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Abstract

For a global function field K of positive characteristic p, we show that Artin’s
entireness conjecture for L-functions of geometric p-adic Galois representations of K is
true in a non-trivial p-adic disk but is false in the full p-adic plane. In particular, we
prove the non-rationality[] of the geometric unit root L-functions.

1 Introduction

Let F, be the finite field of ¢ elements with characteristic p. Let C' be a smooth
projective geometrically connected curve defined over F, with function field K. Let
U be a Zariski open dense subset of C' with inclusion map j : U — C. Let Gg =
Gal(K*®°P/K) denote the absolute Galois group of K. For example, we can take C = P!,
U=P!—{0,00} and K = F,(t).

Let R (I/) denote the arithmetic fundamental group of U. That is,

) = Gk ) < I >ze|U)
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where the denominator denotes the closed normal subgroup generated by the inertial
subgroups I, as x runs over the closed points |U| of U. Let D, denote the decomposition
group of Gk at z. One has the following exact sequence

1 — I, — Dy — Gal(ky/kz) — 1,

where k, denotes the residue field of K at x. The Galois group Gal(k,/k;) is topolog-
ically generated by the geometric Frobenius element Frob, which is characterized by
the property:
Frob, ! : a — afhe.

Let P, denote the p-Sylow subgroup of I,. Then we have the following exact

sequence
1= Py — I, — [ = HZg(l) - 1.
t#p

Let Fy be a finite extension of Qy, where £ is a prime number which may or may

not equal to p. Let V' be a finite dimensional vector space over Fjy. Let

p: Gg — GL(V)
be a continuous ¢-adic representation of G unramified on U. Equivalently,

p () — GL(V)

is a continuous representation of 7" (I/). The representation p is called geometric if

it comes from an f-adic cohomology of a smooth proper variety over U. The geometric
representations are the most interesting ones in applications.
Given a representation p, its L-function is defined by

1
det(I — p(Frob,)Tdes(®)|V/)

MQ@T%:II

z€|U|

€ 1+ TRy[[T]],

where Ry is the ring of integers in Fy. It is clear that this L-function is trivially ¢-adic
analytic in the open unit disc |T'], < 1.

We are interested in further analytic properties of this L-function L(U, p,T'), espe-
cially for those representations which come from geometry. More precisely, we want to
know

Question 1.1 (Meromorphic continuation). When and where the L-function L(U, p,T)
s £-adic meromorphic?

Question 1.2 (Artin’s conjecture). Assume that p has no geometrically trivial compo-
nent. When and where the L-function L(U, p,T) is £-adic entire (no poles or analytic)?

The answer depends very much on whether ¢ equals to p or not. In the easier case
¢ # p, the Grothendieck [8] trace formula gives the following complete answer.

Theorem 1.3. Assume that ¢ # p. The L-function L(U,p,T) is a rational function
in Fp(T). If p has no geometrically trivial component, then L(U,p,T) is a polynomial
in Fy[T).



In the case £ = p, the situation is much more subtle. A general conjecture of Katz
[10] as proved by Emerton-Kisin [7] says that the above two questions still have a
complete positive answer if we restrict to the closed unit disc. That is, we have

Theorem 1.4. Assume that £ = p. The L-function L(U,p,T) is p-adic meromorphic
on the closed unit disc |T|, < 1. If p has no geometrically trivial component, then the
L-function L(U, p,T) is p-adic analytic (no poles) on the closed unit disc |T'|, < 1.

The extension of the above results to larger p-adic disc is more subtle. For any
given € > 0, there are examples [I4] showing that the L-function L(U,p,T') is not
p-adic meromorphic in the disc |T'|, < 1+ ¢, disproving another conjecture of Katz
[10]. However, if p comes from geometry, then Dwork’s conjecture [5] as proved by the
second author [15][16] shows the L-function is indeed a good p-adic function:

Theorem 1.5. Assume that £ = p. If p comes from geometry, then the L-function
L(U,p,T) is p-adic meromorphic in the whole p-adic plane |T'|, < coc.

The aim of this paper is to study Artin’s entireness conjecture for such L-functions
of geometric p-adic representations. Our main result is the following theorem.

Theorem 1.6. Assume that £ = p and p comes from geometry with no geometrically
trivial components. Then, there is a positive constant c(p, p) such that the L-function
L(U, p,T) is p-adic analytic (no poles) in the larger disc |T'|, < 14+c(p, p). Furthermore,
there are geometrically non-trivial rank one geometric p-adic representations p such that
L(U,p,T) is not p-adic analytic (in fact having infinitely many poles) in |T'|, < co.

The second part of the theorem shows that Artin’s conjecture is false in the entire
plane |T'|, < oo. It shows that the first part of the theorem is best one can hope for, and
Artin’s conjecture is true in a larger disk than the closed unit disk for geometric p-adic
representations. An interesting further question is how big the constant ¢(p, p) can be.
Our proof gives an explicit positive constant depending only on p and some embedding
rank of p. In the simpler ordinary case with R, = Z,, one can take c(p,p) = p — 1
which is independent of p.

2 (-adic case: ( # p

Since £ # p, the restriction of the f-adic representation p to P, is of finite order and
thus the representation p is almost tame. In fact, by class field theory, p itself has
finite order up to a twist if p has rank one. Thus, there are not too many such ¢-adic
representations. The L-function L(U, p,T) is always a rational function. This follows
from Grothendieck’s trace formula [§]:

Theorem 2.1. Let F, denote the lisse {-adic sheaf on U associated with p. Then,
there are finite dimensional vector spaces H (U @ F,, F,) (i =0,1,2) over Fy such that

2
L(U, p, T) = | ] det(I — Frob,T|HX(U & Fy, F,)) "V € Fy(T).
=0



If U is affine, then HY = 0. If p does not contain a geometrically trivial component,
then H? = 0. Thus, in most cases, it is H} that is the most interesting.

Corollary 2.2. Let U be affine. Assume that p does not contain a geometrically trivial
component. Then, the L-function

L(U,p,T) = det(I — Frob,T|H}(U ® F,, F,))
s a polynomial.

This is the f-adic function field analogue of Artin’s entireness conjecture.

Fix an embedding ¢ : Q; — C. A representation p is called t-pure of weight w € R
if each eigenvalue of Frob, acting on V has absolute value ¢3¢8(®)w/2 for all z € |U|. A
representation p is called -mixed of weights at most w if each irreducible subquotient
of p is t-pure of weights at most w. If p is t-pure of weight w for every embedding
t, then p is called pure of weight w. Similarly, if p is -mixed of weights at most w
for every ¢, then p is called mixed of weights at most w. The fundamental theorem of
Deligne [3] on the Weil conjectures implies

Theorem 2.3. If p is geometric, then p is mized with integral weights. Furthermore,
if p is mized of weights at most w, then H.(U ® Fq, F,) is mized of weights at most
w + 1.

The ¢-adic function field Langlands conjecture for GL(n), which was established by
Lafforgue [12], implies

Theorem 2.4. If p is irreducible, then p is geometric up to a twist and hence pure of
some weight.

Thus, in the f-adic case with ¢ # p, essentially all /-adic representations are geo-
metric from the viewpoint of L-functions.

3 p-adic case

In the case ¢ = p, the restriction of the p-adic representation p to P, can be infinite
and thus p can be very wildly ramified. The L-function L(U,p,T) is naturally more
complicated and cannot be rational in general. One can ask for its p-adic meromorphic
continuation. The function L(U, p,T) is trivially p-adic analytic in the open unit disc
|T|, < 1 as the coefficients are in the ring R,. It was shown in [14] that L(U,p,T) is
not p-adic meromorphic in general, disproving a conjecture of Katz [10]. However, one
can show that L(U, p,T) is p-adic meromorphic on the closed unit disc |T'|, < 1. Its
zeros and poles on the closed unit disc are controlled by p-adic étale cohomology of p.
This was proved by Emerton-Kisin [7], confirming a conjecture of Katz [10]. That is,

Theorem 3.1. For any p-adic representation p of i (U), the quotient

LU, p,T)
12, det(I — Frob,T|Hi(U @ F,, F,)) (=D

has no zeros and poles on the closed unit disc |T|, < 1.
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In the case that p has rank one, this was first proved by Crew [2]. Note that
H*(U®F,, F,) = 0since U is a curve and £ = p. If U is affine, then H)(U®F,, F,) = 0.
This gives

Corollary 3.2. Let U be affine. Then, the L-function L(U, p,T) is p-adic analytic on
the closed unit disc |T'|, < 1.

The (compatible) p-adic analogue of a lisse f-adic sheaf (or f-adic representation)
on U for ¢ # p is an overconvergent F-isocrystal over U, which is not a p-adic rep-
resentation. Its pure slope parts, under the Newton-Hodge decomposition, are p-adic
representations up to twists (unit root F-isocrystals, no longer overconvergent in gen-
eral). P-adic representations arising in this way are also called geometric, as they are a
natural generalization of the geometric representations we defined before. For geomet-
ric p-adic representations, the following meromorphic continuation was conjectured by
Dwork [5] and proved by the second author [15] [16].

Theorem 3.3. If the p-adic representation p is geometric, then the L-function L(U, p,T)
s p-adic meromorphic everywhere.

Remark 3.4. It would be interesting to know if a sub-quotient of a geometric p-adic
representation remains geometric in terms of our general definition.

Unlike the ¢-adic case, most p-adic representations are not geometric. It seems very
difficult to classify geometric p-adic representations, even in the rank one case. This
may be viewed as the p-adic Langlands program for function fields of characteristic p,
which is still wide open, even in the rank one case.

Our first new result of this paper is to show that the Artin entireness conjecture
fails for L-functions L(U, p,T) of geometric p-adic representations, even for non-trivial
rank one p.

Theorem 3.5. There are geometrically non-trivial rank one geometric p-adic repre-
sentations p on certain affine curves U over F), such that the L-function L(U,p,T) is
p-adic meromorphic on |T'|, < oo, but having infinitely many poles.

Proof. Let p > 2 be an odd prime and N > 4 be a positive integer prime to p. Let
Y be the component of ordinary non-cuspidal locus of the modulo p reduction of the
compactified modular curve X;(Np). This is an affine curve over the finite field F,.
Let E1(Np) be the universal elliptic curve over Y. Its relative p-adic étale cohomology
is a rank one geometric p-adic representation p of ﬂ?rith(Y). For a non-zero integer k,
the k-th tensor power p®* is again a geometric p-adic representation of 73" (Y"). The

Monsky trace formula gives the following relation

D(k +2,T)

LY, 0 T) = s, M

where D(k,T) is the characteristic power series of the Up-operator acting on the space
of overconvergent p-adic cusp forms of weight k£ and tame level N. The series D(k,T)
is a p-adic entire function. Equation implies that the L-function L(Y,p®*,T) is



p-adic meromorphic in 7', which was first proved by Dwork in [4] via Monsky’s trace
formula, see also [11] and [1].

We want to show that the L-function L(Y, p®* T is not p-adic entire for infinitely
many integers k. For this purpose, we need to describe the coefficients of the L-function
in more detail, following Coleman [I, Appendix I].

For an order O in a number field, let A(O) denote the class number of O. If ~ is
an algebraic integer, let O, be the set of orders in Q(v) containing ~. For a positive
integer m, let W), , denote the finite set of p-adic units v € @, such that Q(v) is an
imaginary quadratic field, v is an algebraic integer and

Norm p.

By Coleman [I, Theorem I1], for all integers k, we have

o0 Tm
D(k,T) = exp<mz_j1 Am(k)——),
where N
y
An(k)= > Y h(O)BN(0,7) 5
+EWp.m OO0 LA

and By (0O, v) is the number of elements of O/NO of order N fixed under multiplication
by p™/~. This is really another form of the Monsky trace formula. It follows that

00 ™
L(Ya P®k,T) = exp(z C’m(k)ﬁ)v
m=1

where

Con(k) = Am(k+2) = Am(R)p™ = > Y W(O)BN(O, 7).
YEWp,m OO,

It is clear that Cy, (k) is an algebraic number in Q,. We need the following key property.

Lemma 3.6. If 6|k, then the field generated by all the algebraic numbers Cp, (k) in Q)
is equal to the compositum of all imaginary quadratic fields in Q, in which p splits. In
particular, this field is an infinite algebraic extension of Q in Q,.

Proof. Since v is a p-adic unit and Norm%m (v) = p™, we see that p splits in Q(~).

Thus Cp,(k) is contained in the compositum of all imaginary quadratic fields in Q, in
which p splits. Conversely, let K be any imaginary quadratic field in Q, in which p
splits. Write pOg = pp. Without loss of generality, we may suppose p = pZ, N Ok.
For m = h(Ok), p™ = () is a principal ideal. Thus p” = (7). It follows that
Normg(ﬂ’) (v) = vy = p™. By replacing v with v and m with mn for some suitable
positive integer n, we may further suppose that ¥ =1 mod NOg. In particular, we
have By (O, ) > 0. Now for any v € KNW),,, since Normg(y’) = Normg(y) =pm,
we may write v/ = wy for some u € Of. Since K is imaginary quadratic, it is well-
known that |O| divides 6. Thus 7v'* = 4*, yielding

Cnk)=( >, > WO)BN(OA)) +a

V' EKNWp,m OE0.,
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where « is a sum of elements contained in quadratic fields different from K. We
therefore deduce that K = Q(v*) is contained in the field generated by C,,(k). This
yields the lemma.

We now return to the proof of the theorem. Let & > 2 be a positive integer divided
by 6. Let F denote the relative rigid cohomology of E;(Np) over Y, which is an
ordinary overconvergent F-isocrystal over Y of rank two, sef-dual and pure of weight
1. The rank one p-adic representation p is precisely the unit root part of F. It follows
that the L-function of the k-th Adams operation of F is

k
L(Y7 p®k7 T)L(Y, p®(7k) , ka) — L(Y, Syr]if7 T) .

The right side is a rational function with integer coefficients. If both L(Y, p®*, T) and
L(Y, p®(=F) T had a finite number of poles, then the above left side would be a p-adic
meromorphic function with a finite number of poles, and it is at the same time a rational
function. It would then follow that both L(Y, p®*,T) and L(Y, p®(=%) T) would be
rational functions. This implies that the coefficients of L(Y, p®*, T') and L(Y, p®(=%), T)
generate a finite algebraic extension of Q in @Q, contradicting to the lemma. We
conclude that at least one of the two functions L(Y,p®*,T) and L(Y,p®(—*) T) has
infinitely many poles. The theorem is proved.

Remark 3.7. For any positive integer k > 2, we believe that both functions L(Y, p®F, T)
and L(Y, pB(=k) T) have infinitely many poles. But we do not know how to prove it.

Remark 3.8. In the analogous setting of the family of Kloosterman sums, the unit root
L-function is again expected to be mon-rational, but this remains unknown at present,
see page 4 in [9].

Our second result of this paper is to show that for a geometric p-adic representation
p on a smooth affine curve U over F,, the L-function L(U, p,T) is p-adic analytic (no
poles) in the larger disc |T'|, < 1 + ¢(p, p) for some positive constant c(p, p). In fact,
we shall prove a more general theorem in the context of o-modules as in [I5][16]. For
simplicity of notation, we use L(p,T) to denote L(U, p,T).

Theorem 3.9. Let U be a smooth affine curve over Fy. Let p be a unit root o-module
which arises as a pure slope part of an overconvergent o-module on U. Then, there is
a positive constant c(p, p) such that the L-function L(p,T) is p-adic analytic (no poles)
in the larger disc |T|, < 1+ c(p, p).

Proof. Let ¢ be an overconvergent o-module on U with coefficients in R, with uni-
formizer 7. Since ¢ is overconvergent, Corollary 3.2 in [16] shows that its L-function
L(¢,T) is p-adic meromorphic everywhere. As U is a smooth affine curve, Corollary
3.3 in [16] further shows that L(¢, T) is p-adic analytic in the disk |7, < |7~1|,. Note
that |7~!], is a constant greater than 1. For example, in the case 7 = p, we have
7ty = p.

We first assume that ¢ is ordinary. For an integer ¢ > 0, let ¢; denote the unit root
o-module on U coming from the slope i-part in the Hodge-Newton decomposition of ¢.

7



It is no longer overconvergent in general. We need to show that the unit root o-module
L-function L(¢;,T) is p-adic analytic in the disk |T'|, < |7 !|,. By the definition of ¢;
and our ordinariness assumption, we have the decomposition

L(¢,T) = [ [ L(¢i,w'T) = L(¢o, T) [ | L(i, 7'T).

i>0 i>1

As mentioned above, the left side is p-adic analytic in the disk |T|, < |7 !|,. For each
i > 1, the right side factor L(¢;, 7T) is trivially p-adic analytic with no zeros and poles
in the disk |T], < |7~ !],. We deduce that the first right side factor L(¢g,T) is also
p-adic analytic in the disk |T'|, < [7~1|,. This proves the theorem in the case i = 0.

For i > 0, we need to use the proof of Dwork’s conjecture in [15][16]. Let ¢ = ¢;.
We need to prove that L(¢,T) is p-adic analytic in the disk |T], < |77 !,. Let
denote the rank of ¢;. Define

T=AN"0 QNP1 @ - @A Pi1.

This is a rank one unit root g-module on U, not overconvergent in general. Define

0= 7.‘.—7“1—"'—(1'—1)7"1'—1—2' ATOT A1+l .

Since ¢ is ordinary and overconvergent, it follows that ¢ is also ordinary and overcon-
vergent. For an integer j > 0, let ; denote the unit root o-module on U coming from
the slope j-part in the Hodge-Newton decomposition of ¢. Then, it is easy to check
that we have the following decomposition (see equation (5.1) in [16]).

L@ ', T) =L, T) [[ Llg; ® 71, 7IT).
Jj>1

For each j > 1, the factor L(p; ® 771, 79T) is trivially p-adic analytic with no zeros
and poles in the disk |T'|, < |7~ !|,. To prove that L(¢, T) is also p-adic analytic in the
disk |T|, < |7~ 1|,, it suffices to prove that the left side factor L(yp ® 71, T) is p-adic
analytic in the disk |T|, < |77,

Now, the rank one unit root o-module 7 is the slope zero part of the following
ordinary and overconvergent o-module

P = g (E=Dricy Aot trioa .

By Theorem 7.8 in [16], we deduce that there is a sequence of nuclear overconvergent
o-modules @, _j (k > 2) such that

Lig@ 1 T) = [] Llp @ Poo1-k @ AFD, T) D,
E>1

Since ® is ordinary and its slope zero part has rank one, A*® is divisible by 7+~

It follows that for k > 2, the L-function L(¢ ® P —1- ® AF® T is trivially p-adic
analytic with no zeros and poles in the disk |T'|, < |r71|,. For the remaining case
k = 1, we apply the one dimensional case of the following n-dimensional integrality
result and deduce that L(¢® @ 2@ ®,T) is p-adic analytic in the disk |T|, < |77},
The theorem is proved in the ordinary case.



Lemma 3.10. Let U be a smooth affine variety of equi-dimension n over Fq. Let ¢

be an overconvergent nuclear o-module on U. Then, the L-function L((;S,T)(_l)n_1 18
p-adic analytic (no poles) in the disc |T|, < |1,

Proof. In the case that ¢ has finite rank, this integrality is already proved in Corollary
3.3 in [16]. In this case, the finite rank Monsky trace formula (Theorem 3.1 in [16])
states that

L(¢, 1)V = [[det( - ${TIM; @p )V,
=0
where R = R, in our current notation and det(! — ¢;T|M ®r K) € 1 + TR[[T]] is a
p-adic entire function. Now, the divisibility ¢7 = 0( mod 7*) (equation (3.4) in [16])
shows that ‘ A
det(] — IT|M; @p K) € 1+ mTR[[x'T]).

This implies the integrality in the finite rank case. For infinite rank nuclear overcon-
vergent o-modules, the proof is the same. One simply uses the infinite rank nuclear
overconvergent trace formula (Theorem 5.8 in [I5]):

n
L(¢, 7)Y = [ det(I — ©;T|M; @ K)V".
i=0
Note that there is a misprint of indices in Theorem 5.8 in [15]: det(/ —©,;T|M} @ K)
there should be det( — ©,,—;T|M}_, ®p K), compare the finite rank case (Theorem
3.1 in [16]). Now, one uses the same divisibility ©; = 0( mod 7*), which follows from
the definition of ©; (Definition 5.5 in [I5]) and the fact that ¢; = ¢ ® o0; is divisible by

7.

O]

In the general non-ordinary case, by a similar argument, we may apply the methods
in [I5][16] for non-ordinary case to give an explicit positive constant ¢(p, p) depending
on 7 and the rank of ¢ such that L(p, T') is p-adic analytic in the disk |T'|, < 14¢(p, p).
The constant ¢(p, p) depends very badly on the rank of ¢, and so we would not bother
to write it down explicitly. O

The above theorem has a higher dimensional generalization. We state this general-
ization below.

Remark 3.11. Let U be a smooth affine variety of equi-dimension n over Fy. Let p
be a unit root o-module on U. Then, the L-function L(p, T)(_l)%1 s p-adic analytic
on the closed unit disk |T'|, < 1. If p arises as a pure slope part of an overconvergent
o-module on U. Then, there is a positive constant c(p,p) such that the L-function
L(p, T)=V""" is p-adic analytic (no poles) in the larger disc T, <1+ c(p,p).

The first part follows from Emerton-Kisin’s theorem on the Katz conjecture and
standard properties of p-adic étale cohomology. The proof of the second part is the
same as the above theorem, and use the results in [I5][16]. We expect that both parts
remain true if U is an equi-dimensional complete intersection (possibly singular) in
a smooth affine variety X over F,. This possible generalization is motivated by the
characteristic p entireness result in [13].



Remark 3.12. In the special case that U is the compliment of a hypersurface and the
Frobenius lifting is the q-th power lifting of the coordinates, the result of Dwork-Sperber
[6] can be used to prove the p-adic analytic continuation of L(p, T)(_l)wl for geometric
ordinary p in the open disc ord,(T) > —(p—1)/(p+1). This result is weaker than our
result since the disc ord,(T) > —(p—1)/(p+ 1) is smaller than the disc ord,(T) > —1
obtained in our approach.
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