and tamely ramified at
infinity) can not be isomorphic to Lψt (which is either trivial or totally wild
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at infinity) for any t. If the hypersurface f(x1) + · · · + f(xr) = 0 is non-
singular, the sums f(z1) + · · · + f(zr) are always non-zero, and therefore
Lρr ⊗ Lψf(z1)+···+f(zr) is totally wild at infinity.

In either case, Symr−iGf ⊗ ∧iGf has no non-zero invariants under the
action of I∞ and, a fortiori, under the action of the larger group π1(Gm,k̄).

�

Corollary 3.4. Let f ∈ k[x] be a polynomial of degree d prime to p > 2
and r a positive integer. Suppose that f ′ is square-free. If r is even, suppose
additionally that the hypersurface defined by f(x1) + · · · + f(xr) = 0 in Ark
is non-singular. Then the number Nr(f) of kr-rational points on the curve

yq − y = f(x)

satisfies the estimate

|Nr(f)− qr| ≤ Cd,rq
r+1
2

where

Cd,r =

r∑
i=0

|i− 1|
(
d− 2 + r − i

r − i

)(
d− 1

i

)
is independent of q.

Proof. Under the hypotheses of the corollary, the previous result shows
that π1(Gm,k̄) has no non-zero invariants on Symr−iGf ⊗ ∧iGf . Therefore,

H2
c(Gm,k̄,Symr−iGf ⊗ ∧iGf ) = 0, and formula 5 reduces to

Lr(f, ψ, T ) =

r∏
i=0

det(1− FrobkT |H1
c(Gm,k̄,Symr−iGf ⊗ ∧iGf ))(−1)i−1(i−1)

In particular, by 4,

Nr(f)− qr =
r∑
i=0

(−1)i−1(i− 1) · Trace(Frobk|H1
c(Gm,k̄,Symr−iGf ⊗ ∧iGf )).

Since H1
c(Gm,k̄, Symr−iGf ⊗ ∧iGf ) is mixed of weight ≤ r + 1, we get the

estimate

|Nr(f)− qr| ≤

(
r∑
i=0

|i− 1| · dim(H1
c(Gm,k̄,Symr−iGf ⊗ ∧iGf ))

)
· q

r+1
2 .

Since H1
c is the only non-zero cohomology group of Symr−iGf ⊗∧iGf , we

have

dim H1
c(Gm,k̄, Symr−iGf ⊗ ∧iGf ) = −χ(Gm,k̄,Symr−iGf ⊗ ∧iGf ) =

= Swan∞(Symr−iGf ⊗ ∧iGf )

by the Grothendieck-Néron-Ogg-Shafarevic formula, since Symr−iGf ⊗∧iGf
is tamely ramified at 0. Now by 2.3, all slopes at infinity of Symr−iGf⊗∧iGf
are 0 or 1, so

Swan∞(Symr−iGf ⊗ ∧iGf ) ≤
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≤ rank(Symr−iGf ⊗ ∧iGf ) =

(
d− 2 + r − i

r − i

)(
d− 1

i

)
.

The proof is complete. �

The non-singularity condition is generic on f if r is not a multiple of p:
in fact, there can be at most

(
d+r−2
r

)
values of λ ∈ k̄ for which f(x)+λ does

not satisfy the condition. If r is divisible by p, then f(x1) + · · ·+ f(xr) = 0
always defines a singular affine hypersurface and thus Theorem 1.1 is empty
if r is further even. In such cases, we can use the refinement in next section.

4. Refinements using global monodromy.

In this section we will relax the hypotheses of Corollary 3.4 using Katz’s
computation of the global monodromy of Gf . In particular, we will give
conditions on f that make the given bound hold for any r.

Let G = π1(Gm,k̄)
Zar ⊆ GL(V ) be the geometric monodromy group of

Gf , where V is its generic stalk. Let z1, . . . , zd−1 be the roots of f ′ in k̄, let
si = f(zi) and s = s1 + · · ·+ sd−1.

Proposition 4.1. Suppose that p > 2d− 1 and the (d− 1)(d− 2) numbers
si − sj for i 6= j are all distinct. Then G is given by

SL(V ) if d is odd and s = 0
GLp(V ) if d is odd and s 6= 0
GL2(V ) = ±SL(V ) if d is even and s = 0
GL2p(V ) if d is even and s 6= 0

where GLm(V ) = {A ∈ GL(V )| det(A)m = 1}.

Proof. The hypothesis forces the si to be distinct (otherwise 0 would ap-
pear at least twice as a difference of two critical values). Since p > d, [8,
Lemma 7.10.2.3] shows that Ff is a geometrically irreducible tame reflection
sheaf. Then by [8, Theorem 7.9.6], G must contain SL(V ). Since SL(V ) is
connected, it must be contained in the unit connected component G0 of G.
On the other hand, since Gf is also geometrically irreducible (since Fourier
transform preserves irreducibility), G0 is a semisimple algebraic group [3,
Corollaire 1.3.9] so it must be SL(V ). In order to determine G completely,
we only need to know the image of its determimant, but by Corollary 2.4
we know it is trivial for d odd and s = 0 and the group of p-th roots (re-
spectively square roots, 2p-th roots) of unity for d odd and s 6= 0 (resp. d
even and s = 0, d even and s 6= 0). �

Corollary 4.2. Under the hypotheses of Proposition 4.1, for any integer
r ≥ 1 the number Nr(f) of kr-rational points on the curve

yq − y = f(x)

satisfies the estimate

|Nr(f)− qr| ≤ Cd,rq
r+1
2
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where

Cd,r =
r∑
i=0

|i− 1|
(
d− 2 + r − i

r − i

)(
d− 1

i

)
,

unless d is odd, s = 0 and r = d− 1, in which case there exists β = ±1 such
that Nr(f) satisfies the estimate

|Nr(f)− (qr + βq
r
2

+1)| ≤ Cd,rq
r+1
2 .

Moreover, if k contains all d-th roots of unity then β = 1.

Proof. For the first statement, we only need to show that π1(Gm,k̄) has no

non-zero invariants on Symr−iGf ⊗∧iGf for any i, the result follows exactly

as in Corollary 3.4. Equivalently, we need to show that Symr−iV ⊗∧iV has
no non-zero invariants under the action of G.

As a representation of SL(V ), we have

Symr−iV ⊗ ∧iV = Hom(∧iV ?, Symr−iV ) = Hom(∧d−1−iV,Symr−iV )

whose invariant subspace, for i ≥ 0, is 0 except in the cases r−i = d−1−i = 0
and r− i = d− 1− i = 1, where it is one-dimensional. In particular, SL(V )
(and, a fortiori, G) has no non-zero invariants on Symr−iV ⊗ ∧iV for any
i ≥ 0 if r 6= d− 1.

Suppose that r = d − 1, and let Wi be the one-dimensional subspace
of Symr−iV ⊗ ∧iV invariant under SL(V ), for i = r − 1 or i = r. The
factor group G/SL(V ) = µm acts on Wi, where m is given in the previous
Proposition. Let A = diag(ζ, . . . , ζ) ∈ G be a scalar matrix, where ζ ∈ Q̄`

is a primitive m(d − 1)-th root of unity. Then the class of A generates the
cyclic group G/SL(V ), so G fixes Wi if and only if A does. But A acts on
Wi by multiplication by ζr, so this action is trivial if and only if ζr = 1,
that is, if and only if m(d− 1) divides r = d− 1, which can only happen for
m = 1, that is, in the case where d is odd and s = 0.

It remains to prove the second estimate in this case. Since G = SL(V ),

the determinant of Gf is geometrically trivial, so it is (q
d−1
2 β)deg for some β

with |β| = 1. For i = r, Symr−iV ⊗ ∧iV = ∧d−1V = detV and therefore

Frobenius acts by multiplication by q
d−1
2 β. For i = r−1, Symr−iV ⊗∧iV =

V ⊗ ∧d−2V = Hom(V, V ) ⊗ detV and the G-invariant part is again detV ,

on which Frobenius acts by multiplication by q
d−1
2 β. We conclude that

r∏
i=0

det(1− FrobkT |H2
c(Gm,k̄, Symr−iGf ⊗ ∧iGf ))(−1)i−1(i−1)

= det(1− FrobkT |(detGf )(−1))(−1)r−2(r−2)+(−1)r−1(r−1)

= (1− q
r
2

+1βT )(−1)r−1
= (1− q

r
2

+1βT )−1

since r − 1 = d− 2 is odd.
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From equation (5) we then get that

Lr(f, ψ, T )

1− q
r
2

+1βT
=

r∏
i=0

det(1− FrobkT |H1
c(Gm,k̄, Symr−iGf ⊗ ∧iGf )(−1)i−1(i−1)

and, in particular, by (4)

Nr(f)−qr−βq
r
2

+1 =
r∑
i=0

(−1)i−1(i−1)·Trace(Frobk|H1
c(Gm,k̄, Symr−iGf⊗∧iGf )).

But Lr(f, ψ, T ) has real coefficients (since taking complex conjugate is
the same as replacing f by −f or, equivalently, taking the pull-back of Gf
under the automorphism t 7→ −t, so it gives the same Lr). Since q

r
2

+1β is
its only reciprocal root of weight r+2, we conclude that β = ±1. Moreover,
if k contains all d-th roots of unity then β = 1 by Corollary 2.4.

Using that Symr−iGf ⊗ ∧iGf is pure of weight r, we obtain the estimate

|Nr(f)−(qr+βq
r
2

+1)| ≤

(
r∑
i=0

|i− 1| · dim(H1
c(Gm,k̄, Symr−iGf ⊗ ∧iGf ))

)
·q
r+1
2

We conclude as in corollary 3.4 using that, for the two values of i for which
H2
c(Gm,k̄, Symr−iGf ⊗∧iGf ) is one-dimensional, the sheaf Symr−iGf ⊗∧iGf

has at least one slope equal to 0 at infinity, and therefore

dim H1
c(Gm,k̄,Symr−iGf ⊗ ∧iGf )

= −χ(Gm,k̄,Symr−iGf ⊗ ∧iGf ) + dim H2
c(Gm,k̄, Symr−iGf ⊗ ∧iGf )

= Swan∞(Symr−iGf ⊗ ∧iGf ) + 1 ≤ rank(Symr−iGf ⊗ ∧iGf ).

�

The hypothesis of proposition 4.1 can easily be checked from the coeffi-
cients of f : Let Af ′ be the companion matrix of f ′, and B = f(Af ′). The
eigenvalues of the (d− 1)× (d− 1) matrix B are s1, . . . , sd−1, and its trace
is s. Next we construct the (d− 1)2 × (d− 1)2 matrix B ⊗ Id−1 − Id−1 ⊗B,
whose eigenvalues are all differences si− sj . Its characteristic polynomial is

then of the form T d−1g(T ). The hypothesis of proposition 4.1 are equivalent
to the discriminant of g(T ) being non-zero.

We will now deal with an important class of polynomials to which 4.1
does not apply.

Definition 4.3. We say that a polynomial f ∈ k[x] is quasi-odd if there
exist a, b ∈ k such that f(a − x) = b − f(x). In this case, the degree d is
necessarily odd.

Notice that a and b are then uniquely determined: if f = cdx
d + · · · +

c1x + c0, a =
−2cd−1

dcd
and b = 2f(a2 ). If f is quasi-odd, the set of critical

values of the map f : A1
k → A1

k is invariant under the involution s 7→ b− s.
In particular, their sum is b(d−1)

2 .
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Lemma 4.4. If there is a ∈ k such that f(a−x) = −f(x), the Tate-twisted
sheaf Gf (1/2) on Gm,k is self-dual.

Proof. Since Gf(x−c) ∼= Gf(x) for any c ∈ k, we may assume that f is odd.
The automorphism x 7→ −x induces an isomorphism Ff ∼= [−1]?Ff = F−f .
Taking Fourier transform, we get an isomorphism Gf ∼= G−f . Composing
with the duality pairing (cf. section 3) Gf ×G−f → Q̄`(−1) we get a perfect
pairing Gf × Gf → Q̄`(−1) or, equivalently, Gf (1/2)× Gf (1/2)→ Q̄`. �

Proposition 4.5. Let f ∈ k[x] be quasi-odd. Label the critical values si so
that sd−i = b− si for i = 1, . . . , d− 1. Suppose that p > 2d− 1 and the only
equalities among the numbers si − sj for i 6= j are si − sj = sd−j − sd−i.
Then G = Sp(V ) if b = 0 (if and only if s = 0, since p > d − 1), and
G = µp · Sp(V ) if b 6= 0.

Proof. The hypothesis forces the si to be distinct: if si = sj for i 6= j then
si−sj = sj−si, so i = d−i and j = d−j, which is impossible since d is odd.
Then by [8, Lemma 7.10.2.3] Ff is a geometrically irreducible tame reflection
sheaf. If b = 0, we may assume as in the previous lemma that f is odd. The
self-duality of Gf (1/2) is symplectic (it suffices to show it geometrically, and
that is done in [8, Lemma 7.10.4]), so we have G ⊆ Sp(V ). We now apply
[8, Theorem 7.9.7], from which G must contain SL(V ), Sp(V ) or SO(V ),
and therefore we must have G = Sp(V ).

If b 6= 0, f(x) − b
2 is quasi-odd with b = 0, and Gf = Gf−b/2 ⊗ Lψb/2 .

Let H ⊆ π1(Gm,k̄) be the kernel of the character Lψb/2 , it is an open normal
subgroup of index p and the restrictions of the representations Gf and Gf−b/2
to H are isomorphic. Since the monodromy group of Gf−b/2 is Sp(V ), which
does not have open subgroups of finite index, the closure of the image of
H on GL(V ) under Gf is the whole Sp(V ). Therefore, Sp(V ) ⊆ G and
G ⊆ µp · Sp(V ), since π1(Gm,k̄) acts via Lψb/2 by multiplication by p-th
roots of unity. Since the determinant of G is non-trivial by Corollary 2.4, it
must be µp · Sp(V ). �

Corollary 4.6. Under the hypotheses of Proposition 4.5, for any integer
r ≥ 1 the number Nr(f) of kr-rational points on the curve

yq − y = f(x)

satisfies the estimate

|Nr(f)− qr| ≤ Cd,rq
r+1
2

where

Cd,r =

r∑
i=0

|i− 1|
(
d− 2 + r − i

r − i

)(
d− 1

i

)
,

unless r ≤ d − 1 is even and either b = 0 or p divides r, in which case it
satisfies the estimate

|Nr(f)− (qr + q
r
2

+1)| ≤ Cd,rq
r+1
2 .
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Proof. As a representation of Sp(V ), we have

Symr−iV ⊗ ∧iV = Hom(∧iV,Symr−iV )

whose invariant subspace, by [9, lemma on p.62], is 0 except when i is odd,
r = i+ 1 and i ≤ d− 1, or when i is even, r = i and i ≤ d− 1. In particular,
since d is odd, G has no non-zero invariants on Symr−iV ⊗ ∧iV for any i if
r is odd or r > d− 1.

Suppose from now on that r ≤ d − 1 is even, and let Wi be the one-
dimensional subspace of Symr−iV ⊗∧iV invariant under Sp(V ), for i = r−1
or i = r. Consider the case where b = 0 first. Since Gf (1/2) is self-dual, all
Frobenius images are in Sp(V ) = G. In particular, all Frobenii act trivially

on Wi(r/2), and therefore they act by multiplication by q
r
2 on Wi ⊆

⊗r V .
Therefore

r∏
i=0

det(1− FrobkT |H2
c(Gm,k̄, Symr−iGf ⊗ ∧iGf ))(−1)i−1(i−1)

= det(1−FrobkT |Wr−1(−1))(−1)r−2(r−2) det(1−FrobkT |Wr(−1))(−1)r−1(r−1)

= (1− q
r
2

+1T )(−1)r−2(r−2)+(−1)r−1(r−1)

= (1− q
r
2

+1T )(−1)r−1
= (1− q

r
2

+1T )−1

since r − 1 = d− 2 is odd.
In the case where b 6= 0, G/Sp(V ) ∼= µp acts on Wi. Let

A = diag(ζp, . . . , ζp) ∈ G
be a scalar matrix, where ζp ∈ Q̄` is a p-th root of unity. Then the class of
A generates G/Sp(V ), so G fixes Wi if and only if A does. But A acts on Wi

by multiplication by ζrp , so this action is trivial if and only if ζrp = 1, that is,

if and only if p divides r. In that case, Symr−iGf ⊗∧iGf = (Symr−iGf−b/2⊗
∧iGf−b/2) ⊗ L⊗rψb/2 = Symr−iGf−b/2 ⊗ ∧iGf−b/2, so we can apply the b = 0

case and we get again
r∏
i=0

det(1− FrobkT |H2
c(Gm,k̄, Symr−iGf ⊗ ∧iGf ))(−1)i−1(i−1) =

= (1− q
r
2

+1T )(−1)r−1
= (1− q

r
2

+1T )−1.

We conclude as in corollary 4.2. �

Again, the hypothesis of proposition 4.5 can be checked from the coeffi-
cients of f : After adding a constant, we may assume that b = 0. Let Af ′
be the companion matrix of f ′, and B = f(Af ′). The eigenvalues of the

(d− 1)× (d− 1) matrix B are s1, . . . , sd−1, and its trace is s = b(d−1)
2 . Con-

struct the (d− 1)2× (d− 1)2 matrix B⊗ Id−1− Id−1⊗B, whose eigenvalues
are all differences si − sj . Its characteristic polynomial is then of the form

T d−1h(T/2)g(T )2, where h(T ) is the characteristic polynomial of B, since
all non-zero roots different from si − sd−i = 2si for i = 1, . . . , d − 1 appear
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in pairs. The hypothesis of proposition 4.5 is equivalent to the discriminant
of h(T/2)g(T ) being non-zero.

5. Generalization to Artin-Schreier hypersurfaces

In this section we will extend corollary 3.4 to higher dimensional hypersur-
faces. Since the proofs are very similar, we will only sketch them, indicating
the differences where necessary.

Let f ∈ k[x1, . . . , xn] be a polynomial of degree d prime to p, Cf the

Artin-Schreier hypersurface defined on An+1
k by the equation

(7) yq − y = f(x1, . . . , xn).

Denote by Nr(f) its number of rational points over kr. We have again a
formula

(8) Nr(f)− qnr =
∑
t∈k?

∑
x∈knr

ψ(t · Tr(f(x))) =
∑
t∈k?

∑
x∈knr

ψ(Tr(tf(x)))

where Tr denotes the trace map kr → k. Assume that f is a Deligne polyno-
mial, that is, the leading form of f defines a smooth projective hypersurface
of degree d not divisible by p. Applying Deligne’s bound [3] to the above
inner sum, one deduces that

|Nr(f)− qnr| ≤ (q − 1)(d− 1)nq
nr
2 .

This is precisely Weil’s bound in the case n = 1. Our purpose of this section
is to improve the above bound and obtain the estimate of the following form

|Nr(f)− qnr| ≤ Cd,rq
nr+1

2 ,

for some constant Cd,r depending only on d, r and n.

Define Kf = Rπ!Lψ(tf(x)) ∈ Dbc(Gm,k, Q̄`), where π : Gm × An → Gm is
the projection. The trace formula implies that the trace of the action of
the r-th power of a local Frobenius element at t ∈ k? on Kf is given by∑

x∈knr ψ(Tr(tf(x))). Suppose from now on that the homogeneous part fd
of highest degree of f defines a non-singular hypersurface. Then by [3, 3.7],
Kf is a single smooth sheaf Gf placed in degree n, of rank (d−1)n and pure
of weight n. Therefore

Nr(f)− qnr = (−1)n
∑
t∈k?

Tr(Frobrt |(Gf )t) = (−1)n
∑
t∈k?

Tr(Frobt|[Gf ]rt )

where

[Gf ]r =

r∑
i=0

(−1)i−1(i− 1) · Symr−iGf ⊗ ∧iGf

is the r-th Adams operation on Gf .
We can give an interpretation of Gf in terms of the Fourier transform like

we did in the one-dimensional case. Exactly as in lemma 2.1, we can show

Lemma 5.1. The object Gf [1] ∈ Dbc(Gm, Q̄`) is the restriction to Gm of the
Fourier transform of Rf!Q̄`[n] with respect to ψ.
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We compactify f via the map f̃ : X → A1
k, where X ⊆ Pn × A1 is

defined by the equation F (x0, x1, . . . , xn) = txd0, F being the homogenization

of f with respect to the variable x0, and f̃ the restiction of the second
projection to X. Suppose that the subscheme of Ank defined by the ideal
〈∂f/∂x1, . . . , ∂f/∂xn〉 is finite étale over k, and the images of its k̄-points
under f are distinct. Then for every s ∈ k̄, the fibre Xs has at worst one
isolated non-degenerate quadratic singularity, which is located on the affine
part (since the part at infinity is defined for every fibre by fd(x) = 0 and is
therefore non-singular).

We have a distinguished triangle

Rf!Q̄` → Rf̃?Q̄` → R(f̃|X0
)?Q̄` →

where X0 = X\An ∼= Y × A1, Y being the smooth hypersurface defined in

Pn−1 by fd = 0. Since R(f̃|X0
)?Q̄` is just the constant object RΓ(Y, Q̄`), its

Fourier transform is supported at 0. So

Gf [1] ∼= (FTψRf!Q̄`[n])|Gm,k
∼= (FTψRf̃?Q̄`[n])|Gm,k .

Proposition 5.2. Suppose p > 2. Under the previous hypotheses, let
z1, . . . , z(d−1)n ∈ An

k̄
be the distinct points such that ∂f

∂xi
(zj) = 0 for all

i = 1, . . . , n, and let si = f(zi). The action of the inertia group I∞ at infin-
ity on Gf decomposes as a direct sum

⊕
Lψsi if n is even, and

⊕
(Lρ⊗Lψsi )

if n is odd, where ρ is the unique character of I∞ of order 2.

Proof. We will obtain, for every i, a factor Lψsi (resp. Lρ ⊗ Lψsi ) in the

local monodromy of Gf at infinity. Since the rank is (d − 1)n and these
characters are pairwise non-isomorphic, this will determine the action of I∞
completely.

Let S = {si|i = 1, . . . , (d − 1)n}, and U = A1\S. Since f̃ is proper and

smooth over U , Rif̃?Q̄` is smooth on U for every i. Since Xs contains one
isolated non-degenerate quadratic singularity for each s ∈ S, by [1, 4.4] the

sheaves Rif̃?Q̄` are smooth on A1 for i 6= n−1, n. In particular, their Fourier
transforms are supported at 0. We conclude that there is a distinguished
triangle

(FTψRn−1f̃?Q̄`[1])|Gm,k → Gf [1]→ (FTψRnf̃?Q̄`[0])|Gm,k →

and therefore an exact sequence of sheaves
(9)

0→ H−1(FTψRn−1f̃?Q̄`[1])|Gm,k → Gf → H
−1(FTψRnf̃?Q̄`[0])|Gm,k →

→ H0(FTψRn−1f̃?Q̄`[1])|Gm,k → 0

since FTψRnf̃?Q̄`[0] can only have non-zero cohomology sheaves in degrees

1, 0 and −1. Furthermore H0(FTψRn−1f̃?Q̄`[1]) is punctual, so this induces
an exact sequence of I∞-representations

(10) 0→ H−1(FTψRn−1f̃?Q̄`[1])→ Gf → H−1(FTψRnf̃?Q̄`[0])→ 0.
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Let V be the generic stalk of Rn−1f̃?Q̄`. Suppose that n is odd, and
let s ∈ S. Then by [1, 4.3 and 4.4], the inertia group Is acts on V with
invariant space VIs of codimension 1 (the orthogonal complement of the
’vanishing cycle’ δ) and on the quotient V/VIs via its quadratic character ρ.

Moreover, Rn−1f̃?Q̄` is isomorphic at s to the extension by direct image of
its restriction to the generic point. By Laumon’s local Fourier transform [8,

Section 7.4], the action of the inertia group I∞ on H−1(FTψRn−1f̃?Q̄`[1])
(and thus on Gf by (10)) contains a subcharacter isomorphic to Lρ ⊗ Lψs .

Suppose now that n is even, and let s ∈ S. By [1, 4.3 and 4.4], there
are two possibilities: if the ’vanishing cycle’ δ is non-zero, the inertia group
Is acts on V with invariant space VIs of codimension 1 (the orthogonal

complement of δ) and trivially on the quotient V/VIs . Moreover, Rn−1f̃?Q̄`

is isomorphic at s to the extension by direct image of its restriction to the
generic point. By Laumon’s local Fourier transform [8, Section 7.4], the

action of the inertia group I∞ on H−1(FTψRn−1f̃?Q̄`[1]) (and thus on Gf
by (10)) contains a subcharacter isomorphic to Lψs .

If δ = 0, then Is acts trivially on V , and there is an exact sequence of
sheaves:

0→ (Q̄`)s → Rnf̃?Q̄` → js?j
?
sRnf̃?Q̄` → 0

where (Q̄`)s is the punctual object Q̄` supported on s and js : A1 − {s} ↪→
A1 is the inclusion. Taking Fourier transform, we deduce a distinguished
triangle

Lψs [1]→ FTψRnf̃?Q̄`[0]→ FTψjs?j
?
sRnf̃?Q̄`[0]→

and in particular an injection

0→ Lψs → H−1(FTψRnf̃?Q̄`[0]).

By (10), this gives a subcharacter isomorphic to Lψs in the monodromy of
Gf at infinity. �

For completeness, we determine also the monodromy of Gf at 0.

Proposition 5.3. The inertia group I0 at 0 acts on Gf as a direct sum⊕
nχLχ where the sum is taken over all characters χ of I0 such that χd is

trivial, nχ = 1
d((d−1)n− (−1)n) if χ is non-trivial and nχ = (−1)n+ 1

d((d−
1)n − (−1)n) if χ is trivial.

Proof. We will show that, for every χ, the action of I0 on Gf contains nχ
Jordan blocks for the character χ. Since these numbers add up to (d− 1)n,
which is the dimension of the representation Gf , this will prove that the
action is semisimple and determine it completely.

Let χ be non-trivial such that χd = 1. Since adding a constant a to f
corresponds to tensoring Gf with the Artin-Schreier sheaf Lψa and this does
not change the monodromy at 0, we can assume that Gf is totally wild at∞
(or equivalently, that the hypersurface f(x) = 0 is non-singular). Then so is
Gf⊗Lχ̄. The number of Jordan blocks associated of Lχ in the representation
of I0 given by Gf is the dimension of the I0-invariant subspace of Gf ⊗ Lχ̄.
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If j : Gm,k̄ → A1
k̄

and i : {0} → A1
k̄

are the inclusions, we have an exact
sequence

0→ j!(Gf ⊗ Lχ̄)→ j?(Gf ⊗ Lχ̄)→ i?i
?j?(Gf ⊗ Lχ̄)→ 0

and therefore

0→ (Gf ⊗ Lχ̄)I0 → H1
c(Gm,k̄,Gf ⊗ Lχ̄)→ H1

c(A1
k̄, j?(Gf ⊗ Lχ̄))→ 0.

Since Gf ⊗ Lχ̄ is totally wild at ∞, the latter cohomology group is pure of

weight n+1. So the dimension of (Gf ⊗Lχ̄)I0 is the dimension of the weight
≤ n part of H1

c(Gm,k̄,Gf ⊗ Lχ̄).
By the projection formula,

Gf ⊗ Lχ̄ = (Rnπ!Lψ(tf(x)))⊗ Lχ̄ ∼= Rnπ!(Lψ(tf(x)) ⊗ Lχ̄(t)),

so
H1
c(Gm,k̄,Gf ⊗ Lχ̄) = Hn+1

c (Gm,k̄ × Ank̄ ,Lψ(tf(x)) ⊗ Lχ̄(t))

since Riπ!Lψ(tf(x)) = 0 for i 6= n. Let Z ⊂ Ank be the closed subset defined
by f(x) = 0 and U its open complement. The sheaf Lψ(tf(x)) is trivial
on Gm × Z, so H?

c(Gm,k̄ × Z,Lψ(tf(x)) ⊗ Lχ̄(t)) = H?
c(Gm,k̄ × Z,Lχ̄(t)) =

H?
c(Gm,k̄,Lχ̄)⊗H?

c(Z⊗k̄, Q̄`) = 0 since χ is non-trivial. By excision we get an

isomorphism Hn+1
c (Gm,k̄×Ank̄ ,Lψ(tf(x))⊗Lχ̄(t)) ∼= Hn+1

c (Gm,k̄×U,Lψ(tf(x))⊗
Lχ̄(t)).

Consider the automorphism φ : Gm × U → Gm × U given by φ(t, x) =
(tf(x), x). Then φ?(Lψ(tf(x)) ⊗ Lχ̄(t)) = Lψ(t) ⊗ Lχ̄(t/f(x)) = Lψ(t) ⊗ Lχ̄(t) ⊗
Lχ(f(x)). So

Hn+1
c (Gm,k̄ ×U,Lψ(tf(x))⊗Lχ̄(t)) ∼= Hn+1

c (Gm,k̄ ×U,Lψ(t)⊗Lχ̄(t)⊗Lχ(f(x)))

which, by Künneth, is isomorphic to H1
c(Gm,k̄,Lψ ⊗Lχ̄)⊗Hn

c (U ⊗ k̄,Lχ(f))

(since Hi
c(Gm,k̄,Lψ ⊗Lχ̄) = 0 for i 6= 1). The first factor is one-dimensional

and pure of weight 1, so we want the dimension of the weight ≤ n − 1
part of Hn

c (U ⊗ k̄,Lχ(f)). By [10, Theorem 2.2], this dimension is nχ =
1
d((d− 1)n − (−1)n).

Similarly, if χ = 1 is the trivial character, the searched dimension is the
dimension of the weight ≤ n part of Hn+1

c (Gm,k̄ × An
k̄
,Lψ(tf(x))). From the

exact sequence

. . .→ Hn
c ({0} × Ank̄ , Q̄`)→ Hn+1

c (Gm,k̄ × Ank̄ ,Lψ(tf(x)))→

→ Hn+1
c (A1

k̄ × Ank̄ ,Lψ(tf(x)))→ Hn+1
c ({0} × Ank̄ , Q̄`)→ . . .

we get an isomorphism Hn+1
c (Gm,k̄×Ank̄ ,Lψ(tf(x))) ∼= Hn+1

c (A1
k̄
×An

k̄
,Lψ(tf(x))).

Now let π : A1 × An → An be the projection, by the base change theorem
we have R2π!Lψ(tf(x)) = i?Q̄`(−1), where i : Z → An is the inclusion of the

closed set where f(x) = 0, and Riπ!Lψ(tf(x)) = 0 for i 6= 2. So we need

the dimension of the weight ≤ n − 2 part of Hn−1
c (Z, Q̄`). Let Z be the

projective closure of Z and Z0 = Z\Z, we have an exact sequence

. . .→ Hn−2(Z, Q̄`)→ Hn−2(Z0, Q̄`)→ Hn−1
c (Z, Q̄`)→ Hn−1(Z, Q̄`)→ . . .



BIG IMPROVEMENTS OF THE WEIL BOUND FOR ARTIN-SCHREIER CURVES 23

Since Z is smooth, Hn−1(Z, Q̄`) is pure of weight n − 1, and therefore the
weight ≤ n−2 part of Hn−1

c (Z, Q̄`) is the cokernel of the map Hn−2(Z, Q̄`)→
Hn−2(Z0, Q̄`), that is, the primitive part Primn−2(Z0, Q̄`) of the middle co-
homology group of Z0, which has dimension n1 = (−1)n + 1

d((d − 1)n −
(−1)n). �

Corollary 5.4. Let s =
∑(d−1)n

i=1 si. Over k̄, the determinant of Gf is the
Artin-Schreier sheaf Lψs if n(d − 1) is even, and the product Lρ ⊗ Lψs if
n(d− 1) is odd.

Proof. The determinant is a smooth sheaf on Gm of rank 1. At 0, its mon-
odromy is the product of χnχ for all characters χ of I0 such that χd is trivial.
Since the non-trivial characters (except for the quadratic one) appear in con-
jugate pairs, the product is trivial if d is odd, and comes down to ρnρ , which
is ρ or 1 depending on the parity of nρ = 1

d((d − 1)n − (−1)n), which is
congruent to n mod 2, if d is even.

At infinity, its monodromy is the product of the Lψsi (resp. of the Lρ ⊗
Lψsi ) if n is even (resp. if n is odd), which is Lψs (resp. Lρ⊗Lψs) if n(d−1)

is even (resp. if n(d− 1) is odd). We conclude as in Corollary 2.4. �

We now give the higher dimensional analogue of Corollary 3.4:

Corollary 5.5. Let f ∈ k[x1, . . . , xn] be a polynomial of degree d prime to p
and r a positive integer. Suppose that p > 2, the highest degree homogeneous
part of f defines a non-singular hypersurface, the subscheme of Ank defined
by the ideal 〈∂f/∂x1, . . . , ∂f/∂xn〉 is finite étale over k and the images of
its k̄-points under f are distinct. If nr is even, suppose additionally that
the hypersurface defined by f(x1,1, . . . , x1,n) + · · · + f(xr,1, . . . , xr,n) = 0 in
Anrk = Spec k[xi,j |1 ≤ i ≤ r, 1 ≤ j ≤ n] is non-singular. Then the number
Nr(f) of kr-rational points on the hypersurface

yq − y = f(x1, . . . , xn)

satisfies the estimate

|Nr(f)− qnr| ≤ Cd,rq
nr+1

2

where

Cd,r =
r∑
i=0

|i− 1|
(

(d− 1)n + r − i− 1

r − i

)(
(d− 1)n

i

)
is independent of q.

The proof is identical to the one of Corollary 3.4, using Proposition 5.2.
In the n even case we need the non-singularity hypothesis for any r, since
the Kummer factor does not appear in the monodromy at infinity.
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