BIG IMPROVEMENTS OF THE WEIL BOUND FOR
ARTIN-SCHREIER CURVES
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ABSTRACT. For the Artin-Schreier curve y? — y = f(x) defined over a
finite field F, of ¢ elements, the celebrated Weil bound for the number of
F, -rational points can be sharp, especially in super- singular cases and
when 7 is divisible. In this paper, we show how the Weil bound can be
significantly improved, using ideas from moment L-functions and Katz’s
work on f-adic monodromy calculations. Roughly speaking, we show
that in favorable cases (which happens quite often), one can remove an
extra ,/q factor in the error term.

1. INTRODUCTION

Let k = F, be a finite field of characteristic p > 2 with ¢ elements, and
let f € k[x] be a polynomial of degree d > 1. Without loss of generality, we
can and will always assume that d is not divisible by p. Let C'; be the affine
Artin-Schreier curve defined over k by

y'—y=f(z)
Let r be a positive integer, and let N, (f) denote the number of Fy--rational
points on Cy. The genus of the smooth projective model of Cy is given by

g=(¢—1)d-1)/2.

The celebrated Weil bound in this case gives the estimate

IN-(f) = ¢"| < (d—1)(g — 1)g>.
This bound can be sharp in general, for instance when C is supersingular

and 7 is divisible. If ¢" is not a square, Serre’s improvement [14] leads to a
somewhat better bound:

r (d_l)(q_l)
N - g < DY

where [z] denotes the integer part of a real number x.

In this paper, we shall show that if ¢ is large compared to d (and thus the
genus g = (d—1)(¢—1)/2 is small compared to the field size ¢" with r > 2),
then the above Weil bound can be significantly improved in many cases.
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The type of theorems we prove is of the following nature. For simplicity, we
just state one special case.

Theorem 1.1. Let r > 1 and p > 2. If the derivative f' is square-free
and either r is odd or the hypersurface f(x1) + ---+ f(z,) = 0 in A} is
non-singular, then we have the estimate
m
[Ny (f) —d"| < Carqg =,

where Cq, is the constant

T
d—24r—a\/d—-1
C. = -1 )
w2 ( ) ()
a=0

Note that the constant Cy, is independent of ¢ and it is a polynomial in
d with degree r. Thus, for fixed d and r, our result essentially removes an
extra ,/q factor from Weil’s bound. The non-singularity hypothesis cannot

be dropped in general, as there are cases for r even where we can have
r+1

’Nr(f) - (qr +q%+1)| < Cd,rq 2,

see section [4 for more details. This gives further examples that the ¢-factor
in the Weil bound cannot be replaced by an O(,/q) factor in general.

As an extreme illustration, we consider the elementary case that r = 1. It
is clear that N1(f) = gnys, where ny is the number of distinct roots of f(x)
in [F, which is at most d. Thus, the best estimate in this case should be

IN1(f) — gl < (d—1)q,

which is precisely what our bound gives! It is far better than the Weil bound

IN1(f) =gl < (d=1)(g —1)v/aq.
For » = 2, our bound takes the form

INy(f) = ¢°] < (d—1)%¢*?,
which is better than the Weil bound
[N2(f) = °] < (d—1)(g—1)q
as soon as q > (d — 1)? 4+ 3. For 7 = 3, our bound takes the form
IN3(f) = ¢°| < (d—1)(d* - 3d + 3)¢%,

which is better than the Weil bound

IN3(f) = ¢*| < (d—1)(g—1)¢*”
as soon as ¢ > (d? — 3d + 4).

Our idea is to translate N,.(f) to moment exponential sums and then

calculate the associated moment L-function as explicitly as possible. Let 1

be a fixed non-trivial additive character of k. For f € k[z], it is clear that
we have the formula

NA(F) =)0 (Te(tf(x)),

tek x€k,
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where k, = F, and Tr denotes the trace map from k£, to k. Separating the
term from ¢ = 0, we obtain

(1) Ne(f) = q" =) ) (Ta(tf(2))).

tek* x€ky

Now, Weil’s bound for exponential sums gives the estimate

> (Tr(tf ()| < (d—1)g?

€k,

for every t € k*. It follows that

IN-(f) = 4" < (a—1)(d = 1)q?.
In order to improve this bound, we need to understand the cancelation of
the outer sum of over t € k*. Heuristically, one expects that the outer
sum contributes another O(,/q) factor instead of the trivial ¢ factor, if f
is sufficiently “random”. This is in fact what we shall prove using the full
strength of Deligne’s general theorem on Riemann hypothesis.

The double sum in is precisely a moment exponential sum associated
to the two variable polynomial ¢f(z). Thus, we can use the techniques of
moment L-functions to get improved information about the solution number
N, (f). We now briefly outline our method. Let ¢ be a fixed prime different
from p. Let Gy denote the relative /-adic cohomology with compact support
associated to the family of one variable exponential sums attached to ¢ f(z),
where z is the variable and ¢ is the parameter on the torus G,,. Applying
the f-adic trace formula fibre by fibre, we obtain

DD U(Tx(tf () = = Y Tr(Frobyl(Gy)e),

tek* xcky, tek*
where (Gy); is the fibre of Gy at ¢, and Frob, is the geometric g-th power
Frobenius map. Alternatively, one can rewrite
Tr(Froby|(Gy):) = Tr(Frobg|[Gy]),

where [G f]r denotes the r-th Adams operation of Gy. It is a virtual /-adic
sheaf on G,,. For example, Katz [9] used the formula
T
[gf]r — Z(—l)i_li . Symr—igf ® /\igf.

i=1

We shall use the following optimal formula from [I7] given by
T
Gf1" =D (1) (i — 1) - Sym"'Gy ® NGy
i=0

Note that the term ¢ = 0 does not occur in the first formula, and the term
7 = 1 does not occur in the second formula as the coefficient becomes zero
for ¢ = 1. The coefficients of the second formula are smaller and thus lead
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to fewer number of zeros and poles for the corresponding L-functions. In
this way, we get the smaller constant Cy, in Theorem 1.1.
It follows that
T
No(f) = ¢ =D (-1)'(i—1)- Y _ Tr(Froby|(Sym"'Gs @ A'Gy)y).
i=0 tek
This reduces our problem to the study of the L-function over Gy, of the
(-adic sheaves Sym"'G; ® A'Gy for all 0 < i < r. By general results of
Deligne [3], we deduce that

T r+1
|N7’(f) - (qr + 5f,rq2+1)| < Cd,rq 2,

where Cy, comes from the Euler characteristic of the components of the
virtual sheaf [G¢]", and
T
Spr = (=1)7'(i = 1) - dimHZ(G,, 1, Sym"'Gy ® A'Gy).
i=0

Under the conditions of Theorem it follows that the sheaf Sym’ ‘G P ®
NG + has no geometrically trivial component for any 0 < ¢ < r, and thus we
deduce that d¢, = 0.

Our main result is somewhat stronger. We determine the weights, the triv-
ial factors and the degrees of the L-functions of all the sheaves Sym" ‘G r®
NG t, thus obtaining a fairly complete information about the associated mo-
ment L-function, see [5][6] and [13] for the study of moment L-functions in
two other examples, namely, the family of hyper-Kloosterman sums and the
Dwork family of toric Calabi-Yau hypersurfaces. Under slightly more gen-
eral hypotheses, Katz’s results on monodromy group calculations [7][§] give
stronger results which lead to further improvements of Theorem (see
Corollaries and . See also [9] for a result on the average number of
rational points on hypersurfaces obtained using a similar approach.

The possibility of our improvement for the Weil bound in the case of Artin-
Schreier curves is due to the fact that the curve has a large automorphism
group F,, which is the group of F,-rational points on the group scheme Al
We expect that similar improvements should exist for many other curves
(or higher dimensional varieties) with a large automorphism group. For
example, in the last section of this paper we treat the case of Artin-Schreier
hypersurfaces

yq —Yy= f(xla 7$n)
This method leads to similar improvements of Deligne’s bound for such
hypersurfaces in many cases. As an explicit new example to try, we would
suggest the affine Kummer curve of the form
—1

v = f),
where e is a fixed positive integer, ¢ is a prime power congruent to 1 modulo
e, and f(z) € k[x] is a polynomial of degree d. For r > 1 and N,(f,e)
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denoting the number of F,r-rational points on the above Kummer curve, we
conjecture that for certain generic f, there is the following estimate

INM(fr€) = q'| < Sqend ®

where sq., is a constant independent of g. We do not know how to prove
this conjecture, even in the case e = 1.

To conclude this introduction, we raise another open problem. In The-
orem 1, we assumed that the curve Cy : y? —y = f(x) is defined over the
subfield F, of F;r. We believe that similar improvement is also true if C is
defined over the larger field F,r. But we could not prove this at present.

Remarks. Weil’s estimate gives both an upper bound and a lower bound
for the number of rational points on a curve of genus g over the finite field
F,. Improvements for the lower bound are in general harder to get. Im-
provements for the upper bound can often be obtained by more elementary
means. In fact, there are already several such results in the literature for
large genus curves. The first result along these lines is due to Stark [15] in
the hyperelliptic case, using Stepanov’s method. Using the explicit formula,
Drinfeld-Vladut and Serre [14] obtained an upper bound improvement when
29 > ¢" — ¢"/2, which in our Artin-Schreier setting becomes

(d—1)(qg—1)>q — g7

For r > 1, this means that ¢ must be small compared to d. In comparison,
our improvements apply when ¢ is large compared to d. Using a geometric
intersection argument, Stoher-Voloch [16] obtained another upper bound
which in our case becomes

N (f) < 5D(D+q" - 1),

N |

where D = max(d, q).

2. COHOMOLOGY OF THE FAMILY t — Y (Tr(tf(x)))

Let k = F, be a finite field of characteristic p, and f € k[x] a polynomial
of degree d prime to p. Let Cy be the Artin-Schreier curve defined on A%
by the equation

(2) Y —y=f(z)
and denote by N, (f) its number of rational points over k;, := Fyr.
Fix a non-trivial additive character ¢ : kK — C*. It is clear that

B N =3 S T @) = 3 3 e(Trtf (@)
tek z€k, tek z€k,
where Tr denotes the trace map k, — k.

Fix a prime ¢ # p and an isomorphism ¢ : Q, — C. Consider the Galois
étale cover of G,, x Al (with coordinates (t,z)) given by u—u4 = tf(z), with
Galois group k; and let Ly f(,)) be the rank 1 smooth Qy-sheaf correspond-
ing to the representation of k given by 1) ~! via ¢. Define Ky =RmLyisa) €
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Dg(Gm,k, Qy), where 7 : G,,, x A! — G,,, is the projection. The trace formula
implies that the trace of the action of the r-th power of a local geometric
Frobenius element at t € k* on K is given by > o, ¥(Tr(tf(z))).

It is known [3, 3.7] that K = G¢[—1] for a smooth sheaf G; of rank d — 1
and punctually pure of weight 1, whose local r-th power Frobenius trace at
t € k* is then given by — ) Y(Tr(tf(z))). Therefore

zek”
(4) N(f) = =D > w(Tr(tf())
tek* x€ky
= — ) Tr(Frobj|(Gf):) = — Y Tr(Froby|[G¢]})
tek* tek*
where

T
671" =Y (—1) "M (i—1) - Sym"~'Gy @ N'Gy
i=0
is the r-th Adams operation on Gy.

The sheaf Gy can also be interpreted in terms of the Fourier transform.
Consider the sheaf f,Q; on A]. There is a canonical surjective trace map
é: £:Qp = fof*Qp — Qp, let F be its kernel. It is a constructible sheaf of
generic rank d — 1 on A,lﬁ.

Lemma 2.1. If j : Gy, — A} is the inclusion, the shifted sheaf jiGg[1] is
the Fourier transform of Fy[1] with respect to 1.

Proof. Taking Fourier transform in the distinguished triangle in ch’(Ai, Qp):
Frll] = fQe[1] — Q[1] —
we get a distinguished triangle:
FTy(Fp)[] = FTy(f+Qo)[1] = (Qe)o(=1)[0] — .

where (Q)o is a punctual sheaf supported at 0. If p : Al x Al — Al
is the multiplication map, the Fourier transform of f,Q[1] is given by
Rm!(?r;f*@e X ,u*ﬁlp)[Q] = R'/Tl!(ﬁzp(tf(x)))p], where ; : Al x Al — Al
are the projections. In particular, by proper base change j*FTy(f.Q.)[1] =
TR (Lyefa))2] = Kp[2] = Gy[1]. Applying j* to the triangle above we
find quasi-isomorphisms

JFTy(Fyp)[1] = Gg[1]
and
3 FTy(Fp)[1] = 51G¢[1].
To conclude, it remains to show that the natural map jij*FTy(Fy)[1] —
FTy(Fr)[1] is a quasi-isomorphism. Since its restriction to G, , is a quasi-

isomorphism, we only need to check that it induces a quasi-isomorphism
on the stalks at (a geometric point over) 0, that is, that FTy(Ff)o = O.
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By definition of the Fourier transform, FT,(Ff)o = RIc(A}, Fy). We con-
clude by using the long exact sequence of cohomology with compact support
associated to the sequence

0— Fr— f:Qr — Q, — 0,
since Hi(A]%, Q) = HE(A’%, Q¢) = 0fori # 2and HE(A%C, £:Qp) = Hg(A}c, Q) =
Qg(—1) is one-dimensional. O

We can now use Laumon’s local Fourier transform theory to determine
the monodromy actions at 0 and oo for Gy. Recall that, for every charac-
ter x : k¥ — @z, there is an associated Kummer sheaf £, on G, ;: The
(¢—1)-th power map G, , = Gy, ; is a Galois étale cover with Galois group
canonically isomorphic to k*, and one just takes the pull-back of the char-
acter X to m1(Gy, %, ) — k*. For every d|q — 1, if [d] denotes the d-th power
map Gy, — Gy i we have [d],Q; = @ L, where the sum is taken over all
characters of k* such that y? is trivial.

Assume that k contains all d-th roots of unity. The sheaf F; is smooth on
the complement U of the set of the critical values of f in A'. Since d is prime
to p, in a neighborhood of infinity the map z +— f(z) = agr®(1 + %=L 4+

aqx

oot ajg"d) is equivalent (for the étale topology) to the map x — agz? (just
by making the change of variable 2 — ax, where o = 14 %=L ... G0

d

In particular, the decomposition group D, at infinity actasd xon the ggngic
stalk of f,Q, through the direct sum of the tame characters (aq)«Ly for all
non-trivial characters x of k* such that x¢ = 1, where (aq) : Gmi = G
is the multiplication by aq map. Since (aq)«Ly = (a;')*Ly = X(aq)® @ Ly,
we conclude that Dy, acts on the generic stalk of F; via the direct sum
@D x(aq)? ® L, taken over all non-trivial characters x of k* such that x?
is trivial.

Proposition 2.2. Suppose that k contains all d-th roots of unity. The
action of the decomposition group Do at 0 on Gy is tame and semisimple,
and it splits as a direct sum @(x(aq)g(X,¥))%* ® L, over all non-trivial
characters x of k* such that x4 = 1, where g(x, %) := — >, X()¥(t) is the
Gauss sum.

Proof. By ([12, Proposition 2.5.3.1],[8, Theorem 7.5.4]), the local mon-
odromy at 0 of Gy can be read from the local monodromy at infinity of 7.
More precisely, we have LFT 0 (@ x(aq)™92L,) = @ LFT% (x(ag)™®
L,). Now, for every x, since the Fourier transform commutes with tensoring
by a locally constant sheaf (by the projection formula, since 7} (ad9) = a9
and p*(a®9) = a9 for m; and p : A}l x Aj — A] the projection and mul-
tiplication) we have LET(9) (y(aq)%9 @ L) = x(aq)?® @ LET>0 L, =
Y(aq)® @ g(x, )% @ Ly by [12, Proposition 2.5.3.1] (note that £, corre-
sponds to V5 as a representation of Dy, and to V)é as a representation of Dy
in the notation of [I2] due to the choice of uniformizers). O
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For simplicity, we will assume from now on that f’ is square-free and
p > 2. Suppose that k contains all roots of f’ (and therefore all critical
values of f). Let s € k be a critical value of f. The polynomial f;:= f — s
has at worst double roots and k£ contains all its double roots. Let gs; be the
square-free part of fs (i.e. fs divided by the product of all its monic double
linear factors), which lies in k[z]. Let Sy be the henselization of A} at s,
Z1,...,%¢ € k the double roots of f,, S; the henselization of Ai at z; for
j=1,...,eand T the union of the henselizations of A,lc at the closed points
of the subscheme defined by g; = 0. We have a cartesian diagram

1L SHIIT —— Ay
l(LIjhjmh lf
S() _— A}c

where the map h; : S; — Sp is isomorphic (for the étale topology) to the
map x — bj(z — 2;)? (where b; is fs(x)/(z — z;)? evaluated at z;, that is,
f"(2;)/2) via the change of variable mapping the local coordinate = — z;
to a(z — 2;), where a € S; is a square root of fs(z)/bj(x — z;)* (which
exists by Hensel’s lemma, since its image in the residue field & is 1), and
h:T — Sy is finite étale. In particular, the decomposition group D at s acts
on the generic stalk of f,Q, through the direct sum D,1e b)) L) DL=
@j(p(bj)deg ® L,)@(e-1& L) where L is unramified and p = p: k* — Q}
is the quadratic character.

Proposition 2.3. Suppose that p > 2, f' is square-free and all its roots are
in k. The action of the decomposition group D at infinity on Gy splits as
a direct sum @ (p(b2)g(p, 1)) @ L, ® Ly, ,, where the sum is taken over
the roots of f', b, = f"(2)/2, p : k* — Q} is the quadratic character and
g(p, ) = —=>, p(t)y(t) the corresponding Gauss sum.

Proof. By ([12],[8, Theorem 7.5.4]), the local monodromy at infinity of
Gy can be read from the local monodromies of F;. More precisely, the part
of slope > 1 corresponds to the slope > 1 part of the local monodromy at
infinity of Fy, so it vanishes. The part of slope < 1 is a direct sum, over
all critical values s of f, of Ly, tensored with the local Fourier transform
LFT©) applied to the action of I on the generic stalk of F + modulo its
Is-invariant space.

Using [12, 2.5.3.1] and the fact that Fourier transform commutes with
tensoring by unramified sheaves, for every root z of f’ LFT(O’OO)(p(bZ)deg ®
L,) = p(b,)%* @ g(p, 1) ®L,. So each critical value s contributes a factor
D (2)=s(p(b2)9(p, V)49 ® L, @ Ly, to the monodromy of G at infinity. O

We can now compute the determinant of Gy:

Corollary 2.4. Suppose that k contains all d-th roots of unity. If d is
odd, the determinant of Gy is the Tate-twisted Artin-Schreier sheaf Ly, ((1—
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d)/2), where s = s1 + -+ + sq_1 is the sum of the critical values of f
and s(t) = P(st). If d is even, the determinant of Gy is L, ® Ly, ®
(ep(aq)g(p,v))%8((2—d)/2), where p is the multiplicative character of order
2, g(p, ) = =3, p(t)(t) is the corresponding Gauss sum, aq is the leading
coefficient of f, e=1ifd=0 or2 mod 8 and e = (—1)@D/4 if d =4 or
6 mod 8.

Proof. The determinant of G is a smooth sheaf of rank one on G, ;.. At
0, it is isomorphic by propositionto the product ®Xd:1,x¢1 ((X(ad)g(i, ¥))% @ EX)_
For any x we have ((x(aqa)g(X,%))™ ® Ly) @ ((X(aq)g(x,¥))% @ Lg) =
(g(x, ) g(x, 1)) = (x(=1)q)%9. If d is odd, the non-trivial characters
with x¢ = 1 can be grouped in conjugate pairs. Moreover, x(—1) =
x((-=1)%) = x%(—1) = 1. We conclude that the determinant at 0 is the

unramified character (q%)deg = @g(%‘l). At infinity, it is geometrically
isomorphic by proposition to the product &), (L, ® Ly f(z)) = Ly, (the
hypothesis that k& contains all roots of f’ is not needed for the geometric iso-
morphism, since it is always satisfied in a sufficiently large finite extension
of k). So det(Gy) ® Ly_, is everywhere unramified and therefore geometri-

cally constant. Looking at the Frobenius action at 0, it must be @g(l%d),

so det(Gy) = Ly, (157).
If d is even, the factor at 0 corresponding to the quadratic character p
d—2
stays unmatched, so as a representation of Dy the determinant is (eq 2 )%9®

(plaq)g(p, )% ® L,, where € = Hgi—lz)/z X*(—1) for a fixed character x of
exact order d. At oo it is geometrically isomorphic to £,® Ly, , so det(Gy) ®
L, ® Ly_, is everywhere unramified and therefore geometrically constant.

Looking at the Frobenius action at 0, it must be (eq%p(ad)g(p, ¥))%9, so

det(Gr) = L, @ Ly, @ (eplag)g(p,))*(359).
It remains to compute the value of . We have

(d—2)/2
e= TI X(=1) = x2/8(-1) = x((~1y-27%)
i=1
If d=0or2 mod 8, d(d—2)/8 is even and therefore e = 1. If d =4 or 6
mod 8, d(d — 2)/8 is odd so € = x(—1) = (—1)la=1/d, O

3. THE MOMENT L-FUNCTION OF Gy.

Recall the definition [4] of the moment L-function for the sheaf G;. For a
fixed r > 1, let

1

L T):=
(f) 1/)7 ) H det(l — FI‘Ob;Tdeg(t) ‘ (gf)t) ’
t€|Gp k]

where |G, 1| denotes the set of closed points of G, .
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It is known ([4, Theorem 1.1]) that L"(f,,T) is a rational function, and
we have the formula

det(1 — Froka]Hi(va,;, Gr1™))
~ det(1 — Frob; TIHZ(G,, £, [G¢]"))

() L'(f,4,T)

- [T, det(1 — Froka|H(1:(Gm7,;, Symr_igf ® /\igf))(—l)ifl(i—l)
[Ti—o det(1 — Froby T[H2(G,,, £, Sym’ G ® AiGy)) D=1

Thus, we get a decomposition

Q(T)P(T) P (T)
P(T)P(T)
We now describe each of the factors in this decomposition.
First,

(6) L'(f,¢,T) =

T
Q(T) = [ [ det( — FrobyTJH' (B}, ji(Sym™™'Gy @ A'Gy))) V10D
i=0

is the non-trivial factor. Notice that the dual of Gf is G_¢(1), since Fy is self-

dual and Do FTy, = FTj;0 D(1) [11}, Corollaire 2.1.5] and FT;F¢[1] = [t —

—t]*G¢[1] = G_[1]. Therefore the dual of Sym" "Gy ® A'G; is Sym"'G_; ®

NG_g(r), so the dual (in the derived category) of j.Sym"'Gy ® A'G[1]

is j.Sym" 'G_; @ AN'G_¢[1](r + 1), cf. [2, 2.1]. Since P! is proper, by [2,

Théoreme 2.2] we get a perfect pairing

HY (P, 4. (Sym" 'GroA'Gy)) x HH (P, 4 (Sym"'G_r@A'G_)) = Qo(—r—1)

for every i =0,...,r.

In particular, we get a functional equation relating the polynomial
Si
QZ(T) = det(l — Froka|H1(P,l€,j*(SymT_igf ® /\ng))) = H(l — ’)/UT)

j=1

and the corresponding polynomial Q}(7") for —f. The functional equation

is given by
Si

Q:r) =[] - ¢+ =

j=1

TSiq(T‘+1)5i Si

— 1 — s 7(7‘+1)T71
(=1)%iyi1 -+ Yis, jl_Il( it ) Cs,

_ TSiq(T+1)Si

Qi (qf(r+1)T71)

where ¢, is the leading coefficient of Q;(T"). Therefore,

T i1y s (r+1)s
Q*(T) := HQ;(T)(—D Li-1) _ LQ(q—(rH)T—l)
=0

Cs
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where s is the degree of the rational function Q(T") and c¢; its leading coeffi-
cient (i.e. the ratio of the leading coefficients of the numerator and denom-
inator). By [3, Théoréme 3.2.3], all reciprocal roots and poles of Q(T') are
pure Weil integers of weight r 4 1.

The other factors of L"(f,v,T) are the “trivial factors”:

P(T) = [] det(1 — Froby TIH(BL, j.(Sym”~'Gy @ A'Gy))) D" (=1
=0
and

-
P'(T) = [ [ det(1 — Frob,T|H*(P}, j.(Sym" "Gy @ AiGp)))EDTHED
i=0
are rational functions of the same degree and pure of weight r and r + 2
respectively, and vanish if Sym"™'Gr ® A*Gy has no invariants for the action
of m1(G,,, ) for any i. The other two are the local factors at 0:

Py(T) = det(1 — FroboT|([G4]")") =

= Hdet(l — FroboT'|(Sym" "Gy ® /\igf)IO)(—l)ifl(i—l)
i=0
and at infinity:

Poo(T) := det(1 — Frobo T|([Gf]")>) =

T
= H det(1 — FrobooT|(Sym” G, ® /\igf)lm)(_l)z_l(i_l).
i=0
We now compute the local factors explicitly.
Corollary 3.1. (Local factor at 0 of the moment L-function) Suppose that

k contains all d-th roots of unity. For any positive integer r > 1, the local
factor at O of the r-th moment L-function for Gy is given by

det(1 — FroboT\([gf]T)IO) = H(l —g(x,¥)'T)
X

where the product is taken over all non-trivial characters x of k* such that

x¢ =1 for e = ged(d,r) and g(x,v) = — >, x(t)(t) is the corresponding
Gauss sum.

Proof. As a representation of the inertia group Iy, Gy is the direct sum
@;;:—11 L, for a character x of order d. So in the Grothendieck group of
Q¢[Io]-modules we have [G]" = @f:_ll L’f?f = @?:_11 L,ir. For a given i, L, r
is trivial as a representation of Iy if and only if ¥ is trivial, that is, if and
only if ¢r is a multiple of d.

Writing d = d'e with e = ged(d,r). The trivial summands correspond
toi = d,2d,...,(e — 1)d’. The characters x’ are then exactly the non-
trivial characters of k* whose e-th power is trivial, and the corresponding
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Frobenius eigenvalues are (x*(aa)g(X", %)) = X" (aq)g(xX’s¥)" = g(X's¢)"
by proposition [2.2 O

Corollary 3.2. (Local factor at oo of the moment L-function) Suppose that
p > 2, [’ is square-free and all its roots are in k. For any positive integer
r > 1, the local factor at oo of the r-th moment L-function for G is given
by

det(1 — Frobe T ([G]") ) =

(1= (p(=1)g)">T)*="if 2p]r
=< (1= (p(=1))">T)™  if 2|r, (r,p) =1 and f has double roots
1 otherwise
where p : k* — {1,—1} is the quadratic character and m is the number of
double roots of f.

Proof. As a representation of the inertia group I, Gy is the direct sum
@?:—11 (Ly,, ® Ly) where 95, () = 9(sit). So in the Grothendieck group of
Q¢[Iso]-modules we have [Gf]" = @f:_ll(ﬁffr ® L) = @f;f(ﬁlbw ® Lyr).

The term (Ly,, ® L,r) is trivial if and onl;i if p" and v, are both trivial,
that is, if and only if r is even and rs; = 0. That can only happen when
either r is divisible by 2p or r is even and s; = 0.

In the first case the inertia group I, acts trivially on every term, and the
Frobenius eigenvalues are all equal to (£g(p,))" = g(p,¥)" = (p(—1)q)"/?
by proposition In the second case, if (r,p) = 1, the inertia group
only acts trivially on the m terms for which s; = 0, and the corresponding
Frobenius eigenvalue is again (p(—1)q)"/?. O

We now give some geometric conditions on f that ensure that the trivial
factors P(T) and P'(T') disappear:

Proposition 3.3. Suppose that f' is square-free, and either:
(1) r is odd, or
(2) the hypersurface defined by f(x1) +---+ f(xy) = 0 in A} is non-
singular.
Then P(T) = P'(T) =1.

Proof. We will check that, for every ¢ = 0,...,r, the action of 7T1(ij€) on
the sheaf Sym“igf ® Aigf has no non-zero invariants. Since Sym“igf ®
NG 1 is a subsheaf of " Gy for every 4, it suffices to prove it for the latter.

By Proposition the inertia group I, acts on Gy through the direct
sum of the characters £, ® Ly, £(2) for every root z of f’. Therefore it acts on
its r-th tensor power as the direct sum of the characters £, ®£¢f(21)+”_+f(z?)
for all r-tuples (z1,...,2,) of roots of f'. If r is odd, none of these is the
trivial character, since £,- = £, (which is totally and tamely ramified at
infinity) can not be isomorphic to £y, (which is either trivial or totally wild
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at infinity) for any ¢t. If the hypersurface f(x1) +--- + f(z,) = 0 is non-
singular, the sums f(z1) + -+ + f(z,) are always non-zero, and therefore
Ly ® wa(21)+"'+f(zr) is totally wild at infinity.

In either case, Sym”_igf ® A'Gy has no non-zero invariants under the

action of I, and, a fortiori, under the action of the larger group m(G,, 1)
O

Corollary 3.4. Let f € k[x] be a polynomial of degree d prime to p > 2
and r a positive integer. Suppose that f' is square-free. If r is even, suppose
additionally that the hypersurface defined by f(z1) +--- + f(z,) = 0 in A},
is non-singular. Then the number N,.(f) of k,-rational points on the curve

y' —y=f(z)
satisfies the estimate
il
[N (f) —d"| < Carg

"L d—2+4r—i\[(d—1
ew =S ()

=0

where

is independent of q.

Proof. Under the hypotheses of the corollary, the previous result shows
that m; (Gm,;) has no non-zero invariants on Sym" Gy ® A'Gs. Therefore,

H(G,, Sym"~'Gy ® AiGy) = 0, and formula |5 reduces to

L'(f,%,T) = [ [ det(1 — FrobTH(G,,, 5, Sym™ Gy @ AIGy)) D" =1
=0
In particular, by

r

N.(f)—q" = Z(—l)i_l(i -1)- Trace(Frobk]H(l,,(GmJ;, Sym" "G ® A'Gy)).
=0
Since H}:(Gm’,—c, Sym"~'Gy ® A'Gy) is mixed of weight < r + 1, we get the
estimate

IN:(f) —q"| < (Z i — 1] - dim(H(G,, , Sym" "Gy ® NQf))) g

1=0

Since H! is the only non-zero cohomology group of Sym” ‘G r® NG r, we
have

dim HY(G,, s, Sym" ~'Gy ® A'Gy) = —x(G,, 1, Sym" "Gy ® A'Gy) =

= Swan (Sym”'G; ® A'Gy)
by the Grothendieck-Néron-Ogg-Shafarevic formula, since Sym” ‘G r® NG I
is tamely ramified at 0. Now by all slopes at infinity of Sym” ‘G ® NG [
are 0 or 1, so

Swanoo(Symr_igf ® /\igf) <
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< rank(Sym'"'G; ® A'Gy) = <d m2hre Z) <d R 1).

r—1 1
The proof is complete. O

The non-singularity condition is generic on f if r is not a multiple of p:
in fact, there can be at most (d+:_2) values of A € k for which f(z)+ X does
not satisfy the condition. If r is divisible by p, then f(z1)+---+ f(x,) =0
always defines a singular affine hypersurface and thus Theorem is empty
if r is further even. In such cases, we can use the refinement in next section.

4. REFINEMENTS USING GLOBAL MONODROMY.

In this section we will relax the hypotheses of Corollary [3.4] using Katz’s
computation of the global monodromy of Gy. In particular, we will give

conditions on f that make the given bound hold for any r.
Zar

Let G = m(G,,5) € GL(V) be the geometric monodromy group of
G, where V is its generic stalk. Let z1,...,24-1 be the roots of f’ in E, let
si= f(z;) and s =81+ -+ + 84-1.

Proposition 4.1. Suppose that p > 2d — 1 and the (d — 1)(d — 2) numbers
s; — sj for i # j are all distinct. Then G is given by

SL(V) if d is odd and s =0
GLy(V) if d is odd and s # 0
GLo(V)==xSL(V) ifd is even and s =0
GLap(V) if d is even and s # 0

where GLy, (V) = {A € GL(V)|det(A)™ = 1}.

Proof. The hypothesis forces the s; to be distinct (otherwise 0 would ap-
pear at least twice as a difference of two critical values). Since p > d, [8|
Lemma 7.10.2.3] shows that Fy is a geometrically irreducible tame reflection
sheaf. Then by [8, Theorem 7.9.6], G must contain SL(V'). Since SL(V) is
connected, it must be contained in the unit connected component Gy of G.
On the other hand, since Gy is also geometrically irreducible (since Fourier
transform preserves irreducibility), Gy is a semisimple algebraic group [3,
Corollaire 1.3.9] so it must be SL(V'). In order to determine G completely,
we only need to know the image of its determimant, but by Corollary
we know it is trivial for d odd and s = 0 and the group of p-th roots (re-
spectively square roots, 2p-th roots) of unity for d odd and s # 0 (resp. d
even and s = 0, d even and s # 0). O

Corollary 4.2. Under the hypotheses of Proposition for any integer
r > 1 the number N,.(f) of k.-rational points on the curve
y' —y=f(z)
satisfies the estimate
. T4l
[N (f) —d"| < Carq
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"L d—24r—i\[(d—1
Cd,r:Z“_l( r—i )( i >7

1=0

where

unless d is odd, s = 0 and r = d— 1, in which case there exists 5 = £1 such
that N, (f) satisfies the estimate

z r41
IN:(f) = (¢ + Bq>™)| < Capg =
Moreover, if k contains all d-th roots of unity then 8 = 1.

Proof. For the first statement, we only need to show that m(G,, ;) has no
non-zero invariants on Sym’ G F® NG ¢ for any 1, the result follows exactly
as in Corollary Equivalently, we need to show that Sym”*V ® AV has
no non-zero invariants under the action of G.

As a representation of SL(V'), we have

Sym" "'V ® A'V = Hom(A'V*, Sym” V) = Hom(AY™ 1=V, Sym" V)

whose invariant subspace, for ¢ > 0, is 0 except in the casesr—i = d—1—i = 0
and r —i =d—1—14 = 1, where it is one-dimensional. In particular, SL(V)
(and, a fortiori, G) has no non-zero invariants on Sym”‘V @ AV for any
i>0ifr£d— 1.

Suppose that r = d — 1, and let W, be the one-dimensional subspace
of Sym" ™'V ® AV invariant under SL(V), for i = r — 1 or i = r. The
factor group G/SL(V) = um acts on W, where m is given in the previous
Proposition. Let A = diag(¢,...,¢) € G be a scalar matrix, where ¢ € Q
is a primitive m(d — 1)-th root of unity. Then the class of A generates the
cyclic group G/SL(V), so G fixes W; if and only if A does. But A acts on
W; by multiplication by (", so this action is trivial if and only if (" = 1,
that is, if and only if m(d — 1) divides r = d — 1, which can only happen for
m = 1, that is, in the case where d is odd and s = 0.

It remains to prove the second estimate in this case. Since G = SL(V),

the determinant of Gy is geometrically trivial, so it is (q% B)4ee for some (3
with |3| = 1. For i = r, Sym" 'V ® A'V = A%V = detV and therefore
Frobenius acts by multiplication by q% B. Fori=r—1,Sym" " ‘'V@AV =
V @ A2V = Hom(V,V) @ det V and the G-invariant part is again det V/,
on which Frobenius acts by multiplication by q% B. We conclude that

[T det(1 — FrobyTIHA(G,,, . Sym"™Gy @ A'Gy)) =1 (=1

i=0

= det (1 — Frob,T|(det G)(—1))D" =2+ =1
= (1—g"BT) T = (1— g2 8T !

sincer —1=d— 2 is odd.
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From equation we then get that

L'(f,0.7) T 1 _ i im \(=1)i=1(i—1)
1— ngﬂT - il;([)det(l FrObk’T|Hc(Gm,k’ Sym gf QN gf)
and, in particular, by
,
N (f)—q"—Bqz! = Z(—l)i_l(i—l)-Trace(Frobk\Hi(ijc, Sym"'Gr@A'Gy)).
i=0
But L"(f,4,T) has real coefficients (since taking complex conjugate is
the same as replacing f by —f or, equivalently, taking the pull-back of G
under the automorphism ¢ — —¢, so it gives the same L"). Since q%“,@’ is
its only reciprocal root of weight r + 2, we conclude that g = +1. Moreover,
if k contains all d-th roots of unity then 8 =1 by Corollary 2.4
Using that Sym" ‘G r® NG ¢ is pure of weight r, we obtain the estimate

r T r . . i ; rid
IN:(f)—(q"+Bqzth)| < <Z i — 1| - dim(H}(G,, 7, Sym" "Gy @ A gf)))-q 2
i=0
We conclude as in corollary [3.4] using that, for the two values of i for which
Hg (Gm,l:ﬂ Sym"'Gy ® A'Gy) is one-dimensional, the sheaf Sym"™'G; ® A'Gy
has at least one slope equal to 0 at infinity, and therefore
dim H}:(Gm’E, Symr_igf ® /\igf)
= —X(Gp 1, Sym"~'Gy ® N'Gy) + dim H(G,, , Sym"™'Gy © A'Gy)
= Swanoo(Symr_igf ® /\igf) +1< rank(Symr_igf ® /\igf).
O

The hypothesis of proposition .1] can easily be checked from the coeffi-
cients of f: Let Ay be the companion matrix of f/, and B = f(Ay). The
eigenvalues of the (d — 1) x (d — 1) matrix B are sq,...,S4—1, and its trace
is s. Next we construct the (d —1)? x (d —1)? matrix B& I;_1 — I;_1 ® B,
whose eigenvalues are all differences s; — s;. Its characteristic polynomial is
then of the form T91g(T). The hypothesis of proposition are equivalent
to the discriminant of ¢(7") being non-zero.

We will now deal with an important class of polynomials to which
does not apply.

Definition 4.3. We say that a polynomial f € k[x] is quasi-odd if there
exist a,b € k such that f(a —x) = b— f(x). In this case, the degree d is
necessarily odd.

Notice that a and b are then uniquely determined: if f = cqz® + --- +

a1z + ¢, a = _Qdc;;_l and b = 2f(§). If f is quasi-odd, the set of critical
values of the map f : A}g — A}C is invariant under the involution s — b — s.

In particular, their sum is b(d72—1).
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Lemma 4.4. If there is a € k such that f(a —x) = —f(x), the Tate-twisted
sheaf G¢(1/2) on Gy, jy is self-dual.

Proof. Since Gy—¢) = Gy () for any ¢ € k, we may assume that f is odd.
The automorphism  — —x induces an isomorphism Fy = [—1]*"F; = F_;.
Taking Fourier transform, we get an isomorphism Gy = G_;. Composing
with the duality pairing (cf. section 3) G x G_; — Qu(—1) we get a perfect
pairing Gy x Gy — Qu(—1) or, equivalently, G¢(1/2) x G£(1/2) — Q. O

Proposition 4.5. Let f € k[z] be quasi-odd. Label the critical values s; so
that sq_i =b—s; fori=1,...,d— 1. Suppose that p > 2d — 1 and the only
equalities among the numbers s; — s; for i # j are s; — s; = 54_j — S4—;.
Then G = Sp(V) if b = 0 (if and only if s = 0, since p > d — 1), and
G=pp,-Sp(V) if b#0.

Proof. The hypothesis forces the s; to be distinct: if s; = s; for ¢ # j then
8;—s8j = 8j—84,501=d—1iand j = d— j, which is impossible since d is odd.
Then by [8, Lemma 7.10.2.3] F is a geometrically irreducible tame reflection
sheaf. If b = 0, we may assume as in the previous lemma that f is odd. The
self-duality of G¢(1/2) is symplectic (it suffices to show it geometrically, and
that is done in [8, Lemma 7.10.4]), so we have G C Sp(V'). We now apply
[8, Theorem 7.9.7], from which G must contain SL(V), Sp(V) or SO(V),
and therefore we must have G = Sp(V).

If b # 0, f(z) — § is quasi-odd with b = 0, and Gf = Gy_y)0 © Ly, ,.
Let H C m1(G,, ;) be the kernel of the character Ly, ,, it is an open normal
subgroup of index p and the restrictions of the representations Gy and G;_ /9
to H are isomorphic. Since the monodromy group of G¢_; /5 is Sp(V'), which
does not have open subgroups of finite index, the closure of the image of
H on GL(V) under G is the whole Sp(V). Therefore, Sp(V) C G and
G C pp - Sp(V), since m1(G,, ;) acts via Ly,,, by multiplication by p-th
roots of unity. Since the determinant of GG is non-trivial by Corollary it
must be p, - Sp(V). O

Corollary 4.6. Under the hypotheses of Proposition [{.3, for any integer
r > 1 the number N,.(f) of k,-rational points on the curve

y! —y = f(z)
satisfies the estimate
41
INe(f) —q'| < Carg 2

U d—2+4r—i\[(d—1
Q”ZEZ“_l( r—i )(i )
=0

unless 1 < d — 1 is even and either b = 0 or p divides r, in which case it
satisfies the estimate

where

r+1

INA(f) = (¢ + ") < Capg = .
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Proof. As a representation of Sp(V'), we have

Sym"™'V @ A"V = Hom(A'V, Sym"™ V)
whose invariant subspace, by [9, lemma on p.62], is 0 except when i is odd,
r=t+1and i <d—1, or when ¢ is even, r =i and ¢ < d— 1. In particular,
since d is odd, G has no non-zero invariants on Sym” 'V ® A"V for any i if
risodd or r >d — 1.

Suppose from now on that r < d — 1 is even, and let W; be the one-
dimensional subspace of Sym” "V @ A’V invariant under Sp(V'), for i = r—1
or i = r. Consider the case where b = 0 first. Since G¢(1/2) is self-dual, all
Frobenius images are in Sp(V') = G. In particular, all Frobenii act trivially
on W;(r/2), and therefore they act by multiplication by ¢z on W; C Q" V.
Therefore

[T det(1 — Froby TIHA(G,,, 1, Sym™ Gy @ AiGy)) 1 (=D

=0
= det(1—FrobsT|W,_1(—1)) D" =2 det(1 — Frob, T|W, (—1)) D" =1
(1— qg+1T)(—1)T*2(r—2)+(—1)7*1(r—1)

— (1 _ q%+1T)(fl)T_1 — (1 _ q%+1T)fl
since r — 1 =d — 2 is odd.
In the case where b # 0, G/Sp(V') = p,, acts on W;. Let
A = diag((p, ..., () €G

be a scalar matrix, where ¢, € Qy is a p-th root of unity. Then the class of
A generates G/Sp(V), so G fixes W; if and only if A does. But A acts on W;
by multiplication by (7, so this action is trivial if and only if (; = 1, that is,
if and only if p divides r. In that case, Symr_igf QNG = (Symr_igf_b/g ®
/\igffb/z) ® ES;/Q = Sym’”*igf,b/Q ® N?gf,,,/z, so we can apply the b = 0
case and we get again

H det(1 — Froka|H§((Gm7,—€, Sym"'G; ® /\igf))(—l)"‘l(z‘—l) _

=0
= (=g = (- g
We conclude as in corollary O

Again, the hypothesis of proposition [£.5] can be checked from the coeffi-
cients of f: After adding a constant, we may assume that b = 0. Let Ap
be the companion matrix of f/, and B = f(Ay). The eigenvalues of the
(d—1) x (d—1) matrix B are sy,...,Sq—1, and its trace is s = @. Con-
struct the (d —1)% x (d —1)? matrix B® I;_y — I;_1 ® B, whose eigenvalues
are all differences s; — s;. Its characteristic polynomial is then of the form
T4 h(T/2)g(T)?, where h(T) is the characteristic polynomial of B, since
all non-zero roots different from s; — sq_; = 2s; for e =1,...,d — 1 appear
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in pairs. The hypothesis of proposition [£.5is equivalent to the discriminant
of h(T/2)g(T) being non-zero.

5. GENERALIZATION TO ARTIN-SCHREIER HYPERSURFACES

In this section we will extend corollary [3.4]to higher dimensional hypersur-
faces. Since the proofs are very similar, we will only sketch them, indicating
the differences where necessary.

Let f € k[z1,...,2,] be a polynomial of degree d prime to p, Cy the
Artin-Schreier hypersurface defined on AZ“ by the equation

(7) Yyl —y=f(z1,...,2p).
Denote by N,.(f) its number of rational points over k.. We have again a
formula

®) NAH=q" =D > bt Te(f(2) =D > ¢(Tr(tf(x)))

tek* xck? tek* xck?
where Tr denotes the trace map k. — k. Assume that f is a Deligne polyno-
mial, that is, the leading form of f defines a smooth projective hypersurface
of degree d not divisible by p. Applying Deligne’s bound [3] to the above
inner sum, one deduces that

INA(f) =™ < (g —1)(d—1)"q".
This is precisely Weil’s bound in the case n = 1. Our purpose of this section

is to improve the above bound and obtain the estimate of the following form
nr+1
IN:(f) —q"| < Capq 2,
for some constant Cgy, depending only on d,r and n.

Define Ky = Rm Ly f(z)) € PUGmis Qr), where 7 : Gy x A" — Gy, is
the projection. The trace formula implies that the trace of the action of
the r-th power of a local Frobenius element at t € k* on Ky is given by
> zekn Y(Tr(tf(2))). Suppose from now on that the homogeneous part fq
of highest degree of f defines a non-singular hypersurface. Then by [3], 3.7],
K is a single smooth sheaf G placed in degree n, of rank (d —1)" and pure
of weight n. Therefore

No(f) =" = (=)™ ) Te(Frobi|(Gy)) = (~1)" ) Tr(Frob|[Gf]})

tek* tek*

where
T

G =D (1) (i — 1) - Sym™'G ® NGy
=0
is the r-th Adams operation on Gy
We can give an interpretation of G in terms of the Fourier transform like
we did in the one-dimensional case. Exactly as in lemma [2.1, we can show

Lemma 5.1. The object Gy[1] € DY(Gn, Qp) is the restriction to G, of the
Fourier transform of R fiQq[n] with respect to 1.
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We compactify f via the map f : X — Al where X C P" x Al is
defined by the equation F'(xg, x1,...,2,) = txg, F being the homogenization
of f with respect to the variable zg, and f the restiction of the second
projection to X. Suppose that the subscheme of A} defined by the ideal
(0f |Ox1,...,0f/0x,) is finite étale over k, and the images of its k-points
under f are distinct. Then for every s € k, the fibre X, has at worst one
isolated non-degenerate quadratic singularity, which is located on the affine
part (since the part at infinity is defined for every fibre by fg(z) = 0 and is
therefore non-singular).

We have a distinguished triangle

RAQ, — RfQr — R(fx,)«Qe —

where Xg = X\A" XY XNAl, Y being the smooth hypersurface defined in
P! by f; = 0. Since R(f|X0)*@g is just the constant object RI'(Y,Qy), its
Fourier transform is supported at 0. So

Gr[1] = (FTyRAQe[n))g,, , = (FTyRAQin]) G, ,-

Proposition 5.2. Suppose p > 2. Under the previous hypotheses, let
21,5 2q-1n € AL be the distinct points such that %(’Zﬁ) = 0 for all
i=1,...,n, and let s; = f(z;). The action of the inertia group I at infin-
ity on Gy decomposes as a direct sum P Ly, if n is even, and @D(L,® Ly, )
if n is odd, where p is the unique character of I of order 2.

Proof. We will obtain, for every 4, a factor Ly, (resp. L, ® Ly, ) in the
local monodromy of G; at infinity. Since the rank is (d — 1)” and these
characters are pairwise non-isomorphic, this will determine the action of I,
completely.

Let S = {si|i = 1,...,(d —1)"}, and U = A’\S. Since f is proper and
smooth over U, R? f*@g is smooth on U for every 4. Since X, contains one
isolated non-degenerate quadratic singularity for each s € S, by [1, 4.4] the
sheaves R’ f,Qy are smooth on A for i % n—1,n. In particular, their Fourier
transforms are supported at 0. We conclude that there is a distinguished
triangle

(FT, R L Qil1])ig,, , — Gf[1] = (FTuR" £.Qe[0)g,, , —
and therefore an exact sequence of sheaves
(9) 3 i
0= H ' (FTR" Q1)) e, , — G5 = H " (FT,R" L Q0)),, , —
= HU(FT, R f.Qi1))g,,, — 0

since F'T,R" f*@@ [0] can only have non-zero cohomology sheaves in degrees

1, 0 and —1. Furthermore H°(FT,R"! £xQ¢[1]) is punctual, so this induces
an exact sequence of I-representations

(10) 0 — H Y(FT,R"£Q[1]) = G — H Y (FT,R" £.Q.[0]) — 0.
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Let V be the generic stalk of R"f,Q,;. Suppose that n is odd, and
let s € S. Then by [I, 4.3 and 4.4], the inertia group I acts on V with
invariant space V7, of codimension 1 (the orthogonal complement of the
'vanishing cycle’ §) and on the quotient V/V7, via its quadratic character p.
Moreover, R*~1 f*@g is isomorphic at s to the extension by direct image of
its restriction to the generic point. By Laumon’s local Fourier transform [8,
Section 7.4], the action of the inertia group I, on H ' (FT,R" ' £,Q.[1])
(and thus on Gy by (10))) contains a subcharacter isomorphic to £, @ Ly, .

Suppose now that n is even, and let s € S. By [I, 4.3 and 4.4], there
are two possibilities: if the ’vanishing cycle’ ¢ is non-zero, the inertia group
I acts on V with invariant space Vi, of codimension 1 (the orthogonal
complement of §) and trivially on the quotient V/V;,. Moreover, R"~! f*@g
is isomorphic at s to the extension by direct image of its restriction to the
generic point. By Laumon’s local Fourier transform [8, Section 7.4], the
action of the inertia group I, on H~'(FT,R" ' f,Q,[1]) (and thus on G;
by ) contains a subcharacter isomorphic to Ly, .

If § = 0, then I acts trivially on V', and there is an exact sequence of
sheaves: R R

0— (Qﬂ)s — Rﬂf*@ﬁ - js*j:Rnf*QZ —0
where (Qy)s is the punctual object Q; supported on s and js : Al — {s} <
Al is the inclusion. Taking Fourier transform, we deduce a distinguished
triangle
ﬁd)s[l] - FTanf*QE[O] - Fszjs*j;Rnf*Qé[o] —
and in particular an injection

0= Ly, = H L(FTRR™ £,Qq[0]).

By , this gives a subcharacter isomorphic to Ly, in the monodromy of
Gy at infinity. (]

For completeness, we determine also the monodromy of Gy at 0.

Proposition 5.3. The inertia group Ip at 0 acts on Gy as a direct sum
@D ny Ly, where the sum is taken over all characters x of Iy such that Y% is
trivial, ny = %((d—1)" — (=1)") if x is non-trivial and ny = (—1)"+ 3 ((d—
D™ — (=1)") if x is trivial.

Proof. We will show that, for every x, the action of Iy on G contains n,
Jordan blocks for the character x. Since these numbers add up to (d — 1),
which is the dimension of the representation Gy, this will prove that the
action is semisimple and determine it completely.

Let x be non-trivial such that x? = 1. Since adding a constant a to f
corresponds to tensoring G with the Artin-Schreier sheaf £,,, and this does
not change the monodromy at 0, we can assume that Gy is totally wild at oo
(or equivalently, that the hypersurface f(z) = 0 is non-singular). Then so is
G®Ly. The number of Jordan blocks associated of £, in the representation
of Ip given by Gy is the dimension of the Iy-invariant subspace of Gy ® Ly.
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If j: G, 5 — A} and i : {0} — A} are the inclusions, we have an exact
sequence
0= ji(Gr ® Lg) = ju(Gr @ Lg) = ixi*ju(Gy ® L) — 0

and therefore

0= (Gr ® L)' = H(G,, 1, Gr © Lx) = He(AL (G ® Lg)) = 0.
Since Gy ® Ly is totally wild at oo, the latter cohomology group is pure of
weight n+ 1. So the dimension of (G ® L)% is the dimension of the weight
< n part of H(G,, 1,Gr ® Ly).

By the projection formula,

G @ Ly = (R'MLyr5())) @ Lx = RM(Ly(ap(2)) @ Lx(r):
SO
H (G Gr ® Lx) = HIH Gy g X A, Listep(a)) ® Lyer)

since Rin£¢(tf($)) = 0 for i #n. Let Z C A} be the closed subset defined
by f(x) = 0 and U its open complement. The sheaf Ly, is trivial
on G x Z, so Hy(Gp ;. X Z, Ly(us(ay) ® Ly@) = HE(Gpp X Z,Lyw) =
Hi (G, 1 L5)@H:(Z®k, Q) = 0 since x is non-trivial. By excision we get an
isomorphism H?"'l(Gm’E X Ag, Edz(tf(:p)) ®,C>—<(t)) = H?+1(Gm7l_€ x U, [’dl(tf(ft)) ®
Lxw)-

Consider the automorphism ¢ : G, x U — G,, x U given by ¢(t,x) =
(tf(2), ). Then ¢u(Ly(rs(a)) @ Lxr) = Lo() ® Lxw/s@)) = Lun) ® Lxr) ®
Lx(r@)- S0
HE G X Uy Lyes @) @ L) = HEH Gy x U, Ly ® Lty @ Ly(s(a))

which, by Kiinneth, is isomorphic to H{(G,, 1, Ly ® L) @ HX(U @ k, L (5))
(since HL(G,,, 7, Ly ® Ly) = 0 for i # 1). The first factor is one-dimensional
and pure of weight 1, so we want the dimension of the weight < n — 1
part of HZ(U ® k,L,(s)). By [10, Theorem 2.2], this dimension is n, =

g((d=1)" = (=1)")
3 .

Similarly, if x = 1 is the trivial character, the searched dimension is the
dimension of the weight < n part of HI (G, 7 x A%, Ly 15(z)))- From the
exact sequence

. — H?({O} X AU,Qg) — H?—i_l(Gm,E X A%, Ezp(tf(x))) —

— HPT (AL < AT, Loarey) — HET ({0} x A7, Qp) — ...
we get an isomorphism HZ TG, , p X AT, Ly r(a))) = HETH (AL XA, Ly 5(a)))-
Now let 7 : Al x A” — A" be the projection, by the base change theorem
we have Rzﬂgﬁw(tf(x)) =i,Q¢(—1), where i : Z — A" is the inclusion of the
closed set where f(z) = 0, and R'mLy () = 0 for i # 2. So we need
the dimension of the weight < n — 2 part of H*}(Z,Q,). Let Z be the
projective closure of Z and Zy = Z\Z, we have an exact sequence

o HYX(Z,Q) = H2(Z0, Q) — B Y(Z,Qp) —» H Y (Z,Q)) — ...
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Since Z is smooth, H*~1(Z,Qy) is pure of weight n — 1, and therefore the
weight < n—2 part of H?~1(Z, Q) is the cokernel of the map H"*2(Z, Q) —
H"~2(Zy,Qy), that is, the primitive part Prim" 2(Zy, Q;) of the middle co-
homology group of Zy, which has dimension ny; = (=1)" + 3((d — 1)" —
(—1)").

(d=1)"

Corollary 5.4. Let s =) .=, s;. Ouer k, the determinant of Gy is the
Artin-Schreier sheaf Ly, if n(d — 1) is even, and the product L, ® Ly, if
n(d —1) is odd.

Proof. The determinant is a smooth sheaf on G, of rank 1. At 0, its mon-
odromy is the product of x™x for all characters x of Iy such that y? is trivial.
Since the non-trivial characters (except for the quadratic one) appear in con-
jugate pairs, the product is trivial if d is odd, and comes down to p™#, which
is p or 1 depending on the parity of n, = 3((d — 1)" — (—=1)"), which is
congruent to n mod 2, if d is even.

At infinity, its monodromy is the product of the Ly, (resp. of the £, ®
Ly, ) if nis even (resp. if n is odd), which is Ly, (resp. L£,® Ly, ) if n(d—1)
is even (resp. if n(d — 1) is odd). We conclude as in Corollary O

We now give the higher dimensional analogue of Corollary [3.4

Corollary 5.5. Let f € k[x1,...,x,] be a polynomial of degree d prime to p
and r a positive integer. Suppose that p > 2, the highest degree homogeneous
part of f defines a non-singular hypersurface, the subscheme of A} defined
by the ideal (Of/0x1,...,0f/0xy) is finite étale over k and the images of
its k-points under f are distinct. If nr is even, suppose additionally that
the hypersurface defined by f(x11,...,%1n) + -+ f(zr1,...,Zrn) =0 in
A} = Specklz; |1 < i < r,1 < j < n]is non-singular. Then the number
N, (f) of ky-rational points on the hypersurface

Yyl —y = f(z1,...,2p)

satisfies the estimate

nr+1

INe(f) = ¢ < Caprq >

a3t (0

=0

where

is independent of q.

The proof is identical to the one of Corollary using Proposition [5.2
In the n even case we need the non-singularity hypothesis for any r, since
the Kummer factor does not appear in the monodromy at infinity.
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